From CSP to B: Specifications of a Post Office.”

Marielle Doche and Andrew Gravell

Department of Electronics and Computer Science
University of Southampton, Highfield
Southampton SO17 1BJ, United-Kingdom

{mfd, amg}@ecs.soton.ac.uk

Abstract. In this paper, we describe the methodology followed to specify a distributed
system. The first step of this approach is to use a model checker to define a specification
in CSP, which highlights the structure of the system and how the different components
communicate. Then, we translate this specification in B to improve it with more complex
data structures, infinite types, and additional operations. Finally, we propose an approach
to reuse the results of failures-divergences refinement from our CSP specification, to check
data refinement of the improved B specification.

Keywords: Formal specification, CSP, failures-divergences refinement, B, data refinement,
distributed system

Category 2

1 Introduction

To improve the specification and the validation of complex systems, lots of recent works integrate
two different formal notations. For example, in [But99,MS98,FW99,MC99] the authors combine a
behaviour-based notation (CSP) with a model-based one (B, Z or Object-Z).

In this paper, we describe the methodology followed to specify a Post Office case study, which
combined two formal notations CSP [Hoa85] and B [Abr96].

A first specification of the Post Office is defined in CSP with the help of the FDR model-checker
[For97]. This specification highlights the structure of the system and the links between the compo-
nents. The model-checker allows us to detect presence of deadlock or livelock in our specification
and to check if it satisfies some abstract requirements (by checking for failures-divergences refine-
ment). However, the size of the specifications produced by such an approach is limited: we can use
only finite types and some mechanisms cannot be specified and checked.

So we translate our CSP specification in B, using the Csp2B tool [But99]: each CSP process which
describes a basic component produces a B abstract machine where the operations are the events
involved in the process. Sequential properties of the events introduced in the CSP specification are
preserved in the B machine by the introduction of state variables to guard the B operations. The
abstract requirements are also described in a B abstract machine, communications between the
components are described in a B refinement. We can then complete our specification with more
powerful mechanisms and check data refinement with more complex data structures (using Atelier
B [Ste96] or the B-Toolkit [B-C99]).

However, to make data refinement proofs easier, we can reuse the results of failures-divergences
refinement. Indeed Morgan [Mor90] has defined a correspondence between action system and
CSP. Moreover in [WM90] the authors prove that refinement of action system corresponds to the
failures-divergences refinement. More recently Butler has extended these results to the refinement

" We acknowledge the support of the EPRSC (GR/M91013) for the ABCD project
(http://www.ecs.soton.ac.uk/~phh/abcd/).

of B machines and to the failures-divergences refinement [But97]. We have found that, for this
case study, about seventy per cent of proof obligations to check data refinement do not need to be
discharged with the B prover because the FDR refinement check allows us to assume them.

Section 2 introduces our case study. Section 3 describes the CSP specification and the first veri-
fications using the FDR model-checker. The translation to a B specification is given in section 4.
Section 5 discusses how to facilitate data refinement checking with failures-divergences refinement
results. Finally, section 6 concludes and presents on-going work.

2 Case study: a Post Office

The Post Office is a distributed database, which provides pensions to some customers (an original
description, and some models in different formalisms are given in [HBC199]). The system consists
of:

— a single Centre, where most of the data is held;
— some Offices, where copies of relevant parts of the data are held;
— some Customers, who have each a home office (by default, the Centre).

A customer requests some data (here the amount of her/his pension represented by a number of
tokens) at an office. If this office holds the data, the customer can directly collect them, else the
office requests the data to the centre. If the centre holds the data, it sends them to the office,
else it requests them from the home office of the customer. Moreover, the centre can distribute
some data of a customer to the home office of this customer, and can receive new data (here an
allocation of tokens) for a customer.

At the most abstract level, if a customer requests (as many times she/he wants) data at an office,
and if there are some data in the database, then she/he collects at least a non-empty part of them.

In [HBC199], the communications between the centre and the offices are synchronous. Here, we
define asynchronous communications by adding a medium, in which messages are queued. This
medium is loosely based on the Java Messaging Service [HBS99].

To make a formal finite description, we choose a system with two offices and three customers.
Officel, resp. Office2, is the home office of Custl, resp. Cust2, and the Centre is the home of
Cust3. A graphical description is given on figure 1, which illustrates after a request of Cust2 at
Officel the possible events concerning Cust2.

3 CSP-FDR specification.

3.1 Language and methodology

Our first specification is defined in CSP [Hoa85], which is convenient for providing a small behavior-
based model of our system that highlights the main components and the communications between
them. The Failures-Divergence Refinement (FDR [For97]) model-checker is used to check absence
of deadlock and divergence in our specification and to check if it refines abstract requirements.

The notation of the FDR tool is very close to CSP with event prefix operator a — P, input e?:
and output eloff. We have also the external choice O and interleaving ||| operators, all of which
may be indexed. But in the parallel combination we make explicit the shared events X: P |[X]| Q.
We have also an hiding operator P \ A, where A is the set of hidden events. {| X |} represents

Fig. 1. Extended Post Office

the set of the productions of the values of X, i.e. the set of values which begin by a value of X.
We can define some conditional expression if b then el else e2 and guarded events b & e.

The other elements of the language used in the following specification are the boolean constants
true and false, the boolean operators not, V (or), A (and), and the comparison operators ==, ! =
(different) and < (for more details on this language see [Ros97,For97]).

To specify our case study we have followed this compositional approach:

1. highlight the different components of the system and the links between them.

2. specify each component independently by a process.

3. specify the whole system in a process with sharing, synchronization,... avoiding where possible
interleaving operators, which produce huge automata (state explosion).

4. check if this last process has any deadlocks or livelocks.

specify some properties in an abstract process and check that the system refines them.

6. add new constraints or new elements and repeat as necessary.

o

3.2 Application

Our Post Office is composed by four kinds of components, each of which is specified by a pro-
cess: a customer CUST(cu), the centre CENTRE(cu), an office OFF(cu,off) and the medium
MEDIUM(cu,off). To use efficiently the model-checker, we have parameterized each of these pro-
cesses by a given customer cu: they focus on the description of the behavior of a component
according to a given customer. Indeed, we can suppose that each customer acts independently
from another one, so we can define and check the system from a single customer’s point of view,
before checking it for many customers. In practice, we keep a small state machine as long as
possible. In the same way, we parameterized the office and medium processes by a given office off.

Then, we define a process describing the whole system, first for a given customer ASYNCHCUST (cu)
and then for several ASYNCH. We can also define easily a synchronous version (without the medium)
in the processes SYNCHCUST (cu) and SYNCH.

Finally the abstract requirements are described also for a single customer ABSTCUST (cu) and for
the whole system SPEC.

In this CSP-FDR specification, we do not specify the allocation of tokens at the centre (see
discussion at the end of this section).

Types and functions. We define 4 types: the tokens, the customers, the homes and the offices. The
set of homes consists of the centre centre and the set of offices {officel,office2}. For each
customer, we define a home:

nametype Tokens = {0..5}

nametype Cust = {custl, cust2, cust3}

nametype Home = {centre, officel, office2}

nametype Office = diff (Home, { centre})

home(custl) = officel home(cust2) = office2 home(cust3) = centre

The customers. A customer makes a request at an office and then collects some tokens at this
office.

channel reqtoks : Cust.Office
channel colltoks : Cust.Office. Tokens

CUST(cu) = regtoks.cu?off — colltoks.culoff ?n : Tokens — CUST(cu)

The centre. The centre communicates with the offices: it receives a request from an office off
about a customer cu. If the centre has some tokens for this customer (ctokens>0), or if it is his
home (home (cu) ==centre) or if the office off is the home office of the customer (home (cu)==0ff)
(the centre can not request as home the office from where it receives a request), then it sends the
tokens it has to the office off, else it sends a request to the home of the customer, waits for the
answer of the home and forwards it to the office off. ctokens represents the amount of tokens
available at the centre for the customer cu.

Moreover, if the centre has tokens for a given customer (ctokens>0), and if it is not his home
(home (cu) !=centre), then it can distribute the tokens to the home of the customer. The second
control is necessary for the asynchronous version (otherwise there is a deadlock), but it seems
obviously necessary in the synchronous version.

channel sendoff , rechome, disthome : Cust.Office. Tokens
channel reqoff, queryhome : Cust.Office

CENTRE (cu, ctokens) =
reqoff .cu?off : Office —
(if ctokens > 0 V home(cu) == centre V home(cu) == off
then sendoff .culoff !ctokens — CENTRE(cu,0)
else queryhome.cu?off 1 : home(cu) — rechome.cu.home(cu)?am : Tokens —
sendoff .culofflam — CENTRE (cu, ctokens)
)

(ctokens > 0 A home(cu)! = centre) &
disthome.cu? off : home(cu)!ctokens — CENTRE (cu,0)

O

The offices. An office can receive a request from the centre or from a customer.

When it receives a request from the centre about a customer, it replies with the tokens it has for
this customer.

When it receives a request from a customer, if it has tokens for him (or her) (otokens>0), then
it gives them to him, else it sends a request to the centre, waits for an answer and gives it to the
customer. otokens represents the amount of tokens available at the office off for the customer
cu.

Moreover, an office can receive a distribution of tokens from the centre (the last line of the process
(#), see overleaf). But the centre can send the distribution at any moment, for example after a
request of the customer (lines (+)).

However, to avoid a deadlock, if the office has already send a query to the centre after the request
of a customer, and if it receives a distribution of tokens for this customer, it must wait for the
answer to its query before giving the received tokens to the customer (line ($)).

channel sendcentre, reccentre, recdist : Cust.Office. Tokens
channel reqcentre, querycentre : Cust.Office

OFF (cu, off , otokens) =
regecentre.cu.off — sendcentre.cu.off'otokens — OFF(cu, off ,0)
O
reqtoks.cu.off —
(otokens > 0 & colltoks.cu.off 'otokens — OFF (cu, off,0)
O
otokens == 0& (
(querycentre.cu.off — (
reccentre.cu.off Tam : Tokens —
colltoks.cu.off 'am — OFF (cu, off,0)

- -= ()
recdist.cu.off Tam : Tokens — ——(+)
reccentre.cu.off 7bm : Tokens — —— (%
colltoks.cu.off 'lam — OFF (cu, off , bm) ——(+)

)
- - = (+)
(off == home(cu) & recdist.cu.off 7am : Tokens —» — — (+)
colltoks.cu.off 'lam — OFF (cu, off ,0)) ——(+)

)
)
O
recdist.cu.off Tam : 1..5 — otokens — OFF(cu, off , otokens + am) — — (#)

The medium. The medium manages an asynchronous communication between the centre and the
offices.

A first solution was to define a process for each kind of message exchanged, and to compose them
by interleaving. However, we have some problems proving refinement with such a mechanism: some
messages can overtake others and tokens can be missed. So we define, for a given customer, a FIFO
mechanism for the medium to order the messages on a queue between a sender and a receiver, for
example between the centre and officel.

We need first to give them a common “shape” (multiplexing) (see figure 2): this is described by
the process MULTI (cu,off). Then at the end of the medium the messages should be analyzed and
sent in the appropriate shape (demultiplexing). This is described in the process DEMULTI (cu,off).
Each queue is described in the process Transmit (s, r, c), the provider itself in PROVIDER (cu).

First of all we define a new type for the messages. FDR allows us to build a complex type with a
label and sometimes an amount of tokens. Then we define functions: a message contains its type
and eventually the amount of tokens it is carrying.

Medium

Multiplexer Demultiplexer
In-1 Out-1
In-2 Provider Out-2
In-3 Out-3
] In(m) Out(m)
In-4 _Out-4
In-5 Out-5
Fig. 2. Multiplexing-Demultiplexing mechanism.
datatypeMessage = hc. Tokens | ro | co.Tokens | rc | di. Tokens
mitype(hc.am) = hc mual(hc.am) = am — — hc : home sends tokens to centre
mtype(ro) = ro — — 10 : office requests tokens to centre
mitype(co.am) = co mual(co.am) = am — — co : centre sends tokens to office
mtype(re) = rc — — rc: centre requests tokens to home
miype(di.am) = di mval(di.am) = am — — di : centre distributes tokens to home

The multiplexer waits a sending event from the offices or the centre and defines an input event for
the provider, with the sender and the receiver of the message and the message itself.

MULTI(cu, off) =
sendcentre.cu.off Tam — in.cu.off .centre!(hc.am) — MULTI(cu, off)
O querycentre.cu.off — in.cu.off .centre!(ro) — MULTI(cu, off)
O sendoff .cu.off Tam — in.cu.centre.off !(co.am) — MULTI(cu, off)
O gqueryhome.cu.off — in.cu.centre.off \(rc) — MULTI(cu, off)
O disthome.cu.off Tam — in.cu.centre.off \(di.am) — MULTI(cu, off)

At the end of the medium, the demultiplexer checks the message and provides the appropriate
event to the receiver.

DEMULTI (cu, off) = off! = centre A (
(out.cu.off .centre?mes —
(mtype(mes) == hc & rechome.cu.off 'mval(mes) — DEMULTI (cu, off)
O mtype(mes) == ro & reqoff .cu.off - DEMULTI(cu, off))

)

O
(out.cu.centre.off Tmes —
(mtype(mes) == co & reccentre.cu.off 'mval(mes) — DEMULTI (cu, off)
O mtype(mes) == di & recdist.cu.off 'mval(mes) — DEMULTI(cu, off)
O mtype(mes) == rc & regcentre.cu.off — DEMULTI (cu, off))

There are different ways to define a queue between a sender s and a receiver r. The most efficient
for the FDR model-checker, consists of building a sequence of n buffers of one place [For97]. Thus,

we build only an automata for an one-place buffer, which is reused n times (this is expressed by
within [out < in]i:< 1..5 >e COPY).

channel in, out : Cust.Home.Home.Message

——s : the sender of the message, r : the receiver
Transmit(s,r,c) =
let
COPY = in.cu.s.r?m — out.cu.s.r'm — COPY
within [out < in]i:< 1.5 >e COPY

In the process PROVIDER (cu) we initialize the system of connections between the centre and the
offices.

PROVIDER(cu) = Transmit(centre, officel, cu) ||| Transmit(centre, office2, cu)
||| Transmit(officel, centre, cu) ||| Transmit(office2, centre, cu)

So we can now build the process ORD_MEDIUM(cu,off) which describes the ordered medium.

ORD_MEDIUM (cu, off) = (MULTI(cu, off) |[{| in.cu |}]|
(PROVIDER(cu) |[{| out.cu|}]| DEMULTI(cu, off)) \ {|out.cu,in.cu|}

Whole system. To build the whole system, we define three processes.

ASYNHCOM(cu, ctokens) describes for the customer cu the asynchronous transactions between
the centre and the offices via the medium, ctokens representing the amount of tokens for this
customer at the centre; initially there are 0 tokens at each office.

ASYNCHCOM (cu, ctokens) =
(CENTRE(cu, ctokens)
I[{| rechome.cu, reqoff .cu, disthome.cu, sendoff .cu, queryhome.cu |}]|
(| o Ogfice (ORD-MEDIUM (cu, off)
|| {| sendcentre.cu.off , querycentre.cu.off , reccentre.cu.off , recdist. cu.off , reqcentre.cu.off |} ||
OFF (cu, off ,0))

\ {| sendcentre.cu.off , querycentre.cu.off , reccentre.cu.off , recdist. cu.off , reqcentre.cu.off |}))

ASYNCHCUST (cu, ctokens) describes how a customer interacts with the system.

ASYNCHCUST(cu, ctokens) =
CUST (cu) |[{| regtoks.cu, colltoks.cu |}]|
(ASYNCHCOM (cu, ctokens)
\ {| rechome.cu, regoff .cu, disthome.cu, sendoff .cu, queryhome.cu |})

ASYNCH describes the whole asynchronous system with 3 customers, with initially 4 tokens for each
at the centre.

ASYNCH = | ASYNCHCUST (cu,4)

cu: Cust

A synchronous version (without the medium) is also defined. The +» FDR operators allows us to
synchronize two events with different names. For example, for a given customer cu, disthome.cu.off .am <
recdist.cu.off .am | off < Office,am < Tokens expresses the synchronization of the events
disthome.cu.off .am and recdist.cu.off .am for an office off and some tokens am.

SYNCHCOM (cu, ctokens) =
CENTRE (cu, ctokens)
|[disthome.cu.off .am < recdist.cu.off .am, sendoff .cu.off .am > reccentre.cu.off .am,
rechome.cu.off .am < sendcentre.cu.off .am, reqoff .cu.off < querycentre.cu.off,
queryhome.cu.off < reqcentre.cu.off | off < Office, am +— Tokens]|

(| | |oﬁ:0ﬁice OFF(cu, off ,0))

The process SYNCHCUST (cu, ctokens),respectively SYNCH, is built like the process ASYNCHCUST (cu, ctokens),
respectively ASYNCH.

Abstract level An abstract property of the system is given by the customer’s behavior: any customer
collects tokens at an office only after a request at the same office. If there are some tokens in the
data base for this customer (ctokens > 0), it collects at least one of them, other it collects zero
tokens. This is described by the process:

ABSTCUST (cu, tokens) =
reqtoks.cu?off —
(tokens > 0& colltoks.culoff Tm : 1..tokens — ABSTCUST (cu, tokens — m)
O
tokens == 0 & colltoks.culoff 70 — ABSTCUST (cu,0)

)

The SPEC process describe the whole abstract system with initially 4 tokens for each customer
in the database.

SPEC 2 ||| . ABSTCUST(cu,4)

3.3 Check

FDR tool. The FDR tool allows us to check if a given process is a refinement of an another one
according three models: trace, failures or failures-divergences. In our case study we have used the
failures-divergences model:

Q is a failures-divergences refinement of P iff any failure of @ (indeed a pair formed by a finite
trace and the set of refused events after this trace) is a failure of P and any divergence of ¢ (when
@ repeats infinitely often an internal event) is a divergence of P:

P Crp Q = failures(Q) C failures(P) A divergences(Q) C divergences(P)

Moreover we can check in a process absence of deadlock (when the process refuses every event) and
absence of divergence (when the process performs an infinite sequence of internal events) following
the failures-divergences model.

Deadlocks and divergences. We prove first that each description of the system (the abstract level
and the concrete levels) is deadlock and divergence free. In this table, we give for each description,
the size of the transition system (number of states and transitions) built by the FDR model checker
and the time it needs. For some concrete versions, the transition system was too big to be checked,
so we have made only a partial verification for one customer.

Process States|Transitions|Time (in seconds)
SPEC 216 864 0
ABSTCUST(1,4) 6 8 0
SYNCH 5,600 20,960 3
SYNCHCUST(1,4)| 20 36 0
ASYNCH - - -
ASYNCUST(1,4) | 299 | 481 0

Refinement check. Then we prove that the synchronous version SYNCH is a failures-divergences
refinement of the abstract version SPEC. We can also prove that the process SYNCHCUST(1,4)
refines ABSTCUST (1,4).

SPEC Crp SYNCH
ABSTCUST(1,4) Crp SYNCHCUST(1,4)

For the asynchronous version, we can only make the check for one customer, as the transition
system built for the whole post office is too large. We can prove that ASYNCHCUST(1,4) is a
failures-divergences refinement of the abstract version ABSTCUST(1,4).

ABSTCUST(1,4) Crp ASYNCHCUST(1,4)

However, the monotonicity of the interleaving operators (see [Ros97,For97]) allows us to deduce
that:

SPEC Cgp ASYNCH

Moreover we can prove for a given customer that the synchronous and asynchronous versions of
communication are equivalent for the failures-divergences refinement:

SYNCHCOM (1,4) Crp ASYNCHCOM(1,4)
ASYNCHCOM (1,4) Cpp SYNCHCOM (1,4)

3.4 Discussion

To use the FDR model-checker, we must define a specification which is not going to produce too
large automata. Thus we need to reduce the use of the interleaving operator. Moreover we must
choose small data types, and it is sometimes sufficient during the check, to consider only one value
of the type, for example we consider often in this example only the first customer.

The tool allows us to detect deadlocks or divergences, and to check refinement for small systems
(in the previous example the tool checks 5,600 states and 20,960 transitions in a few seconds for
the SYNCH process). When errors are found, the debugger gives a counter-example. In this way, we
can improve our comprehension of the system.

However, with the asynchronous version, we have reached some size limits for the tool: direct
checks on the whole system are very difficult (several hours) and sometimes impossible with a
crude model-checking strategy. Indeed, we spent several days checking the processes ASYNCH and
execution was stopped after having analyzed 28,000,000 states. We need to make the checks on
small parts. It is furthermore helpful to consider the checking strategy when structuring the
specification.

Finally, some problems occur when we will add events to manage the set of tokens, because we
cannot have infinite sets for types, and it is difficult to define global variables. For example, in a

more complex version, we try to introduce an event for the allocation of tokens at the centre (see
specification B in [HBC*99]). So we need to define the new event alloctoks and to modify the
process ABSTCUST and the process CENTRE to take into account this allocation. For this purpose, we
need to add in both these processes the line (1), with a constraint on the amount of tokens allocated
because we have defined the type tokens as an integer interval (nametype Tokens = {0..5}). The
ideal specification is to define the type Tokens as all the integers (nametype Tokens = Int) in
which case we use the line (2).

channel alloctoks : Cust. Tokens

ABSTCUST (cu, tokens) =
alloctoks.cu?am : 1..5 — tokens — ABSTCUST(cu, tokens + am) ——(1)
——alloctoks.cu?am — ABSTCUST (cu, tokens + am) ——(2)
O

reqtoks.cu?off —

(tokens > 0& colltoks.culoff Tm : 1..tokens — ABSTCUST (cu, tokens — m)
O

tokens == 0 & colltoks.culoff 70 - ABSTCUST (cu,0)

)

The ideal is then to check the refinement with the type Tokens as the whole set of integers (line
(2)). But this is impossible with FDR, since the tool can not build the automaton.

So we try to make the check with the type Tokens as an interval of integers (line (1)), first for
the synchronous version. But, we meet the following problem (which appears in the asynchronous
version t00):

— At the concrete level, the centre distributes 4 tokens at office 1, home of the customer 1. Then
it allocates 2 tokens (between 0 and 5) at the customer 1: disthome.1.1.4; alloctoks.1.2;

— At the abstract level, nothing happens: the allocation of 2 tokens for the customer 1 is impos-
sible because the 4 tokens of the database have not yet been collected by the customer 1 and
at most 1 token can be allocated to him.

4 CSPtoB

The second step of our approach, is to define a more powerful specification, which allows us
to define more complex data structures (especially infinite types) and to check more complex
mechanisms. We have chosen to use the B-method [Abr96], which is a model-based notation, to
have an improved specification.

4.1 Tools and Methodology

The first step consists of highlighting in the CSP specification the design as it is going to occur
in the B design: abstract specification and basic components are defined as abstract machines
whereas concrete level are defined as B refinements. Then the csp2B tool [But99] translates the
constraints on sequentiality of events of a CSP specification in B:

— for each CSP process, a new type and a new variable are introduced in the B machine to
manage the state of the process;
— each CSP event becomes a B operation, guarded by the state variables

For this case study, we follow this approach:

1. To define a B abstract machine with all the types and definitions shared by all the components
of the system.

2. To define a csp2B machine from the abstract process of the FDR specification. And then to
generate automatically with csp2B the abstract B machines.

3. To define a CSP machine for each component of FDR (the basic processes). And then to
generate automatically with csp2B the abstract B machines.

4. To define a B refinement to describe the interactions between the components from the FDR,
processes which describe the whole system.

5. To define in the B refinement, some refinement invariants between abstract level data and
concrete level ones, and to check them.

We start from the CSP-FDR specification described in the previous section and we add the allo-
cation mechanism (cf version B of [HBC*99]). We keep the same process names.

4.2 Application

The structure of the synchronous version is illustrated in the figure 3.

POsets.mch
ITTTTTTr ! (see anywhere)
1 Spec.mch !
Lo
g 1
v 1
""" |
|
POsynch.csp !
1
|
N v
POsynch.ref
3 POCentre.mch ‘ ‘ | POMultiCust.mch | ‘ ‘ POMUultiOffices.mch |

POMuiltiCust.csp POMultiOffices.csp

Fig. 3. Synchronous version from FDR.

Sets and global definitions. The preliminary step is to define a B abstract machine with all the
types and other definitions shared by all the other components of the design.

For the Tokens we are going to use the predefined types NAT, indeed the infinite set of integers.

In B, the definition of the set OFFICE as a subset of the set HOME is specified by a property. The
CSP-FDR constant function home is also defined as a constant function in B and it is initialized
by a property.

Moreover we need to specify the message type, which is defined in CSP-FDR as a polymorphic
type, with functions to access to the values. In B we cannot define polymorphic types. So we define

five constants with values in the set POMESSAGE to specify the type of the messages, some of
which are parameterized by the values in the messages.

The last property specifies that the type POMESSAGE is exactly the set of the ranges of the five
constants.

MACHINE POsets
SETS

CUST = { custl , cust? , cust3 } ;
HOME = { officel , office2 , CENTRE } ;
POMESSAGE

CONSTANTS
OFFICE , home , hc , 1o , co , rc , di
PROPERTIES

OFFICE = HOME — { CENTRE }

A home € CUST — HOME

A home = { custl — officel , cust2 — office2 , cust3 — CENTRE }
A he¢ € N - POMESSAGE

A ro € POMESSAGE

A co € N— POMESSAGE

A rc € POMESSAGE

A di € N— POMESSAGE

A POMESSAGE =ran (hec)U{ro }Uran (co)U {rc}Uran(di)

END

Abstract level For the abstract level and for each component we translate directly the CSP-FDR
processes in Csp2B machines.

The CSP-FDR channels become Csp2B events, but we need to specify which parameter is input
or output.

Then we need to choose if the parameter of the CSP-FDR process becomes a parameter or an
index in csp2B: the parameter allows us to express generic behavior whereas the index manages a
variable attached to the process.

In our example, the customer cu becomes a parameter and the set of tokens tokens an indice (the
amount of tokens in the system for the customer cu).

Moreover, in the Csp2B version, we can have infinite sets, so we have choose to specify the second
version (line (2) of the CSP-FDR specification) for the allocation of tokens.

MACHINE POSpec

SEES
POsets
ALPHABET
Alloctoks(cu : CUST, am : NAT)
toks +— Colltokens(cu : CUST, off : OFFICE)
Reqtokens(cu : CUST, off : OFFICE)

PROCESS
Spec = ||| cu.AbstCust[cu](0)

WHERE
AbstCust[cu](tokens: Nat) =
Alloctoks.cu?am — AbstCust[cu](tokens + am)
O
Reqtokens.cu?off —
(IF tokens > 0 THEN Colltokens.cu?off!toks: 1.. tokens — AbstCust[cu](tokens -toks)
0O
IF tokens = 0 THEN Colltokens.cu?off!0 — AbstCust[cu](0))
END

The csp2B tool generates automatically the following B abstract machine: for the process Spec the
type SpecState and the variable Spec, whose domain is CUST due to the parameter cu, have been
introduced. Each CSP event becomes a B operation guarded by the value of the variable Spec.

For the B-refinement step, we need to declare in this abstract specification the hidden events as
skip operation: for example here the distribution operation (we do not give the details of all
hidden operators).

MACHINE POSpec

SEES
POsets

SETS
SpecState = { AbstCust , AbstCust_1 }

VARIABLES
Spec , off—1 , tokens

INVARIANT
Spec € CUST — SpecState A
off_1 € CUST — OFFICE A
tokens € CUST — N

INITIALISATION
Spec:= A cu . (cu € CUST | AbstCust) ||
tokens ;== A cu . (cu € CUST | 0) |
ANY new_off-1 WHERE
new_off 1 € CUST — OFFICE
THEN off 1 := new_off_1
END

OPERATIONS

Alloctokens (cu , amount) =
PRE cu € CUST A amount € N THEN
SELECT

Spec (cu) = AbstCust
THEN
tokens (cu) := tokens (cu) + amount
END
END ;

toks +— Colltokens (off , cu) =
PRE off € OFFICE A cu € CUST THEN

SELECT
tokens (cu) > 0 A Spec (cu) = AbstCust_1
THEN
ANY tok WHERE tok € I .. tokens (cu)
THEN

Spec (cu) := AbstCust ||
tokens (cu) := tokens (cu) — tok || toks := tok
END
WHEN
tokens (cu) = 0 A Spec (cu) = AbstCust_1
THEN
Spec (cu) := AbstCust || tokens (cu):=0 || toks:=0
END
END ;

Regtokens (cu , off) =
PRE off € OFFICE A cu € CUST THEN
SELECT
Spec (cu) = AbstCust
THEN
Spec (cu) := AbstCust_1 || off—1 (cu) := off
END
END ;

Disthome (cu , off) =
PRE cu € CUST A off € OFFICE THEN
skip
END ;

END

The basic components. In the CSP-FDR specification, we have used parametrized processes to
describe the components with an interleaving operator on parameter cu introduced at the last
step of the composition. This solution provides a more efficient use of the FDR model-checker.
Conversely, for the B specification, it is better to define directly machines which describe the
behaviour of a set of customers. The B syntax does not allow us to reuse a machine which describes
one customer n times, and we need directly defined a machine which describes the n customers.

For this purpose, the CSP-FDR parameter cu becomes in csp2B language the parameter cu of an
interleaving operator in each component (see the example of the centre bellow).

However we can prove that our CSP-FDR expression:

SYNCH = | ||Cu:0ust CUST(cu)|[X (cu)]|
((CENTRE(cu) |[Y (cu)]| |||oﬁ:0ﬁice OFF(cu, off)) \ {Y(cu)})

is equivalent to the expression! (we have the same result for the asynchronous expression):

SYNCH = ((||| . .. CUST(cw)) [X]|

(] CENTRE(cu)) |[Y | (| OFF (cu, off)))) \ {Y})

cu: Cust cu:Cust,off : Office

In the following we are giving details only for the centre, the machines of the other components
are obtained by the same way.

We add at the centre specification the allocation mechanism. Once again, we choose the more
generic solution (line (2) of the FDR specification).

The CSP-FDR process CENTRE becomes the Csp2B process Await. We need to cut it in two parts
(with the process TransHome) to specify that the amount of tokens at the centre for a given
customer is modified between the events rechome and sendoff.

MACHINE POCentre

SEES
POsets
ALPHABET
Alloctokens(cu : CUST, amount : NAT)
toks «— Disthome(cu : CUST, off : OFFICE)
toks «+— Sendoff(cu : CUST, off : OFFICE)
Rechome(cu : CUST, off : OFFICE, amount : NAT)
Reqoff(cu : CUST, off : OFFICE)
Queryhome(cu : CUST, off : OFFICE)
PROCESS
WholeCentre = ||| cu.Centre[cu](0)
WHERE
Centre[cu](ctokens : NAT) =
Alloctokens.cu?am — Centre[cu](ctokens +am)
O
IF ctokens > 0 A not(home(cu) = CENTRE) A off = home(cu)
THEN

! In our case we have the following alphabet: a(CUST(cu)) = X (cu), a(CENTRE(cu)) = Y (cu) and
a(| | | - OFF (cu, off)) = Z(cu) = X(cu)U Y (cu). First X (cu)N Y (cu) = {}, so we can apply the

law of distribution of the hiding operator on parallel and interleaving operators [Hoa85]:

SYNCH = (| oy CUST (cu) [X (cu)]|

(CENTRE(cu) [[Y ()] [|[. OFF(cu,off)) \ {¥ (cw)})

Then we apply the associativity law on || operator.

Disthome.cu?off!ctokens — Centre[cu](0)
O

Reqoff.cu?off — TransHome[cu](ctokens,0)

TransHome[cu](ctokens, homecall: NAT) =
IF ctokens>0 or home(cu)= CENTRE or off=home(cu) or homecall = 1
THEN
SendOff.cu?off!ctokens — Centre[cu](0)
ELSE
IF off = home(cu) THEN QueryHome.cu?off —
IF off = home(cu) THEN RecHome.cu?off7am — TransHome[cu](ctokens+am, 1)
END

Concrete level To specify the whole system at the concrete level, we must translate the CSP-FDR
processes in a B refinement which describes the interactions between the components. Indeed we
specify in B the shared events, but we add moreover what is an input, and what is an output. For
example, POsynchro (see bellow) describes a synchronous refinement of POSpec. It contains three
components: a centre ce, a set of offices mo and a set of customers mc. Its operations have the
same names than those of the abstract level. Each is described as a sequential composition of the
operations of the components (for more details of this approach, see [But97]).

Moreover, we need to specify some refinement invariants. They link abstract and concrete variables
to check data refinement. The best way to define them is to associate at most one abstract value
with each concrete one (we call this also a functional abstraction invariant).

REFINEMENT POSynchro

REFINES POSpec

SEES POsets

INCLUDES ce . POCentre , mo . POMultiOffices , mec . POMultiCust
INVARIANT

Y customer . (customer € CUST =

tokens (customer) = ce . ctokens (customer) +
S off . (off € OFFICE | mo . otokens (off , customer)))

Y customer . (customer € CUST = Spec (customer) = AbstCust
< VY office . (office € OFFICE =
mo . Offices (office , customer) € { Off , Off-1 }))

Y customer . (customer € CUST =

3 office . (office € OFFICE A

mo . Offices (office , customer) € { Transaction , Transaction_1 })
< (Spec (customer) = AbstCust_1))

OPERATIONS

Alloctokens (cu , amount) = ce . Alloctokens (cu , amount) ;

toks +— Colltokens (off , cu) =
PRE off € OFFICE A cu € CUST
THEN
toks «— mo . Colltokens (off , cu) ; mc . Colltokens (cu , off , toks)
END ;

Regtokens (cu , off) =
PRE off € OFFICE A cu € CUST
THEN
mc . Regtokens (cu , off) ; mo . Regqtokens (off , cu)
END ;

Disthome (cu , off) =
PRE off € OFFICE A cu € CUST
THEN
VAR tokl IN
tokl +— ce . Disthome (cu , off) ; mo . Recdist (off , cu , tokl)
END
END ;

END

For the asynchronous version, the concrete level is obtained in the same way.

4.3 Check

To check our B specification we can use both Atelier B [Ste96] and the B-Toolkit [B-C99].

For the abstract B machines (in our case POsets, POspec, and the machines which describe the
components) the tools generate proof obligations to check that constants and variables satisfy
the specification properties or invariants after initialization and each operations (usually these
properties and invariants describe type relation). In our case, few proof obligations have been
generated which are easy to prove automatically or with the help of simple user rules (see table
below with results for the B-Toolkit, similar results are obtained with Atelier B).

For the refinement (POsynchro and PQasynchro), the tools generate proof obligation to check
that the initialization and the operations of the refinement satisfy the abstract machine according
to the refinement invariant. Lots of proof obligations are generated during this step, and the proof
of them is complex (we have easily proved only a third).

Machine Proof |Automatica11y|Remaining after(Interactively| Remaining after
obligations proved automatic proof| proved |interactive proof
POsets 4 2 2 2 0
POSpec 10 10 0 - -
POCentre 11 11 0 - -
POMultiCust 3 2 1 1 0
POMultiOffices 21 19 2 2 0
Multiplex 30 30 0 - -
Demultiplex 17 17 0 - -
InOut 4 2 2 2 0
POsynchro 76 10 66 17 49
POasynchro 123 16 107 26 81

4.4 Conclusion

In this second approach, we have seen how a small CSP-FDR model, can be translated and
completed to obtain a more detailed and more generic model. Most of the translation could be
made automatically (with the Csp2B tool [But99]). But it is still a complex step to specify the
refinement invariants. Another manual step consists of choosing what is an input and what is an
output of an operation, because we do not make a distinction in CSP-FDR.

We can notice that this approach allows the generation of fifty per cent fewer proof obligations,
which are easier to prove, than a previous approach which consists to define directly a B specifi-
cation without using a model-checker [Doc00].

5 Discussion

The B specification allows us to have a more generic and more complex model than the CSP-FDR
specification. However, data refinement is difficult to prove, and needs lots of time. So we propose
to reuse the results of the failures-divergences refinement to make it easier.

5.1 Correspondence between Failures-Divergences refinement and data refinement

Woodcock and Morgan [WM90] have established a correspondence between failures-divergences
refinement and simulation for action systems. Butler [But97] has extended this result to the B
machine. A machine Concrete simulates a machine Abstract if Concrete is a data refinement of
Abstract and some progress and non divergence conditions are verified on Concrete.

The csp2B tool [But99] allows us to define a first B specification equivalent to the CSP-FDR
specification (we keep a finite set for the tokens and we do not add the allocation mechanism). We
can then assume that all the proof obligations generated from this B specification to prove data
refinement are verified.

In our case study, we meet two kinds of proof obligations to check data-refinement:

1. For each invariant of the refinement (POSynchro), a proof obligation is defined to check that
the initialization satisfies it without contradiction with the initialization statement of the
abstract machine (POSpec);

2. For each operation (there are the same operations names in the abstract machine and the
refinement), for each invariant of the refinement (POSynchro), a proof obligation is defined to
check that the operation preserves it without contradiction with the initialization statement
of the abstract machine (POSpec);

where the invariants of refinement, describe the link between the abstract and the concrete variables
and the types of some concrete variables.

5.2 To infinite type

The first change we have made, is to use an infinite sets for the tokens. However most of the proof
obligations generated after this change remain identical.

Indeed, if we change a type, variables of this types are modified, and so are the invariants that
contain those variables. Thus, we need to re-prove all the proof obligations generated for those
invariants (for the initialization and the operations).

However, some other invariants do not contain expressions which depend (directly or not) on the
changed type. For them, we can assume that their proofs do not depend on the modified type,
and so it is not necessary to prove them again.

In our example, we have changed the types Tokens (see the B machines POsets and POSpec and
the B refinement POSynchro). So the type of the variables (tokens, ce.ctokens and mo.otokens)
which appear in the first invariant of POSynchro has been modified, and all the proof obligations
generated to check this invariant must be re-proved.

But in the second invariant of POSynchro, the type Tokens (or NAT after change) does not
appear, nor the variables (Spec and Offices) which depend on this type, so it is not necessary to
re-prove the proof obligations for this invariant.

Thus we have only twenty per cent of proof obligations to re-prove.

5.3 Addition of events

The second modification has been to add a new event without changing the state space of our
specification. Indeed, we have add an operation Alloctokens, but we have not changed the set of
variables nor the invariants.

To check data refinement, we have exactly the same set of proof obligations as before modification
and a set of proof obligations for the new operation. Because we have not changed the set of
variables and the types, it is necessary to prove only this second set of proof obligations.

6 Conclusion

In this paper we have presented a methodology to specify a distributed system, which involves two
formal languages CSP and B. The use of a model-checker during the early step of the specification
allows us to specify easily a well-structured small model of our system. With the translation in B,
we can build a more complex specification which deals with more realistic data types. Moreover,
the results of failures-divergences refinement automatically obtained by model-checking on our
first specification are reused to prove with a theorem prover the data refinement on our second
specification.

For the moment, the translation from CSP to B is partially automatic: the B refinement which
describes the concrete level has been translated manually. We are improving the csp2B tool to deal
with this step, and to assist the verification of data refinement, by flagging the proof obligations
we have not to re-prove.

References

[Abr96]
[B-C99]

[But97]

[But99]

[Doc00]
[For97]

[FW99]

J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
B-Core (UK) Limited, Oxon, UK. B-Toolkit, On-line manual., 1999. http://www.b-
core.com/ONLINEDOC/Contents.html.

M. J. Butler. An approach to the design of distributed systems with B AMN. In J. Bowen,
M. Hinchey, and D. Till, editors, Proc. 10th Int. Conf. of Z Users: The Z Formal Specification
Notation (ZUM), LNCS 1212, pages 223-241, Reading, UK, April 1997. Springer-Verlag, Berlin.
M. J. Butler. csp2B: A practical approach to combining CSP and B. In J. M. Wing, J. Wood-
cock, and J. Davies, editors, Proc. FM’99: World Congress on Formal Methods, LNCS 1708,
pages 490-508. Springer-Verlag, Berlin, September 1999.

M. Doche. Form FDR to B: Specification of the post office. Unpublished specification descrip-
tion, July 2000.

Formal Systems (Europe) Ltd. Failures-Divergence Refinement- FDR2 user manual, Octobre
1997. Available at www.formal.demon.co.uk/fdr2manual /index.html.

C. Fischer and H. Wehrheim. Model-checking ~ CSP-OZ specifications
with FDR. In First international Conference on Integrated Formal
Methods (IFM99), pages 315-334. Springer-Verlag, 1999. Available at

http://semantik.Informatik.Uni—Oldenburg.DE/persons/clemens.ficher/eindex.html.

[HBC'99] P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin, A. Smith, U. Ultes-

[HBS99]
[Hoa85]
[MC99]
[Mor90]
[MS98]
[Ros97]
[Ste96]

[WM90]

Nitsche, and B. Walters. Questions and answers about ten formal methods. In S. Gnesi and
D. Latella, editors, Proc. 4th Int. Workshop on Formal Methods for Industrial Critical Systems,
volume II, pages 179-203, Trento, Italy, July 1999. ERCIM, STAR/CNR, Pisa, Italy.

M. Hapner, R. Burridge, and R. Sharma. Java Message Service, Version 1.0.2. Sun Microsys-
tems, Java Software, November 1999. Available at java.sun.com/products/jms/index.html.
C.A.R Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

I. MacColl and D. Carrington. Specifying interactive systems in Object-Z and CSP. In First
international Conference on Integrated Formal Methods (IFM99). Springer-Verlag, 1999. Avail-
able at http://archive.csse.ug.edu.au/ ianm/.

C.C. Morgan. Of wp and CSP. In W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra,
editors, Beauty is our business: a birthday salute to Edsger W. Dijkstra. Springer Verlag, 1990.
A. Mota and A. Sampaio. Model-checking CSP-Z. In Fundamental Approach of Software
Engineering (FASE98), number 1382 in LNCS, pages 205-220. Springer Verlag, 1998. Available
at http://www.di.ufpe.br/ acm/.

A W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 1996.
http://www.atelierb.societe.com /index_uk.html.

J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurrent systems. In
D. Bjorner, C.A.R. Hoare, and H. Langmaack, editors, VDM’90, volume 428 of LNCS. Springer-
Verlag, 1990.

