Cloud Computing & HP Labs **Peter Toft Automated Infrastructure Lab HP Labs Bristol** LABShp **Automated** Infrastructure Lab © 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Today's Presentation

- HP and HP Labs
- Cloud Computing
 - Evolution to the Cloud
 - What is Cloud Computing?
 - Benefits
 - Barriers
- HP Labs Research Example
 - 'Cells as a Service' AVirtual InfrastructureService

HP today

- Fortune 14 US Fortune 41 - Global
- 172,000 employees
- Revenue for the year ended July 31, 2008: \$113.1 Bn

Leadership across the board

Worldwide data for calendar CQ1 2008

	SHARE	POSITION
Blade Servers ¹	46.9%	#1
x86 based Servers ¹	34.4%	#1
Unix + Linux + Windows Servers ¹	33.1%	#1
Branded Tape Drives ^{1,5}	25.0%	#2
Disk Storage Systems ¹	19.4%	#2
SAN Systems ^{1,6}	14.1%	#3
Automated Software Quality	45.9%	#1
Distributed system management software	17.1%	#1
IT project and portfolio management	10.8%	#2
Support/training services	6.7%	#2
Inkjet printers ⁴	46.6%	#1
Laser printers ⁴	43.5%	#1
Workstations ³	37.3%	#2
Notebooks ²	21.4%	#1
Desktops	16.0%	#1

Sources

IDC June 2008 World Wide Tracker Data & IDC Worldwide Quarterly Disk Storage Systems Tracker, June 2008 IDC FY06 Annual Services and Software Data

Research & development

New ideas and new thinking

- 30,000+ technical contributors
- \$3.6B annual investment
- Company-wide R&D strategy driven by Shane Robison and Office of Strategy and Technology
- Business groups enhance core products, services and customer experiences
- HP Labs innovates "beyond" the roadmaps

HP Completes EDS Acquisition

- \$13.9B transaction is largest ever in IT services, second-largest in technology sector
- Services company with FY2007 annual collective revenue of \$38B
- 210,000+ services employees in 80 countries¹

For those countries that require consultation with works councils and other employee representatives in relation to the local implementation of the merger, this document is not intended to provide country-specific information, and in no way reflects final decisions at a local level. Where required by law, final decisions will be subject to prior consultation with works councils and other employee representatives

¹Aggregate figure in combined services businesses at year-end fiscal 2007

HP + EDS

The game has changed.

#1 in Technology
Hardware

#1 in Distributed
Management
Software

#2 in IT Services Globally

#2 in Infrastructure Technology Outsourcing

#2 in Application Outsourcing

The opportunity is compelling.

IT Services Estimated Addressable Market (2007): \$500B - \$550B

HP: Largest Technology Company in the World

Source: IDC; Gartner's April 2008 IT Services Market Metrics Worldwide Market Share

HP Labs: HP's central research organization

- HP strategy creation
- Strategically aligned technologies
- New opportunities for HP
- Fundamental science

HP Labs around the world

5 research themes with 20-30 projects at a time

7 locations

600 researchers in 23 newly formed labs

High impact research themes

Addressing the next technology challenges and opportunities

Evolution to the Cloud The First Generation

Stage 1: The Internet: Connectivity

The Second Generation

Stage 2: The Web: Information

The Third Generation

Stage 3: The Cloud: Services ubiquitous, uniform access to services Killer App: ??? LABS^{hp}

So, What is Cloud Computing?

The 451 Group: "The cloud is IT as a Service, delivered by IT resources that are independent of location"

Gartner: "Cloud computing is a style of computing where massively scalable IT-related capabilities are provided 'as a service' across the Internet to multiple external customers"

Forrester: "A pool of abstracted, highly scalable, and managed infrastructure capable of hosting end-customer applications and billed by consumption"

A Real Trend or a Marketing Bandwagon?

Both:

- A useful, evocative way of talking about a big shift in IT delivery and consumption
- There won't be a precise definition
- There will be many abuses of the term

A Confluence of Technologies and Ideas

- Grid computing, utility computing, virtualization, SOA
 - Direct comparisons with these technologies are 'apples and oranges' comparisons (or fruitless ⊕) ...
- ... because Cloud computing is a conceptual service model, where:
 - Services are delivered remotely from a logical resource
 - The details behind the scenes are hidden; may use the techs. above
 - Are paid for based on how much service is consumed
 - Are genuinely on-demand
- Cloud computing is a <u>real</u> trend driven by
 - The ubiquity of internet connectivity
 - Low-cost commodity hardware and open source software
 - Figuring out a bunch of technical stuff

- At Internet scale
 - -Millions of users
- With unprecedented flexibility
 - APIs, mash-ups and other integrations, scaling up and down, ...
- At breakthrough cost levels
 - Economies of scale
 - New revenue models
 - Eliminating old sources of cost (SaaS vs. CD)

Inside the Cloud

Google in 2007

- 36 data centers containing > 800K servers
- 40 servers/rack
- Custom hardware, customized Linux base OS, lots of homebrew s/w
- Gobbling up dark fibre
- Many unreliable servers to fewer high cost servers
- Single search query touches 700 to up to 1k machines in < 0.25sec
- Typical H/W failures: Install 1000 machines and in 1 year you'll see: 1000+ HD failures, 20 mini switch failures, 5 full switch failures, 1 PDU failure
- There are more than 200 Google File System clusters
- The largest BigTable instance manages about 6 petabytes of data spread across thousands of machines

Cloud Service Layers

IT as a Service, Delivered by Cloud(s)

15 Ways to Tell it's **not** a Cloud

- If you peel back the label and it's says "Grid" or "OGSA" underneath... it's not a cloud
- If you need to send a 40 page requirements document to the vendor then... it's not cloud
- If you can't buy it on your personal credit card... it's not a cloud
- If they are trying to sell you hardware... it's not a cloud.
- If there is no API... it's not a cloud.
- If you need to re-architect your systems for it... it's not a cloud.
- If it takes more than ten minutes to provision... it's not a cloud
- If you can't de-provision in less than ten minutes... it's not a cloud

- If you know where the machines are... it's not a cloud
- If there is a consultant in the room... it's not a cloud
- If you need to specify the number of machines you want upfront... it's not a cloud
- If it only runs one operating system... it's not a cloud
- If you can't connect to it from your own machine... it's not a cloud
- If you need to install software to use it... it's not a cloud
- If you own all the hardware... it's nót a cloud

James Governor, Redmonk

Why Cloud Computing?

Cost reduction

- Benefit from economies of scale
- Predictability of spend
- Avoids cost of over-provisioning
- Reduction in up-front investment

Risk reduction

- Someone else worries about running the data-centre, protecting your data, and providing DR
- Reduces risk of under-provisioning

Flexibility

- Add/remove use of services
- Scale up and down as needed
- Do it quickly

Service Evolution

- Services, evolve and (hopefully!) improve behind the scenes, with no user-involvement required
- Ubiquity
 - access from any place, any device, any time

Get Ready for the Hype ...

Figure 1. Hype Cycle for Emerging Technologies, 2008

Is the Cloud Ready for the Enterprise?

- Yes, for some applications
 - Crash and burn, dev/test, batch processing, peak-load capacity expansion for some tasks
 - -Some applications gaining traction
 - Often outside the control of the internal IT organisation
 - LOTS of interest

Not for the core mission critical stuff ... yet

A Nice Example: NYT and EC2

Why is this Compelling?

Barriers to Adoption

- Security
- Trust in the service vendor
 - Service levels
 - Stability
 - Geographic presence
- ISV support not widespread
- · Few have taken the plunge in a big way
- Customizability of service offerings for specific needs of each enterprise
- Concerns about lock-in, lack of multi-vendor options
- Data locality
- Regulatory concerns
- Challenge of migrating from in-house (or outsourced) apps
- Vested interests!

Private/Hybrid Clouds

 The Enterprise Cloud: large-scale infrastructure satisfying all cloud properties, delivering services out to enterprise business units

- Hybrid Model: in-house cloud linked seamlessly to the public cloud
 - "Cloudbursting"

HP LABS RESEARCH EXAMPLE

VIRTUAL INFRASTRUCTURE **SERVICE**

HP Labs: Cloud Research

Forming the Cloud: Cells as a Service

- An infrastructure-level
 Cloud service
- Delivering secure, isolated virtual infrastructures – Cells – to multiple customers
- Offering enterprisegrade properties
- Running on large-scale physical infrastructures

Model-Based Cell Management

- Customers interact with Cell Managers via bidirectional model exchange
- The Cell realises the resources in the model, reflects changes
- Evolution to rich model properties: adaptation, performance, ...

Cell-Based Service Composition

- Provide enhanced infrastructure services – beyond the 'atomic' virtual resource elements
- Service composition allows rich, Cell-based infrastructure services to be securely offered to other Cells
- Supported directly by the Cell infrastructure management system

Service Composition Examples

- Encrypted Volume Service
 - A service that offers encrypted volumes to ensure that all persistent data is kept "safe"
- Replicated data service
 - Data guaranteed to be saved to multiple locations
- 3rd-party Audit Service
 - Squirrel away logs and other events securely for later audit requirements

Cell Infrastructure Management System

- Design target:
 - Large-scale, commodity physical infrastructure
 - Thousands of nodes
 - Simple networking and storage
 - Commodity virtualization technology
 - Everything virtualized
 - Security at the core
 - Complete automation

Cell Management Core

- Runs on every physical machine in the Cell intrastructure
- Controls the lifecycles of virtual machines
- Provides the fundamental ʻplumbingʻ
 - Controls ingress and egress of network traffic between virtual machines
 - Presents storage volumes to virtual machines
- Small, correct
- All other system management functions implemented as Cell-based system services

Virtual Networking

- Arbitrary connectivity can be established between virtual machines
 - Subnets within Cells
 - Connections between Cells
 - Connections to external networks
- Network rules determine which paths are allowed
 - Both ends must agree
- Network resource (rate) control
- Foundation for Cell isolation

Virtual Storage

- Cell Management Core presents storage volumes to VMs
- Tricks behind the scenes:
 - Copy-on-write layers
 - Caching on local disk for volutile or read-only volumes
- Back-ended by a variety of storage technologies
 - Storage arrays
 - Distributed storage

Core System Management Services

- Running in Cells, with privileged access to the management core
- Example services:
 - -Customer model transfer and processing
 - -VM placement and migration
 - Network policy distribution
 - -Storage management and storage policy distribution
 - Liveness

— . . .

Cells: Not Just the Data Centre

HP/Intel/Yahoo! Global Cloud Computing Research Test-Bed

- Sponsors:
 - HP Labs, Intel Research,Yahoo! Research
- Partners:
 - -IDA Singapore
 - Karlsruhe Institute of Technology
 - University of Illinois at Urbana Champaign

- Collaborative, open research on management of Cloud Computing data-centres and applications
- A shared, large-scale, distributed test-bed

Beyond the Cloud: What comes next?

'Prediction is very difficult, especially about the future.'

Niels Bohr

Mesh Networks of Connected Devices 'Plasma Computing'?

