

Software Engineering with Formal Methods: The storm surge barrier revisited Klaas Wijbrans (Acision)

Franc Buve, Robin Rijkers, Wouter Geurts (Logica)

© 2008 Acision BV. All rights reserved.

Company Introduction

- Acision is the world's leading messaging company
 - Over 50% of all SMS messages in the world are delivered by our products
 - Proven track record in Multimedia Messaging, Unified Messaging and Mobile Internet
 - Leader in standardization of Converged IP Messaging
 - Originated from the LogicaCMG Telecom Products division
- Logica is the leading IT company with a 40-year track record in innovative systems
 - Merged with CMG in 2002 to form LogicaCMG
 - Acquired WM-data, Edinfor and Unilog

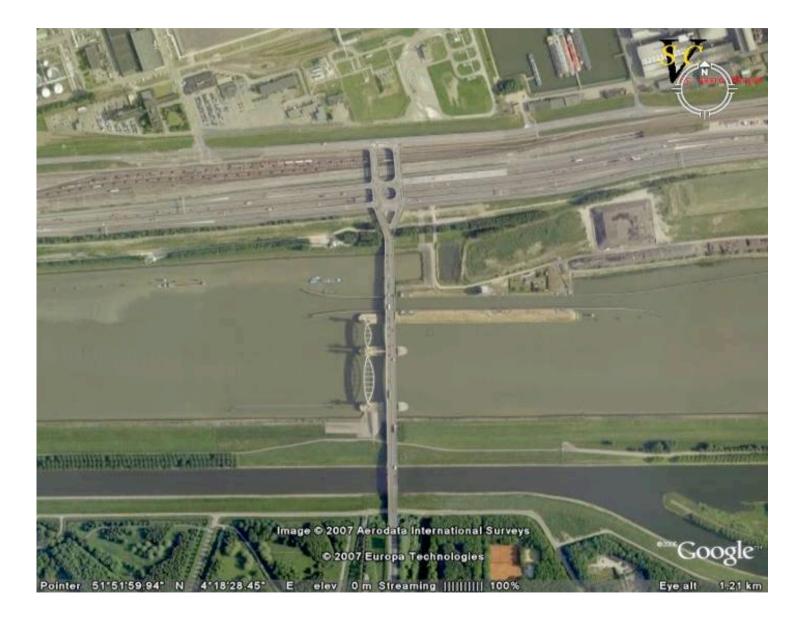
Introduction

Topics

- What is the Maeslant barrier and where is it located?
- Design principles behind the barrier
- Failure probability
- BOS
- Use of formal methods
- Lessons learned in operation
- The mid-life upgrade
- Current status and a look to the future

Location of barriers

Maeslantkering


Maeslantkering

Hartelkering

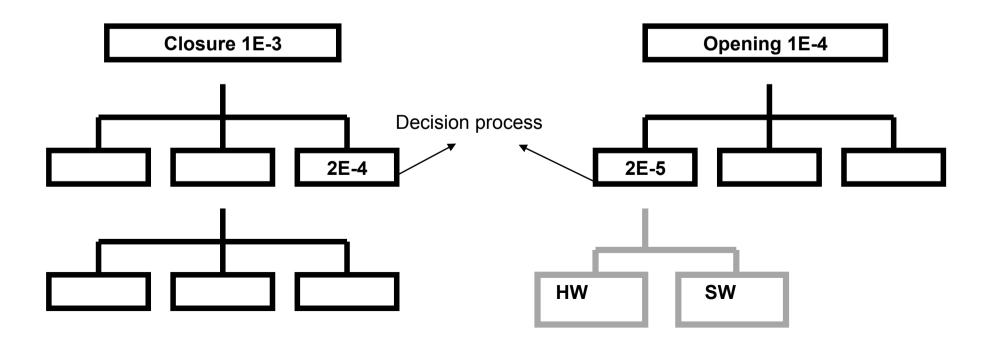
Hartelkering

Design Principles of the Barrier

- Conventional over-dimensioning for safety not feasible
- New approach in design
 - "Just good enough"
 - Failure probability analysis for every element in chain
- But:
 - Barrier must be just as reliable as a dike!
 - Acceptable risk of failure dike: 1 flooding in 10.000 years
 - Frequency of extreme high water:
 1 storm in 10 years
 - Acceptable risk of failure barrier: **1 failure in 1.000 closures**

Not just an open/close decision

- <u>Anticipate</u> storm (minimal 8 hours) (to warn sea traffic)
- Inform authorities
- <u>Three</u> barriers to control (Waterwegkering, Hartelkering and Hartelsluis)
- <u>Unjustified closure</u> very undesirable (economic interests)
- <u>Unjustified not opening</u> is dramatic
- <u>Continually monitoring</u> in submerged state → re (vulnerable for waves and water height from land side)
- <u>Detection of failure</u> before it is too late
- Extensive <u>maintenance</u> procedures

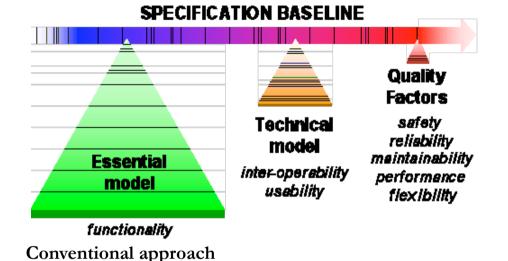

- \rightarrow predict
- \rightarrow fax, pager
- \rightarrow mutual dependencies
- \rightarrow critically tuned
- \rightarrow barrier destroyed
- \rightarrow real-time monitor
- \rightarrow active monitoring
- \rightarrow support

Failure Probability Tree

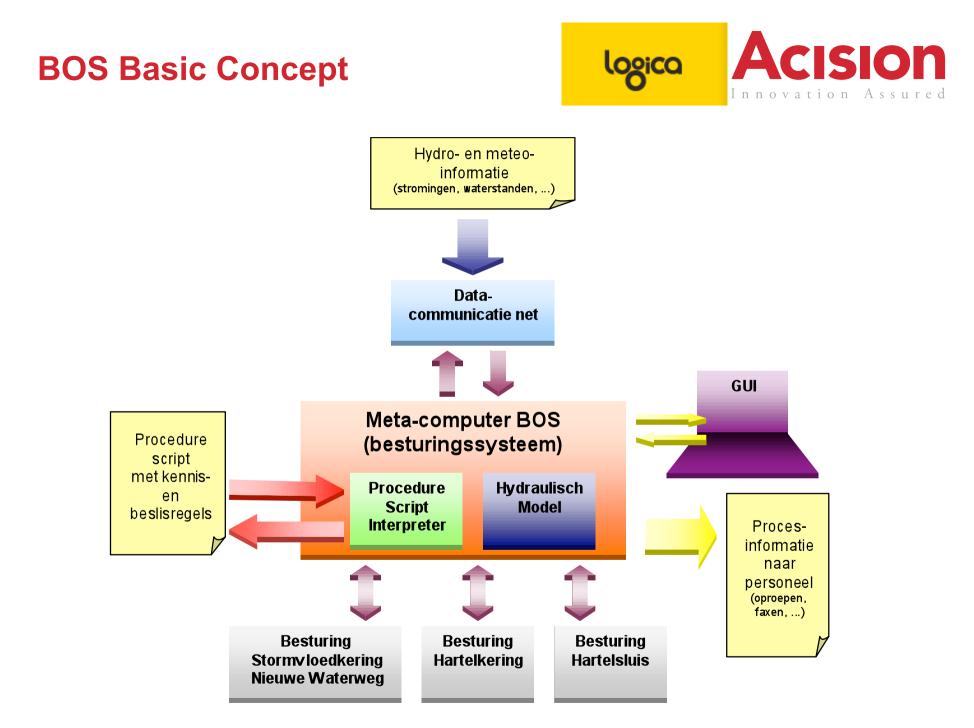
- Failure probability divided over components
 - Steel construction, joints, engines, electro-mechanics, decision system (BOS)
- Damage when not opening higher than not closing!
 - Failure to open: less than 1 in 10.000 (10^{-4})
 - Failure room for decision: 1 in $50.000 = 2 \times 10^{-5}$

Failure Probability Tree

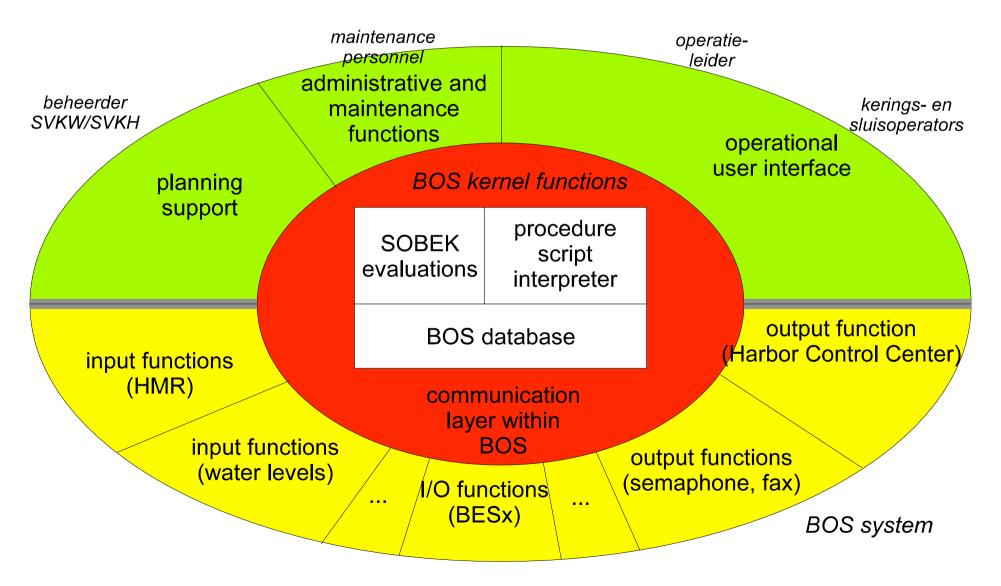
- Failure probability of decision of 2 x 10⁻⁵ impossible for humans
 - Average human 10⁻²
 - Trained fighter pilot 10⁻³
- Decision has to be automated =>
 - Beslis- en Ondersteunend Systeem (BOS)



Design Approach

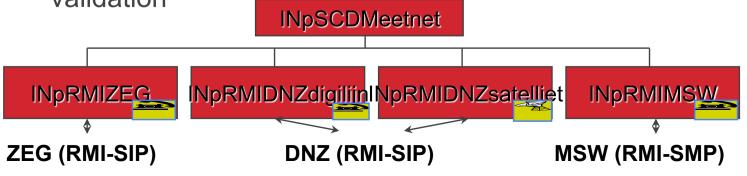

- IEC-61508 introduces Safety Integrity Levels for critical systems
- SIL-4 dictates use of risk-based approach
- Attention to non

 functionals from the
 very beginning
- Rigorous development method including formal methods together with other techniques


Fundionally ARCHITECTURE

Risk-based approach

BOS architecture



Use of formal methods - 1

- Modeling and validation of communication and interaction
 - Process architecture modeled/validated in Promela/SPIN
 - Communication with external systems modeled;validated in Promela/SPIN
 - Ensures progress and absence of livelock/deadlock in core architecture
- Behavioral modeling proved to be easy to learn and very insightful
 - Significant changes at protocol level made because of formal validation

Use of formal methods - 2

- Modeling of data and algorithms using Z
 - Case tool for modeling BOS system using Ward & Mellor
 - Functionality and data in each process, store and flow modeled using Z
 - Design documentation generated from case tool using scripting and LaTeX
 - Input to Z Type Checker generated from case tool using scripting and syntactically validated
- Experiences with Z modeling
 - Difficult to learn, very steep learning curve
 - Excellent input to testers and reviewers who are much more effective in deriving test cases or reviewing code/design
 - Supports unambiguous communication between designer, programmer, tester and code reviewer

Delivery and operation

- Project completed in 1997
- Storm surge barrier officially commissioned in October 1998

Barrier reliability revisited

- 2006: concerns raised on reliability of the barrier
- Two reliability studies by independent parties performed for government
- Main conclusion
 - Pro-active maintenance critical for reliability
 - Availability of spare parts
 - Guaranteed repair times
 - Well-defined contracts and processes for operation, maintenance and repair
- Impact on BOS

Results from actual operation

- Test closure every year since 1997
- First closure with an actual storm on November 11th, 2007
- No failures
- Software quality
 - No critical or major errors found that might affect barrier operation
 - Majority of changes requested on U
 - Input validation was introduced

logica

ISION

nnovation Assured

- Operator/engineer is paged whenever some part is in error condition
 - In practice there is always something in error (though not fatal)
 - Most errors originate between 9:00 and 17:00 hrs
 - No errors between Christmas and New-Year!
- Do not under-estimate effect of human interactions such as maintenance
 - Repair on pumps and valves
 - Disconnected cables
 - Much more construction maintenance than anticipated in software design

Lessons learned (2)

- Very strict development/change process needed, but causing long cycles
 - Storm season October to April
 - Yearly trial in September (date set a year ahead)
 - Acceptance test consists of running 20 real storms on the test system (~60 days)
 - New release has to be ready for test in June
 - Normally not feasible => wait for next year
- Most changes requested in human interaction: GUI
- Extensive self-verification during start-up takes 2,5 hours
 - Not considered important: only started once a year
 - But... nightmare for test system

Mid-life upgrade project

- Hardware is end of life
- Port to new platform
- Methods and techniques from the original project still apply
- Improved error diagnostics and drill -down functionality
- GUI taken out of the core system
- Currently under development

Experiences upgrade project

- Use of Z from original project is still effective
 - Tricks required to make tooling work
 - Steep learning curve due to new development team
 - Formal methods missing in software engineering education
- Formal methods augment and improve existing techniques, especially the combination of
 - Formal specification
 - Module testing
 - Code review
- Experience is difficult to retain organizationally
 - People move on in their career
 - Amount of projects applying formal methods is low

Current status

- Logica
 - Few customers are willing to pay the price of a SIL4 project
 - Required reliability reduced by conventional design techniques
 - Learning curve for formal methods is still steep
 - Cooperating with University of Twente in formal methods research
 - Cooperating with Verum in industrializing formal methods
- Acision
 - Experience with storm surge barrier re-used in Telecom products
 - Formal specification badly needed in telecommunications protocols
 - Internet RFCs and 3GPP specifications lack formality
 - Set back from the more rigorous SDL notation used in ETSI
 - Cooperating with Technical University Eindhoven on formal architecture verification

A look to the future: what do we need most

- Support for the specification and design phase.
 - Majority of the problems are introduced in the specification and design, not the implementation.
 - External systems need to be part of formal specification
- Support for practical methods and tooling that make the use of formal methods simple
 - Notation and tooling need to be integrated in reqs/design tooling to support engineers
 - Promising developments in this area
- Standardize on specific formal methods (best of breed) as part of the mandatory computer science education.
 - Learning how to specify is critical engineering knowledge
 - Even if people have encountered formal methods, there are many proprietary variations (treated as religion)

