
- 1 -

([WHQGLQJ�WKH�80/�IRU�0DQDJLQJ�WKH�6RIWZDUH
$UFKLWHFWXUH�/DQGVFDSH�LQ�D�ODUJH�(QWHUSULVH

Christian Jänsch1, Christoph Maier2, Thomas Tensi3

$EVWUDFW
In large enterprises the number of software systems for diverse tasks is very high. They have different
technical platforms and design philosophies but nevertheless are intensely connected. Hence to deal
with the complexity of such a application network some software architecture management is
necessary.

The ARCUS method in the Bayerische Landesbank extends the Unified Modelling Language for
modelling the architecture of a complete landscape of software. This is achieved by extending the
UML metamodel with new stereotypes and constraints and by introduction of new notions like e.g. the
derived relations. To implement this method tools are vital, but also new roles within the organisation
have to be established.

�� ,QWURGXFWLRQ
Large enterprises normally have a zoo of applications with different technical realisations and design
concepts. Nevertheless those applications are normally intertwined intensely. Sometimes an
application uses information provided by another; sometimes the application have an overlap in the
data used or even in the algorithms used.

Traditionally applications are developed and maintained by only looking at their immediate context.
This means that there is no global view of dependencies and possible redundancies. This leads to
problems like e.g.

�� business requirements cannot be traced to applications,

�� small changes in a single application may lead to avalanche changes in other applications, and

�� planning strategic changes (like e.g. mass migration to decentralised systems) is impossible.

Hence the typical management of architecture-in-the-small is not sufficient. There must be a global
view of the single applications' architecture and the architecture-in-the-large of all applications (their
interconnection, commonly used components etc.). Otherwise one will get a heterogeneous global
architecture and problems with algorithmic or data redundancies.

Based on those ideas the Bayerische Landesbank, Munich, started the ARCUS project two years ago.
Its aim was to develop a notation and tool set to support the architecture management within the
enterprise and also to decide how to embed this management into the organisation.

Also a method for creating and maintaining architecture models has been developed. Due to the
limited space and scope of the paper we will not go into details of this method.

�� *RDOV��3XUSRVH�DQG�$XGLHQFH�RI�$UFKLWHFWXUH�0DQDJHPHQW
The main purpose for an architecture management is to ensure the compatibility of all hardware and
software systems used within the enterprise. As already mentioned it does not suffice to simply put
together the individual application models or to have a broad view on all applications, but KDYH�WKHP
ERWK�LQ�D�VLQJOH�PRGHO.

                                                     
1 Dipl.-Ing. (univ.) Christian Jänsch, Cortex Brainware GmbH, Kirchplatz 5, D-82049 Pullach
2 Dipl.-Inform. (univ.) Christoph Maier, Bayerische Landesbank, Briennerstraße 20, D-80333 München
3 Dr. rer. nat. Thomas Tensi, sd&m AG, Thomas-Dehler-Straße 27, D-81737 München



- 2 -

The architecture model contains several layers, containing different aspects of a software system.
Those layers form a hierarchy and are connected; hence it is useful to keep them together in a single
model. As layers we have a broad model of the business processes, a class model of the business
notions, an abstract model of the applications’ logical components and a technical model of hardware
and software components.

Business processes and notions are independent of an implementation on a computer. Both layers
together cover the dynamic and static aspects of the business. The component model describes the
conceptual, the technical model describes the real implementation architecture. They could be
isomorphic but in practice often are not.

Of course, due to the high complexity it is neither possible nor necessary to precisely model every
aspect of an application in the central model. The central architecture model is just a macroscopic view
of the application landscape. Detailed information about a single application is stored in the different
development environments. That information can be abstracted in the central model because many
implementation details do not affect the architecture of the application.

In that respect the application landscape model resembles a zoning plan for a city: here you are
interested in what kind of buildings are put at some place and the zoning plan reveals how the
structure will develop. Nevertheless details of buildings (like the shape of the window frames) is
irrelevant.

Covering all those aspects and connecting them in the model allows to find out how

�� business processes are supported by applications,

�� new business requirements may change existing applications,

�� existing model parts or components might be reused, and

�� the existing application landscape might be simplified by restructuring.

The architecture model addresses mainly two audiences: the management and the developing projects.
Management gets some ideas how business problem domains are supported by IT and how
improvements could map into the IT domain; the projects know their context early, especially with
respect to interfaces and possible reuse of existing solutions.

Based on the intended purpose and the target audience, ARCUS has several goals:

�� establishing a common vocabulary for the topics of "software architecture" and "application
landscape"

�� realisation of a simple notation for software architecture based on a standard notation language
and

�� systematic and abstract representation of the enterprise’s existing and target architecture.

Additionally architecture management had to be embedded into the enterprise. A central architecture
management team has been established taking care of an enterprise-wide application landscape model.
This model is also available to architecture teams for the diverse business domains which may
selectively change those aspects for which they are responsible and have expertise.

�� 8VLQJ�WKH�80/�DV�D�%DVH�0HWDPRGHO�IRU�$5&86
As mentioned before modelling the application landscape is done on four architecture layers (see
figure 1). Those layers describe

�� the business processes supported by the applications,

�� the important business notions in a class model including relations between them,

�� the logical application components, their interconnection and the processed logical data and

�� the physical computer topology as well as the technical software components implementing
the logical application architecture and their relations.



- 3 -

VHUYHU KRVW

FOLHQW

3URFHVV�DUFKLWHFWXUH�OD\HU

6\VWHP�DUFKLWHFWXUH�OD\HU

3UREOHP�GRPDLQ�OD\HU

/RJLFDO�DSSOLFDWLRQ�DUFKLWHFWXUH
OD\HU

Figure 1: Four layers of an application landscape

It is not sufficient to model the layers seperately but one also has to include inter-layer-relationsships
explicitely, to show dependencies between model elements in the different layers and be able to follow
them.

Basis for the ARCUS metamodel is the Unified Modelling Language (UML, see [UML]) which has
been extended by ARCUS in several ways:

�� Variants of existing UML model elements have been introduced by using VWHUHRW\SHV. The
elements of the layers are stereotypes of classes with specific stereotyped relations. The
altogether about 50 stereotypes for classes for a proper hierarchy.

�� There are additional rules on how those new model elements can be interconnected. ARCUS
defines this in a PHWDPRGHO which comprises about 80 metamodel elements and more than 60
metarelations. Figure 2 shows a part of the metamodel for the process architecture layer. Here
you can see that a process may be refined by a flow graph. The nodes in the flow graph are
either activities or events, which are connected by flow transitions (details in section 4.1.).
Additional semantic rules are given as FRQVWUDLQWV of the metamodel (partly as OCL-
constraints, see figure 2 for an example).

�� For convenience in modelling the new concept of a GHWDLOHG�FODVV�has been introduced. This is
a class element with some encapsulated internal structure, which can be exposed on demand. It
is somewhat a mixture between a package and a class (more on that in section 5.1.).

�� As the elements form a hierarchy relations on lower hierarchies may induce relations on upper
hierarchies. Those relations do not have to be modelled explicitely but are automatically
synthesized as so-called GHULYHG�UHODWLRQV following special rules (see section )

All those concepts have been implemented by using a commercial case tool and extending it by
several modules. Those programs help a modeller to navigate through an architecture model, to check
the consistency of the model and to query it or extract other representations from it. The metamodel is
parametrized by putting a text definition of it into an external file and can be easily changed.

Due to some restrictions in the UML semantics (or at least in the implementation thereof in the CASE
tool used!) all ARCUS model elements are either classes or relations between classes. This design
decision gives a very flexible basis for implementing the ARCUS metamodel.



- 4 -

$FWLYLW\ Event Synchroniser

3URFHVV

0..1

0..1

detail 0..1

superprocess 0..1

)ORZ(OHPHQW

FlowGraph

*

1..*

*

1..*

{NOT isOfType(BusinessProcess)}FlowTransition
*

1

incoming
edges

*

source
1

1* target 1

outgoing
edges

*

Event

0..10..1

([HFXWLRQ9DULDQW

0..1

1

0..1

1

Condition Iteration

Figure 2: Extract from ARCUS metamodel for modelling business processes

�� $UFKLWHFWXUH�/D\HUV�LQ�'HWDLO
In this section we illustrate the four architecture layers using an example of a simple and fictional
travel expense management system.

���� %XVLQHVV�3URFHVV�$UFKLWHFWXUH�/D\HU

This layer describes the business processes concentrating on those directly supported by applications.

The centre of modelling is the UROH. Here we describe what kind of roles there are, what tasks they are
responsible for and how they interact in handling a business process.

Technically the description is done by flow graphs which are networks of activities, events and
connected information flows. The graph is an abstraction of all possible sequences of activities for the
given business process and is very similar to the UML activity diagrams.

Base elements are "process", "work step", "event", "information", "organisational unit" and "role". A
business process is detailed by a graph of process, work step and event nodes connected by flow
relations. Also possible are branches, loops and parallelism. The graph may be augmented by relations
to information sources and sinks as well as roles and org. units performing the process steps.

Figure 3 illustrates this layer with excerpts from the model for the travel expense management system.

Note that the focus of ARCUS is not on replacing standard business process modelling: the ARCUS
model is not a business administration view, but a technical view focussing on the IT support of
processes. To be able to navigate the model and do meaningful queries the connection to other layers
is obligatory (see section 4.5.).



- 5 -

L
vouchergather voucher

number vouchers

produce voucher substitutes

[vouchers missing]

gather travel data

 [all vouchers available]

L
vouchers (assigned)

travel data done

L
travel expense list

do control printout

[data incorrect or
incomplete]

Traveler

collect expense data

travel data collectedaccount rejected

account
accepted

check expense data

pay out travel expenses

Accountant
autom. work step

manual work step

information
account
booked

Detailing the
process

role

subprocess

event

Figure 3: Example for the business process architecture layer in ARCUS

���� 3UREOHP�'RPDLQ�$UFKLWHFWXUH�/D\HU

In this layer the business notions are modelled by using types and objects with their static and dynamic
relations.

In principle we here have a simplified analysis class or data model. This means we’re not doing a
complete class model of the application (which is normally very technical and done elsewhere), but
modelling the important - mostly inter-application - notions and their relations and constraints.

Hence in this layer we use the standard UML concepts like classes, associations, objects, state models
etc. There is only one stereotype added in this layer: the "central notion". It visually emphasises the
fact that a class is very important for the enterprise.

This layer is introduced to give an idea, what notions an application uses and supports technically. One
now can easily query a model to find applications with overlapping problem domains.

���� /RJLFDO�$SSOLFDWLRQ�$UFKLWHFWXUH�/D\HU

This layer describes the applications and their components from a logical point of view regardless of
the technical implementation constraints.

The idea is to introduce an intermediate layer which describes how the applications and the application
network would be structured when no technical constraints were given. This layer firstly supports
people not proficient with technical terms (like most non-IT customers) giving them an abstract view
on the application. Secondly normally the abstract application architecture is much more stable than
the physical.

Here the base model elements are "application", "component", "module" and "data" plus variants.

Figure 4 illustrates this layer with excerpts from the model for the travel expense management system.



- 6 -

UI travel expense acquisition UI travel expense analysis

employee data

travel data

Dialog control f. acquisition Dialog control for analysis

travel expense model

travel lump sums

travel data

employee data

travel lump sums

travel expense system

Detailing

component

UI component

control component
 data

�application

Figure 4: Example for the logical application architecture layer in ARCUS

���� 6\VWHP�$UFKLWHFWXUH�/D\HU

The architecture layer describes the final implementation architecture of an application and its
deployment. It consists of a hardware and software view.

�� The hardware view describes the physical computer landscape and the topology but
abstracting from concrete systems and considering only archetypes of systems. Hence typical
elements are called "data-warehouse server" and not "Machine 3637". As base hardware
elements we have "computer", "network" and "physical data". Additionally there are variants
and groupings (like "server group").

�� The software view describes the technical realisation of an application including technical
components (for communication, middleware etc.) which have been intentionally left out of
the logical application architecture. Base software elements are "program" (executables,
scripts and third-party products), "physical data" (files and databases) and "software systems"
(as clusters of data and programs) with variants.

To model the deployment of the software elements on the hardware elements relations are allowed
between specific software and hardware elements.

Figure 5 illustrates this layer with excerpts from the model for the travel expense management system.



- 7 -

Database Server

Employee PCs
Application Server

��7&3�,3��,,23!!��7&3�,3��+773!!

Accounting PCs

client group

server station

main server

��7&3�,3!!

��7&3�,3!!

Travel Expense Acquisition
Program

Travel Expense Accounting
Program

Travel Expense Database

Software

Hardware

Figure 5: Example for the system architecture layer in ARCUS

���� ,QWHU�/D\HU�5HODWLRQVKLSV

As we have all layers in one model we can establish relations between them and also query for those
connections. Of course, the metamodel restricts the relations allowed to meaningful constellations.

With those relations the model can be approached depending on the modeller: A process-oriented
modeller can traverse the model top-down to find out what implications a change in a business process
might have on the applications; a technically-oriented modeller can traverse the model bottom-up
finding the effect of changes in the technical application interconnection on data flow in the process
layer.

For easier layer identification the visual representation of the model elements uses a unique colour for
all the elements within a layer (see figures 3, 4 and 5 above).

�� 6SHFLILF�0HWDPRGHO�&RQVWUXFWV
There are additional ARCUS-specific metamodel extensions which have proved to be helpful in doing
the modelling.

���� 'HWDLOHG�(OHPHQWV

As already shown in figures 3 and 4 it is convenient to consider at least some elements in the
metamodel as GHWDLODEOH.

�� A non-detailed element has no internal structure and its visual representation has a grey
background (it’s a black box...).

�� A detailed element has some internal structure which normally is not shown. Its visual
representation has a transparent background (it’s a white box...) and reveals its contents on
demand.

E.g. in the left part of figure 3 we have a detailed process element "collect expense data" whose
detailed structure is shown in the right part of figure 3.

Note that normally not all elements in a detail view are parts of the detailed element (in the sense of an
UML aggregation). In our case the work steps and subprocesses of the right part of figure 3 might be



- 8 -

parts of "collect expense data", but the involved roles certainly are not. The ARCUS metamodel
defines exactly what detailing aggregations the elements may have.

���� 'HULYHG�5HODWLRQV

ARCUS allows to handle relations which have not been fixed by the modeller, but are automatically
generated by the system: the so-called GHULYHG�UHODWLRQV.

To understand the purpose of those relations, first look at an example: Assume that application "A"
contains a component "A1" and an application "B" contains a component " B1". Let’s also assume "A1"
uses "B1". If a view shows "A1" and "B1" then also the usage relationship between "A1" and "B1"
should be visible. Normally the UML-CASE-tool does this automatically. But in a view which only
shows "A" and "B" and not their parts ""A1" and "B1" DOVR�DQ�LPSOLFLW�XVDJH�UHODWLRQVKLS�PXVW�EH
YLVLEOH�EHWZHHQ��$��DQG��%�� because some part of "A" uses some part of "B".

This rule is valid for many such situations and transitively across arbitrary aggregation hierarchies.
The semantic rules of the metamodel clarify exactly when this propagation of relations may occur. It
also deals with some technical complications that some elements may be transparent with respect to
some relations. In figure 6 we have two high level activities with some aggregated subactivities. There
is a intersected control flow relation between "subA12" and "subA21" with some event in between and
another between "subA22" and "subA11" with some synchroniser and event in between. Nevertheless
when just coarsening the flow graph to activities only, we can derive two control flow relations
between "activity 1" and "activity 2".

event 1 subA21 subA22 subA23

synchroniser

subA12subA11

event 2

5� 5�

5�

5�5�

activity 2activity1

<<derived control flow>>

derived from R1
and R2

derived from R3,
R4 and R5

<<derived control flow>>

Figure 6: Deriving a Relation over Transparent Elements

But figure 6 does not reveal the whole truth: of course, there are derived relations relations missing
(e.g. one between "activity 1" and "subA11" as well as another one between "subA23" and "subA11"!).

Two remarks are necessary:

�� Firstly, it would be quite incomprehensible when all derived relations would be shown in
views. Hence in any view of the model only those relations are visible which are on the lowest
hierarchy level shown. If in some view only "activity 1", "activity 2" and " subA21" from the
model in figure 6 were visible, the derived relation from "activity 1" to " subA21" would be
shown, but the one from "activity 1" to "activity 2" would not!

�� Secondly, derived relations are volatile: The system stores how the propagation occurred (see
the notes in figure 6 for an example) and generates or deletes the relations automatically. This
volatility is also visualised in views by colouring derived relations differently from normal
relations.

�� 7RRO�6XSSRUW
It is impossible to establish architecture modelling according to some notation with a sometimes
complicated semantics without any tool support. Hence we have implemented add-ins for a common
commercial CASE-tool which allow to generate, modify and query architecture models and to export



- 9 -

architecture models into relational data bases or HTML representations. Figure 7 shows how to
specify some simple query for elements in the model.

Figure 7: Searching for elements in an architecture model

In most cases modellers will work on the graphic views of the application model. Hence also model
queries will offer the opportunity to deliver their output as diagrams. Those diagrams can then be used
to selectively change properties of the elements found in the query.

Also as this application landscape will become very large it has to be version-controlled with a fine
granularity.

�� 6XPPDU\
In the ARCUS project of the Bayerische Landesbank we have developed a notation and method for
modelling software architecture for applications in the large.

Main purpose of architecture management is to make planning of changes in the application landscape
possible. By the global view possible synergies can be detected more easily.

The basis for the notation of the ARCUS method is the Unified Modelling Language. It was extended
by standard mechanisms as well as by defining a new metamodel with additional semantic rules.

All those concepts have been implemented by adding specific modules to a commercial CASE-tool.
Additionally some method for developing architecture models has been devised and the architecture
management has been embedded into the organisation.

5HIHUHQFHV
[Arch1] Len Bass, Paul Clements und Rick Kazman.

6RIWZDUH�$UFKLWHFWXUH�LQ�3UDFWLFH, Addison-Wesley, 1998



- 10 -

[Arch2] ,(((�5HFRPPHQGHG�3UDFWLFH�IRU�$UFKLWHFWXUDO�'HVFULSWLRQ,
Draft 4.1 of IEEE P1471, December 1998 (http://www.pithecanthropus.com/~awg/)

[Arch3] SEI – Software Architecture
http://www.sei.cmu.edu/architecture/sw_architecture.html

[BPR1] Michael Hammer and James Champy.
Reengineering the corporation–A Manifesto for Business revolution. New York:
HarperBusiness, 1993

[BPR2] Ivar Jacobson, Maria Ericsson, and Agneta Jacobson.
The Object Advantage - Business process reengineering with object technology.
Addison-Wesley, 1994

[UML] J. Rumbaugh, G. Booch, I. Jacobson.
The UML Reference Guide.
Addison Wesley, 1999

[XML] WWW-Consortium: Extensible Markup Language (XML) 1.0, Recommendation of
10. February 1998,
http://www.w3.org/TR/1998/REC-xml-19980210


