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Abstract. We propose a complete methodology for the automatic
generation of test cases in the context of digital circuit validation.
Our approach is based on a software model of the system to verify in
which some modules are written in the Esterel language. An initial
test suite is simulated and the state coverage is computed. New test
sequences are automatically generated to reach the missing states.
We then convert those sequences into system-level test cases (i.e. in-
struction sequences) by a technique called “pipeline inversion”. The
method has been applied for the functional validation of an industrial
DSP system giving promising results.

1 Introduction

Although formal verification is now well accepted in the micro-electronics in-
dustry, it is only a complementary technique and the primary validation and
verification methods are still based on simulation. However, it has been shown
that formal methods can also raise the quality of simulation-based verification
while decreasing its cost[9]: a formal analysis of a circuit can generate tests
which are then simulated. The tests are efficient because they are targeted at
some coverage criteria[12][15][2]. That technique is usually called “white-box”
verification since it uses the internal structure of the circuit to verify in order to
generate the tests.

Our contribution extends this methodology to the system level. It is based
on a software model of the system to verify which is partly written in the Esterel
language[3]. The functional validation relies on an initial test suite constituted
of system-level test cases (i.e. assembly language programs) which is run on the
software model. The modules written in Esterel are formally analyzed so that it
is possible to get an accurate measure of the state coverage provided by the ini-
tial test suite. Test sequences (also called “test vectors”) are then automatically
generated at the module level[1]. The next step is to translate those sequences
into system-level test cases. We propose atechnique called “pipeline inversion”
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to achieve that goal. Those test cases can then be reused for the validation of the
hardware model as well as the physical chip.

We have applied our methodology for the validation of a commercial Digi-
tal Signal Processor (DSP) system built around Texas Instruments’
TMS320C55x™[22]. For all system modules, we could significantly increase
the state coverage (up to 100% for some modules).

Section 2 presents the context of our work. We describe in Section 3 our
technique to automatically generate tests and in Section 4 their extension to the
system-level by pipeline inversion. Practical results are given in the following
Section. Finally, we discuss the advantages and weaknesses of our approach,
while comparing with related works.

2 Modeling and validation flows

This Section describes the existing modeling and validation flows which have
been applied before introducing formal methods in the project. We will show in
the following Sections how formal methods could be integrated into those flows
to increase the validation efficiency.

2.1 The TMS320C55x™ DSP system

Texas Instruments’ TMS320C55x™[22] is a new ultra-low power DSP target-
ed at the third generation of wireless hand-sets. Itis the successor of the popular
TMS320C54x™[21]. This is not only a DSP-core but a whole system-on-chip
because it includes a CPU (DSP-core) and various system modules such as in-
ternal memory controllers, external memory interface, Direct Memory Access
(DMA) controller, instruction cache, peripheral bus controller and host-proces-
sor interface.

2.2 The software model

The final chip which has been designed was synthesized from a hardware model
developed in VHDL language[13] at the Register Transfer (RT) level. We call

it the “WVHDL model”. In parallel, a software model of the system was designed.
We call it “C model”, because it is written mainly in C/C++ language.

Both models share the same architecture and the same interfaces, down to a
single level of sub-modules. From a temporal point of view, the C model is cy-
cle-accurate, which means that signal commutations done within a cycle hap-
pen in the mean time. For each cycle, all output signals are equivalent on both
C and VHDL models, given that the input signals are equivalent.

There are advantages in having a software model of a hardware system:

» Because software is easier to correct and to modify than hardware, soft-
ware’s development cycle time is shorter than hardware’s. A software



3.

model is thus functionally ready earlier than the hardware system it repre-
sents.

¢ A software simulator is an environment which provides elegant ways of
solving synchronization and probing problems inherent to hardware in-
strumentation. This facilitates instrumentation, which eases development
and performance analysis at the target level.

Those advantages allow to give the customers a usable model of the chip very
early, letting them begin development on their side. It also makes possible to

write test cases early, ensuring those tests are functionally correct, without wait-

ing for the VHDL code to be ready.

Current hardware description languages development environments give
the designer the possibility to simulate his code. Nevertheless, a separate soft-
ware model (a simulator) has advantages that a Hardware Description Lan-
guage (HDL) one lacks:

» A dedicated simulator is faster than HDL simulation by an order of mag-
nitude at least.

¢ ltis possible to decline the software model with various interfaces: com-
mand line, GUI, co-design frameworks,...

 lItis even possible to encapsulate it with an HDL interface, providing the
best of both worlds.

* The resulting HDL module behaves like the real HDL code would, but it
is hardly possible to reverse-engineer this componentinto HDL code. This
elegantly solves the problems of intellectual property and confidentiality
which arise when distributing a model of the component to customers.

2.3 Hardware vs. Software validation
Our C model provides all the advantages listed above. But its main purpose is
to allow validating the real component. This is a multi-step process where:

1. The software model is validated by running the test cases and checking
some functional signatures.

2. The hardware model (at the different levels: RT, gate, transistor) is vali-
dated by simulating the same test cases. During the run on the software
model, the inputs are extracted at each cycle and injected for the simula-
tion of the hardware model. The outputs of both models are then compared
and any mismatch is signalled.

3. The physical chip is validated using the same methodology.

That process clearly shows the importance of the set of test cases: if it is too
weak, many bugs can reside in the software model and in the final chip.



2.4 Test cases

Instead of developing test benches and a huge set of test patterns, we have
developed system-level test cases: they are assembly language programs. Sys-
tem-level test cases are easier to write, debug and maintain than test patterns
dedicated to unitary testing. They exercise the whole system, producing inter-
module communications, and thus taking into account the behavior of all the
system modules. The resulting patterns can not be unrealistic (whereas isolated
test patterns could).

In many cases, knowing a given test-case has finished without hanging is
not enough to qualify it as “passed”. In addition, functional signatures are in-
serted by the test case developers or even automatically by a dedicated tool. The
signatures check values of registers, memory locations, etc. and compare them
with some expected values.

We mainly deal with three sorts of test-cases: completely hand-written test-
cases, completely generated ones, and a hybridation of both.

» Hand-written test cases are a good starting point when starting the project
afresh. Moreover, one often needs to hand-write dedicated test-cases to re-
produce “bugs”.

« A different approach is to completely generate assembly test-cases with
only a small description of the low-level functionnalities one wishes to
test (control-flow instructions, data manipulations...). Dedicated genera-
tors have been developed for this purpose.

» Finally, hybrid test cases are obtained by declining a hand-written test-
case in many “flavours”. For example, a given hand-written test case do-
ing memory accesses can easily be declined to access different memory
areas with different configurations.

The rest of this paper shows how test cases can be generated to increase the
state coverage of the system modules.

3 Automatic generation of tests

3.1 Choosing a coverage metrics
When we started our work on automatic test generation we already had an initial
database of test cases. Each one targets a given functionality of our system. Our
goal was then to answer the following two questions:

» Do we cover enough functionalities and possible combinations?

 If not, how can we efficiently, and if possible automatically, increase the

coverage?

To answer these questions, one must first precisely define a coverage criteri-
on[10][2]. Coverages based on statements, expressions, conditions, etc. are too
weak when dealing with concurrent systems. We have chosen to fociaten
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coveragavhich appears to be a good compromise. Indeed, each system module
is a Finite State Machine (FSM) which state coverage can be accurately mea-
sured and itis likely that an uncovered state reflects an untested scenario. How-
ever, directly coding FSM is not suitable for modeling and maintaining com-
plex systems. The Esterel language will help us solving this problem as de-
scribed below.

3.2 The Esterel language

Esterel[3] is an imperative language dedicated to the modeling of control-dom-
inated reactive systems. It provides powerful primitives for expressing concur-
rency, communication and preemption. It has a formally defined semantics in
terms of FSMs which makes Esterel programs behave deterministically. The
Esterel compiler can generate C code, and, as it focuses on control aspects, data-
handling is imported from the C language.

From a programming point of view, Esterel is more convenient than C for
modeling many of our system’s modules: its dedicated primitives make the
code simpler, shorter, more readable and maintainable than C code. For short,
it is closer to a specification while still remaining executable.

From a validation point of view, the benefit is that Esterel programs are
compiled into well defined formalisms such as netlists or explicit autotnata
This opens the door to the use of formal verification and analysis tools such as
SIS[19], VIS[23], SMV[16] and Xeve[4].

Applying our methodology to the whole system at once is unrealistic: first,
because of its size, second it would have needed to remodel all the modules in
Esterel, including the CPU. Thus, we have chosen to apply it at the module level
first and to extend it at the system level.

Seven of our system’s modules which are control-dominated have been re-
modeled in Esterel. These modules are compiled into a netlist which is opti-
mized using SIS[19][20]. The netlist is then converted into a C++ code so that
it can be integrated in the rest of the C-model.

We discuss in Section 6.1 the advantages of using a high-level language
such as Esterel compared to other formalisms.

3.3 Formally evaluating state-coverage

Having embedded the Esterel modules, we are now able to run a simulation and,
for each module (noted M), get theached state s€éhotedRed.

3. A netlist is a circuit at the gate level. It is represented as a set of Boolean equations
assigning values to output signals and registers in function of input signals and previous
values of the registers. The netlistimplements an FSM but its size is usually much smaller
than the equivalent explicit automata (polynomial vs. exponential).
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To get a coverage measure, we must now determine the number of theoret-
ically reachable states. The formal verification tool Xeve[4] is used for this pur-
pose: taking as input the same netlist we used to generate the C++ code, it builds
the BDD[5] of thereachable state séhotedRablg. The BDD is then traversed
and explicitly enumerated. Notice that we do not need to abstract the model in
order to extract its control-flow as in [10]. This is because we prohibit the mod-
eling of data in the Esterel models. Therefore, the states we consider are only
control states.

The state coveragés then defined as the ratio between the number of
reached states and the number of reachable states. The difference between these
two sets is called thaissing state s€hotedMiss).

3.4 Generation of test sequences

We have shown how to measure the state coverage. We now detail our method
to automatically generate test sequences in order to increase that coverage. Itis
based on well-known techniques of reachability analysis.

We call atest sequencior M a sequence of input vectors applicable to M.

To increase M'’s state coverage, the first step is to find test sequences leading to
the missing states:

1. We first exploitMiss. For each of its element we add one new output
Ogto the module’s netlist so th&@g is active iff the FSM of M is in the
stateS

2. We then use a formal model checker (we have used Xeve[4] and
SMV[16]), asking for eacl®gto prove the propertyOgis never active”.

Since we know these properties are false, we obtain counter-examples which
are test sequences leading to the missing states.

A dedicated algorithm has also been implemented into Xeve so that we only
need to input the netlist arkRledto Xeve[1]. It implicitly computedMissand au-
tomatically generates the corresponding test sequences. The whole validation
flow starting from the Esterel description of a module to the generation of test
sequences reaching missing states has been fully automated.

3.5 Taking environment constraints into account

The computation oRableas presented above does not take into account poten-

tial constraints imposed on the module by its environment (i.e. CPU and other
modules). The existence of such constraints often makes many theoretically
reachable states actually unreachable. Taking these constraints into account is
mandatory to contain the state explosion and to get a realistic evaluation of the
state coverage. The other reason for considering these constraints relates to test
sequence generation: a generated test sequence that does not respect the mod-
ule’s constraints is unusable since it is impossible to produce in practice. The
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set of constraints applied to a given module is determined by the informal doc-
uments describing the module and the ones connected to it. In some cases that
set is not maximal. Fortunately that does not corrupt the validity of our method
but may only reduce its efficiency. A more important point one must take care
of is the correctness of the constraints:

» They must not be contradictory, otherwise “false-positive” results will be
returned becausdalse - anything . Thus, we first prove the con-
straints are not always false.

» They must not be too restrictive: they must at least allow to reach all the
states we know they are reachable in the context of the real system. To do
so, we benefit from the fact that our methodology is based on simulation.
Indeed, we first verify thaRedis included inRableeven aftelRablehas
been reduced by the constraints. The efficiency of that cross-checking de-
pends on the quality of the initial test suite: in the worst case, the initial
test suite andRedare empty and thuRedis always included irRable
whatever the constraints are.

Itis therefore an important task to regularly manually review the constraints. In
practice, we apply the following iterative process:

1. GetRedby simulation, computRableandMiss

2. Write a constraint s€onstr.

3. If Constris alwaydfalse,it includes contradictory conjunctions, goto 2.

4. If Constrdoes not hold for all elementsRed it is too strong, goto 2.

5. Generate test sequences to reach all elemeMsssfunder the constraint
Constr.

6. If some test sequences are unreali§tanstris too weak, goto 2.

Both Xeve and SMV allow taking constraints into account. One solution is to
express the constraints as an observer written in Esterel (i.e. a module which
monitors inputs/outputs and signals constraint violations). But it has some lim-
itations because liveness constraints are not expressible. In SMV, constraints,
including liveness ones, are expressed in LTL or €TL

3.6 From test sequences to test cases

A test casés a program. It may be written in C, assembly or any other language,
butin the end itis a binary code executed by the system. Unlike a test sequence,
a test case is not relative to any module in particular but to the whole system.
We say that dest case realizes a test sequeiit¢he execution of the test case
eventually generates the test sequence.

4. Linear Temporal Logic (LTL) and Computation Tree Logic (C'[V)] are logics with
additional timing operator$s (always),F (eventually),U (until), X (next step)A (all
execution pathsk (some execution paths).
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As we have already mentioned, it is mandatory that our methodology is able
to produce test cases and not only module-level test sequences. The task of gen-
erating test cases from test sequences may be automated in some cases but it
strongly depends on the targeted module M.

The problem has already been addressed in [15] and [2] but those works are
in the most convenient case where the module to verify is the decoder of a pro-
cessor. Therefore, generating input sequences for the module is nearly equiva-
lent to generating instructions: the gap between test sequences and test cases is
narrow and easy to cross. We are in a more general situation because the mod-
ules being verified are not part of the CPU but are connected to it, directly or
not. They are also connected to other modules which are sometimes not formal-
ly defined.

The connection protocol between the CPU and the module is a key factor
for the automation of the test case generation. Indeed, suppose test sequences
have been generated for a module M which is directly connected to the CPU and
only to it. Suppose there is a defined set of instructions which can send control
signals to M in a deterministic way. Then it is possible to automate the genera-
tion of the test cases. But if M is not directly connected to the CPU, if several
different modules can drive signals to M, it is difficult to deterministically and
automatically convert test sequences into test cases. These two situations are the
best and worst cases. We consider the later below and the former in Section 4.

3.7 Manual generation of test cases

We address here the critical case where there is no automatic way to translate
test sequences into test cases. Test cases must be manually written but the se-
guences are of great interest in order to target the effort. Indeed, the sequences
accurately show the functionalities and their combinations which have not been
exercised. It is the task of the verification engineers to first ensure the asked se-
qguences are realistic, and, if they are, to write programs which realize them.

Let us assume the module under test is M, an automatically generated se-
guenceT is targeted at a missing sta®elf T is realistic, an engineer writes a
programP which should reacls. We provide different tools in order to ensure
that assumption. The first and obvious one is tolRend check thais now
included in the reached state set. Another way to do that is to dump the sequence
T’ of inputs at M’s boundary while running. It then remains to verify that is
a subsequence of.

The manual generation of test cases is only usable and valuable when the
number of missing states is manageable. But we have experienced an hybrid ap-
proach which consists in manually writing a few test cases and then automati-
cally deriving them so that they exercise similar functionalities on different
modules and with different configurations. We can also introduce some random
parameters. The number of resulting test cases may be large but the effort to
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produce them is reduced. We show in Section 5.3 how we used that approach,
and how it helped increasing the state coverage.

4 Generation of test cases by pipeline inversion

We have presented our methodology to automatically generate test sequences
targeted at state coverage. These sequences may be manually converted into test
cases but it is of course preferable to provide a fully automatic flow from miss-

ing states to test cases as we propose below.

4.1 Pipeline inversion

Let M be a module connected to the CPU. Starting with a test sequence for M,
the problem is to go backward across the CPU back to a program. Doing so
needs a model of the CPU. Then an automated tool can show the input sequenc-
es at the CPU level which generate the targeted input sequences at M’s level.
Input sequences at the CPU level are assembly instruction sequences which are
converted into real test cases in a straightforward way. We call that mechanism
“pipeline inversion” and we formalize it here below.

We notely, (respectivelyOy;) a sequence of inputs (resp. outputs) at the
boundary of M. M(y;) = Oy means that M eventually outpu®, when its in-
puts arely, but the timing between,, and Oy, is not specified. Similarly,
CPU(¢cpy) = Ocpy means that the CPU eventually outp@igp; when its in-
puts arelcpy (i.e. the execution of the prograhgpy generates the outputs
Ocpy)- As we are in a synchronous framework driven by a single clock, there is
a one-to-one mapping between each sequence couple.

The pipeline inversion 0Dqp, consists in finding a sequenégy, So that
CPU(¢cpy) = Ocpy- The methodology presented in Section 3 allows to generate
Iy givenO,,. A pipeline inversion ofy, would then convert the test sequence at
M'’s level into a test case. A first alternative to do so is:

1. Generatéy,,
2. Make a pipeline inversion &, so thaticpy is generated.

But this approach is too weak, it may produce false-negative results: it may
fail to generatdp because the pipeline inversion Igf is impossible. Sup-
pose we want to generate a test case to pro@ygand that all the following
conditions are met:

Ov.M(ly) = Oy, 1)
Wy, (M(Jy) = Op) O3 # 1y) )
Ol cpy,CPU(lcpy) # Ty 3)

Wepy,CPUIpy = Iy (4)
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The test sequence generation algorithm can show only one input sequence
satisfying a given output, if any. Therefore, the algorithm may show it
step 1 (by Equation 1) and thus fails to generate any test case at step 2 (because
of Equation 3). But if step 1 would have shoud (by Equation 2), the pipeline
inversion would have succeeded and generdipd (by Equation 4).

To overcome this drawback, we have extended the technique in order to
connect the model of the CPU to the model of M, and perform the generation
of M input sequences under the constraint of the pipeline inversion. That means
that instead of running the two-step process presented above, we run a single-
step process: Fintkpy so thatM(CPU(1-p)) = Oy . Doing so, the for-
mal analysis will succeed in generating all tbhg which can be produced by M
and the CPU together.

That methodology rises performance issues since it requires a computation
of the state space for the M-CPU product FSM instead of computing the state
spaces for M and for CPU alone. The difference is not negligible since it repre-
sents one to two orders of magnitude in computation time. To reduce that weak-
ness, we propose to first use the two-steps approach which is quite fast. We use
the single-step approach only for the states which could not have been reached
by the two-steps approach.

4.2 Our pipeline model

We have applied pipeline inversion to internal memory controllers DARAM,
SARAM and APIRAM. Therefore the model of the pipeline we have described
in Esterel is an abstraction of the real one which accurately models the commu-
nication with the memory controllers but not more. That abstraction is manda-
tory in order to avoid a state explosion. Here is the list of the abstractions we
did:

» The pipeline model describes the execution of 50 instructions whereas the
real set includes more than 400 instructions.

« The effects of the instructions are only described for the data control sig-
nals. That means the model describes for each instruction at which pipe-
line stages the requests are sent to the memory controllers and at which
stages the ready are awaited.

» The model is pipelined but has only 3 stages whereas the real one has 7.
We modeled only the stages at which data control signals are sent. For ex-
ample the instruction fetch and decode stages are not relevant. Instead we
express some simple constraints which are true if the running program is
mapped into a fast access memory, and if interrupts which could perturb
the regular instruction fetch mechanism do not happen.
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Figure 1 Overview of the pipeline architecture.

y requests
DARAM CPuU
ready *
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Figure 2 Connection of DARAM to the pipeline model.

|instructions

¢ The model is not super-scalar whereas the real CPU can execute two in-
structions in parallel. When needed, the parallel instruction pairs are mod-
eled as pseudo-instructions with equivalent behaviors.
Our Esterel model of the pipeline resembles the one proposed in[18]. It is built
as follows (see also Figure 1). At the top-level, inputs are the instructions (one
signal for each of the 50 possible instructions), and the acknowledgement sig-
nals (ready from memory controllers). The outputs are the request signals (to
the memory controllers) and a general stall signal. The top-level consists of
three sub-modules: stage 0, 1 and 2. Instructions signals are connected to stage
0 and are propagated to stage 1 and stage 2 when the pipeline is not stalled.
When an instruction arrives to stage 0, if it needs to perform read operations,
requests are sent. On the next cycle, if all the awaited ready signals are active,
the instruction may either “die” or it is propagated to stage 1 if it also needs to
perform write operations. If the ready signals are not present, the pipeline is
stalled. That means the instructions are not propagated and that no new instruc-
tion is accepted. Stage 2 is similar to stage 0 except that requests concern write
operations and that instructions are not propagated any more.

4.3 Pipeline inversion in practice
We illustrate here the pipeline inversion on the validation of the DARAM mod-
ule. DARAM is an internal memory controller which is connected to the CPU.
Figure 2 shows how they are connected.

The DARAM and CPU models are compiled as netlists from the Esterel
codes and optimized. DARAM'’s netlist is instrumented to add outputs corre-
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sponding to the missing states (see Section 3.4). The two netlists are then con-
nected and converted into a code suitable for SMV.

Additional constraints are written to express CPU features not specified in
the Esterel model. For each instruction, there is an input sigs#] which is
active when the instruction has been fetched and decoded. Examples of con-
straints expressed in LTL are given below:

« No more than one instruction is decoded at each cycle:

G(i, instr;, - O] #i ,—|instrj) :
* No instruction is decoded when the CPU is stalled:
G(stall - i, ~instr;).

* Some instructions need a relocation of the stack pointer before being exe-
cuted. In the same program, if one instruction relocates the stack pointer,
then all following instructions must use the same location:

G(i, instr; - XG(O ], instrj — (stack = staclﬁ)))
All the constraints form an assertion callewhich is assumed. Finally we ex-
press temporal properties allowing to generate traces reaching the missing
states. Those properties have the f®prel -~ G- O, wi@res an output
activated iff DARAM is in the missing sta&.

We then ask SMV'to prove allP, properties. IfP is true, that means is
actually not reachable because of the pipeline behavior. The set of reachable
states is thus reduced. Whepis false SMV produces a counter-example. Itis
a trace of the signals (including tlvestr; inputs) which lead to the emission of
the outputO,, thus which reaches..

We have developed an automatic tool in order to process SMV counter-ex-
amples and generate assembly language test cases. That tool selects only the
signals namedhstr; in the counter-example. It translates them into assembly-
language instructions which are included into a template program. Functional
signatures are automatically inserted, the program is directly run on the soft-
ware model and the new number of reachable states can be computed.

5 Practical results

5.1 Module description

We have applied the methodology presented above on different kinds of mod-
ules building a TMS320C55x™[22] system. The modules we focused on are
shown on Figure 3: DARAM, SARAM and APIRAM (internal memory con-
trollers), SAM (bus controller which handles communications with external pe-
ripherals), MMIP and MMID (external memory interfaces), DMA (direct mem-
ory access controller). They were modeled in Esterel. The development time

5. We used SMV for that purpose. But any other model checker is usable.
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DARAM DMA SAMI—(peripherals)

SARAM Tam TS [MMID }+—{memory)
host
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progrant VMiP H—Ememory)

Figure 3 The DSP system.
was significantly shorter than the one required to model the same modulesin C
or in VHDL languages.

Module DARAM [SARAM APIRAM BAM NMIP MMID DMA

# inputs/outputs  18/101 32/164 35/159 33/(122 23/59 49|/ 157 2446

#regs init/optim|  63/3p 91/27 91/p6 86/80 78(30 95//67 98/73
time optim 41 sec 302 sec 83 sec 82[sec 28psec 43 sec 428 sec

#reachable in|t 556 837 492 4D0 46,513>1.3M 309
#reachable final 481 368 2B7 400 46,5131.3M 278
time reachable 2.1sec 3.8 sec 2.5/sec 7.0p sec 4Q.7 sec 2§ hours 23.2 sec
time enun 0.1sgc 0.1 dec 0.1sec 0.1sec 36 sec - 0.7 sec

Table 1 System modules on which we applied the generation of test cases.

Table 1 shows the characteristics of the modules. The first row indicates the
number of primary inputs and outputs, the second row is the number of registers
before and after optimization using SIS[19]. We were faced to a state explosion
for MMID: we could not use SIS because it requires the computation of the
reachable state space. Instead, we reduced the number of registers using an ad-
hoc approach which is less efficient. “time optim” is the CPU fimejuired to

run the sequential optimization. “#reachable init” (resp. “#reachable final”)
gives the number of reachable states obtained without (resp. with) environment
constraints. That last number will be our basis for state coverage. The two last
rows report the CPU time needed to implicitly build the reachable state sets with
Xeve[4] and to explicitly enumerate them. One can see that, except for MMID,
the computation and the enumeration of the reachable state spaces is fast. This
is mainly due to the sequential optimization.

5.2 Generation of the initial reached states

We have compiled all the modules as C code and integrated them into the soft-
ware model. We have then run the initial test suite which serves the designers

6. All CPU times are measured on a 360Mhz UltraSparc-Il with 1Gb of physical memory
and 2Gb of virtual memory.



14.

for non-regression checkifigThat test suite has been developed along the

project during more than two years by several verification engineers. It consists
of 48,268 test cases, running for more than 385 Millions of cycles. The simula-
tion time is 120 hours. The initial state coverages obtained after the simulation
of that test suite are given in Table 2. The rows show the number of states

Module DARAM [SARAM APIRAM SAM NIMIP MMID DMA

#reached init 16p 106 35 217 660 2289 218

coverage init 35% 29% 1500 54% 1% ? TB%
#missing 315 26p 202 183 45863 ? 60

Table 2 Resulting state coverage after simulation of initial test suite.

reached by the test suite, the state coverage it provides and the number of miss-
ing states. Notice that the traditional code coverage metrics[10] (statement, con-
dition,...) obtained after the simulation of the same test suite on the VHDL mod-
el are in the 90-100% range, even for the modules where state coverage is very
low.

5.3 Generation of new test cases

We have applied our test sequence and test case generation methodology. Table
3 shows the results. The two first rows reports the number of test sequences

Module DARAM [SARAM APIRAM SAM NMMIP MMID DMA
#test sequences 315 261 201 80 - - 60
time sequences 5,246 sec 18,83§sec 611 sec 140 sec - - 1,39 sec
#test cases final 315 248 201 32 13,52 10,560 10
#reached fingl 481 254 162 31 2,328 6,382 234
coverage fingl 100%6 69P0 68%  80% 5%0 ? 84%
cov final/cov init 2.9 2.4 4.6 1.48 5 2.8 11

Table 3 Generated test sequences, test cases and final state coverage.

which have been automatically generated and the CPU time required for that
task. “#test cases final” is the number of system-level test cases which have
been generated from the test sequences, automatically or manually. The three
last rows show the coverage obtained after having run the new test cases and
how it has increased compared to the coverage provided by the initial test suite.

7. We have also run real-world applications, representing several Billions of cycles.
Those applications are Digital Signal Processing algorithms which exercise the CPU but
do not increase the coverage of the system modules.
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5.4 Remarks

For DARAM, SARAM and APIRAM, the generation of the test sequences
is slow because it uses the pipeline inversion technique as described in Section
4.3. But the advantage is that the test cases are almost directly derived. This is
the case for DARAM for which we could directly get a 100% coverage. The
new tests are very efficient if we consider the number of new states reached
over the simulation time: they allow to reach 315 states in 37 seconds whereas
the initial test suite covers only 166 states in 120 hours. If we run only the 127
test cases of the suite which where developed to validate DARAM specifically,
only 132 states are reached in 325 seconds.

Our pipeline models only the CPU data requests but SARAM and APIRAM
are also connected to the instruction fetch unit, the DMA and the host processor.
Therefore, the pipeline inversion generated incomplete test cases. We then au-
tomatically derived them so that they are executed with different combinations
of requests from the instruction fetch unit, the DMA and the host processor. It
allowed to reach a coverage a little bit less than 70%. It is not clear whether the
remaining missing states are really reachable. We think the environment con-
straints we modeled are too tolerant (but not to restrictive).

For the SAM module, we did not use pipeline inversion because most of the
requests are not originated by the CPU. The generation of test sequences is thus
fast. From the 80 proposed sequences, we manually wrote 32 test cases we con-
sidered as being realistic and the most important ones. That allowed to signifi-
cantly increase the coverage.

MMIP and MMID have too many states to try to generate test sequences
reaching all the missing states. For MMIP, we generated just a few sequences,
manually converted them into test cases and automatically derived them into
several versions: different memory latencies, protocol configurations,... That
approach is not rigorous enough to provide an acceptable coverage. However,
we could multiple the coverage by a factor of 5. We did not investigate that
methodology more deeply but we believe it is promising, especially if random
parameters are introduced. We did not generate any test sequence for MMID
but we reused the ones of DARAM that we derived into several test cases so
that MMID is addressed instead of DARAM. The coverage of MMID could
thus almost be tripled.

For DMA, we generated the missing test sequences and manually converted
some into test cases. The other ones seemed to be unrealistic.

5.5 Bugs found

Our methodology and tools arrived late in the project life so that they have been
applied after many bugs were already found and fixed. However, the generated
test cases have shown unknown bugs in various modules, in the software model
as well as in the hardware model.
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The most interesting conclusion of our experiments is that very often, bugs
were not located in the modules we were testing. For example, one of the test
cases generated for MMID highlit a possible dead-lock in the DMA. We also
found bugs in the CPU while running test cases of DARAM and APIRAM. This
remark is important: it shows that a system-level validation approach has sev-
eral advantages, one of them being that it can show bugs in parts of the system
which were not directly being validated.

6 Conclusions

We have shown in this paper a methodology to automatically generate new test
sequences targeted at state coverage. They may be automatically converted into
system-level test cases using a technique called “pipeline inversion”. This val-
idation flow has been integrated into a real world design project and allowed to
significantly increase the coverage of system modules.

6.1 Comparison with related works

Early works (e.g. [6] and [14]) have investigated the use of formal methods to
automatically generate tests. But they took place in an ATPG (Automatic Test
Pattern Generation) context, thus at a low-level where the tests are not intended
to verify the functionalities of the systems but to detect possible fabrication
problems.
Our work is more related to [12][15] and [2]: methodologies to automatically
generate tests targeted at state and transition coverages are proposed. They
show applications for the verification of parts of real processors like an instruc-
tion decoder, allowing to easily turn test sequences into test cases. We are in a
more general situation where the test sequences generated do not apply to a
CPU, thus the need of the pipeline inversion technigue to convert the test se-
guences into system-level test cases. This has been discussed in Section 3.6.
We also think a major advantage of our approach is that the models are writ-
ten in the Esterel language. The models of [2] and [17] are explicit FSMs hand-
written in the Mup[8] and SMV[16] languages and are not reusable for any
other purposes like simulation. With Esterel, the FSMs are not explicitly spec-
ified but automatically synthesized from a high-level form. The Esterel models
are also executable allowing to build software simulators we release to our cus-
tomers. The extraction of the control parts of the module is automatic: we do
not need to work on data abstractions as in [12] or [17].

6.2 Perspectives

Our methodology suffers from some weakness we need to address. The main
one is the fact that the state explosion stops the test case generation flow. Indi-
rect approaches are still efficient (see results for MMIP and MMID) but not sat-
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isfactory. We have already used reduction techniques but they only help keep-
ing the BDD representation of the states compact. The sequential optimization
does not help for modules having a too large state space (e.g. MMID). We are
currently working on modular optimization which may allow to progress.

Our current approach needs at least one step where a state set is explicit
(Missor Reg. This is a limitation which could be overridden: the idea is to build
Red as a BDD during the simulation. Therefore the operation
Miss = Rable- Redould be done on BDDs. The generation of test se-
guences or test cases using the pipeline inversion would then need to use heu-
ristics to produce tests so that each one pass through the maximum number of
missing states. This would allow to generate a manageable number of test cases
even if the number of missing states is large.

Other coverages may be considered[10][2][11]. The next step is to apply the
methodology on transition coverage. We have conducted a first experiment on
DARAM. Fully automatically generated test cases could raise the transition
coverage from 10% up to 90%.

We are currently applying our methodology on a new project, at a larger
scale, earlier in the project life, with a very limited initial test suite. Our future
work also involves the generation of test cases for data-dominated modules.
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