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Abstract. The Irish School of Constructive Mathematics (M♣c ), which
comprehends and extends the VDM, exploits an algebraic notation based
upon monoids and their morphisms for the purposes of abstract mod-
elling (of computing systems). Its method depends upon an operator
calculus. It owes its origins and much of its notation to the original
VDM and derivations thereof. The School hereto eschewed every form of
formal language and formal logic, relying solely upon constructive (and
executable) mathematics. For reference it may be considered to be a
model-theoretic specification language together with a well-formulated
development method in the same camp as B and Z.
In the spirit of the unified theories of programming text of Tony Hoare
and Hifeng Je, Cliff Jones’ call for unified theories of modelling and/or
specification, and the illuminating development of Milner’s π-calculus,
the School is committed to the development of the modelling of comput-
ing (and in general other non-computing) systems in full generality.
This shift was due primarily to research in the geometry of formal meth-
ods, initially triggered by the discovery that the tail-recursive map of the
length homomorphism of the free monoid could be extended in a natural
way to an affine transformation in the usual geometric sense. This con-
tact point, albeit tenuous, was considerably elucidated by the modelling
of a hash table as a (trivial) fibre bundle.
From fibre bundles to sheaves was a natural step. Concurrently, the
School moved from the algebra of monoids to categories, and from cat-
egories to topoi. Finally, the constructive nature of the School is now
coming to terms with formalism and logic through the (natural) intu-
itionistic logic inherently manifest through topoi.
In this paper we exhibit a suitably accessible trajectory or bridge from
classical model-theoretic formal methods to the (in our considered opin-
ion) more natural and (consequently self-evident!) universal topos-theoretic
formal methods in the goal towards unification.

keywords: cartesian closed category, constructive mathematics, educa-
tion, Heyting algebra, intuitionistic logic, method, modelling, pedagogy,
process calculi, specification, topos, VDM.
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1 Prologue

“[ . . . ] computer science is in deep crisis, expanding, fragmenting, and
specializing faster, faster than any other discipline, faster than anyone can
understand, let alone predict. Moreover computer science is increasingly seen
as marginal to its applications, and this is particularly true of theoretical
computer science” (Goguen 1999, 94).

This quotation of Goguen, taken from his paper Tossing Algebraic Flowers down
the Great Divide, might it not also be extended to another area of computer
science, software engineering and within the embrace of which, formal methods?
Has not a great gulf opened up between the overtly very successful practice
of software development as manifested especially in recent times on personal
computers and by the World-wide Web, and the need to capture, model, codify,
and transmit the knowledge gained by this great ongoing scientific computing
experiment in which we all participate and that we all experience? How can we
build the bridges of various shapes and sizes and function to cross this divide?

As we all well know, every science tries to confirm (and extend) its knowledge
by performing experiments based on codified theories expressed in the language
of mathematics. There is, of course, a natural relationship been mathematics
and logic, and some take the view that ‘logic is primary’ and conclude that
“predicates describing the world are sometimes called Laws of Nature”(Hoare
and He 1998, 26). However, this view of the world is not shared by all (Körner
1960), as Hoare and He (1998, 28) acknowledge. It is moreover very unlikely
that Newton, Einstein, and Feynman (inter alii) would have formed such an
opinion as to the (alleged) priority of logic! The supposed centrality is a very
recent invention! Nevertheless, the beautiful work of unification in the text cited
is undoubtedly one bridge of a particular shape and function.

In his paper describing some of the ‘pre-history’ of the VDM, Jones (1999,
43) has indicated that Abrial’s “Abstract Machine Notation in B does fit more
closely with aspects of VDM than Z”. He is also reputed to have said recently
(2000) that perhaps there might be the possibility of a merging between VDM
and B, at least. In his opinion, what really matters is the communication of “the
idea of abstract modelling” as a way of understanding computer systems (Jones
1999, 43). Jones’ efforts are clearly another very welcome attempt to provide a
specification bridge for the model-theoretic languages.

The Irish School of Constructive Mathematics (M♣c ), originally founded upon
the Irish School of the VDM (est. 1990) and described at length in (Mac an
Airchinnigh 1991), has hitherto deliberately avoided the issue of the need for
a formal logic, even the Logic of Partial Functions (LPF) asserted to be part
of VDM by Cliff Jones (Jones 1999, 42), to underpin both the specification of
operations and constraints in the mathematical models, and in the application
of the well-formulated development steps of its method.

The rationale for the deliberate omission of formal logic was simply based
on two factors: (i) that there was a strong constructive nature of the specifica-
tions and the developments, and that the performing of proofs were effectively
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either constructions, or algebraic transformations into constructions, in other
structures, and (ii) that it was very unlikely that the psychology of (software)
engineers was compatible with such formal logic! The nearest one might get
to an underlying formal logic was in the specification of well-formedness con-
straints, invariants, and the pre-conditions of the operations of a model which
were entirely elementarily set-theoretic. It was certainly not customary to use
explicit notations for universal and existential quantifiers! Should one wish to
use a formal logic in conjunction with the models constructed in the style of the
Irish school then it was considered to be an extremely eccentric complementary
action. The emphasis was entirely on the algebra.

The specification “language” of the school is deliberately not formal in prin-
ciple in order to achieve greater mathematical flexibility and expressiveness.
Thus no distinction is made between syntax and semantics. All is mathematics.
This is a central philosophical tenet of the school. There is nothing whatever,
on the other hand, which prohibits the elaboration of a formal language with
associated syntax and semantics which respects that philosophical tenet. Col-
man Reilly explored such a relationship through Mathematica (Reilly 1995) and
Andrew Butterfield is currently (2000) working on a fully-fledged Clean inter-
pretation. In other words being constructive, specifications in the Irish VDM are
necessarily executable.

Another great divide is that between state-based formal methods (structure-
focussed or state-focussed) and process calculi (action-focussed). Our work was
always hitherto focussed on structural aspects of computing and avoided process
aspects. In (Mac an Airchinnigh 1990) is described an aborted attempt to wed
structure with process. We have not ignored process calculi. It is simply the
case that we have not been able to reconcile our mathematical understanding
of two apparently diverse realities: structure and process, and therefore to find
a common language to describe both, in harmony. Recently, and from a very
different direction, Malcolm Tyrrell, of our Foundations and Methods Group,
has achieved some considerable success in adding state to process calculi such
as the π-calculus (Tyrrell, Butterfield, and Donnelly 2000). This brings the two
sides closer.

Based upon the success of other unification initiatives in specifications and
programming languages we are persuaded within the School to move to a topos
theoretic foundation for several reasons.

1. the universal properties of category theory and its ubiquity in computing
provides a sound semantic basis for both structure and process. See (Hoare
1999, 25–6);

2. topos theory and sheaf theory provide a natural unification of algebra, logic,
and geometry. See (Mac Lane and Moerdijk 1992, 1);

3. the intuitionistic logic associated with the topos is compatible with the con-
structive philosophy of the School;

4. perhaps most important of all, accessible textbooks on the subject of cate-
gory theory and topos theory are now available for first year undergraduates
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at University. See especially Conceptual Mathematics, a first introduction to
categories (Lawvere and Schanuel 1997).

To achieve a successful transition to a topos theoretic foundation we do not wish
to lose the current ‘user-friendliness’ of the existing notation. On the other hand
we do want to move to expressive forms that are clearly and unambiguously
within constructive mathematics and which are sound from a topos theoretic
perspective. In addition it is absolutely essential that we meet

“the challenge to make toposes as intuitive from the beginning as they are
to experts, especially as concerns topos logic” (McLarty 1992, vii–viii).

Mathematics is used to codify scientific knowledge. But there are many dif-
ferent styles of mathematics and notations in which it is expressed. Domain
knowledge of computing is codified by abstract modelling using both mathe-
matics and logic. The more views one has of a particular domain concept the
better the understanding. That is why algebraic and geometric views of the same
concept, say circle, are so valuable. Each provides its own way of understanding
and manipulating the object in question. We also need complementary views of
computing domain objects. This paper proposes a specific way forward which is
being adopted by the School for model-theoretic specification languages.

The rest of the paper is organised as follows.
Section §2 presents three basic operations of the classical model of the spelling

checker dictionary: write, read, and remove in order to provide a common basis
of understanding for the reason for the need for a bridge to topos theory. In
section §3 we introduce the structures of Heyting algebra, cartesian closed cat-
egory, and topos and demonstrate how the spelling checker dictionary model
may be suitably transformed in order that it conform to the newly introduced
structures. Then, in section §4, we explore the fibering of a classic VDM map
and show how intuitionistic quantifiers can be introduced naturally. The paper
then concludes with some remarks on future work.

2 Classical spelling checker dictionary

“The view that [set and set] membership is primary [in contradistinction to
map or function or process] also leads one to believe that [set] membership
is global and absolute, whereas in fact it is local and relative” (Lawvere
1975, 5).

Essentially, the dictionary we have in mind is like that used in conjunction
with the board game SCRABBLE©R such as the Official Scrabble Players Dic-
tionary (Selchow & Righter Company 1978). In the case of a dispute between
two players over the spelling of a word there is an agreed procedure whereby the
spelling is checked with respect to the occurrence of the word in the “standard
dictionary”, but only after the player has made the play. If the word is in the
dictionary then it is an acceptable word for the play, otherwise . . .
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In this real world scenario the essential operation from an end-user’s point
of view is the checking whether or not a given word is in the dictionary. We
call such an operation (in the context of this and other models) a lookup. It is
the same as the read operation in other computing contexts such as data base
lookups.

We will model such a dictionary by using sets. We start with a set of words
WORD and then construct the powerset PWORD . Elements of the powerset,
i.e., sets of words, are considered to be dictionaries. We already know that if n
is the size of the set WORD then there are 2n possible dictionaries. Naturally,
what we have just described is a classic Gedanken experiment. In practice, we
do not start with some set WORD and apply the powerset operator to give us
our space of dictionaries. Instead we work from a starting point of the empty
dictionary and build whatever we need.

More formally, consider the usual domain equation for the most abstract
model of the spelling checker dictionary:

δ ∈ DICT = PWORD (1)

where P denotes the usual powerset functor. The expression PWORD provides
us with a Boolean algebra B in a natural way. We will be more general and
assume an underlying Heyting algebra H instead. A formal definition is given
in the next section. A Boolean algebra is a Heyting algebra. In other words, the
property of being Heyting is more general than the property of being Boolean.
The main reasons for the change are fourfold.

1. the Heyting algebra provides an algebraic semantics for propositional intu-
itionistic logic, whereas the Boolean algebra provides an algebraic semantics
for propositional classical logic (Mac Lane and Moerdijk 1992, 48–9), (Fit-
ting 1969, 23).

2. the Heyting algebra itself has a semantics in the set of all the open subsets of
a topological space (Mac Lane and Moerdijk 1992, 48–9); as a corollary one
may introduce topological notions directly into computing via the Heyting
algebra; more precisely, a (complete) Heyting algebra is a frame (geometric
view) or locale (algebraic view) (Mac Lane and Moerdijk 1992, 472–5);

3. the Heyting algebra is a cartesian closed category and a cartesian closed cat-
egory is of particular universal interest because it has, in an elegant manner,
essentially the same expressive power as a typed λ-calculus (Barr and Wells
1995, 175) (Lambek and Scott 1986, 41).

4. finally, the step from cartesian closed category to topos is a small one, but
one which introduces the notion of ‘truth object’, and hence which provides
the natural logic to go with the algebra.

The domain equation is read “let δ be an arbitrary element chosen from the
model named DICT , the structure of which is given by PWORD .” Since we are
moving away from membership based expressions (in the short term) we will
need to find another way of expressing the fact that δ is a typical object in the
structure under consideration.
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Of immediate importance here, B denotes the usual two-valued logic and
specifically denotes the set of two ‘truth values’, {0, 1} where 1 denotes true and
0 denotes false. The corresponding set of many truth values will be denoted by
H. It is immediately to be noticed that always B ⊆ H.

We shall focus only on the usual write, read, and remove operations, here
called enter, lookup, and remove. In the remainder of this section we give the
classical form of the specification we have hitherto used.

The write operation: enter the entering of a new word into an existing
dictionary is captured by

Ent : WORD −→ DICT −→ DICT (2)
Ent[w]δ := {w} ∪ δ (3)

The expression {w}∪δ is well-defined within the Heyting algebra and, therefore,
does not have to be replaced. This operation is subject to the pre-condition or
guard which captures the idea that the word w is new :

pre–Ent : WORD −→ DICT −→ B (4)
pre–Ent[w]δ := w 
∈ δ (5)

The expression w 
∈ δ is taken to be equivalent to the predicate ¬(w ∈ δ). There
are two ideas that need to be examined. The first is that of set membership. In a
topos-theoretic foundation set membership is not a primary concept. Therefore,
we must find a suitable alternative here. The second idea is, of course, that of
negation. We need to deal with that also.

The read operation: lookup to look up a word in the dictionary is to ask
whether or not it is present in that dictionary. There is no pre-condition.

Lkp : WORD −→ DICT −→ B (6)
Lkp[w]δ := w ∈ δ (7)

We expect the result of the lookup to be either true or false. The expression
w ∈ δ is not an appropriate expression within the Heyting algebra. We will have
to find an acceptable alternative.

The remove operation the removal of an existing word from the dictionary
is usually specified by

Rem : WORD −→ DICT −→ DICT (8)
Rem[w]δ := δ\{w} (9)

Set removal δ\{w} is not an appropriate expression. We will provide an alterna-
tive. This operation is subject to the pre-condition

pre–Rem : WORD −→ DICT −→ B (10)
pre–Rem[w]δ := w ∈ δ (11)
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Let us now examine each operation in turn and consider whether the specifi-
cation is fully constructive. In order to be complete and, therefore, comprehen-
sive, we also need to say something about the form of the signatures. Finally, we
recall the fundamental philosophical distinction between the concept of proof in
classical and constructive mathematics.

“In classical mathematics, a proposition is thought of as being true or false
independently of whether we can prove or disprove it. On the other hand, a
proposition is constructively true only if we have a method of proving it.”
(Nordström, Petersson, and Smith 1990, 11)

3 Intuitionistic spelling checker dictionary

“ The Boolean term S ∨ L̄ is often written as an implication (e.g., L ⊃ S);
indeed, the above law,

P ⇒ S ∨ L̄
P ∧ L⇒ S

,

together with the inference in the opposite direction, is used in intuitionistic
logic to define implication [ . . . which] is always a predicate [and being]
antimonotonic in its first argument, it will rarely be a program ” (Hoare
1999, 8).

Who could possibly resist exploring the consequences of such a statement?
What is the nature of implication and its role in intuitionistic logic which would
render it almost useless as a program?

As a first step towards the construction of an intuitionistic spelling checker
dictionary we shall introduce the mathematical structures of Heyting algebra H

and cartesian closed category. Then we shall recast each of the operations on the
spelling checker dictionary in terms of these structures. It will be assumed that
the reader is already familiar with the elements of Category Theory. A highly
recommended introductory text is Conceptual Mathematics, A First Introduction
to Category Theory (Lawvere and Schanuel 1997).

For a working definition of Heyting algebra we follow (Fitting 1969, 23).
Note that Fitting uses an “older name” for the Heyting algebra: the pseudo-
boolean algebra. We consider the name Heyting algebra more appropriate. The
definition is cast within traditional Set Theory. Note in particular that we have
deliberately ‘mapped’ the algebra to the logic. This is in conformance with an
old mathematical tradition. Strict formalists (and logicians) prefer separation.
See (Fitting 1969) for details.

Definition 1 (Heyting algebra) A Heyting algebra is a pair 〈H,≤〉 where
H is a non-empty set and ≤ is a partial ordering relation on H such that for any
two elements A and B of H:

1. the least upper bound A∨B exists [to correspond with logical or or disjunc-
tion];
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2. the greatest lower bound A ∧ B exists [to correspond with logical and or
conjunction];

3. the pseudo complement of A relative to B denoted A ⇒ B, defined to be
the largest X ∈ H such that A ∧X ≤ B, exists [to correspond with logical
implication];

4. a least element called bottom, denoted ⊥, exists [to correspond with false].

Let the complement of A, denoted ¬A, be A ⇒ ⊥ [to correspond with logical
negation]. Note that the complement of A is the pseudo complement of A relative
to ⊥. Let the top element, denoted � be ¬⊥ [to correspond with true]. Clearly,
then � = (⊥ ⇒ ⊥). In fact, in general (A ⇒ A) = �. Singleton sets of the
algebra are called atoms. It is to be noted that there exist Boolean algebras and
hence Heyting algebras which do not have atoms. See (Stoll 1974, 211). However,
this will not affect our presentation.

In the case of the spelling checker dictionary we take H = PWORD , ⊆ for the
partial ordering relation, ⊥ = ∅, � = WORD , the least upper bound of A and
B in H is given by A∪B, and the greatest lower bound of A and B in H is given
by A ∩ B. Note that the pseudo complement operator ⇒ is distinctively new!
Its role may be exemplified by the following diagram where the arrow A −→ B
denotes A ⊆ B.

X = (A⇒ B)

A B

�������������

A ∩X

�����������

�����������

(12)

Definition 2 (Boolean algebra) A Boolean algebra is a Heyting algebra
with the special property that for every A in H, ¬A ∨A = �.

It will be demonstrated that, with appropriate modifications, the spelling
checker dictionary model, is a Heyting algebra.

Before we proceed to that demonstration let us look at the categorical foun-
dations. First, it is well-known that a Heyting algebra is a cartesian closed cat-
egory. Following (Mac Lane and Moerdijk 1992, 20) we define a cartesian closed
category.

Definition 3 (Cartesian closed category) A category C is called carte-
sian closed if it has finite products (i.e., a terminal object and binary products)
and if all objects of C are exponentiable.

It is a simple exercise to demonstrate that the Heyting algebra is a cartestian
closed category. Let A and B be two objects in the category. Then, if A ≤ B we
have the map A −→ B. In this view of the Heyting algebra, the terminal object
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is 1 = �. Binary products are given by 〈A,B 〉 �→ A ∧ B. The exponentiable
objects are BA = (A⇒ B).

Since we will demonstrate that the spelling checker dictionary is a Heyting
algebra then it is also a cartesian closed category.

Definition 4 (elementary Topos) An elementary topos T is a cartesian closed
category which has a truth value object Ω.

Essentially, this means that such a topos provides us with an intrinsic logic.
That logic is generally intuitionistic ((Mac Lane and Moerdijk 1992, 268)). Ac-
cording to Szabo (1978, 190) the internal logic of an elementary topos is “strictly
weaker than intuitionistic logic . . . certain intuitionistically valid formulas such
as (∀ξ)φ(ξ)⇒ (∃ξ)φ(ξ) no longer hold.” Consequently, one needs to be very care-
ful in scoping out a topos of the right shape to accommodate the constructions
we are interested in.

3.1 Enter

Recall that the classical specification is

Ent : WORD −→ DICT −→ DICT (13)
Ent[w]δ := {w} ∪ δ (14)

In the context of the Heyting algebra we recognize the dictionary δ as a Heyting
subalgebra. The entering of a new word w is the extension of the existing set
of atoms of δ by {w}. Clearly, therefore, the specification may be interpreted
properly as the extension of structure denoted by

δ = {{a}, {b}, {c}, . . . } �→ {{a}, {b}, {c}, . . . , {w}} (15)

The Heyting algebra can be recovered by applying the operations ∪, ∩, and
⇒. For example, ∅ is recovered from {a} ∩ {b}, say, and complement is then
determined by ¬{w} = ({w} ⇒ ∅). In practice, we can use a sequence of words,
canonically ordered lexicographically, to represent the set of atoms. This gives us
a simple but direct structural implementation of the Heyting algebra and hence
of the corresponding spelling-checker dictionary. There is a direct relationship
between structure and function which is now becoming evident.

We can extend the original specification to allow for this extra structure:

Ent : WORD −→ DICT ×WORD≤� −→ DICT ×WORD≤� (16)
Ent[w]〈 δ, α 〉 := 〈 {w} ∪ δ, σ(〈w 〉 · α) 〉 (17)

where α is the ordered sequence of atoms of δ and σ is a sorting morphism on
sequences.

There is still the usual need for an invariant here to guarantee that the words
in the dictionary {w}∪δ correspond exactly to the set of atoms in σ(〈w 〉 · α). If



10

we introduce a primitive function atoms on a Heyting algebra H which returns
its set of atoms then we may write the appropriate invariant as

inv–Ent : WORD −→ DICT ×WORD≤� −→ H (18)
inv–Ent[w]〈 δ, α 〉 := atoms({w} ∪ δ) = elems(σ(〈w 〉 · α)) (19)

Now let us take a closer look at the pre-condition for the enter operation. We
propose to reject the particular expression w 
∈ δ in favour of {w} ∩ δ = ∅. The
reasoning for the change is as follows.

The expression w 
∈ δ is read as “the word w is not an element of the set
δ”, which expression we abbreviate as ¬(w ∈ δ). Let us first look at the simpler
form w ∈ δ. This expression is interpreted in the context of a membership
based set theory such as Zermelo-Fraenkel (ZF) set theory. However, there is a
central difference between sets in a well-pointed topos and sets approached via
membership (McLarty 1992, 215). To paraphrase McLarty, in the topos of Sets S

we can take a set WORD and ask whether a given element w of WORD is a
member of a given subset δ of WORD , but it is pointless to ask whether an
element of WORD is also an element of some other set, DUCK, say.

To comprehend this radically different view of reality one needs to understand
how points and elements are defined and used. In general, a point x in a topos T

is a map 1 x ��A from the terminal object 1 to the object A. Objects need not
have any points whatsoever. In the category of Sets S the points of an object A
correspond exactly to the elements of the set A. In a general topos T such points

are called global elements. If in a general topos a pair of maps A
f

��

g
��B are

equal, fx = gx, for every general element x then the topos T is said to be
well-pointed (Mac Lane and Moerdijk 1992, 236).

A Heyting algebra is not in itself a topos. It seems to fail by a very slight
margin. As a cartesian closed category, the only point is 1 ��1 . This prevents
us from having a non-trivial truth object. It appears at first glance to be a
strange and worrisome result. However, once one becomes accustomed to the
view that a space might reasonably be considered to be composed of parts rather
than points(Lawvere 1975, 32), then one is freed from a certain blinkered view.
Therefore, we need to embed the Heyting algebra in a suitable topos in order
to achieve the desired goal. On the other hand, Heyting algebras are plentiful
in any topos. Specifically, for any object A in a topos, the power object PA is
a(n internal) Heyting algebra and, as a special case, so is the truth value object
Ω = P1 (Mac Lane and Moerdijk 1992, 201).

For the present section we content ourselves to the transformation of the
dictionary in a Heyting algebra compatible form.The choice of suitable topoi,
compatible with the VDM, is still under active investigation.

First we observe that ¬(w ∈ δ) can be written in terms of the Heyting
algebra operations as ¬({w} ⊆ δ), read as “the atom {w} does not belong to
the subalgebra δ.” If the atom {w} does not belong to δ then it must belong
somewhere and that somewhere is the complement of the subalgebra, denoted
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¬δ. In other words we have the fundamental equivalence

¬({w} ⊆ δ) iff {w} ⊆ ¬δ (20)

But by the definition of complement in a Heyting algebra ¬δ is the exponential
δ ⇒ ∅. Hence we have

¬({w} ⊆ δ) iff {w} ⊆ (δ ⇒ ∅) (21)

Now we focus on the espression {w} ⊆ (δ ⇒ ∅). Since a Heyting algebra is a
cartesian closed category then from the basic adjunction relating products and
exponentials

Z −→ Y X

Z ×X −→ Y
(22)

we make the obvious substitutions to obtain (Mac Lane and Moerdijk 1992, 50):

z ≤ (x⇒ y)
(z ∧ x) ≤ y (23)

Now substituting z �→ {w}, x �→ δ, y �→ ∅, ≤ �→ ⊆ , and ∧ �→ ∩ we obtain

{w} ⊆ (δ ⇒ ∅)
({w} ∩ δ) ⊆ ∅ (24)

This gives us

¬({w} ⊆ δ) iff ({w} ∩ δ) ⊆ ∅ (25)

Since ∅ is bottom then we also have the fact that

∅ ⊆ ({w} ∩ δ) (26)

Hence

¬({w} ⊆ δ) iff ({w} ∩ δ) ⊆ ∅ ∧ ∅ ⊆ ({w} ∩ δ) (27)
({w} ∩ δ) = ∅ (28)

and this is our desired pre-condition in the Heyting algebra. We summarise this
derivation as follows:

¬(w ∈ δ) (29)
¬({w} ⊆ δ) (30)
¬({w} ⊆ δ) iff {w} ⊆ ¬δ (31)
{w} ⊆ ¬δ iff {w} ⊆ (δ ⇒ ∅), by definition (32)

{w} ⊆ (δ ⇒ ∅) iff {w} ∩ δ ⊆ ∅, by adjunction (33)
{w} ∩ δ = ∅ (34)
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Hence the pre-condition or guard for the “enter a new word” operation may be
written in the form

pre–Ent : WORD −→ DICT −→ H (35)
pre–Ent[w]δ := {w} ∩ δ = ∅ (36)

This is a sensible specification from the point of view of the end-user. This
pre-condition may also be expressed in the more ‘exotic’ forms of

pre–Ent : WORD −→ DICT −→ H (37)
pre–Ent[w]δ := {w} ∩ δ ⊆ ∅ (38)

or

pre–Ent : WORD −→ DICT −→ H (39)
pre–Ent[w]δ := {w} ⊆ ¬δ (40)

3.2 Remove

Consider the meaning of set difference A−B where A and B are subsets of some
ambient or universal set U . We may write A − B in the form A ∩ (−B) where
−B is the complement of B with respect to U . Now in the Heyting algebra −B
is defined to be B ⇒ ∅. Hence we have the definition

A−B := A ∩ (B ⇒ ∅) (41)

This leads directly to an intuitionistic definition of the removal operation.

Rem : WORD −→ DICT −→ DICT (42)
Rem[w]δ := δ ∩ ({w} ⇒ ∅) (43)

subject to the pre-condition that w is in the dictionary:

pre–Rem : WORD → DICT → H (44)
pre–Rem[w]δ := (δ ∩ {w}) = {w} (45)

Let us consider the definition of the remove operation first. The expression δ ∩
({w} ⇒ ∅) can hardly be considered intuitive to the end-user at the present
time. Nor does it seem very constructive. A more end-user friendly form might
be δ∩¬{w} for which we might agree to use the abbreviation δ−{w} or δ\{w},
to get back to where we started.

Turning now to the pre-condition which classically was w ∈ δ and which is
given here as (δ∩{w}) = {w}. Again it is intuitively clear that the new definition
is correct. However, it is of interest to attempt to derive this from the classical
expression. Already we have agreed above that {w} ⊆ δ is the equivalent to the
membership expression. Hence we have a first reasonable and directly accessible
specification of a pre-condition:

pre–Rem : WORD → DICT → H (46)
pre–Rem[w]δ := {w} ⊆ δ (47)
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3.3 The pre-conditions

Let us now take a closer look at the intuitionistic pre-conditions which we have
already specified. In the case of pre–Ent[w] we replaced w 
∈ δ by {w}∩δ = ∅ and
in the case of pre–Rem[w] we replaced w ∈ δ by (δ∩{w}) = {w}. But we noticed
that there were other possibilities. For example, in the case of pre–Rem[w] above
we suggested the use of {w} ⊆ δ. Let us demonstrate formally, that from this
expression we can derive algebraically, {w} ⊆ 1, in much the same way that
from w ∈ δ one deduces w ∈WORD from the containment δ ⊆WORD .

w ∈ δ (48)
{w} ⊆ δ (49)

δ ∩ {w} ⊆ δ ∩ δ implies δ ∩ {w} ⊆ δ (50)
δ ∩ {w} ⊆ δ implies {w} ∩ δ ⊆ δ, by commutativity of ∩ (51)

{w} ∩ δ ⊆ δ iff {w} ⊆ (δ ⇒ δ), by adjunction (52)
{w} ⊆ 1 (53)

i.e., w ∈WORD (54)

Perhaps we need to comment upon (δ ⇒ δ) = 1. By definition, (δ ⇒ δ) is the
largest X in PWORD such that δ ∩ X ⊆ δ. Such an X is clearly WORD and
WORD = 1 in this Heyting algebra.

3.4 Test

In reflecting upon the structural forms of the intuitionistic pre-conditions for
both the enter operation

pre–Ent[w]δ := ({w} ∩ δ) = ∅ (55)

and the remove operation

pre–Rem[w]δ := ({w} ∩ δ) = {w} (56)

it is clear that they both have the general form A ∩B = C. Therefore, it seems
appropriate to consider a new operation on the dictionary that generalises these
expressions. For historical reasons we call this the test operation. The formal
definition is

Tst : PWORD → DICT → DICT (57)
Tst[S]δ := S ∩ δ (58)

Using the Tst operation then the pre-conditions for Ent and Rem become,

pre–Ent[w]δ := Tst[{w}]δ = ∅ (59)

and

pre–Rem[w]δ := Tst[{w}]δ = {w} (60)
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respectively. Knowing that, in practice, one pre-condition is the opposite of
the other, i.e., that not pre–Rem[w]δ = pre–Ent[w]δ and assigning “true” to
pre–Rem[w]δ entails assigning “false” to pre–Ent[w]δ. Clearly, we can generalise
this to give the truth assignments

Tst[S]δ = ∅ �→ false, if S ∩ δ = ∅ (61)
Tst[S]δ = S′ �→ the degree of truth measured by S′ ⊆ S (62)
Tst[S]δ = S �→ true, if S ∩ δ = S (63)

Hence, we do have a natural underlying multi-valued logic. Note in particular
that since Tst[S]δ = S ∩ δ = S then the last equation is equivalent to

Tst[S]δ = 1 �→ true (64)

in the Heyting subalgebra δ of PWORD .

3.5 A simple proof

To conclude this section we present a simple proof in the new style.
Consider the proof of the assertion that if one enters a new word w into a

dictionary δ and then removes that word the result is the original dictionary δ
that one started with. Constructively, we have

(Rem[w] ◦ Ent[w])δ (65)
= Rem[w](Ent[w]δ) (66)
= Rem[w]({w} ∪ δ) (67)
= ({w} ∪ δ)\{w} (68)
= ({w} ∪ δ) ∩ ({w} ⇒ ∅) (69)
= ({w} ∩ ({w} ⇒ ∅)) ∪ (δ ∩ ({w} ⇒ ∅)) (70)
= ∅ ∪ δ (71)
= δ (72)

The noteworthy aspects of the proof are at (70) where the reduction of {w} ∩
({w} ⇒ ∅) to ∅ may be regarded either as modus ponens or as a simple map
evaluation in the cartesion closed category (recall that {w} ⇒ ∅ is an expo-
nential), and the reduction δ ∩ ({w} ⇒ ∅) to δ is justified by the pre-condition
pre–Ent[w]δ := {w} ∩ δ = ∅.

4 Klinik of doctors and their patients

The usual model of doctors (DOC ) and their patients (PAT ) that we have
become accustomed to use is that which associates with each doctor d in the
klinik κ her/his set of current patients S. This model is captured by

κ ∈ KLINIK = DOC −→ PPAT (73)
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and a typical klinik κ might have the form

κ =



c �→ {p, q, r}
d �→ {p, s}
e �→ ∅


 (74)

It will be noticed that in this model the same patient p might be shared between
two doctors c and d, and there is a doctor e with no patients.

This model of a klinik is the most general abstract model of the doctor-
patient relation. It is a directed model in the sense that the relation is “the
doctor d has the set of patients S”.

From the perspective of the intuitionistc logic that we are developing it is
clear that the codomain may be given the usual structure of a Heyting algebra.

Were one to exclude the possibility of null sets of patients, i.e., maplets of the
form d �→ ∅ then one has the classical relational model of doctors and patients
which we denote by

κ′ ∈ KLINIK ′ = DOC −→ P ′PAT (75)

where P ′PAT = PPAT\{∅}.
Being a classical relation, models κ′ are invertible. Thus we are led to intro-

duce

ν ∈ CLINIQUE = PAT −→ P ′DOC (76)

where to each κ′ in KLINIK ′ there corresponds its inverse (κ′)−1 = ν.
Being accustomed to working with set-valued maps such as κ in the belief

that these were the most interesting and practical models in practice we eschewed
the more restricted model domains such as those of the form

µ ∈ CLINIC = PAT −→ DOC (77)

Our attention was drawn to their significance in a completely round-about man-
ner. Specifically, in the abstract modelling of a hash table, we discovered that
it might be cast completely in terms of a fibre bundle (Mac an Airchinnigh and
Hughes 1997). This particular work was a very successful adventure into a ge-
ometry of formal methods. From fibre bundles we were led to the more general
theory of sheaves and topoi. A good account of the relevance of such theories for
our purposes may be gleaned from (Mac Lane and Moerdijk 1992).

It is clear to us that all these models of a klinik belong together. It is also
clear that the natural framework is a topos. The basic recasting of all VDM map
constructors and operators is the subject matter of a doctoral thesis just being
completed (Hughes 2000) and we will report on this outcome at a later stage.

4.1 Klinik as fibred space

“ Logicians have long thought that the essence of existential quantification
is projection; however, this is merely a special case of the actual essence,
which is the taking of images. This is why we have adopted the notation
∃f (S) = f(S)”(Lawvere 1975, 23).



16

To complete this secion we now explain how quantifiers are introduced. In gen-
eral, for a total map f : X −→ T , we may consider f as inducing structure on
the domain X. In particular, for any t in the codomain T , the inverse image
f−1(t) is called the fibre over t. (See Lawvere and Schanuel (1997, 81–5) for a
brief account of the perspective that a map produces structure in its domain or
in its codomain, depending upon the desired model.) Let us consider the model
of doctors and patients given by the space of total maps

f ∈ CLINIC = PAT −→ DOC (78)

subject to the constraint that f is surjective, i.e., that rng f = codom f . This
condition will guarantee that no fibre is empty. In this highly desirable case one
can then taken a (cross-)section through the fibres. Such sections provide further
modelling concepts.

Consider the typical map

f =




p �→ c
q �→ c
r �→ d
v �→ d
t �→ d




It may be represented as the fibred
space shown where there are exactly
two fibres each of which corresponds
to a doctor. It is quite clear that such
fibres capture a particular view of a
doctor-patient relationship.

f

DOC

PAT

c
d

p

q

r

v
t

Now let us consider a section through
the fibres. In general, a total map
f : X −→ T which is surjective has a
section s : T −→ X such that s ◦ f =
1T . A section may be considered to be
a right-inverse for the map f . Shown
here is a typical section σ through the
given clinic map f . It is denoted σ =
[c �→ p, d �→ r]. One interpretation of a
section is the scheduling of doctors to
patients concurrently within the same
time period. There are clearly six pos-
sible schedules.

f

DOC DOC

PAT PAT

c
d

p

q

r

v
t

section

σ
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The fibring constructed above is not the
only one. By considering the map f as
a relation, i.e., a set of pairs of the form
〈 p, c 〉 each of which corresponds to p �→
c, one may produce an isomorphic fib-
ring. Here the map φ is considered to
extend f , where φ〈 p, c 〉 = f(p) = c. It
is this fibring which permits us to intro-
duce universal and existential quanti-
fiers as constructions into the VDM, fol-
lowing (Mac Lane and Moerdijk 1992,
57).

φ

DOC

DOCPAT

c
d

p,c< >

t,d< >
v,d< >
r,d< >

q,c< >×

Consider the predicate S(p, d) read “p is
a patient of doctor d”. Let S ⊆ PAT ×
DOC be the set of pairs 〈 p, d 〉 for which
S(p, q) is true.
Given S we define the universal quan-
tifer (∀p)S(p, d) to be the subset T ⊆
DOC which consists of all those d with
〈 p, d 〉 ∈ S. The relationship between S
and T is shown by the shaded areas of
the diagram.
Similarly, given S we define the exis-
tential quantifier (∃p)S(p, d) to be the
subset U ⊆ DOC for which there exists
a d with 〈 p, d 〉 ∈ S. By construction, it
is always the case that

(∀p)S(p, d) ⊆ (∃p)S(p, d).

φ

DOC

DOCPAT

c
d

p,c< >

t,d< >
v,d< >
r,d< >

q,c< >×

S

T

T= S(p,d)
U= S(p,d)

(∀ ) p
(∃ ) p

By the isomorphism observed above be-
tween the two different fibrings we can
generalise the definitions of the univer-
sal and existential quantifiers to an ar-
bitrary map f. Again, from (Mac Lane
and Moerdijk 1992, 58), we have

∀fS := {d | for all p,
if f(p) = d, then p ∈ S}

and

∃fS := {d | there exists a p,
with f(p) = d, and p ∈ S}

We observe that ∀fS ⊆ ∃fS.

S

S∃ fSf∀

c d

p

q

r
v
t

f

DOC

PAT
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We have referred above to the definition of the quantifiers given by construc-
tion. We illustrate this for ∀fS and ∃fS. Given f and S.

1. Compute the direct image ∃fS = f∗(S) = U .
[This is guaranteed to be constructive in practice since all our structures are
finite. For model-theoretic methods such as VDM, Z, B, we may interchange
rng f , f(S) = f∗(S), and ∃f where S ⊆ dom f .]

2. Take the inverse image X = f∗U = f∗f(S).
3. Since S ⊆ f∗f(S) then let Y = X\S.
4. Compute the direct image f∗(Y ).
5. Then ∀fS = ∃fS\f∗(Y ).

Elimination of Y gives one (pleasing) form of the result:

∀fS = ∃fS\f∗(f∗∃fS\S) (79)

5 Epilogue

5.1 Related Work

In our School we have always taken the view that functions and maps are pri-
mary and that relations are secondary. This was and still is the primary focus.
Consequently, the move to categories and topoi is straightforward. There is how-
ever a completely opposite well-known and well-established view that relations
are primary. The categorical companion to the relation is an allegory. It is not
surprising, therefore, to discover that what is here treated in terms of Heyting
algebras and topoi is also covered within the chapter on relations and allegories
by Bird and de Moor (1997, 81–110).

Similarly, in their work on the unified theories of programming, Hoare and He
(1998, 86–112) have provided a chapter on linking theories wherein comparable
material is handled in terms of lattices and Galois connections.
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