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Coverage Directed Generation of System-Level
Test Cases for the Validation of a DSP System

Laurent Arditi1, Hédi Boufaïed1, Arnaud Cavanié2, Vincent Stehlé2

Texas Instruments1 and Simulog2

Abstract. We propose a complete methodology for the automatic
generation of test cases in the context of digital circuit validation.
Our approach is based on a software model of the system to verify in
which some modules are written in the Esterel language. An initial
test suite is simulated and the state coverage is computed. New test
sequences are automatically generated to reach the missing states.
We then convert those sequences into system-level test cases (i.e. in-
struction sequences) by a technique called “pipeline inversion”. The
method has been applied for the functional validation of an industrial
DSP system giving promising results.

1 Introduction

Although formal verification is now well accepted in the micro-electronics i
dustry, it is only a complementary technique and the primary validation a
verification methods are still based on simulation. However, it has been sh
that formal methods can also raise the quality of simulation-based verifica
while decreasing its cost[9]: a formal analysis of a circuit can generate t
which are then simulated. The tests are efficient because they are target
some coverage criteria[12][15][2]. That technique is usually called “white-bo
verification since it uses the internal structure of the circuit to verify in order
generate the tests.

Our contribution extends this methodology to the system level. It is ba
on a software model of the system to verify which is partly written in the Este
language[3]. The functional validation relies on an initial test suite constitu
of system-level test cases (i.e. assembly language programs) which is run o
software model. The modules written in Esterel are formally analyzed so th
is possible to get an accurate measure of the state coverage provided by th
tial test suite. Test sequences (also called “test vectors”) are then automat
generated at the module level[1]. The next step is to translate those sequ
into system-level test cases. We propose a technique called “pipeline invers

1. Texas Instruments. MS 21. BP 5. 06270 Villeneuve Loubet. France.Tel: +33 4 9322
2856.Fax: +33 4 9322 2275. E-mail: larditi@ti.com, h-boufaied@ti.com
2.  Simulog. Les Taissounnières, Route des Dolines. 06560 Valbonne. France. E-mail:
cavanie@simulog.fr, stehle@simulog.fr
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to achieve that goal. Those test cases can then be reused for the validation
hardware model as well as the physical chip.

We have applied our methodology for the validation of a commercial Di
tal Signal Processor (DSP) system built around Texas Instrume
TMS320C55x™[22]. For all system modules, we could significantly increa
the state coverage (up to 100% for some modules).

Section 2 presents the context of our work. We describe in Section 3
technique to automatically generate tests and in Section 4 their extension t
system-level by pipeline inversion. Practical results are given in the follow
Section. Finally, we discuss the advantages and weaknesses of our appr
while comparing with related works.

2 Modeling and validation flows

This Section describes the existing modeling and validation flows which h
been applied before introducing formal methods in the project. We will show
the following Sections how formal methods could be integrated into those flo
to increase the validation efficiency.

2.1 The TMS320C55x™ DSP system
Texas Instruments’ TMS320C55x™[22] is a new ultra-low power DSP targ
ed at the third generation of wireless hand-sets. It is the successor of the po
TMS320C54x™[21]. This is not only a DSP-core but a whole system-on-c
because it includes a CPU (DSP-core) and various system modules such
ternal memory controllers, external memory interface, Direct Memory Acc
(DMA) controller, instruction cache, peripheral bus controller and host-proc
sor interface.

2.2 The software model
The final chip which has been designed was synthesized from a hardware m
developed in VHDL language[13] at the Register Transfer (RT) level. We c
it the “VHDL model”. In parallel, a software model of the system was design
We call it “C model”, because it is written mainly in C/C++ language.

Both models share the same architecture and the same interfaces, dow
single level of sub-modules. From a temporal point of view, the C model is
cle-accurate, which means that signal commutations done within a cycle
pen in the mean time. For each cycle, all output signals are equivalent on
C and VHDL models, given that the input signals are equivalent.

There are advantages in having a software model of a hardware syste
• Because software is easier to correct and to modify than hardware,

ware’s development cycle time is shorter than hardware’s. A softw



3.

re-

of
in-
ent

very
le to

ait-

give
soft-

Lan-

g-

m-

he

t it
his

lity
s.

se is
:
king

ali-
are

ula-
ared

too
model is thus functionally ready earlier than the hardware system it rep
sents.

• A software simulator is an environment which provides elegant ways
solving synchronization and probing problems inherent to hardware
strumentation. This facilitates instrumentation, which eases developm
and performance analysis at the target level.

Those advantages allow to give the customers a usable model of the chip
early, letting them begin development on their side. It also makes possib
write test cases early, ensuring those tests are functionally correct, without w
ing for the VHDL code to be ready.

Current hardware description languages development environments
the designer the possibility to simulate his code. Nevertheless, a separate
ware model (a simulator) has advantages that a Hardware Description
guage (HDL) one lacks:

• A dedicated simulator is faster than HDL simulation by an order of ma
nitude at least.

• It is possible to decline the software model with various interfaces: co
mand line, GUI, co-design frameworks,...

• It is even possible to encapsulate it with an HDL interface, providing t
best of both worlds.

• The resulting HDL module behaves like the real HDL code would, bu
is hardly possible to reverse-engineer this component into HDL code. T
elegantly solves the problems of intellectual property and confidentia
which arise when distributing a model of the component to customer

2.3 Hardware vs. Software validation
Our C model provides all the advantages listed above. But its main purpo
to allow validating the real component. This is a multi-step process where

1. The software model is validated by running the test cases and chec
some functional signatures.

2. The hardware model (at the different levels: RT, gate, transistor) is v
dated by simulating the same test cases. During the run on the softw
model, the inputs are extracted at each cycle and injected for the sim
tion of the hardware model. The outputs of both models are then comp
and any mismatch is signalled.

3. The physical chip is validated using the same methodology.
That process clearly shows the importance of the set of test cases: if it is

weak, many bugs can reside in the software model and in the final chip.
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2.4 Test cases
Instead of developing test benches and a huge set of test patterns, we

developed system-level test cases: they are assembly language programs
tem-level test cases are easier to write, debug and maintain than test pa
dedicated to unitary testing. They exercise the whole system, producing in
module communications, and thus taking into account the behavior of all
system modules. The resulting patterns can not be unrealistic (whereas iso
test patterns could).

In many cases, knowing a given test-case has finished without hangin
not enough to qualify it as “passed”. In addition, functional signatures are
serted by the test case developers or even automatically by a dedicated too
signatures check values of registers, memory locations, etc. and compare
with some expected values.

We mainly deal with three sorts of test-cases: completely hand-written t
cases, completely generated ones, and a hybridation of both.

• Hand-written test cases are a good starting point when starting the pro
afresh. Moreover, one often needs to hand-write dedicated test-cases
produce “bugs”.

• A different approach is to completely generate assembly test-cases
only a small description of the low-level functionnalities one wishes
test (control-flow instructions, data manipulations...). Dedicated gene
tors have been developed for this purpose.

• Finally, hybrid test cases are obtained by declining a hand-written t
case in many “flavours”. For example, a given hand-written test case
ing memory accesses can easily be declined to access different me
areas with different configurations.

The rest of this paper shows how test cases can be generated to increa
state coverage of the system modules.

3 Automatic generation of tests

3.1 Choosing a coverage metrics
When we started our work on automatic test generation we already had an i
database of test cases. Each one targets a given functionality of our system
goal was then to answer the following two questions:

• Do we cover enough functionalities and possible combinations?
• If not, how can we efficiently, and if possible automatically, increase t

coverage?
To answer these questions, one must first precisely define a coverage cr
on[10][2]. Coverages based on statements, expressions, conditions, etc. a
weak when dealing with concurrent systems. We have chosen to focus onstate
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coveragewhich appears to be a good compromise. Indeed, each system mo
is a Finite State Machine (FSM) which state coverage can be accurately m
sured and it is likely that an uncovered state reflects an untested scenario. H
ever, directly coding FSM is not suitable for modeling and maintaining co
plex systems. The Esterel language will help us solving this problem as
scribed below.

3.2 The Esterel language
Esterel[3] is an imperative language dedicated to the modeling of control-d
inated reactive systems. It provides powerful primitives for expressing con
rency, communication and preemption. It has a formally defined semantic
terms of FSMs which makes Esterel programs behave deterministically.
Esterel compiler can generate C code, and, as it focuses on control aspects
handling is imported from the C language.

From a programming point of view, Esterel is more convenient than C
modeling many of our system’s modules: its dedicated primitives make
code simpler, shorter, more readable and maintainable than C code. For s
it is closer to a specification while still remaining executable.

From a validation point of view, the benefit is that Esterel programs
compiled into well defined formalisms such as netlists or explicit automa3.
This opens the door to the use of formal verification and analysis tools suc
SIS[19], VIS[23], SMV[16] and Xeve[4].

Applying our methodology to the whole system at once is unrealistic: fir
because of its size, second it would have needed to remodel all the modul
Esterel, including the CPU. Thus, we have chosen to apply it at the module l
first and to extend it at the system level.

Seven of our system’s modules which are control-dominated have bee
modeled in Esterel. These modules are compiled into a netlist which is o
mized using SIS[19][20]. The netlist is then converted into a C++ code so
it can be integrated in the rest of the C-model.

We discuss in Section 6.1 the advantages of using a high-level langu
such as Esterel compared to other formalisms.

3.3 Formally evaluating state-coverage
Having embedded the Esterel modules, we are now able to run a simulation
for each module (noted M), get thereached state set (notedRed).

3. A netlist is a circuit at the gate level. It is represented as a set of Boolean equations
assigning values to output signals and registers in function of input signals and previou
values of the registers. The netlist implements an FSM but its size is usually much small
than the equivalent explicit automata (polynomial vs. exponential).
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To get a coverage measure, we must now determine the number of the
ically reachable states. The formal verification tool Xeve[4] is used for this p
pose: taking as input the same netlist we used to generate the C++ code, it b
the BDD[5] of thereachable state set(notedRable). The BDD is then traversed
and explicitly enumerated. Notice that we do not need to abstract the mod
order to extract its control-flow as in [10]. This is because we prohibit the m
eling of data in the Esterel models. Therefore, the states we consider are
control states.

The state coverageis then defined as the ratio between the number
reached states and the number of reachable states. The difference between
two sets is called themissing state set (notedMiss).

3.4 Generation of test sequences
We have shown how to measure the state coverage. We now detail our me
to automatically generate test sequences in order to increase that coverag
based on well-known techniques of reachability analysis.

We call atest sequencefor M a sequence of input vectors applicable to M
To increase M’s state coverage, the first step is to find test sequences lead
the missing states:

1. We first exploitMiss. For each of its elementsS, we add one new output
OS to the module’s netlist so thatOS is active iff the FSM of M is in the
stateS.

2. We then use a formal model checker (we have used Xeve[4]
SMV[16]), asking for eachOS to prove the property “OS is never active”.

Since we know these properties are false, we obtain counter-examples w
are test sequences leading to the missing states.

A dedicated algorithm has also been implemented into Xeve so that we
need to input the netlist andRedto Xeve[1]. It implicitly computesMissand au-
tomatically generates the corresponding test sequences. The whole valid
flow starting from the Esterel description of a module to the generation of
sequences reaching missing states has been fully automated.

3.5 Taking environment constraints into account
The computation ofRableas presented above does not take into account pot
tial constraints imposed on the module by its environment (i.e. CPU and o
modules). The existence of such constraints often makes many theoreti
reachable states actually unreachable. Taking these constraints into acco
mandatory to contain the state explosion and to get a realistic evaluation o
state coverage. The other reason for considering these constraints relates
sequence generation: a generated test sequence that does not respect th
ule’s constraints is unusable since it is impossible to produce in practice.
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set of constraints applied to a given module is determined by the informal d
uments describing the module and the ones connected to it. In some case
set is not maximal. Fortunately that does not corrupt the validity of our meth
but may only reduce its efficiency. A more important point one must take c
of is the correctness of the constraints:

• They must not be contradictory, otherwise “false-positive” results will
returned because . Thus, we first prove the co
straints are not always false.

• They must not be too restrictive: they must at least allow to reach all
states we know they are reachable in the context of the real system. T
so, we benefit from the fact that our methodology is based on simulat
Indeed, we first verify thatRedis included inRableeven afterRablehas
been reduced by the constraints. The efficiency of that cross-checking
pends on the quality of the initial test suite: in the worst case, the ini
test suite andRedare empty and thusRed is always included inRable
whatever the constraints are.

It is therefore an important task to regularly manually review the constraints
practice, we apply the following iterative process:

1. GetRed by simulation, computeRable andMiss.
2. Write a constraint setConstr.
3. If Constr is alwaysfalse,it includes contradictory conjunctions, goto 2.
4. If Constrdoes not hold for all elements ofRed, it is too strong, goto 2.
5. Generate test sequences to reach all elements ofMissunder the constraint

Constr.
6. If some test sequences are unrealistic,Constr is too weak, goto 2.

Both Xeve and SMV allow taking constraints into account. One solution is
express the constraints as an observer written in Esterel (i.e. a module w
monitors inputs/outputs and signals constraint violations). But it has some
itations because liveness constraints are not expressible. In SMV, constra
including liveness ones, are expressed in LTL or CTL4.

3.6 From test sequences to test cases
A test caseis a program. It may be written in C, assembly or any other langua
but in the end it is a binary code executed by the system. Unlike a test seque
a test case is not relative to any module in particular but to the whole sys
We say that atest case realizes a test sequenceif the execution of the test case
eventually generates the test sequence.

4. Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)[7] are logics with
additional timing operators:G (always),F (eventually),U (until), X (next step),A (all
execution paths),E (some execution paths).

false anything→
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As we have already mentioned, it is mandatory that our methodology is a
to produce test cases and not only module-level test sequences. The task o
erating test cases from test sequences may be automated in some cases
strongly depends on the targeted module M.

The problem has already been addressed in [15] and [2] but those work
in the most convenient case where the module to verify is the decoder of a
cessor. Therefore, generating input sequences for the module is nearly eq
lent to generating instructions: the gap between test sequences and test ca
narrow and easy to cross. We are in a more general situation because the
ules being verified are not part of the CPU but are connected to it, directly
not. They are also connected to other modules which are sometimes not for
ly defined.

The connection protocol between the CPU and the module is a key fa
for the automation of the test case generation. Indeed, suppose test sequ
have been generated for a module M which is directly connected to the CPU
only to it. Suppose there is a defined set of instructions which can send co
signals to M in a deterministic way. Then it is possible to automate the gen
tion of the test cases. But if M is not directly connected to the CPU, if seve
different modules can drive signals to M, it is difficult to deterministically an
automatically convert test sequences into test cases. These two situations a
best and worst cases. We consider the later below and the former in Sect

3.7 Manual generation of test cases
We address here the critical case where there is no automatic way to tran
test sequences into test cases. Test cases must be manually written but t
quences are of great interest in order to target the effort. Indeed, the sequ
accurately show the functionalities and their combinations which have not b
exercised. It is the task of the verification engineers to first ensure the aske
quences are realistic, and, if they are, to write programs which realize the

Let us assume the module under test is M, an automatically generate
quenceT is targeted at a missing stateS. If T is realistic, an engineer writes a
programP which should reachS. We provide different tools in order to ensur
that assumption. The first and obvious one is to runP and check thatS is now
included in the reached state set. Another way to do that is to dump the sequ
T’ of inputs at M’s boundary while runningP. It then remains to verify thatT is
a subsequence ofT’.

The manual generation of test cases is only usable and valuable whe
number of missing states is manageable. But we have experienced an hybr
proach which consists in manually writing a few test cases and then autom
cally deriving them so that they exercise similar functionalities on differe
modules and with different configurations. We can also introduce some ran
parameters. The number of resulting test cases may be large but the effo
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produce them is reduced. We show in Section 5.3 how we used that appro
and how it helped increasing the state coverage.

4 Generation of test cases by pipeline inversion

We have presented our methodology to automatically generate test sequ
targeted at state coverage. These sequences may be manually converted in
cases but it is of course preferable to provide a fully automatic flow from mi
ing states to test cases as we propose below.

4.1 Pipeline inversion
Let M be a module connected to the CPU. Starting with a test sequence fo
the problem is to go backward across the CPU back to a program. Doin
needs a model of the CPU. Then an automated tool can show the input seq
es at the CPU level which generate the targeted input sequences at M’s l
Input sequences at the CPU level are assembly instruction sequences whic
converted into real test cases in a straightforward way. We call that mecha
“pipeline inversion” and we formalize it here below.

We noteIM (respectivelyOM) a sequence of inputs (resp. outputs) at th
boundary of M. M(IM) = OM means that M eventually outputsOM when its in-
puts areIM but the timing betweenIM and OM is not specified. Similarly,
CPU(ICPU) = OCPU means that the CPU eventually outputsOCPU when its in-
puts areICPU (i.e. the execution of the programICPU generates the outputs
OCPU). As we are in a synchronous framework driven by a single clock, ther
a one-to-one mapping between each sequence couple.

The pipeline inversion ofOCPU consists in finding a sequenceICPU so that
CPU(ICPU) = OCPU. The methodology presented in Section 3 allows to gener
IM givenOM. A pipeline inversion ofIM would then convert the test sequence
M’s level into a test case. A first alternative to do so is:

1. GenerateIM,
2. Make a pipeline inversion ofIM so thatICPU is generated.
But this approach is too weak, it may produce false-negative results: it m

fail to generateICPU because the pipeline inversion ofIM is impossible. Sup-
pose we want to generate a test case to produceOM and that all the following
conditions are met:

I M M, I M( ) OM= (1)
JM M JM( ) OM=( ), JM I M≠( )∧ (2)
I CPU C, PU ICPU( ) I M≠ (3)

JCPU CPUJCPU JM=, (4)∃
∀
∃
∃
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The test sequence generation algorithm can show only one input sequ
satisfying a given output, if any. Therefore, the algorithm may show onlyIM at
step 1 (by Equation 1) and thus fails to generate any test case at step 2 (be
of Equation 3). But if step 1 would have shownJM (by Equation 2), the pipeline
inversion would have succeeded and generatedJCPU (by Equation 4).

To overcome this drawback, we have extended the technique in orde
connect the model of the CPU to the model of M, and perform the genera
of M input sequences under the constraint of the pipeline inversion. That me
that instead of running the two-step process presented above, we run a s
step process: FindICPU so that . Doing so, the for-
mal analysis will succeed in generating all theOM which can be produced by M
and the CPU together.

That methodology rises performance issues since it requires a comput
of the state space for the M-CPU product FSM instead of computing the s
spaces for M and for CPU alone. The difference is not negligible since it rep
sents one to two orders of magnitude in computation time. To reduce that w
ness, we propose to first use the two-steps approach which is quite fast. W
the single-step approach only for the states which could not have been rea
by the two-steps approach.

4.2 Our pipeline model
We have applied pipeline inversion to internal memory controllers DARA
SARAM and APIRAM. Therefore the model of the pipeline we have describ
in Esterel is an abstraction of the real one which accurately models the com
nication with the memory controllers but not more. That abstraction is man
tory in order to avoid a state explosion. Here is the list of the abstractions
did:

• The pipeline model describes the execution of 50 instructions whereas
real set includes more than 400 instructions.

• The effects of the instructions are only described for the data control
nals. That means the model describes for each instruction at which p
line stages the requests are sent to the memory controllers and at w
stages the ready are awaited.

• The model is pipelined but has only 3 stages whereas the real one h
We modeled only the stages at which data control signals are sent. Fo
ample the instruction fetch and decode stages are not relevant. Instea
express some simple constraints which are true if the running progra
mapped into a fast access memory, and if interrupts which could per
the regular instruction fetch mechanism do not happen.

M CPU ICPU( )( ) OM=
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• The model is not super-scalar whereas the real CPU can execute tw
structions in parallel. When needed, the parallel instruction pairs are m
eled as pseudo-instructions with equivalent behaviors.

Our Esterel model of the pipeline resembles the one proposed in[18]. It is b
as follows (see also Figure 1). At the top-level, inputs are the instructions (
signal for each of the 50 possible instructions), and the acknowledgement
nals (ready from memory controllers). The outputs are the request signal
the memory controllers) and a general stall signal. The top-level consist
three sub-modules: stage 0, 1 and 2. Instructions signals are connected to
0 and are propagated to stage 1 and stage 2 when the pipeline is not stal

When an instruction arrives to stage 0, if it needs to perform read operati
requests are sent. On the next cycle, if all the awaited ready signals are a
the instruction may either “die” or it is propagated to stage 1 if it also need
perform write operations. If the ready signals are not present, the pipelin
stalled. That means the instructions are not propagated and that no new ins
tion is accepted. Stage 2 is similar to stage 0 except that requests concern
operations and that instructions are not propagated any more.

4.3 Pipeline inversion in practice
We illustrate here the pipeline inversion on the validation of the DARAM mo
ule. DARAM is an internal memory controller which is connected to the CP
Figure 2 shows how they are connected.

The DARAM and CPU models are compiled as netlists from the Este
codes and optimized. DARAM’s netlist is instrumented to add outputs co

Figure 1 Overview of the pipeline architecture.

stage 0 stage 1 stage 2

stall
stall stall

instructions
instructions instructions

read
request

write
requestready ready

Figure 2 Connection of DARAM to the pipeline model.

DARAM CPU

instructions

stall

requests

ready
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sponding to the missing states (see Section 3.4). The two netlists are then
nected and converted into a code suitable for SMV.

Additional constraints are written to express CPU features not specifie
the Esterel model. For each instruction, there is an input signalinstri which is
active when the instruction has been fetched and decoded. Examples of
straints expressed in LTL are given below:

• No more than one instruction is decoded at each cycle:
.

• No instruction is decoded when the CPU is stalled:
.

• Some instructions need a relocation of the stack pointer before being
cuted. In the same program, if one instruction relocates the stack poin
then all following instructions must use the same location:

All the constraints form an assertion calledrel which is assumed. Finally we ex-
press temporal properties allowing to generate traces reaching the mis
states. Those properties have the form whereOk is an output
activated iff DARAM is in the missing stateSk.

We then ask SMV5 to prove allPk properties. IfPk is true, that meansSk is
actually not reachable because of the pipeline behavior. The set of reach
states is thus reduced. WhenPk is false, SMV produces a counter-example. It i
a trace of the signals (including theinstri inputs) which lead to the emission o
the outputOk, thus which reachesSk.

We have developed an automatic tool in order to process SMV counter
amples and generate assembly language test cases. That tool selects on
signals namedinstri in the counter-example. It translates them into assemb
language instructions which are included into a template program. Functi
signatures are automatically inserted, the program is directly run on the s
ware model and the new number of reachable states can be computed.

5 Practical results

5.1 Module description
We have applied the methodology presented above on different kinds of m
ules building a TMS320C55x™[22] system. The modules we focused on
shown on Figure 3: DARAM, SARAM and APIRAM (internal memory con
trollers), SAM (bus controller which handles communications with external
ripherals), MMIP and MMID (external memory interfaces), DMA (direct mem
ory access controller). They were modeled in Esterel. The development

5. We used SMV for that purpose. But any other model checker is usable.

G i i, nstri j i≠ instr j¬,∀→∀( )

G stall i instri¬,∀→( )

G i instri XG j instrj stacki stackj=( )→,∀( )→,∀( )

Pk:rel G Ok¬→
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Table 1 shows the characteristics of the modules. The first row indicates
number of primary inputs and outputs, the second row is the number of regis
before and after optimization using SIS[19]. We were faced to a state explo
for MMID: we could not use SIS because it requires the computation of
reachable state space. Instead, we reduced the number of registers using
hoc approach which is less efficient. “time optim” is the CPU time6 required to
run the sequential optimization. “#reachable init” (resp. “#reachable fina
gives the number of reachable states obtained without (resp. with) environm
constraints. That last number will be our basis for state coverage. The two
rows report the CPU time needed to implicitly build the reachable state sets
Xeve[4] and to explicitly enumerate them. One can see that, except for MM
the computation and the enumeration of the reachable state spaces is fast
is mainly due to the sequential optimization.

5.2 Generation of the initial reached states
We have compiled all the modules as C code and integrated them into the
ware model. We have then run the initial test suite which serves the desig

Module DARAM SARAM APIRAM  SAM MMIP MMID DMA

# inputs/outputs 18 / 101 32 / 164 35 / 159 33 / 122 22 / 59 49 / 157 24 / 46

#regs init/optim 63 / 30 91 / 27 91 / 26 86 / 80 78 / 30 95 / 67 98 / 73

time optim 41 sec 302 sec 83 sec 82 sec 286 sec 43 sec 428 sec

#reachable init 556 827 422 400 46,513>1.3M 309

#reachable final 481 368 237 400 46,513>1.3M 278

time reachable 2.1 sec 3.8 sec 2.5 sec 7.09 sec 40.7 sec 24 hours 23.2 s

time enum 0.1 sec 0.1 sec 0.1 sec 0.7 sec 3.6 sec - 0.7 sec

Table 1 System modules on which we applied the generation of test cases.

6. All CPU times are measured on a 360Mhz UltraSparc-II with 1Gb of physical memory
and 2Gb of virtual memory.

Figure 3 The DSP system.
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for non-regression checking7. That test suite has been developed along t
project during more than two years by several verification engineers. It cons
of 48,268 test cases, running for more than 385 Millions of cycles. The sim
tion time is 120 hours. The initial state coverages obtained after the simula
of that test suite are given in Table 2. The rows show the number of st

reached by the test suite, the state coverage it provides and the number of
ing states. Notice that the traditional code coverage metrics[10] (statement,
dition,...) obtained after the simulation of the same test suite on the VHDL m
el are in the 90-100% range, even for the modules where state coverage is
low.

5.3 Generation of new test cases
We have applied our test sequence and test case generation methodology.
3 shows the results. The two first rows reports the number of test seque

which have been automatically generated and the CPU time required for
task. “#test cases final” is the number of system-level test cases which h
been generated from the test sequences, automatically or manually. The
last rows show the coverage obtained after having run the new test case
how it has increased compared to the coverage provided by the initial test s

7. We have also run real-world applications, representing several Billions of cycles.
Those applications are Digital Signal Processing algorithms which exercise the CPU b
do not increase the coverage of the system modules.

Module DARAM SARAM APIRAM  SAM MMIP MMID DMA

#reached init 166 106 35 217 650 2289 218

coverage init 35% 29% 15% 54% 1% ? 78%

#missing 315 262 202 183 45863 ? 60

Table 2 Resulting state coverage after simulation of initial test suite.

Module DARAM SARAM APIRAM  SAM MMIP MMID DMA

#test sequences 315 261 201 80 - - 60

time sequences 5,246 sec 18,836 sec 611 sec 140 sec - - 1,139 s

#test cases final 315 248 201 32 13,752 10,560 10

#reached final 481 254 162 321 2,328 6,382 234

coverage final 100% 69% 68% 80% 5% ? 84%

cov final/cov init 2.9 2.4 4.5 1.48 5 2.8 1.1

Table 3 Generated test sequences, test cases and final state coverage.
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5.4 Remarks
For DARAM, SARAM and APIRAM, the generation of the test sequenc

is slow because it uses the pipeline inversion technique as described in Se
4.3. But the advantage is that the test cases are almost directly derived. T
the case for DARAM for which we could directly get a 100% coverage. T
new tests are very efficient if we consider the number of new states reac
over the simulation time: they allow to reach 315 states in 37 seconds whe
the initial test suite covers only 166 states in 120 hours. If we run only the
test cases of the suite which where developed to validate DARAM specifica
only 132 states are reached in 325 seconds.

Our pipeline models only the CPU data requests but SARAM and APIRA
are also connected to the instruction fetch unit, the DMA and the host proce
Therefore, the pipeline inversion generated incomplete test cases. We the
tomatically derived them so that they are executed with different combinati
of requests from the instruction fetch unit, the DMA and the host processo
allowed to reach a coverage a little bit less than 70%. It is not clear whethe
remaining missing states are really reachable. We think the environment
straints we modeled are too tolerant (but not to restrictive).

For the SAM module, we did not use pipeline inversion because most of
requests are not originated by the CPU. The generation of test sequences i
fast. From the 80 proposed sequences, we manually wrote 32 test cases w
sidered as being realistic and the most important ones. That allowed to sig
cantly increase the coverage.

MMIP and MMID have too many states to try to generate test sequen
reaching all the missing states. For MMIP, we generated just a few sequen
manually converted them into test cases and automatically derived them
several versions: different memory latencies, protocol configurations,... T
approach is not rigorous enough to provide an acceptable coverage. How
we could multiple the coverage by a factor of 5. We did not investigate t
methodology more deeply but we believe it is promising, especially if rand
parameters are introduced. We did not generate any test sequence for M
but we reused the ones of DARAM that we derived into several test case
that MMID is addressed instead of DARAM. The coverage of MMID cou
thus almost be tripled.

For DMA, we generated the missing test sequences and manually conv
some into test cases. The other ones seemed to be unrealistic.

5.5 Bugs found
Our methodology and tools arrived late in the project life so that they have b
applied after many bugs were already found and fixed. However, the gener
test cases have shown unknown bugs in various modules, in the software m
as well as in the hardware model.



16.

ugs
test

lso
is
sev-
stem

test
d into
val-
d to

s to
est
nded
ion

lly
. They
uc-
e in a
y to a
t se-
 3.6.
writ-
nd-
ny
ec-
els
cus-
do

main
Indi-
at-
The most interesting conclusion of our experiments is that very often, b
were not located in the modules we were testing. For example, one of the
cases generated for MMID highlit a possible dead-lock in the DMA. We a
found bugs in the CPU while running test cases of DARAM and APIRAM. Th
remark is important: it shows that a system-level validation approach has
eral advantages, one of them being that it can show bugs in parts of the sy
which were not directly being validated.

6 Conclusions

We have shown in this paper a methodology to automatically generate new
sequences targeted at state coverage. They may be automatically converte
system-level test cases using a technique called “pipeline inversion”. This
idation flow has been integrated into a real world design project and allowe
significantly increase the coverage of system modules.

6.1 Comparison with related works
Early works (e.g. [6] and [14]) have investigated the use of formal method
automatically generate tests. But they took place in an ATPG (Automatic T
Pattern Generation) context, thus at a low-level where the tests are not inte
to verify the functionalities of the systems but to detect possible fabricat
problems.
Our work is more related to [12][15] and [2]: methodologies to automatica
generate tests targeted at state and transition coverages are proposed
show applications for the verification of parts of real processors like an instr
tion decoder, allowing to easily turn test sequences into test cases. We ar
more general situation where the test sequences generated do not appl
CPU, thus the need of the pipeline inversion technique to convert the tes
quences into system-level test cases. This has been discussed in Section

We also think a major advantage of our approach is that the models are
ten in the Esterel language. The models of [2] and [17] are explicit FSMs ha
written in the Murϕ[8] and SMV[16] languages and are not reusable for a
other purposes like simulation. With Esterel, the FSMs are not explicitly sp
ified but automatically synthesized from a high-level form. The Esterel mod
are also executable allowing to build software simulators we release to our
tomers. The extraction of the control parts of the module is automatic: we
not need to work on data abstractions as in [12] or [17].

6.2 Perspectives
Our methodology suffers from some weakness we need to address. The
one is the fact that the state explosion stops the test case generation flow.
rect approaches are still efficient (see results for MMIP and MMID) but not s
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isfactory. We have already used reduction techniques but they only help k
ing the BDD representation of the states compact. The sequential optimiza
does not help for modules having a too large state space (e.g. MMID). We
currently working on modular optimization which may allow to progress.

Our current approach needs at least one step where a state set is ex
(MissorRed). This is a limitation which could be overridden: the idea is to bui
Red as a BDD during the simulation. Therefore the operatio

could be done on BDDs. The generation of test s
quences or test cases using the pipeline inversion would then need to use
ristics to produce tests so that each one pass through the maximum numb
missing states. This would allow to generate a manageable number of test
even if the number of missing states is large.

Other coverages may be considered[10][2][11]. The next step is to apply
methodology on transition coverage. We have conducted a first experimen
DARAM. Fully automatically generated test cases could raise the transi
coverage from 10% up to 90%.

We are currently applying our methodology on a new project, at a lar
scale, earlier in the project life, with a very limited initial test suite. Our futu
work also involves the generation of test cases for data-dominated modul
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