
1

Model Checking X-Machines: Towards Integrated
Formal Development of Safety Critical Systems

George Eleftherakis and Petros Kefalas
Computer Science Department

City Liberal Studies
Affiliated College of the University of Sheffield
13 Tsimiski Str., 54624 Thessaloniki, Greece

{eleftherakis, kefalas}@city.academic.gr

Abstract. Computer systems used in most safety critical applications, such as in medical,
nuclear, space domains etc. are often responsible for major damages and injuries due to
unpredicted malfunction. Misleading user requirements, errors in the specification and in
the implementation are the usual reasons responsible for the creation of such non-safe
systems. This paper advocates the use of X-Machines in the development of safety and
business critical systems and proposes its extension by a model checking technique, thus
leading towards an integrated formal method. The resulting development methodology,
adopting the X-machines as a specification formalism and the model checking as a
verification technique, gives the ability to the software engineer to intuitively as well as
formally specify a system, then automatically check if this model has all the desired
properties, and finally test if the implementation is equivalent to the specification by
applying a complete set of test cases. Therefore, the use of this method in the
development of systems in safety critical domains can assure that the final product is
valid with respect to the user requirements by revealing errors during the development
life cycle and subsequently adding to the confidence of their use. The proposed
methodology in this paper is accompanied by an example, which demonstrates the use of
X-Machines in specification, testing and validation.

1 Introduction

In safety critical domains, such as medical, space, nuclear domains etc., the traditional
development life cycle failed several times to produce a reliable and correct system.
There are a number of reasons for this. Among others, the most prominent are:
 Misleading user requirements may lead to a potential “correct” specification and

implementation, which however do not meet the actual requirements.
 Errors in the specification of the system produce a model different from the one

needed.
 Errors in the implementation lead to a different product from the one specified.

Errors in such systems not only cause an increase in the cost of a project, but are also
responsible for accidents, even provoking deaths in some rare cases [1]. The
application of formal methods in safety and business critical systems could add to the
confidence in using the system by revealing errors during the development process, in
both the system’s specification and its implementation.

Formal specification is the procedure of describing a system and its desired
properties precisely, by using a language with rigorously defined syntax and
semantics. Logic and sets often form the basic theory behind such mathematical
languages, in order to avoid ambiguity and allow automated verification techniques
on the specification [2]. Specifying a system means to create the appropriate model

2

that describes it. The most usual general definition of a model is as a triple <W, R, π>
where:
 W is a non-empty set of states,
 R is a binary relation on W, i.e. R ⊆ W×W, that shows which states are possibly

related to other states
 π is a truth assignment function that shows which propositions are true in each

state, so π: W×P → {true, false}, where P is the set of all the properties in this
model.
Considering the above definition, model checking can be defined as the process

of proving if a given property is valid in any, some or all states of the system. This
can be achieved by searching the state space of the model (W, R), checking in which
states the property is valid by applying the π truth assignment function. In more detail,
there is a need to distinguish one or a combination of the following: a property pi can
be valid for all paths, for some paths, for all states of a path, or for some states of a
path. Temporal logic formulae [3] through temporal operators give the ability to
express combinations of all the previous cases. Using a temporal logic, it is possible
to write a specification as a formula and check it against this model, in order to prove
that this specification is valid.

On the other hand, assuming a correct specification, testing has an essential role
to play in system development. Although testing may identify errors in the
implementation without being able to prove its correctness, it is considered as a major
activity in the project’s development life cycle. Since testing can be regarded as the
process of determining whether a system matches its specification, the two activities,
i.e. specification and testing are directly linked. Testing based only in the
implementation is imperfect [4]. In contrast, testing based on formal specifications
provides a structured and rigorous approach to the development of the test set.
However, formal specifications used as the basis for proofs of correctness should be
able to provide a well-defined testing strategy.

Assuming that the user requirements reflect the desired system, there is a need
for an integrated formal technique that will allow us to:
 formally specify the system,
 check that the specification has the desired properties,
 check the implementation against the specification.

The specification language should be:
 formally based, thus making it suitable for mathematical analysis,
 rigorous,
 expressive,
 unambiguous,
 capable of capturing both static and dynamic system information,
 based on a fully general and formalised computational model that could form

the basis of a universal approach to the design of systems,
 user friendly,
 supported by appropriate tools.

The technique which verifies that the specification model has the desired properties
should be able to:
 prove whether a desired property is satisfied by the model of the system,
 provide valuable debugging information to the software engineer in order to

modify the model aiming towards a correct system,
 be completely automated, and
 adopt techniques that tackle the state explosion problem.

3

The technique that tests the implementation should:
 be able to prove that the implementation matches the formal specification, and
 derive all the appropriate test cases from the specification.

In this paper, we propose the use of a formal method, namely X-Machines,
which can accommodate all three above-mentioned activities. A X-machine is a
general computational machine that is like a Finite State Machine (FSM) but with a
significant difference; transitions are not labelled with simple inputs but with
functions that operate on inputs and a memory, allowing the machine to be more
expressive and flexible than the FSM. X-Machines are able to model both the control
and the data part of a system. This integrated method uses X-machines as a
specification language, a testing strategy to check the implementation against the X-
machine specification and a model checking technique to prove the validity of the
specification. We argue that, by applying X-Machines, it is possible to assure that a
system is correct. In safety critical systems such a formal methodology can be used to
prove that several “safety” properties hold in the final product.

The methodology suggested to be followed using X-Machines as a formal
method is depicted in Figure 1. The grey shaded areas are tasks in which X-Machines
are used as the primary methodology. Step 1 results in the formal specification
described as an X-Machine. Step 2 verifies that certain safety properties hold in the
model and feedback is used to refine the system specification through step 3. Step 4 is
the actual implementation task. Finally, steps 5 and 6 facilitate the testing of the
implementation for correctness with respect to the specification and the refinement of
the implementation, through the use of a complete test set derived from the X-
Machine model.

In the next sections, the integrated methodology of X-Machines will be
introduced. First, in section 2, X-Machines will be formally defined, presenting the
use of X-Machines as a specification formalism and as a methodology for testing a
system respectively. The main contribution of this work is analytically discussed in
section 3, where a methodology for model checking X-Machine specifications is
presented. A concrete example of a small safety critical system is given in order to
accompany the theory and demonstrate the applicability of the approach.

Fig. 1. The methodology of building safety critical systems with X-Machines

 User Requirements

Formal Specification
Step 4

Step 1

Step 2

Model
Verification

+
Desired

Properties

Step 3
Code

+
Test Cases

Testing
Strategy

Step 5 Step 5

Step 5

Step 6

Step 2

Inputs Feedback Use of X-Machines

4

2 X-Machines

2.1 Basic definitions
X-machine is a specification formalism introduced by Eilenberg [5], which is capable
of modelling both the data and the control by integrating specification methods, which
describe each of these aspects in the most appropriate way. X-machines employ a
diagrammatic approach of modelling the control by extending the expressive power of
the FSM. Transitions between states are no longer performed through simple input
symbols but through the application of functions. These functions are written in a
formal notation and model the processing of the data. Data is held in memory, which is
attached to the X-machine. Functions receive input symbols and memory values, and
produce output while modifying the memory values (Figure 2).

For fourteen years X-machines did not receive special attention until in 1988
Holcombe proposed this model as a basis for a possible specification language [6]. In
1992, stream X-machines were defined as X-machines with input and output sets of
streams of symbols. In short, the idea was that the machine has infinite internal
memory and depending on the current state of control and the current state of the
memory, an input symbol from the input stream determines the next state, the new
memory state and the output symbol, which will be part of the output stream. The
formal definition of a deterministic stream X-machine [7] is the following:

A stream X-machine is an 8-tuple M = (Σ, Γ, Q, M, Φ, F, q0, m0)

where:
 Σ, Γ is the input and output finite alphabet respectively,
 Q is the finite set of states,
 M is the (possibly) infinite set called memory,
 Φ is the type of the machine M, a finite set of partial functions φ that map an

input and a memory state to an output and a new memory state,
φ: Σ × M → Γ × M

 F is the next state partial function that given a state and a function from the type
Φ, denotes the next state. F is often described as a transition state diagram.

F: Q × Φ → Q
 q0 and m0 are the initial state and memory respectively.

Fig. 2. An abstract example of a X-Machine; φi: functions operating on inputs and
memory, Si: states

φ2

φ4

φ3

φ4

φ1

φ3

φ2

S2

S1
S5

S3 S4

φ1

5

2.2 X-Machines for Specification
There are several formal techniques (Z, VDM, FSM etc.) that may be used for the
specification of computer software, each one possessing advantages in describing
either the static or the dynamic part of a system [2]. Thus, the majority of formal
specification languages facilitate the modelling of either the data processing, or the
control of the system. X-machine is a general computational machine [8] that, being a
blend of diagrams and simple formalisms, it is capable to model both the static and
the dynamic part of a system. It also possesses highly expressive power being at the
same time user friendly by providing a convenient and intuitive way to specify
systems.

A simple example of an X-machine will be used as a vehicle of study: “A
medical x-ray beaming system is controlled using three buttons: i) one for charging
the machine (a single button press increases the voltage by a 10 mV step), ii) one for
the beam activation and iii) one for resetting the machine at any time. The system will
only beam if the charge in mV has reached a preset maximum, e.g. 30mV. Any
attempts to increase the charge of the machine should be rejected, since there is a
danger to seriously injure the patient”.

Fig. 3. The state transition diagram of the stream X-machine specification.

The state transition diagram of the stream X-machine M = (Σ, Γ, Q, M, Φ, F, q0,

m0) corresponding to the system described above is shown in figure 3. The X-
machine’s input set is:

Σ = {charge_button, beam_button, reset_button}
The output of the system consists of a set of messages that are displayed on a screen
together with the current charge of the machine:

Γ = { MachineCharging, ChargeRejected, BeamRejected,
MachineBeaming, ContinueBeaming, MachineReseting } × N0

The set of states is:
Q = { ready, charging, beaming }

The X-machine’s memory M is:
M = (MaxCharge , CurrentCharge)

where:
 MaxCharge is a variable holding the maximum accumulating voltage accepted

by the machine and takes values from a set, e.g. MaxCharge ∈ {30}.

ready beamingcharging

charge

charge

reject_charge

continue_beaming

reset

beam

reset

reset

reject_beam
reject_beam

6

 CurrentCharge is a variable holding the current voltage.
Initially, the machine is in the state ready, the current voltage is zero, while its
maximum value is 30.

q0 = ready, m0 = (30, 0)
The next state function F: Q × Φ → Q is shown diagrammatically in figure 3. Finally,
the functions of the X-machine need to be defined. The X-machine functions get as
input an event and the current state of the memory, and they produce an output and a
new memory:

φ : Σ × M → Γ × M
The functions are defined below. The notation used is:

φ(σ,m) =(γ,m’) if condition
and it is very close to the X-Machine Description Language [9], which is intended to
be an interchange language between X-Machine tools.

charge(charge_button, (MaxCharge, CurrentCharge))=
((MachineCharging, CurrentCharge+10), (MaxCharge, CurrentCharge+10))

if CurrentCharge+10 < MaxCharge

charge(charge_button, (MaxCharge, CurrentCharge))=
((MachineCharging, MaxCharge), (MaxCharge, MaxCharge))

if CurrentCharge+10 ≥ MaxCharge ∧ MaxCharge ≠ CurrentCharge

reject_charge(charge_button, (MaxCharge, MaxCharge))=
 ((ChargeRejected,MaxCharge),(MaxCharge,MaxCharge)).

reject_beam(beam_button, (MaxCharge, CurrentCharge))=
((BeamRejected, MaxCharge),(MaxCharge, CurrentCharge))

if CurrentCharge < MaxCharge

beam(beam_button, (MaxCharge, MaxCharge))=
 ((MachineBeaming,0),(MaxCharge,0))

reset(reset_button, (MaxCharge, CurrentCharge))=
 ((MachineReseting,0), (MaxCharge,0)).

continue_beaming(button, (MaxCharge,0))=
 ((ContinueBeaming,0), (MaxCharge,0))

if button ∈ {beam_button, charge_button}

2.3 X-Machines for Testing
Ipate and Holcombe [7] presented a testing method, which is a generalisation of
Chow’s W-method [10] for finite state machine testing. It is proved that this testing
method finds all faults in an implementation [11]. The method works based on the
following assumptions:
 the specification and the implementation of the system can be represented as X-

machines,
 the machine corresponding to the specification and the machine corresponding

to the implementation have the same type Φ.
The associated automaton A=(Φ, Q, F, q0) of an X-machine M = (Σ, Γ, Q, M,

Φ, F, q0, m0) is defined as the conversion of the X-machine M to a FSA by treating

the elements of Φ as abstract input symbols. Assuming the above, the method also
requires that:
 the specification satisfies the design for test conditions, and

7

 its associated automaton is minimal.
The design for test conditions state that the type Φ of the two machines is both
complete with respect to M and output distinguishable [8].
A processing function φ ∈ Φ is called complete with respect to M if:

∀ m ∈ M, ∃ σ ∈ Σ such that (σ, m) ∈ dom φ
A type Φ is called complete with respect to M if any basic function will be able to
process all memory values, that is if:

∀ φ ∈ Φ, φ is complete with respect to M
A type Φ is called output distinguishable if any two different processing functions will
produce different outputs on each input / memory pair, that is if

∀ φ1, φ2 ∈ Φ if ∃ m ∈ M, σ ∈ Σ such that for some m1΄, m2΄ ∈ M, γ ∈ Γ
φ1(σ, m) = (γ, m1΄) and φ2(σ, m) = (γ, m2΄), then φ1 = φ2.

When these requirements are met, the W-method may be employed to produce the k-
test set X of the associated automaton, where k is the difference in the number of
states of the associated automata corresponding to the specification and the
implementation. The test-set X consists of sequences of inputs for the associated
automaton. Let S be a state cover and W a characterisation set of the associated
automaton, then a k-test set is:

X = S(Σk+1 ∪ Σk ∪ … ∪ Σ ∪ {ε})W
The fundamental test function, which is defined below, is recursive and converts

these sequences into sequences of inputs for the X-machine. The produced test-set is
proved to find all faults in the implementation [8].
Let M = (Σ, Γ, Q, M, Φ, F, q0, m0) be a deterministic stream X-machine with Φ

complete with respect to M and let q ∈ Q, m ∈ M. A function tq, m: Φ* → Σ* is defined
as:

tq, m (ε) = ε (the empty input symbol)
or

tq, m (φ1…φnφn+1) =

and this function tq, m will be called a test function of M with respect to q and m.

The testing process can therefore be performed automatically by checking
whether the output sequences produced by the implementation are identical with the
ones expected from the specification. Using the above described method for the
example presented in the previous section and following the W-method, a
characterisation set and a state cover of the associated automaton are
W={reject_charge, continue_beaming} and S={ε, charge, charge
beam} respectively. Using them and assuming that k=0, the 0-test set for the
associated automaton is produced and using the fundamental test function the test sets
as inputs for the X-machine are derived.

 tq, m (φ1φ2…φn) σn+1,
 if ∃ a path q,q1,…,qn-1,qn, in M starting from q, where σn+1 is such

that (mn, σn+1) ∈ dom φn+1 and mn is the final value computed by
the machine along the above path on the input sequence tq, m

(φ1φ2…φn)

tq, m (φ1φ2…φn), otherwise

8

For example, one test for the associated automaton is the sequence <charge,
reset, charge> that is transformed to a test for the X-machine
<charge_button, reset_button, charge_button>. If the implementation
fails to produce the same output sequence to that of the specification, then the system
would probably have a fault in resetting the x-ray at any given time, as the
specification imposes. Thus using the whole test set it is possible to test the
implementation and prove that it is correct with respect to the specification.

Concluding, X-machines not only provide a model to specify a system but also
offer a strategy to test the implementation against the specification [12]. With the
addition of a method to verify whether several desired properties hold in this
specification or not, X-machines will provide a complete methodology to develop a
safety critical system.

3 Model Checking X-Machine Specifications

Model Checking is a formal verification technique, which is based on the exhaustive
exploration of a given state space trying to determine whether a given property is
satisfied by the system. A model checker takes a model and a property as inputs and
outputs either a claim that the property is true or a counterexample falsifying the
property. In order to use model checking, the most efficient way to express a model is
any kind of state machine, a CCS agent [13], a Petri Net [14], a CSP agent [15], etc.
The property is usually expressed as a Modal-Mu property or a Computational Tree
Logic (CTL) property. The most common properties to check are that something will
never occur or something that will eventually occur.

In Temporal Logic Model Checking [16] a property is expressed as a formula in
a certain temporal logic. The verification can be accomplished using an efficient
breadth first search procedure, which views the transition system as a model for the
logic and determines if the specifications are satisfied by that model. This approach is
simple, completely automated but has one major problem, namely the state explosion.

Symbolic Model Checking [17] is a model checking variant that instead of
visiting individual states, visits a set of states at a time. Thus, symbolic model
checking avoids the state explosion problem [18], through the use of Binary Decision
Diagrams [19]. This method has also the advantage that it is completely automated. A
property is specified as a temporal logic formula [17].

3.1 A Methodology for Model Checking X-Machines
In X-Machines, the search of some properties P of the model being true or false
cannot be applied in a straightforward manner, since these properties are implicitly
expressed in the X-machine memory values. Thus, checking whether a property pi is
valid in some states of the X-Machine means whether there are some states in which
some memory values satisfy the property pi. In essence, search should be performed
through all instances of the memory of a X-Machine model. For example, in order to
verify that the current charge of the x-ray beaming machine will never exceed the
maximum charge in any of the states, a model checker needs to search through all
possible states as well as all possible instances of memory. Therefore, the appropriate
model that facilitates model checking <W,R,π> should include:
 W is the set of all possible states of the X-Machines combined with all possible

instances of memory in each state,
 R is the set of transitions between states in W,

9

 π is the truth assignment function, i.e. given a member in W (a state with a
specific memory instance) which properties are true depending on the values of
this memory instance.

For example, some members of W are: charging (10,30), charging (20,30),
charging (30,30) etc., i.e. the x-ray beamer is at state charging, the current
charge is 10mV and the maximum charge is 30mV, and so on respectively. Then, the
property CurrentCharge < MaxCharge is true in charging (10,30) and
charging (20,30) but false in charging (30,30).

Bearing the above, model checking of a X-Machine model for specific
properties can be achieved through the transformation of the X-Machine into the form
<W,R,π>. More generally, the resulting state space (W,R) resembles a FSM (Σ, Γ,
Qfsm, T, q0fsm) where:
 Σ is a finite set that is called the input alphabet.
 Γ is a finite set that is called the output alphabet.
 Qfsm is the finite set of states, Qfsm ⊆W.
 T is the (partial) transition function, T: Qfsm × Σ → Qfsm × Γ, (T is a labelled R).
 qofsm is an initial state,

that encapsulates memory values which correspond to properties in each of its states.
The proposed model checking provides a way to prove whether a property

expressed within a temporal logic formula is satisfied by the X-Machine or not. The
methodology can be completely automated and used by various X-Machine tools and
avoid the state explosion through the selective expansion of the properties in question.
The next section shows how it is possible to derive a state space for a X-Machine.

3.2 Derivation of the Equivalent FSM
The sets Γ and Σ are the same in both models. Below, we present a way to derive the
set of states Qfsm and the transition function T.

Let Q be the set of states of the X-machine and the memory tuple
M1×M2×…×Mn with n memory variables, where Mi is the set of all the possible
values. Then, let the set of states S be the candidate set of FSM states:

S = Q×M1×M2×…×Mn

Fig. 4. The construction of compound names of the equivalent FSM states

The initial state of the equivalent FSM q0fsm is:
q0fsm = (q0, m01, m02, …, m0n)

 ….. .
Name of
a candidate
state

name of the
X-state

m1 m2 mn-1 mnmi

p1 p2 pi pn-1 pn

p1, ..pi,…, pn are sets of properties, i.e. having as elements any
expression that contains a reference to the corresponding
memory variable and/or a possible memory value.

Instances of the X-machine’s memory variables

10

where q0 is the initial state of the X-Machine and m0 = (m01, m02, …, m0n) is the
initial memory.

Practically, one could imagine that a state s∈S is constructed as a compound
name of the name of the states q∈Q and a combination of all possible memory values
Mi defined in the X-Machine specification (Figure 4). All candidate transitions of the
equivalent FSM are defined as:

T1 = { ((q, m1, m2, …, mn), σ, (q’, m1’, m2’, …, m n’) , γ) |
σ∈Σ, γ∈Γ ∧
q, q’ ∈ Q ∧
(m1,m2,…,mn), (m1’, m2’, …, m n’)∈M ∧
∃φ∈ Φ • φ(σ, (m1,m2,…,mn)) = (γ, (m1’, m2’, …, m n’)) ∧
∃f ∈ F • f(q, φ) = q’ }

Some of the states in these candidate transitions are unreachable from the initial
state qofsm, i.e. there is no path from leading to those states. Therefore, the transitions,
which should be excluded from the set of transitions, are:

T2 = { (s1, σ1, s1’, γ1) |
(s1, σ1, s1’, γ1) ∈T1 ∧
(s, σ2, s1, γ2) ∉T1 ∧
σ1,σ2∈Σ ∧ γ1,γ2∈Γ ∧
s, s1, s2 ∈S ∧
s1 ≠ q0fsm}

From the above set, the initial state should be excluded. The set of transitions of the
equivalent FSM becomes: T = T1 - T2. Finally, since the set S contains some
redundant states, i.e. states without any transition or unreachable states from the initial
state, the set Qfsm becomes:

Qfsm = { s | s,s’∈S ∧ ((s, σ, s’, γ) ∈T ∨ (s’, σ, s, γ) ∈T) ∧ σ∈Σ, γ∈Γ}
In the example presented in the previous section, the equivalent FSM derived

from the X-Machine specification is illustrated in Figure 5.

Fig. 5. The equivalent FSM of the x-ray beamer X-Machine specification

ready (0,30) charging (10,30) charging (20,30)

charging (30,30)beaming (0,30)

beam_button
reset_button

charge_button charge_button

reset_button

beam_button

reset_button charge_button

beam_button

charge_button
beam_button

reset_button

charge_button
beam_button

reset_button

11

3.3 Checking for Properties
It is now possible to query the model if it has the desired properties by searching the
state space defined by the equivalent FSM in order to verify that the properties are
satisfied. In order to express such queries, there is a need for a mathematical language
with built-in notion of time. Temporal logic seems to be the most appropriate. With
the use of modal operators, i.e.:
 necessarily (),
 possibly () and
 next (),

it is possible to express if a desired property is valid in the whole model or in part of
it, starting from the initial state. In the example used previously in this paper the logic
proposition: (CurrentCharge ≤ 30), expresses that “it is impossible the voltage
to become greater than the maximum value, which in this case is 30”, meaning that
the machine will never be charged with more than the permitted value, avoiding the
chance to injure the patient. The translation of this temporal formula is that the
requirement expressed with that formula holds in the model if in every state of the
state space the following is true; the voltage is less or equal to 30 (the property p ⇔
CurrentCharge ≤ 30, is true in every state).

Since there is a need for more expressive and flexible operators, a more proper
variation of temporal logic is the CTL [16]. A CTL formula contains:
 a boolean expression,
 an existential (E) path formula,
 a universal (A) path formula, or
 the application of standard Boolean operators to CTL formulae.

A path formula contains:
 the application of the temporal operators:

o next (X),
o eventually (F),
o or globally (G), to a CTL formula; or

 the application of until (U) to a pair of CTL formulae.
In a quantified CTL formula the temporal operators always come in pairs of a path
quantifier and a state quantifier. CTL formulae are interpreted with respect to an
infinite computation tree derived from finite state transition machines. Each path in
the tree is a sequence of states. So, for example, if p is a Boolean expression then CTL
formulae:
 AG p translates into "in all paths, in all states p holds", i.e. p is invariant;
 EF p translates into "in some path, there is some state in which p is true" or

more informally, i.e. p is potentially true.
There are four different cases and all are explained with the aid of the example

in the following table.
Example of
Property p

Temporal
Operators in CTL

Explanation

CurrentCharge ≤ 30 AG p For every path and for every state in the
path, the property p is be valid

CurrentCharge < 30 AF p For every path, there exists at least one
state where p is valid

CurrentCharge = 0 EG p There are some paths (at least one), where
in every state of these paths p is valid

MaxCharge=CurrentCharge EF p There are some paths (at least one), where
in some states of these paths p is valid

path quantifiers

state quantifiers

12

3.4 Implementation Issues
Efficiency in the model checking a X-Machine specification is still an issue under
consideration due to the state explosion. Efficiency also depends on query, i.e.:
 the CTL operators involved, and
 the number of properties involved.

For the first, there exist appropriate search algorithms, which can be applied in
the model checking paradigm, according to the given query. For instance, in AG p,
since an exhaustive search is required, Depth-First Search seems rather appropriate
because of its memory efficiency in finite search spaces. In contrast, in EF p, Iterative
Deepening can be perform better in large search spaces in order to find at least one
state where the property holds.

For the latter, optimisation in deriving the equivalent FSM can be performed. If
the properties in the query refer to the whole memory tuple, then nothing can be done
and the X-Machine should be fully expanded into a FSM. If, however, some of the
elements in memory tuple do not correspond to a given property in the query, then the
memory values of this element should not participate in the construction of the
equivalent FSM, thus reducing the number of states in it. Let P= {pa, pb, .., pm} the set
of properties in the CTL formula, and M1× M2× …× Mn the memory of the X-
Machine. The properties may correspond to the memory elements i, j ,…, k. Then, let
the set of states S, which is the candidate set of FSM states can be reduced to S =
Q×Mi×Mj×…×Mk. The derivation of the equivalent FSM is based on S, and therefore
the resulting FSM contains exactly the necessary states for model checking.

The actual derivation of the equivalent FSM is possible under certain
assumptions concerning infinite domains. The strictest conditions, which can be
imposed on the implementation of a model checker are:
 the domain of every element in the memory tuple is both finite and discrete, and
 the input set is finite and discrete.

There are, however, ways to relax those requirements. Infinite memory values and
infinite input set refer either to:
 infinite values within a finite range
 discrete values within infinite range

It is possible to apply the proposed algorithm to X-machine models with infinite
variables in the memory, with the restriction to check only properties relevant to the
finite variables. This is feasible by “forgetting” all the infinite variables and using in
the algorithm only the discrete and finite ones.

In the case of infinity between a range, the values should be changed to discrete
with an accepted step (something acceptable in computer systems). For discrete but
infinite values an assumption should be made about the maximum value this variable
could take.

4 Conclusions

X-Machines is a formal method, which facilitates the development of correct systems
[8]. We have presented a methodology for model checking X-Machine specifications.
The methodology satisfies all the criteria of a technique that can verify the
specification of a model, i.e. it can be fully automated, it can tackle in some cases the
state explosion problem and it can act as the complementary part in the system
development. The effectiveness of X-Machines theory in specification and testing has
been already demonstrated elsewhere [7, 12]. Together with the proposed model

13

checking method, X-Machines consists an integrated formal method, which can be
used in all stages of safety critical system development. Future work will include the
implementation of tools for model checking X-Machine specifications, which will be
added to the existing tools already built around X-Machines [20, 21], thus providing
an integrated framework for system development.

References

1 Leveson N.G., Safeware: System Safety and Computers, Addison Wesley Longman,
1995.

2 Clarke E., Wing J. M., “Formal Methods: State of the Art and Future Directions”, ACM
Computing Surveys, Vol.28, No.4, December 1996, pp. 626-643.

3 Pnueli A., “The temporal logic of programs”, In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science. IEEE Computer Society Press, New
York, 1997, pp. 46–57.

4 Goodenough J.B., Gerhart S.L., “Toward a Theory of Test Data Selection”, IEEE Trans.
Software Eng., Vol. 1, No. 2, June 1975, pp.156-173.

5 Eilenberg S., Automata Machines and Languages, Vol. A, Academic Press, 1974.
6 Holcombe M., “X-machines as a basis for dynamic system specification”, Software

Engineering Journal, Vol.3, No.2, 1988, pp. 69-76.
7 Ipate F. and Holcombe M., “Specification and testing using generalised machines: a

presentation and a case study”, Software Testing, Verification and Reliability, Vol.8,
1998, pp. 61-81.

8 Holcombe M. and Ipate F., Correct Systems: Building a Business Process Solution,
Springer Verlag, London, 1998.

9 Kefalas P. and Kapeti E., "A Design Language and Tool for X-Machines Specification",
In Advances in Informatics, D.I. Fotiadis, S.D. Nikolopoulos (eds.), World Scientific
Publishing Company, April 2000, pp. 134-145.

10 Chow T.S., “Testing Software Design Modeled by Finite-State Machines,” IEEE
Transactions on Software Engineering, Vol.SE-4, No.3, 1978, pp.178-187.

11 Ipate F. and Holcombe M., “An integration testing method that is proved to find all
faults”, International Journal of Computer Mathematics, Vol.63, No.3, 1997, pp. 159-178.

12 Kehris E., Eleftherakis G., and Kefalas P., "Using X-Machines to Model and Test
Discrete Event Simulation Programs", In Systems and Control: Theory and Applications,
N. Mastorakis (ed.),, World Scientific and Engineering Society Press, July 2000, pp. 163-
168.

13 Milner A., “A Calculus of Communicating Systems”, Lecture Notes in Computer
Science LNCS 92, Springer-Verlag, 1980.

14 Petri, C.A., “Communication with Automata”, PhD Dissertation, University of Bonn,
Bonn, West Germany, 1962.

15 Hoare C.A.R., Communicating Sequential Processes, Prentice Hall International, 1985.
16 Clarke E.M., Emerson E.A., and Sistla A.P., “Automatic Verification of Finite-State

Concurrent Systems Using Temporal Logic Specifications”, ACM Trans. Programming
Languages and Systems, vol. 8, no. 2, Apr. 1986, pp. 244–263.

17 McMillan K.L., “Symbolic Model Checking,” Kluwer Academic Publishers, 1993.
18 Burch J.R., Clarke E.M., McMillan K.L., Dill D.L. and Hwang J., “Symbolic model

checking:1020 states and beyond”, in Symposium on Logic in Computer Science, 1990

14

19 Bryant R.E., “Graph-Based Algorithms for Boolean Function Manipulation”, IEEE
Transactions on Computers, Vol. C-35, No. 8 (August, 1986), pp. 677-691. Reprinted in
M. Yoeli, Formal Verification of Hardware Design, IEEE Computer Society Press, 1990,
pp. 253-267.

20 Kefalas P., “Automatic Translation from X-Machines to Prolog”, Technical Report TR-
CS01/2000, Dept. of Computer Science, CITY Liberal Studies, January 2000

21 Kefalas P., Sotiriadou A., “Transforming X-Machines to Z Specification”, Technical
Report TR-CS06/2000, Dept. of Computer Science, CITY Liberal Studies, January 2000

