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Abstract. Classical logic cannot be used to effectively reason about systems with
uncertainty (lack of essential information) or inconsistency (contradictory infor-
mation often occurring when information is gathered from multiple sources). In
this paper we propose the use of quasi-boolean multi-valued logics for reason-
ing about such systems. We also give semantics to a multi-valued extension of
CTL, describe an implementation of a symbolic multi-valued CTL model-checker
called � chek, and analyze its correctness and running time.

1 Introduction

In the last few years, model checking [9] has become established as one of the most effec-
tive automated techniques for analyzing correctness of software artifacts. Given a sys-
tem and a property, a model checker builds the reachability graph (explicitly or symboli-
cally) by exhaustively exploring the state-space of the system. Model-checking has been
effectively applied to reasoning about correctness of hardware, communication proto-
cols, software requirements and code, etc. A number of industrial model checkers have
been developed, including SPIN [18], SMV [22], and Mur � [12].

Despite their variety, existing model-checkers are typically limited to reasoning in
classical logic. However, there are a number of problems in software engineering for
which classical logic is insufficient. One of these is reasoning under uncertainty, or when
essential information is not available. This can occur either when complete information
is not known or cannot be obtained (e.g., during requirements analysis), or when this in-
formation has been removed (abstraction). Classical model-checkers typically deal with
uncertainty by creating extra states, one for each value of the unknown variable and each
feasible combination of values of known variables. However, this approach adds signif-
icant extra complexity to the analysis.

Classical reasoning is also insufficient for models that contain inconsistency. Incon-
sistency arises frequently in software engineering [15]. In requirements engineering, mod-
els are frequently inconsistent because they combine conflicting points of view. During
design and implementation, inconsistency arises when integrating components devel-
oped by different people. Conventional reasoning systems cannot cope with inconsis-
tency; the presence of a single contradiction results in trivialization — anything follows
from �����	� . Hence, faced with an inconsistent description and the need to perform
automated reasoning, we must either discard information until consistency is achieved
again, or adopt a non-classical logic. The problem with the former approach is that we
may be forced to make premature decisions about which information to discard [19].
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Although inconsistency in software engineering occurs very frequently, there have been
relatively few attempts to develop automated reasoning tools for inconsistent models.
Two notable exceptions are Hunter and Nuseibeh [20], who use a Quasi-Classical (QC)
logic to reason about evolving specifications, and Menzies et al. [23], who use a para-
consistent form of abductive inference to reason about information from multiple points
of view.

Paraconsistent logics are a promising alternative to classical reasoning — they per-
mit some contradictions to be true, without the resulting trivialization of classical logic.
The development of paraconsistent logics has been driven largely by the need for au-
tomated reasoning systems that do not give spurious answers if their databases become
inconsistent. They are also of interest to mathematicians as a way of addressing the para-
doxes in semantics and set theory. A number of different types of paraconsistent logic
have been studied [24]. For example, relevance logics use an alternative form of entail-
ment that requires a “relevant” connection between the antecedents and the consequents.
Non-truth functional logics use a weaker form of negation so that proof rules such as dis-
junctive syllogism (i.e., 
��
��������������� ) fail. Multi-valued logics use additional truth
values to represent different types of contradiction.

Multi-valued logics provide a solution to both reasoning under uncertainty and under
inconsistency. For example, we can use “no information available” and “no agreement”
as logic values. In fact, model-checkers based on three-valued and four-valued logics
have already been studied. For example, [8] used a three-valued logic for interpreting re-
sults of model-checking with abstract interpretation, whereas [16, 17] used four-valued
logics for reasoning about abstractions of detailed gate or switch-level designs of cir-
cuits.

Different multi-valued logics are useful for different purposes. For example, we may
wish to have several levels of uncertainty. We may wish to use different multi-valued
logics to support different ways of merging information from multiple sources: keep-
ing track of the origin of each piece of information, doing a majority vote, giving pri-
ority to one information source, etc. Thus, rather than restricting ourselves to any par-
ticular multi-valued logic, we are interested in extending the classical symbolic model-
checking procedure to enable reasoning about arbitrary multi-valued logics, as long as
conjunction, disjunction and negation of the logical values are specified.

This work is part of the � bel1 (the Multi-Valued Belief Exploration Logics) project,
outlined in [14]. The description of the system together with the description of the de-
sired multi-valued logic and the set of correctness criteria expressed in CTL become in-
put to our model-checker, called � chek, which returns a value of the logic best charac-
terizing the validity of the formula in each initial state.

The rest of this paper is organized as follows: Section 2 describes a simple thermo-
stat system which is used as a running example throughout the paper. Section 3 gives
background on CTL model-checking. Section 4 describes the types of logics that we can
analyze and the ways to represent them. Section 5 describes the multi-valued transition
structures and extends CTL to reasoning over them. Section 6 discusses the implemen-
tation of � chek, whereas Section 7 contains the analysis of its correctness and running

1 pronounced “Chibel”
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Fig. 1. Models of the thermostat.(a) Heat only; (b) AC only; (c) combined model.

time. We conclude the paper with a summary of results and outline of future work in
Section 8.

2 Example

Consider three models of the thermostat given in Figure 1. Figure 1(a) describes a very
simple thermostat that can run a heater if the temperature falls below desired. The sys-
tem has one indicator ( ����� �"! ), a switch to turn it off and on (#�$�%�%'&(%�) ) and a variable
indicating whether the heater is running ( *+� ,"- ). The system starts in state ."/�/ 2 and tran-
sitions into 021�3�4�5 when it is turned on, where it awaits the reading of the temperature
indicator. Once the temperature is determined, the system transitions either into 02163�4�7
or into *�4�8 9 . The value of the temperature indicator is unknown in states ."/�/ and 021�3�4�5 .
To model this, we could duplicate the states, assigning ����� �"! the value T in one copy
and F in the other — the route typically taken by conventional model-checkers. Alter-
natively, we can model the system using the three-valued logic: T, F and M (Maybe),
assigning �6�����"! the value M, as depicted in Figure 1(a)3.

We can ask this thermostat model a number of questions:

Prop. 1. Can the system transition into 021�3�4+5 from everywhere?
Prop. 2. Can the heater be turned on when the temperature becomes below desired?
Prop. 3. Can the system be turned off in every computation?

2 Throughout this paper state labels are capitalized. Thus, :<;<=<> is a state and :@?<A2B is a variable
name.

3 Each state in this and the other two systems in Figure 1 contains a self-loop with the value T
which we omitted to avoid clutter.
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Figure 1(b) describes another aspect of the thermostat system – running the air con-
ditioner. The behavior of this system is similar to that of the heater, with one difference:
this system handles the failure of the temperature indicator. If the temperature reading
cannot be obtained in states 8�C or 021�3 4 5 , the system transitions into state 021�3�4 5 .

Finally, Figure 1(c) contains a merged model, describing the behavior of the thermo-
stat that can run both the heater and the air conditioner. In this merge, we used the same
three-valued logic, for simplicity. When the individual descriptions agree that the value
of a variable or transition is T (F), it is mapped into T (F) in the combined model; all other
values are mapped into M. During the merge, we used the simple invariants describing
the behavior of the environment ( �������"!EDF�G8 H��"I�� , 8�H��"I��JDK�	����� �"! ). Thus, the
value of ��� ���"! in state 8�C is inferred to be F. Note that the individual descriptions dis-
agree on some states and transitions. For example, they disagree on a transition between
02163�4 7 and 0(1�3�4 5 ; thus it receives the value M. Also, it is possible that the heater is on
while the air conditioner is running.

Further details on the merge procedure are outside the scope of this paper, except
to note that we could have chosen any of a number of different multi-valued logics to
handle different combinations of values in the individual models. For example, we could
have used a 9-valued logic where each value is a tuple formed from the values of the two
individual models.

We can ask the combined model a number of questions that cannot be answered by
either individual model, e.g.

Prop. 4. Is heat on only if air conditioning is off?
Prop. 5. Can heat be on when the temperature is above desired?

3 CTL Model-Checking

CTL model-checking is an automatic technique for verifying properties expressed in a
propositional branching-time temporal logic called ComputationalTree Logic (CTL) [9].
The system is defined by a Kripke structure, and properties are evaluated on a tree of in-
finite computations produced by the model of the system. The standard notation L��NMPO QR

indicates that a formula
R

holds in a state M of a model L . If a formula holds in the
initial state, it is considered to hold in the model.

A Kripke structure consists of a set of states S , a transition relation TVUWSYXZS , an
initial state M2[]\^S , a set of atomic propositions � , and a labeling function _a`@SbDdc<e .
T must be total, i.e, fgMh\bS	��i"jk\^S , s.t, 
lM@�mj��n\ZT . If a state Mpo has no successors, we
add a self-loop to it, so that 
qMpor�NMso��n\ZT . For each Mh\^S , the labeling function provides
a list of atomic propositions which are True in this state.

CTL is defined as follows:

1. Every atomic proposition t�\u� is a CTL formula.
2. If v and w are CTL formulas, then so are ��v , vu�Zw , vu�Zw , xzyZv , �{yZv , x�|�v ,

�}|�v , x�~�v��zw�� , �P~�v��}w�� .
The logic connectives � , � and � have their usual meanings. The existential (universal)
quantifier x ( � ) is used to quantify over paths. The operator y means “at the next step”,
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| represents “sometime in the future”, and � is “until”. Therefore, xzyZv ( �{yZv ) means
that v holds in some (every) immediate successor of the current program state; x�|�v
( �z|�v ) means that v holds in the future along some (every) path emanating from the
current state; x�~ v��}w�� ( ��~�v��zw�� ) means that for some (every) computation path start-
ing from the current state, v continuously holds until w becomes true. Finally, we use
x���
lv�� and �z��
qv	� to represent the property that v holds at every state for some (every)
path emanating from M2[ . Formally,

L��NM [ O Q�tz���Jt�\b_k
lM [ �
L��NM [ O Q���vu���JL���M [��O Q�v

L��NM2[�O Q�v��
w����JL���M2[�O Q�v���L���M2[PO Q�w
L��NM2[�O Q�v��
w����JL���M2[�O Q�v���L���M2[PO Q�w
L��NM([�O Q�xzyZvZ���Ji"j�\bS	�k
lM(["�mj���\bT ��L���j}O Q�v
L���M2[�O Q��{yZvZ����f�j�\bS	�k
lM(["�mj���\bT�D�L���j}O Q�v

L��NM([�O Q�x�~�v��}w��+���������p���{�p� �����������@���n +¡¢����M2[@�NM<52�(£�£�£��'�(£ �(£
i�¤���¤	¥�¦E��L��NMp§¨O Q�w��
f�©@��¦�ª�©�«W¤�D�L���M�¬�O Q�v

L��NM([�O Qa�P~�v��}w��+����­q�@�	�s®"�s��¯� °¡<����M2["��M¢5(�2£±£�£��
i�¤���¤	¥�¦E��L��NM § O Q�w��
f�©@��¦�ª�©�«W¤�D�L���M ¬ O Q�vn£

where the remaining operators are defined as follows:

�}|�
qv	�k²���~�³��}v´� 
�µ��¶­·£"�<­��}|��
x�|�
lv	��²�x�~¸³��}v´� 
�µ��¶­·£"�<­�x�|��
�}��
qv	�k²���x�|�
q��v�� 
�µ��¶­·£"�<­��}���
x���
lv	��²��G�}|�
l��v	� 
�µ��¶­·£"�<­�x����

Definitions of �}| and x�| indicate that we are using a “strong until”, that is, x�~�v��}w��
and �P~�v��}w�� are true only if w eventually occurs.

4 Specifying the Logic

Since our model checker works for different multi-valued logics, we need a way to spec-
ify the particular logic we wish to use. We can specify a logic by giving its inference rules
or by defining conjunction, disjunction and negation operations on the elements of the
logic. Since our goal is model-checking as opposed to theorem proving, we chose the
latter approach. Further, the logic should be as close to classical as possible; in particu-
lar, the defined operations should be idempotent, commutative, etc. Such properties can
be easily guaranteed if we ensure that the values of the logic form a lattice. Indeed, lat-
tices are a natural way to specify our logics. In this section we give a brief introduction
to lattice theory and describe the types of lattices used by our model-checker.

4.1 Lattice Theory

We introduce lattice theory here following the presentation in [2].
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Fig. 2. Examples of logic lattices: (a) a two-valued lattice representing classical logic; (b) a three-
valued lattice reflecting uncertainty; (c) a four-valued boolean lattice, a product of two (2-Bool,¾

) lattices; (d) a four-valued quasi-boolean lattice.

Definition 1 Lattice is a partial order ( ¿ , À ) for which a unique least upper bound and
greatest lower bound, denoted tzÁ�Â and t{ÃuÂ exist for each pair of elements ( t , Â ).
The following are the properties of lattices:

t{ÁutZQÄt 
���µ��p�� °�@���pÅ�Æs�(�
t{ÃutZQÄt
t]Á
Â�QÄÂ�Áut 
�Æp�@����ÇÈ��¡<����® ����¯��
t]Ã
Â�QÄÂ�Ãut

t{Á�
qÂ	ÁuÉs�zQÊ
qt{ÁuÂs�'ÁuÉ 
q¡¢����� Æp�Ë¡¢����®�����¯6�
t{Ã�
qÂ	ÃuÉs�zQÊ
qt{ÃuÂs�'ÃuÉ
t]Áb
lt{ÃuÂs�zQÄt 
q¡¢Ì����"�� ������@Å+�
t]Ãb
lt{ÁuÂs�zQÄt

t�À�t@Í���Â]ÀaÂNÍgÎdt{ÃuÂkÀ�t"Í ÃuÂNÍÏ
����@Å��"���"Å���Æs����¯6�
t�À�t Í ��Â]ÀaÂ Í Îdt{ÁuÂkÀ�t Í ÁuÂ Í

tPÃYÂ and t�ÁYÂ are referred to as meet and join, representing for us conjunction and
disjunction operations, respectively. Figure 2 gives examples of a few logic lattices. Our
partial order operation t�ÀEÂ means that “ Â is more true than t ”.

Definition 2 A lattice is distributive if

t{Á�
qÂ	ÃuÉs��QÐ
qt]Á
Âp�'Ãb
lt{ÁuÉs�d
�µ�����������Ì�Ç�����® ����¯��
t{Ã�
qÂ	ÁuÉs��QÐ
qt]Ã
Âp�'Áb
lt{ÃuÉs�

All lattices in Figure 2 are distributive.

Definition 3 A lattice is complete if the least upper bound and the greatest lower bound
for each subset of elements of the lattice is an element of the lattice. Every complete
lattice has a top and bottom.

Ñ Q�Ã	¿ 
 Ñ ÆN�+¡¢��¡<Æp���s���±Ò2¡<�����"Åg�
³�Q�Á	¿ 
�³JÆN�+¡¢��¡<Æp���s���±Ò2¡<�����"Åg�

In this paper we use T to indicate ³ of the lattice, and F to indicate its
Ñ

, although in
principle ³ and

Ñ
might be labelled differently.

Finite lattices are complete by definition. Thus, all lattices representing finite-valued
logics are complete.
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Definition 4 A complete distributive lattice is called a complete Boolean lattice if every
element tÓ\Z¿ has a unique complement ��t�\
¿ satisfying the following conditions:

����t�Q�t 
q�Ô��Å�®@�@Õ�Ç������@Å�� t�Ö�Ân×Ø��t�Ù���ÂÚ
q��¡<Å����±���@Å��"���"Å���Æ��
�k
lt{ÃuÂs�	Q���t{Áu��ÂÚ
�µÈ�{Ûu�@��Ü ¡<Å°� t{Ãu��tZQ Ñ 
q�ÔÆs�"Å ����¡¢µ���Æs�����@Å°�
�k
lt{ÁuÂs�	Q���t{Ãu��ÂÚ
�µÈ�{Ûu�@��Ü ¡<Å°� t{Áu��tZQÝ³ 
q�Ô�s���+¡¢Ç������±®"�sÅ��s�����

In fact, � involution, de Morgan and antimonotonic laws follow from � contradiction
and � exhaustiveness.

Definition 5 A product of two lattices 
�¿ 5 �sÀ{� , 
�¿ 7 �pÀ{� is a lattice ( ¿ 5 X�¿ 7 ), with the
ordering À holding between two pairs iff it holds for each component separately, i.e.


lt+�NÂs��ÀÞ
qt Í ��Â Í �	×Øt�À�t Í �ßÂàÀWÂ Í
Bottom, top, complement, meet and join in the product lattice are component-wise ex-
tensions of the corresponding operations of the component lattices. Product of two lat-
tices preserves their distributivity, completeness and boolean properties. For example,
out of the four lattices in Figure 2, only (2-Bool, À ) and (4-Bool, À ) are boolean. The
former is boolean because � T = F, � F = T. The latter is a product of two (2-Bool, À )
lattices and thus is complete, distributive and boolean. The lattice (3-QBool, À ) is not
boolean because � M = M, and M Ãb� M �Q Ñ

.

4.2 Quasi-Boolean Lattices

Definition 6 A distributive lattice ( ¿ , À ) is quasi-boolean [4] (also called de Morgan [13])
if there exists a unary operator � defined for it, with the following properties ( t+�NÂ are
elements of ( ¿ , À )):

�à
qt{Ã�Âs��Q���t{Áu��ÂÚ
áµ��{Ûu�@��Ü ¡¢Å+� ����tÔQ�t 
q����Å�®@�"Õ±ÇÈ�����@Å+�
�à
qt{Á�Âs��Q���t{Ãu��Â t�À�Â�×Ø��t�â���ÂÚ
q��¡¢Å �������@ÅÈ�@���"Å���Æ(�

Thus, ��t is a quasi-complement of t .

Therefore, all boolean lattices are also quasi-boolean, whereas the converse is not true.
Logics represented by quasi-boolean lattices will be referred to as quasi-boolean logics.

Theorem 1 A product of two quasi-boolean lattices is quasi-boolean

Proof:
Refer to the Appendix for proof of this and other theorems of this paper.

For example, the lattice (3-QBool, À ), first defined in [21], and all its products are
quasi-boolean. We refer to ã -valued boolean lattices as ( ã -Bool, À ) and to quasi-boolean
lattices as ( ã -QBool, À ). (4-QBool, À ) is a lattice for a logic proposed by Belnap for
reasoning about inconsistent databases [3, 1]. This lattice is quasi-boolean ( � N = N; � B
= B) and thus not isomorphic to (4-Bool, À ).

In the rest of this paper we assume that the negation operator given for our logic
makes the lattice quasi-boolean. What do quasi-boolean lattices look like? Below we
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define lattices which are (geometrically) horizontally-symmetric and show that, with
negation defined by the horizontal symmetry, this is a sufficient condition for quasi-
booleanness. We define:

Definition 7 A lattice ( ¿ , À ) is horizontally-symmetric if there exists a bijective func-
tion ä such that for every pair t°��Âà\u¿ ,

t�ÀWÂå× äå
qt���â�ä�
qÂs�d
��"��µ��s��æb�s��Ì°�sµ�µÈ�±ÅÈÜ �
ä�
qäå
qt�����Q�tç
�èa��Å�®@�@Õ�Ç������@Å+�

Theorem 2 Let 
á¿}�pÀ{� be a horizontally-symmetric lattice. Then the following hold for
any two elements t , Â¨\
¿ :

ä�
qt]ÃuÂs��Q�ä�
qt��'Áuä�
qÂp�
ä�
qt]ÁuÂs��Q�ä�
qt��'Ãuä�
qÂp�

Thus, horizontal symmetry is a sufficient condition for the corresponding lattice to
be quasi-boolean, with ��tuQ�äå
qt�� for each element of the lattice, since it guarantees
antimonotonicity and involution by definition, and de Morgan laws via Theorem 2.

5 Multi-Valued CTL Model-Checking

In this section we extend the notion of boolean model-checking described in Section 3
by defining multi-valued Kripke structures and multi-valued CTL.

5.1 Defining the Model

A state machine L is a multi-valued Kripke ( � Kripke) structure if LéQÐ
qS	�NS'[@�NT���êÈ������_�� ,
where

– _ is a quasi-boolean logic represented by a lattice ( ¿ , À ).
– � is a (finite) set of atomic propositions, otherwise referred to as variables (e.g.
#�$ %�%'&2%�) , �6�����"! , *+��,"- in Figure 1(a)). For simplicity, we assume that all variables
are of the same type.

– S is a (finite) set of states; each state is identified by a unique (within L ) label M .
S [ U�S is the non-empty set of initial states.

– Each transition 
lM@�mj�� in L has a logical value in ¿ , referred to as ëìM"��j�ímî , or, when
L is clear from the context, simply as ëìM"��j�í . Then, Tï`�¿�Dðc@ñ'òÈñ is the labeling
function mapping logical value óa\Þ¿ into a set of transitions ô�
qM"��j��¶õ where the
value of each 
qM"��j�� is ó , i.e.

fgó�\Z¿z��T�
ló@�	QÞô�
qM"��j��aO]Mz\bS��öj�\ZSß�÷ëìM"��j�í�Q�ó�õ

We also ensure that there is at least one non-false transition out of each state, ex-
tending the classical notion of Kripke structures. Formally,

f'Mz\ZS	��i"jk\ZS	��iÈó�\
¿��2£ �(£�ó �Q Ñ �ø
qM"��j��¨\^T�
qó"�
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ù´ú�û�ü�ýJþnûuÿqù�ü�� ÿ������	�	
���
���
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Fig. 3. Properties of CTL operators.

To avoid clutter, we follow the convention of finite-state machines of not drawing F
transitions. Thus, in Figure 1(a), transition between 0(1�3�4 7 and 0(1�3�4 5 is F, whereas
in Figure 1(c) this transition is M. We refer to a value that a variable (an atomic
proposition) t takes in state M as ëìt�í î 0 , or, when L is clear from context, simply as
ëìt�í 0 .

– ê�`<�aX�¿aD�c@ñ is a labeling function that maps each atomic proposition (variable)
t and each logical value ó to a set of states where the value of t is ó , i.e.,

fgó�\Z¿z�mfgt�\
����ê�
qt°�Nó@�nQÞô<MÞO{Mh\bS��øë�t�í î 0 Q�ó�õ
Thus, the expression 
�ë�v�í 0 Q21{�r�å
�ëìM"�mj�íkQ43	� means that we check whether the
value of v in M is T, or whether the value of the transition 
qM"�mj�� is F. Alternatively,
and equivalently, we can think of a state M as a vector of variables � and their values
in ¿ together with a unique label M .

5.2 Multi-Valued CTL

Here we give semantics of CTL operators on a � Kripke structure L over a quasi-boolean
logic _ . We will refer to this language as multi-valued CTL, or � CTL. _ is described by a
finite, quasi-boolean lattice 
�¿z�sÀ{� , and thus the conjunction Ã , disjunction Á and nega-
tion � operations are available. In extending the CTL operators, we want to ensure that
the expected CTL properties, given in Figure 3, are still preserved. Note that the ���
fixpoint is somewhat unusual because it includes an additional conjunct, xzyu��~ 5´��6"� .
The reason for this term is to preserve a “strong until” semantics for states that have no
outgoing T transitions. This term was introduced by [6] for reasoning about non-Kripke
structures.

We start defining � CTL by giving the semantics of propositional operators. Here, M
is a state and ó�\Z¿ is a logic value:

ë�t�í 0 Q�óz���Jt�\bê�
ló@�
ë���v	í 0 Q�óz���aëìv	í 0 Q���ó

ë�v��uw�í 0 Q�óz����
�ë�v�í 0 ÃZë�w�í 0 ��Q�ó
ë�v��uw�í 0 Q�óz����
�ë�v�í 0 ÁZë�w�í 0 ��Q�ó

We proceed by defining xzy and �{y operators. Recall from Section 3 that these
operators were defined using existential and universal quantification over next states. We
extend the notion of quantification for multi-valued reasoning by using conjunction and
disjunction operators. This treatment of quantification is standard [3, 25]. The semantics
of xhy and �]y operators is given below:

ëìxzyZv	í 0 Q�óz���W
�798;:=<?>�@�@BA 0DC 
mëìM"��j�í��Ôëìv	í�8�����Q�ó
ël�{yZv	í 0 Q�óz���W
�E 8;:=<?>�@�@BA 0DC 
mëìM"��j�í�DÚëìv	í 8 ����Q�ó



10

CTL formula

Model of
System

CTL Object

Partition

Table
Library

Answer

QB Lattice
Library

Handler Library

FSM Object

Lattice
+

Counter-Example

Checker Engine

Lattice Object

Χ DD

Fig. 4. Architecture of � chek.

Theorem 3 Definitions of ëìxhy^v	í 0 and ëq�]y^v	í 0 preserve the negation of “next” prop-
erty, i.e.

fgMh\bS	���nëq�]y^v	í 0 QÞë�xzyZ��v	í 0
Finally, we define ��� and x�� operators using the ��� and xÓ� fixpoint properties

and the above definition of �{y and xhy :

ëìx�~�v��}w��qí 0 Q�óz���W
mëìw�í 0 ��
�ëìv	í 0 � 7 8;:=<?>�@�@BA 0DC 
�ë�M@�mj�ír�Ôë�x�~�v��zw��qí 8 ������Q�ó
ël�P~�v��}w��qí 0 Q�óz���W
mëìw�í 0 ��
�ëìv	í 0 �FEG8;:=<?>�@�@BA 0DC 
�ë�M@�mj�í�DÚël�P~�v��}w��qí�8��

�H7 8�:I<J>�@�@BA 0KC 
mëìM"��j�í��Zël�P~�v��}w��qí 8 ������Q�ó

The remaining CTL operators, �}|�
lv	� , x�|�
lv�� , �}��
lv�� , x���
qv	� are the abbrevia-
tions for ��~�³��}v´� , x�~�³��}v´� , ��x�|�
q��v	� , �	�}|�
l��v	� , respectively.

6 L chek: A Multi-Valued Model-Checker

In this section we describe our implementation of a multi-valued CTL model-checker.
This symbolic model-checker, called � chek, is written in Java, and its architecture is
depicted in Figure 4. The checking engine receives the � CTL formulas to verify, the
model of the system represented as an � Kripke structure, and a lattice of logic values,
and checks whether the specified property holds, returning an answer (one of the val-
ues of the passed lattice) and a counter-example, if appropriate. � chek uses four sup-
plementary libraries: � DDs (a multi-valued extension of binary decision diagrams [5],
described in [10]), a library for handling quasi-boolean lattices, a partition handler and
a table inverter. The functionality of the latter two libraries is described below.

6.1 Table Library

The Table library contains several tables, indexed by the elements of the lattice, that give
quick access to a variety of operations on lattice elements. In order to enable this index-
ing, we define .NM�O�`@¿JD NP — a total order on the elements of our lattice 
�¿z�sÀ{� . .NM�Og
l�
is a bijection, mapping each element ó�\u¿ onto the set ô.Q@£�£�£�O ¿�O õ . For example, we can
order the elements of the lattice (3-QBool, À ) as follows:

.NM�O (T) = 1 .$M�O (M) = 2 .NM�O (F) = 3
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This ordering is referred to as T « M « F.
Using .NM.O'
l� and the primitive lattice operations, we compute inverted tables: given

a value, these tables give pairs of elements yielding this value when the corresponding
operation is performed on them. Three inverted tables, 0<%�I�96,"H����IR , 0<%�I 9�,"H����IS and
0<% I�9�,"H�� �IT are computed, one for each operator. For a table U and a value ó , we use
notation U#V to indicate an element associated with value ó .

0·%�I�9�,"H6��� R is defined as

fgó�\u¿z��0<%�I�96,"H����$R�W V QVô 
ló 5 �Nó 7 �{O¢ó 5 ��ó 7 \u¿ ��ó 5 Ãuó 7 Q�ó�õ
For example, for the lattice (3-QBool, À ), 0<%�I�96,"H����IR�W X = ô (M, M), (T, M), (M, T) õ .
0<% I�9�,"H�� � T and 0<%�I�9�,@H����IS are similar, where 0<%�I�96,"H����$S uses the identity

t�DdÂJ²é��tkÁ
Â 
�µÈ�BY+Å��������"Å��<­ Da�
Afterwards, we build generalized versions of the inverted tables for conjunction and dis-
junction over more than two operands. We call them �g&2)�.NZ�96,"H���� R and �'&2)6.NZ�9�,"H6��� T .
Given a logic value ó , �g&2)�.NZ�96,"H���� R�W V gives sets of logic values, where the correspond-
ing operation over the elements of the set yields ó . For example, for the lattice (3-QBool,
À ), �'&2)�.$Z�9�,"H�� � R�W X is ô@ô M õ , ô M, T õ@õ . �'&2)6.NZ�9�,"H6��� R is defined as

fgó�\u¿}���'&()�.NZ�9�,@H���� R�W V QÞôN[VON[Þ\]\�
á¿¨�u� E [�Q�ó6õ
�'&()�.NZ�9�,@H���� T is defined similarly.

6.2 The Partition Handler

Central to the design of � chek is the notion of a partition.A partition separates the states
of the model into subsets corresponding to the different values of the logic for a propo-
sition v . More formally, a partition ~�v´�Ëî for a property v and a machine L is a tuple of
sets, ordered via .NM�Og
l� , such that the ¤ th element of the tuple is a set of states where v
has the value .NM�O/^ 5 
l¤q� in L . When the choice of L is clear, we omit it from notation,
referring to a partition simply as ~�v'� . The sets of states in a partition are mutually dis-
joint; thus, each proposition partitions the state space. For a value ó�\Z¿ , we write ~�v´� V
to indicate the set of states associated with ó . For an example in Figure 1(a) and ordering
T « M « F, ~ ��� ���"!<�'Q 
môs*+��,@-Èõ �pô·.N_�_��s021�3�4 5 õ��sô"02163�4 7 õ·� . Thus,

fgMz\bS	�mfgó�\u¿}�k
lMz\�~�v'�JVa× ëìv	í 0 Q�ó@�
In fact, operations ëìí and ~ � are Galois-connected. We also refer to Z6,NM�-'&2-g&<�"%�9�`.a�� as
a type 
qMp§(O,Qzª�¤	ª O ¿hO¢D�Ms§n\Zc@ñ°� . Note that ~�v´� is of type PartitionType; however, an
element of PartitionType does not require its sets to be mutually-disjoint, although the
union of the sets should still cover the entire state-space.

Further, we define a predecessor function a�M6�NO'
q� which receives a partition ~�v'� and
an operator bBcu\�ô·�à��D�õ and returns a PartitionType. A state M is associated with value
ó"5 in a�M6�NO°
�~�v´�m�N��� iff M has a successor state j where v has value ó<7 , and ë�M@�mj�ídbBc�ó<7kQ
ó 5 . The function is given in Figure 5. Note that the result of a�M6�NO is not necessarily a par-
tition: a state can be in more than one set. For the lattice (3-QBool, À ), its ordering T « M
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function e$f@?	g ( � ü�� , hKi )
�

foreach j�kml� )NnD��op�rq�s ý �+tvuIw 
 kmx*y w ÿJz�{ y zI|}� km~B�$�<>@A+�.�<?K���	� q y tB� 
 �ÿ�ÿ�� yD� � k�� ÿ j {;���G Ðÿ��qü����'ý j |�� �
return pred

�
function g$�I�	� ÿ�� ü�� y�hKi�y � ���%� �

foreach j�kml� nD� t��$� 
�� q :=
� ü�ÿJ�$�#�!�GÿJ��� u ÿJ� y ��� km~B�$�<>@A+�.�<?B�?� � � �

return result
�
function g$�	�/�B�$�	� ÿ hKi�y ��ü��%� �

foreach j�kml� nD� t��$� 
�� q := �
foreach  ¡k��/�B�$�	�<>@A+�.�(? �?� � �� nD� t��$� 
��rq¢s�ý �}£ qB¤�¥}¦ ��ü��rq�¤ – § �B¨ ¥N©«ª*¬�­/® � ü�� �B¨��°¯ � nD� t��$� 
���q

return result
�
function ±+²I�@B/��� ÿJ³ � ���$
��,&��Dn y � ü�� y � �#�J� �´ �¶µ = �,�#�

repeat
EXTerm ·�¸ { := g$�	�/�B�$�	� ÿ�� y�e$f@?	g ÿ ´ � ·;y  ¹���
if (quantifier is A)

AXTerm ·�¸ { := g$�	�/�B�$�	� ÿ� y�e$f@?	g ÿ ´ � ·�yDº ���
else

AXTerm ·�¸ { := � ü��
foreach j { yDj | yDj�»	yDj+¼vkml

toMove := � ü�� �B½ ��� ��� �K¾ ��� ¿ÁÀvÂ��KnDÃ ·�¸ { � �DÄ ��� ÅÆÀvÂ��KnDÃ ·�¸ { � �DÇ
dest := ÿ j {�È j+» È j+¼ ��É j |Ê �	�@? all the states in toMove to � ´ � ·�¸ { y ��ËBÌ�Í�Î

until
´ � ·�¸ { =

´ � ·
return

´ �¹Ï
�
procedure Ð	Ñ ?IÒ+Ó (i )

�
Casei�k ú : return [p] whereÔ j¢kml , � i � � := Õ ÿ i#yDj �i ý�ùrü : return [p] whereÔ j¢kml , � i � � s�ýÖ��ü���× �i ý�ü! G� : return g$�I�+e ÿ�� ü�� y  y � ���%�i ý�ü!�G� : return g$�I�+e ÿ�� ü�� y � y � ���%�i ý�þnû�ü : return g$�	�/�B�$�	� ÿ�� y�e$f@?	g ÿ�� ü�� y  ¹���i ý�ú�û�ü : return g$�	�/�B�$�	� ÿ� y�e$f@?	g ÿ�� ü�� y�º ���i ý�þ�� ü������ : return ±+²I�@B/��� ÿ ;�y � ü�� y �,�#�%�i ý�ú"��ü����#� : return ±+²I�@B/��� ÿ =�y � ü�� y �,�#�%�

�

Fig. 5. Algorithm for � chek.
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« F and the model in Figure 1(c), a�M��NO+
�~ #�$�%�%g&2%�)"������� returns 
mô@021�3 4 5 �p0(1�3�4 7 �m*È��,"-�õ �
ô@021�3�4 5 �p02163�4 7 õ �pô@021�3�4 5 �p02163�4 7 ��8�CÈ��*�4�8�9+�N.@/�/Èõ .

We further define functions O�� .Na'
q� and O6�"�'&2)�.$a'
l� , described in Figure 5. These
functions evaluate the expression using the appropriate table ( 0<% I�9�,"H�� �NØJÙ or �'&2)�.NZ 9�,"H���� ØJÙ ).
Given partitions ~�v'� and ~ w�� , O���.$Z returns a partition for vÚbBc w . For the lattice (3-
QBool, À ) and the model in Figure 1(c), ~ O���.$Z�
�~ 8 H��"I��¢�m�N�k�2~ �6�"���@!"���l�JÛ returns a set of
states in which 8 H��"I��k���6�����"! is T, namely, ô(8�C°��*�4�8�9�õ .

O6�"�'&2)�.$Z�
�bBcr�2~�v'�q� computes BigOP over a collection of states. Here, ~�v´� is required
to be of PartitionType but does not need to be a partition, that is, the union of sets of states
associated with each value of ~�v´� includes the entire state space, but these sets are not
necessarily pairwise disjoint. �'&2)�.$Z�9�,"H�� � Ø?ÙNW V includes sets of states such that the oper-
ation bBc performed on them yields ó . Thus, for each [ in �'&()�.NZ�9�,@H���� ØJÙNW V , we compute
the intersection of states for which v has a value in [ and subtract the union of states
in which v does not have a value in [ . ~ ���s��Ç�Õ��m�%Ü includes the union of all states com-
puted via the above process for all [ in �'&()�.NZ�9�,@H���� ØJÙNW V . For the model in Figure 1(c),
~ O6�"�'&2)�.$Z�
l�k�2~ *+��,"-"�á�ì�JÛ returns a set of states S Í for which 7 0 : ñ.Ý ~ *+� ,"-"��Þ	Qß1 , namely,
ô@021�3�4 5 �p02163�4 7 ��*�4�8�9�õ . Note that if ~�v'� represents a partition, O��"�g&2)�.NZ+
�bBcr�2~ v´�q� simply
returns a partition ~�w�� where ~�w�� V QÞ~�v'� V for ó�\u¿ .

6.3 Algorithm of à chek

The high-level algorithm, inspired by Bultan’s symbolic model checker for infinite-state
systems [6, 7] and an abstract model-checker of [8], is given in procedure CNá���â	ã´
l� in
Figure 5. The algorithm recursively goes through the structure of the property under the
analysis, associating each subproperty v with a partition ~�v´� . In fact, CNá���â	ã always re-
turns partitions on the state-space (see Theorem 5). For the example in Figure 1(c) and
the lattice ordering T « M « F,

CNá���â}ã'
q��#�$�%�%'&(%�)�� QÐ
�ô·."/�/�õ��sô"õ �pô@021�3�4 5 �s021�3�4 7 ��8�C��m*�4 8�9Èõ·�
CNá���â}ã'
�8�H��"I6�k���������@!���QÐ
�ô(8�CÈ��*�4�8�9�õ �pô·."/�/��p0(1�3�4 5 õ �pô@021�3�4 7 õ·�
CNá���â}ã'
��]y ��*�4 8�9@� QÐ
�ô·."/�/+��8�C�õ��sô"õ �pô@021�3 4 5 �s021�3�4 7 �m*�4 8�9Èõ·�

Function äpå�%�-'&·�°
l� determines the value of x�� and ��� using a fixpoint algorithm given
in Figure 5. It starts with assigning æÓ� [ the lowest (“most false”) value it can attain,
i.e., the value of w . At each iteration, the algorithm computes çdè�1��p��� §Jé�5 , equal to
xzyêæ�� § . If the function is called with the universal quantifier, then it also computesë è�1��p����§Jé�5 , equal to �{yêæ���§ . Otherwise,

ë è�1��p����§Jé�5 is not necessary, and thus we
let

ë è�1	�s����§Jé�5 be ~�v'� . �{yêæ���§ and xzyêæ��r§ are computed by invoking the function
O��@�'&2)�.NZg
l� and passing it the result of the appropriate a�M��$O call. Then, for each state M ,
the algorithm determines where this state should be by computing dest := ëìw�í 0 Á�
mëìv	í 0 Ã
~ ë è"1	�s���P§Jé�5�� 0 ÃZ~,çdè�1	�s����§Jé�5�� 0 � . If dest value is different from the one M had in æ��r§ ,
then it has to be moved to the appropriate place in æ��r§Jé�5 . The algorithm proceeds until
no further changes to æ�� § can be made.

For example, suppose we are computing x�~��	�������@!��a*+��,"-<� for our model in Fig-
ure 1(c) under the ordering T « M « F. æ�� [ is initialized to 
�ôp*64�8�9�õ��sô28�C�õ �pô·."/�/��p0(1�3�4 5 �
02163�4 7 õ·� . 021�3 4 7 has *�4 8�9 among its successors, so ~,çdè�1	�s��� 5 ��ìJí�î�ï ¾ is T. Thus,



14

~ *È��,"-"��ìJí�î�ï�ðrÁb
�~��	��� ���"!2��ìJí�î�ïDðrÃÔ~ çñè"1	�s���mò��óìJí�î�ïKð�Qß3uÁb
?1 Ãô1{��Q¡1
and so 0(1�3�4 7 should move to T. Using a similar process, we decide that dest for 02163�4 5 in
æ�� 5 is M, and that dest for 8�C and ."/�/ in æ�� 7 are T and M, respectively. The next itera-
tion does not change æÓ� 7 , and thus the algorithm terminates returning 
môs*�4�8�9+��86CÈ�s021�3�4 7 õ��
ô·."/�/+�p02163�4 5 õ �pô@õ<� .

Property � CTL formulation Heater Model AC Model Combined Model
Prop. 1. ú�õJþnû ~�ö$÷2; { F T F
Prop. 2. úÖ� ù :@?<A2B � �@?I�I�	ø � T – T
Prop. 3. ú�õ�ú�ùkù�ú	û �I���K�$� F F F
Prop. 4. ú�õaÿ :@?<A2B�ü =IÐ � – – F
Prop. 5. ú�õaÿ =	�.�	�@?°º ù :@?<A2B � – – M

Table 1. Results of verifying properties of the thermostat system.

The properties of the thermostat system that we identified in Section 2 can be trans-
lated into � CTL as described in Table 1. The table also lists the values of these properties
in each of the models given in Figure 1. We use “ æ ” to indicate that the result cannot be
obtained from this model. For example, the two individual models disagree on the ques-
tion of reachability of state 021�3 4 5 from every state in the model, whereas the combined
model concludes that it is F.

7 Correctness and Termination of L chek

In this section, we analyze running time of � chek and prove its correctness and termi-
nation.

7.1 Complexity

Theorem 4 Procedure CNá6��â	ãg
�c+� terminates on every � CTL formula c .

Computation of Until takes the longest time. Each state can change its position in
æ��r§ at most ý times, where ý is the height of the lattice 
�¿z�pÀà� . Thus, the maximum
number of iterations of the loop in äIå�%�-'&<� is O SkO'Xþý . Each iteration takes the time to
compute O��"�'&()�.NZ on a�M��$O : ÿ�
NO ¿hO¶Xhc�� ���@X�O SkO���O ¿�O 7 X�O S¨O 7 � , plus the time to compute
-������"I�� and O��	�<- sets: O ¿�O



X ÿ�
�O SkO�� . Therefore, the running time of äpå6%�-'&<� is

ÿ�
lc � ��� X O SkO 7 XåO SkO�X]ý+��Q ÿ�
lc � ��� X O SkO
�
�

and the running time of the entire model-checking algorithm on a property c is

ÿ�
qc � ��� X�O SkO
�
XJO c	O �

Note that in reality the running time is smaller, because �'&2)6.NZ�9�,"H6��� can be optimized
and because set operations are BDD-based.
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Procedure �$�I�I�<?<A+�$Ð	Ñ ?	Ò+Ó (i )
Casei�k ú : return Õ ÿ i�y
� �i ý�ùrü : return ( ��� ü )i ý�ü! G� : return ( ü!�G� )i ý�ü!�G� : return ( ü ¯ � )i ý�þnû�ü : return e$f@? ÿqü��i ý�ú�û�ü : return ÿ ����e$f@? ÿ ��� ü����
i ý�þ�� ü������ :

´ µ ý �´ ·�¸ { ý ´ · ¯ ÿ��!��ÿqü  Þþnû ´ · ���
return

´ Ï when
´ Ï ý ´ Ï ¸ {i ý�ú"��ü����#� :

´ µ ý �´ ·�¸ {�ý ´ ·�¯ ÿ��!��ÿqü  Þþnû ´ ·  �ú�û ´ · ���
return

´ Ï when
´ Ïzý ´ Ï ¸ {

Fig. 6. Boolean Model-Checking Algorithm(adapted from [6]).

7.2 Correctness

In this section we prove correctness of � chek by showing that it always returns exactly
one answer (well-foundness) and that this answer is correct, i.e., it preserves the proper-
ties of � CTL. We also show that multi-valued model-checking reduces to well-known
boolean model-checking [22] if 
�¿z�sÀ{� is the two-valued lattice representing classical
logic.

We start by determining that procedure CNá��/â	ãr
q� associates each state M with exactly
one logical value for each � CTL property c .

Theorem 5 The answer returned by procedure CNá���â	ã´
l� is always well-founded, i.e.


qt���f.c^\ R �mfgM]\ZS	��iÈó § \u¿}���(£ �(£<Mh\ ~�CNá��/â	ã'
�c+�ì� V ¨ 
�ç�¡<ÆN�����N¡<���k��Å��@Å��k���s���

qÂs��f.c^\ R �mfgM]\ZS	��iÈó § �Nó ¬ \u¿z���2£ �2£


lMz\J~�CNá6��â	ã+
�c°�l� V ¨ �ßMh\ ~�CNá���â}ã+
�c+�ì� V
� ��D�ó § Q�ó ¬ 
�ç�¡<ÆN�����N¡<���k�"Å�Õ�¯���ÅP�"Å��k���p���
Now we show that our algorithm preserves the expected properties of � CTL formu-

las given in Figure 3.

Theorem 6 � chek preserves the negation of “next” property, i.e.

fgMh\bS	��Mh\ ~�CNá���â}ã+
á�{yZv	�l� V × Mh\J~ CNá���â	ã+
qxzyZ��v	�l��� V

Theorem 7 � chek preserves fixpoint properties of ��� and x�� , i.e.


DQ2��fgMz\ZS	�pëìCNá��/â	ã'
��P~�v��}w��q��í 0 QÞë�CNá6��â	ãg
lw���í 0 Á�
�ë�C$á���â	ãg
lv���í 0 ÃÔëìCNá���â}ã'
��]y
��~�v��zw��q��í 0
ÃåëìCNá���â	ãg
qxhy
��~�v��zw��q��í 0 �


qc"��fgMz\ZS	�pëìCNá��/â	ã'
qx�~�v��}w��q��í 0 QÞë�CNá6��â	ãg
lw���í 0 Á�
�ë�C$á���â	ãg
lv���í 0 ÃÔëìCNá���â}ã'
qxzyZx�~�v��}w��q��í 0 �
Ñ

“until” follows easily from ��� and x�� fixpoints.
Our last correctness criterium is that the answers given by � chek on (2-Bool, À ), a

two-valued boolean lattice representing classical logic, are the same as given by a regu-
lar symbolic model-checker. We start by defining a “boolean symbolic model-checker”
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on Kripke structures, following [6] and changing some notation to make it closer to the
one used in this paper. In particular, labeling functions used in boolean model-checking
typically map a formula into a set of states where it is true, with the assumption that it is
false in all other states. Thus, v maps into ëìv	í�� in our notation. The algorithm is given
in Figure 6, with a.M�� defined as follows:

a.M��È
�æ���² ô·MPO(j¨\êæ��Ê
qM"��j��¨\^T�õ

That is, a�M��°
�æ�� computes all the states that can reach elements in æ in one step.

Theorem 8 � chek, called on (2-Bool, À ), returns the same answers as a boolean model-
checker. More precisely, fgMz\bS , f.cu\ R

,


KQ(��Mh\ ~�CNá��/â	ã+
�c+�m� � Î�Mh\
��������� ,"%�CNá��/â	ã+
�c+�

lc@��Mh\ ~�CNá��/â	ã+
�c+�m���^Î�M �\
��������� ,"%�CNá��/â	ã+
�c+�

8 Conclusion and Future Work

Multi-valued logics are a useful tool for describing models that contain incomplete in-
formation or inconsistency. In this paper we presented an extension of classical CTL
model-checking to reasoning about arbitrary quasi-boolean logics. We also described
an implementation of a symbolic multi-valued model-checker � chek and proved its ter-
mination and correctness.

We plan to extend the work presented here in a number of directions to ensure that
� chek can effectively reason about non-trivial systems. We will start by addressing some
of the limitations of our MV-Kripke structures. In particular, so far we have assumed that
our variables are of the same type, with elements described by values of the lattice asso-
ciated with that machine. We need to generalize this approach to variables of different
types.

Further, in this work we have only addressed single-processor models. We believe
that synchronous systems can be easily handled by our framework, and it is essential
to extend our model-checking engine to reasoning about synchronous as well as asyn-
chronous systems.

We are also in the process of defining and studying a number of optimizations for
storage and retrieval of logic tables. These optimizations and the use of the � DD li-
brary do not change the worst-case running-time of � chek, computed in Section 7. How-
ever, they significantly affect average-case running time. Once the implementation of the
model-checker is complete, we intend to conduct a series of case studies to ensure that
it scales up to reasoning about non-trivial systems.

Finally, we are interested in studying the properties of � chek in the overall frame-
work of � bel. This framework involves reasoning about multiple inconsistent descrip-
tions of a system. We are interested in characterizing the relationship between the types
of merge of individual descriptions and the interpretation of answers given by � chek on
the merged model.
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A Appendix

In this appendix we give proofs for the theorems appearing in the main body of the paper.
The proofs follow the calculational style of [11]. Section A.1 presents proofs of theo-
rems of lattice theory; Section A.2 gives proofs of correctness of the definition of � CTL
operators; Section A.3 lists properties of logic tables computed for � chek; finally, Sec-
tion A.4 uses the properties given in Section A.3 to prove correctness and termination
of the implementation of � chek.

A.1 Lattice Theory

Lattices have a number of properties that hold for them. We list several of them here,
without proof.

t�À�ÂY× fgÉ¢��ÉkÀ�tPÎdÉkÀ�ÂÚ
�ÀØ��Å�������µ�Ç�Æs���±�"Å+�
t�À�ÂY× fgÉ¢��t�ÀWÉ��dÂkÀ�ÉÚ
�ÀØ��Å�������µ�Ç�Æs���±�"Å+�

t{ÃuÂkÀ�Ân¡<Å�µ�t]Ã
ÂàÀ�t 
qÃ��sÕ�������Å+¡¢�����@Å@�
t�ÀEÂ���t�À�ÉaÎ t�À�Â	ÃuÉ 
qÃ���Å�������µ�ÇÈÆs�����@Å°�

t�À�t{ÁuÂn¡<Å�µ�ÂàÀWt]ÁuÂ 
qÁ���Å�������µ�ÇÈÆs�����@Å°�
t�ÀaÉb�ÄÂkÀ�ÉaÎ t]Á
ÂàÀ�É 
qÁ��sÕ�������Å+¡¢�����@Å@�

t�À�ÂY× t]Á
ÂnQ�Â 
�Æs�"�����p�� °�@Å�µ��pÅ�Æs���
t�À�ÂY× t]Ã
ÂnQ�t 
�Æs�"�����p�� °�@Å�µ��pÅ�Æs���

The following are the properties of the product of two lattices 
á¿{52�sÀ{� and 
á¿¨7¢�sÀ{� :
Ñ � ½ ò	� ¾ QÐ
 Ñ � ½ � Ñ � ¾ � 
 Ñ �<­� +¡<�������
³ � ½ ò	� ¾ QÐ
�³ � ½ �p³ � ¾ C 
�³a�<­� +¡<�������
�k
lt+�NÂs�	QÐ
q��t°�N��Âs� 
q�Ô�<­� +¡¢�������


lt+�NÂs�°Ã�
qt Í ��Â Í ��QÐ
qt{Ãut Í �NÂ	ÃuÂ Í �d
qÃÔ�<­� +¡¢�������

lt+�NÂs�°Á�
qt Í ��Â Í ��QÐ
qt{Áut Í �NÂ	ÁuÂ Í �d
qÁÔ�<­� +¡¢�������
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Theorem 1. A product of two quasi-boolean lattices is quasi-boolean, that is,


DQ2� ���k
lt°��Âs�	QÐ
qt°�NÂs�

qc"���k
�
qt 5 �NÂ 5 �'Ã�
qt 7 ��Â 7 ����QÐ
q��t 5 �N��Â 5 �'Áb
l��t 7 �N��Â 7 �

��"���k
�
qt 5 �NÂ 5 �'Á�
qt 7 ��Â 7 ����QÐ
q��t 5 �N��Â 5 �'Ãb
l��t 7 �N��Â 7 �

Proof:

(1) ùrùGÿJ� y ��� (2) ùGÿ�ÿJ��{ y �+{��/È�ÿJ�I| y �D|}���� ( ù of pairs) � ( È of pairs)ù	ÿqù¶� y ù��B� ùGÿ�ÿJ� { È9� | � y ÿJ� { È � | ���� ( ù of pairs), ( ù involution) � ( ù of pairs)ÿJ� y ��� ÿqùGÿJ��{�È9�I|	� y ùGÿJ��{�È9�K|}���� (de Morgan)ÿqù¶��{�ÉPù¶�I| y ù��+{�É�ù��D|��� ( É of pairs)ÿqù¶��{ y ù¶��{D�#É�ÿqù¶�I| y ù¶�D|��
The proof for (3) is similar.

Theorem 2. Let 
á¿}�pÀ{� be a horizontally-symmetric lattice. Then the following hold for
any two elements t , Â¨\
¿ :

ä�
qt]ÃuÂs��Q�ä�
qt��'Áuä�
qÂp�
ä�
qt]ÁuÂs��Q�ä�
qt��'Ãuä�
qÂp�

Proof:
We will prove the first of these equations here. The second one is a dual. We show

ÿ�������ÿJ��È ��� ¾ ��ÿJ�$�#É ��ÿJ����ÿ����
ÿ�!	����ÿJ��È ����"#��ÿJ�$�#É ��ÿJ����ÿ�!}�

(1) ��ÿJ�vÈ ��� ¾ ��ÿJ�$�/É ��ÿJ���$ (
¾

introduction)Ô&% y ÿ���ÿJ��È ��� ¾ ��ÿ % ��� $ ÿ���ÿJ�$�/É���ÿJ�B� ¾ ��ÿ % ���$ ( � is order-embedding)Ô&% y ÿ % ¾ ��È ��� $ ÿ���ÿJ�$�#É'��ÿJ�B� ¾ ��ÿ % ���$ ( È elimination)Ô&% y ÿ % ¾ �- % ¾ ��� $ ÿ���ÿJ�$�/É ��ÿJ��� ¾ ��ÿ % ���$ ( � is order-embedding)Ô&% y ÿ���ÿJ�$� ¾ ��ÿ % �9 (��ÿJ��� ¾ ��ÿ % ��� $ ÿ���ÿJ�$�#É ��ÿJ��� ¾ ��ÿ % ���$ ( É introduction, since ��ÿJ�$� ¾ ��ÿJ�$�/É'��ÿJ�B��� , (transitivity)�
(2) ��ÿJ�$�/É ��ÿJ��� ¾ ��ÿJ��È ���$ ( É elimination)��ÿJ�$� ¾ ��ÿJ�vÈ9�B�� (��ÿJ��� ¾ ��ÿJ��È ���$ ( � is order-embedding)��È9� ¾ �� �vÈG� ¾ �$ ( È elimination)�
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A.2 à CTL

Theorem 3. Definitions of ë�xzyZv�í 0 and ël�{yZv	í 0 preserve the negation of “next” prop-
erty, i.e.

fgMh\bS	���nëq�]y^v	í 0 QÞë�xzyZ��v	í 0
Proof:
Let � k)� be an arbitrary state. Then,

ùd��únû�ü��+*
= (definition of ú�û )ù	ÿ E � ¥}Í-,
.�.;© * ® ÿ���� yD� � º �qü�� � ���
= (de Morgan), because ù is a quasi-boolean operator7 � ¥	Í-,/.0.�© * ® ù	ÿ���� y;� � º �qü�� � �
= (definition of º ), (de Morgan)7 � ¥	Í-,/.0.�© * ® ÿqùrùd��� yó� �/ Pùñ�qü�� � �
= ( ù involution), because ù is a quasi-boolean operator7 � ¥	Í-,/.0.�© * ® ÿ���� yD� �/ �ùd�qü�� � �
= (definition of �qùrü��+* )7 � ¥	Í-,/.0.�© * ® ÿ���� yD� �/ ��qùrü�� � �
= (definition of þnû )�qþnû�ùrü��+*

A.3 Table Library

Here we give properties of inverse and BigOP tables defined in Section 6.1.

Lemma 1. The following are properties of inverse tables, with bBcu\�ô·�à���k�ND�õ :
fgó�\
¿z��
lt°��Âs��\�0<%�I�96,"H����ISGW V × 
qt°����Âs��\b0<%�I�96,"H����IR�W � V 
qD �¢­k0·%�I�9�,"H6���<�
fgó�\
¿z��
lt°��Âs��\�0<%�I�96,"H����IR�W V ×é
l��t°����Âp��\�0<%�I 9�,"H���� T W � V 
�µÈ�{Ûu�@��Ü ¡<Å��<­k0<%�I�96,"H����@�
fgó�\
¿z�s0<%�I�9�,@H����	ØJÙNW Vu�Q21 
�ÅÈ�@Å�æ��s�� �����Å��s���	�¢­¨0<%�I�9�,@H����@�
fgó 5 ��ó 7 \u¿}�Ni�ó � \Z¿}���(£ �2£ 
ló 5 �Nó 7 �n\�0<%�I 9�,"H����IØJÙNW V Ä 
�Æp�@�� ÈÕ±�p���sÅ��p�����¢­¨0<%�I�9�,@H����@�
fgó 5 ��ó 7 �Nó � ��ó 
 \
¿z�k
�
ló 5 �Nó 7 �n\�0<%�I 9�,"H����$ØJÙNW V Ä �


qó 5 �Nó 7 �n\�0·%�I�9�,"H6���IØ?Ù$W V Ç �	Dð
qó � Q�ó 
 � 
�ÇÈÅ��-3 ÇÈ�sÅ��s�����¢­¨0<%�I�9�,@H����<�
Proof:
From the definition of inverse tables, negation properties, the definition of º and lattice
properties.

Lemma 2. The following are the properties of BigOP tables, with bBcu\�ô·�k�N�nõ :
fgó�\u¿}� 
�1�\
�'&2)�.NZ 9�,"H���� T W V ×�¿a\u�'&2)6.NZ�9�,"H6��� R�W � V ���


�f¹[Þ\ô\�
�¿k��æ41È�Á[Þ\
�'&2)�.NZ 9�,"H���� T W V ×
ô<��ó�O<ó�\'[�õ�\u�'&2)6.NZ�9�,"H6��� R�W � V � (negation of �'&2)�.NZ 9�,"H���� )

fgó�\u¿}� 
�1�\
�'&2)�.NZ 9�,"H���� R/W V ×Ú¿a\u�g&2)�.NZ�96,"H���� T W � V ���

�f¹[Þ\ô\�
�¿k��æ41È�Á[Þ\
�'&2)�.NZ 9�,"H���� R/W V ×

ô<��ó�O<ó�\'[�õ�\u�'&2)6.NZ�9�,"H6��� T W � V � (negation of �'&2)�.NZ 9�,"H���� )
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fgó�\u¿}� �g&2)�.NZ�96,"H���� ØJÙNW V �Q51 (non-emptiness of �'&2)6.NZ�9�,"H6��� )
f¹[Þ\ô\�
á¿¨�p�<i�ó�\u¿}���(£ �(£N[Þ\u�'&()�.NZ�9�,@H���� ØJÙNW V (completeness of �'&2)�.NZ 9�,"H���� )
f¹[Þ\ô\�
á¿¨�p��f'ó"5(��ó<7]\u¿z�k
�[Þ\u�g&2)�.NZ�96,"H���� ØJÙNW V ½ �[Þ\
�'&2)�.$Z�9�,"H�� � Ø?ÙNW V ¾ ��Dð
qó 5 Q�ó 7 � (uniqueness of �'&()�.NZ�9�,@H���� )
Proof:
By construction of BigOP tables and by the idempotency property of lattices.

Lemma 3. The following are the properties of predecessor relations:

fgvn�mfgMz\ZS	��iÈó�\
¿z���(£ �(£<Mz\J~ a�M��NO�
�~�v´�m�BbBc+�ì�JV�
�Æs�"�� �Õ��s���sÅ��s�����¢­ña�M��NO �
~ a�M6�NO°
�~�v´�m�N���ì� V QÐ~ a�M��NO+
�~ ��v'���NDa�l��� V 
����� �Õ���Æ(¡¢�����@Åz�<­°a�M��NO �

Proof:
(completeness of e$f@?	g )
Pick ü , pick a state � , pick �Ák t��76
6 ÿ���� . Then, let j { ý2��� yD� � and j | ý �qü�� � . Further, letj ý j { hDi!j | . Then, by the completeness of ~B�$�<>@A+�.�<? property, � k � e$f@?	g ÿ���ü�� y�hKi �?� � .
(implication of pred)
Let � k)� be an arbitrary state. Then,

� k � e$f@?	g ÿ�� ü�� y  #� � �� (definition of e$f@?	g )w �Æk��#y w ÿ j { yDj |�� kô~B�$�<>@A+�.�<?98N� �py tB� 
 � ÿ�� yD� � k � ÿ j {D�# ��qü�� � ý j |� ( º of ~B�$�<>@A+�.�<? )w �Æk��#y w ÿ j { y ù j | � km~B�$�<>@A+�.�<?;: � × � y tB� 
 � ÿ�� yD� � k � ÿ j { �# ��qü�� � ý j |� (definition of e$f@?	g )� k � e$f@?	g ÿ�� ùrü�� yóº ��× � �

A.4 Correctness and Termination

Theorem 4. Procedure CNá6��â	ãg
�c+� terminates on every � CTL formula c .

Proof:
Proof is on the structure of property i . Obviously, for all operators except “until”, Ð	Ñ ?IÒ+Ó ÿ i �
terminates. We give proof for computing ú�� here. To prove that the execution of ±+²I�@B/���
terminates, it suffices to show that

Ô � k<��y Ô�= y � ´ � · � * ¾ � ´ � ·�¸ {B� * . Then,
´ � · can change

value at most > times, where > is the height of lattice ÿ lñy ¾ � .
The proof goes by induction on

=
. Pick � k�� . Then,

Base case: � ´ � µ � *
ý (definition of ±+²I�@B/��� )���Æ�?*¾

(monotonicity of È , É )���Æ� * É�ÿ��qü�� * È��J¿ÁÀvÂ��KnDÃ {;� * È��JÅ¹ÀÁÂ��KnDÃG{;� * �
ý (definition of ±+²I�@B/��� )� ´ � { �?*

IH: � ´ � · � * ¾ � ´ � ·�¸ { � *
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Prove: � ´ � ·�¸ { � * ¾ � ´ � ·�¸ | � *
Proof: � ´ � ·�¸ {��?*ý (definition of ±+²I�@B/��� )���Æ� * É�ÿ��qü�� * È��J¿ÁÀvÂ��KnDÃ ·�¸ {�� * È��JÅ¹ÀÁÂ��KnDÃ ·�¸ {�� * �ý (definition of ±+²I�@B/��� )���Æ� * É�ÿ��qü�� * È � ¥A@-B�CDC�© * ® ÿqùñ��� yó� ��É�� ´ � · � * ��È'E � ¥A@FB�CGC;© * ® ÿ���� yD� �/È�� ´ � · � * ���¾

(IH), (monotonicity)���Æ� * É�ÿ��qü�� * È � ¥A@-B�CDC�© * ® ÿqùñ��� yó� ��É�� ´ � ·�¸ {�� * ��È E � ¥H@-B�CGC;© * ® ÿ���� y�� �#È�� ´ � ·�¸ {�� * ���
ý (definition of ±+²I�@B/��� )���Æ� * É�ÿ��qü�� * È��J¿ÁÀvÂ��KnDÃ ·�¸ |}� * È��JÅ¹ÀÁÂ��KnDÃ ·�¸ |}� * �ý (definition of ±+²I�@B/��� )� ´ � ·�¸ | �?*

Theorem 5. The answer returned by function CNá��/â	ã is always well-founded, i.e.


qt���f.c^\ R �mfgM]\ZS	��iÈó § \u¿}���(£ �(£<Mh\ ~�CNá��/â	ã'
�c+�ì� V ¨ 
�ç�¡<ÆN�����N¡<���k��Å��@Å��k���s���

qÂs��f.c^\ R �mfgM]\ZS	��iÈó § �Nó ¬ \u¿z���2£ �2£


lMz\J~�CNá6��â	ã+
�c°�l� V ¨ �ßMh\ ~�CNá���â}ã+
�c+�ì� V
� ��D�ó § Q�ó ¬ 
�ç�¡<ÆN�����N¡<���k�"Å�Õ�¯���ÅP�"Å��k���p���
Proof:
The proof is by induction on the length of i .

Base case:i!k ú . Ð	Ñ ?IÒ+Ó ÿ i � uses Õ which is guaranteed to return a partition by definition.
IH: Assume Ð	Ñ ?IÒ+Ó ÿ i � returns a partition when

u i uHIKJ .
Prove: Ð	Ñ ?IÒ+Ó ÿ i � returns a partition when

u i u ý JML � .
Proof:i ý�ù�ü Then, ü�ÿ�� is a partition by IH, and ù j is onto by ù involution.i ý�üG G� Pick state � k�� . Since � ü�� and � ��� are partitions,

w j { y;j | kml s.t.� k � ü�� �B½ and � k �,�#� �K¾ .
(a) By completeness of ~B�$�<>@A+�.�<? , w j » y tB� 
 � � km~B�$�<>@A+�.�<? 8N� �KÄ y

so � k � i � �KÄ .
(b) By uniqueness of ~B�$�<>@A+�.�<? .i ý�üG�G� The proof is similar to the one above.i ý�þnû�ü . Pick a state � k<� .
Create a set   ý � j u � k � )NnD��oÈÿ�� ü�� y  Æ��� � �
(a) By completeness of �/�B�$�	�<>@A+�.�<? , w j	·�k�ldy tB� 
 � � k � oN
ONÆ���HPRQnÿ�� yJe$f@?	g ÿ�� ü�� y  Æ���?� �B¨ .
(b) By uniqueness of �/�B�$�	�<>@A+�.�2? , the above-found j · is unique.i ý�únû�ü . The proof is similar to the one above.i ý�þ���ü����#� Partitionness is maintained as an invariant of ±+²I�@B/��� :±+²I�@B/��� starts of with a partition, and Ê �	�@? preserves partition.i ý�ú�� ü������ Same as above.

Theorem 6. � chek preserves the negation of “next” property, i.e.

fgMh\bS	��Mh\ ~�CNá���â}ã+
á�{yZv	�l� V × Mh\J~ CNá���â	ã+
qxzyZ��v	�l��� V
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Proof:
We prove ÿ����Æ� k � Ð	Ñ ?IÒ+Ó ÿ�únû�ü��?� � S � k � Ð	Ñ ?IÒ+Ó ÿqþnû�ùrü��?��× �ÿ�!}�Æ� k � Ð	Ñ ?IÒ+Ó ÿqþnû�ù�ü��?��× �TS � k � Ð	Ñ ?IÒ+Ó ÿ�ú�û�ü��?� �

(1) � k � Ð	Ñ ?IÒ+Ó ÿ�únû�ü��?� �S (definition of Ð	Ñ ?IÒ+Ó )� k � g$�	�/�B�$�	� ÿ� y�e$f@?	g ÿ�� ü�� yDº ���?� �S (definition of g$�	�/�B�$�	� )w   k � �/�B�$�	�<>@A+�$�<? 8 � �py tB� 
 � ÿ�� k £ ��¨ ¥N­ � e$f@?	g ÿ���ü�� yóº ��� ��¨ �Æ ÿ��MUk § ��¨ ¥N©�ª�¬#­/® � e$f@?	g ÿ�� ü�� yóº �ó� �B¨ �S (negation of �/�B�$�	�<>@A+�.�<? )w   { k � �/�B�$�	�<>@A+�$�<?
V ��× �	y tB� 
 � ÿ�� k £ × ��¨ ¥$­ ½ � e$f@?	g ÿ���ü�� yóº ��� ��¨ �Æ ÿ��WUk�§ × ��¨ ¥$©�ª�¬#­ ½ ® � e$f@?	g ÿ�� ü�� yóº �ó� �B¨ �S (implication of e$f@?	g )w   { k � �/�B�$�	�<>@A+�$�<?
V ��× �	y tB� 
 � ÿ�� k £ × ��¨ ¥$­ ½ � e$f@?	g ÿ���ùrü�� y  ¹�%��× �B¨ �� ÿ��WUk�§ × ��¨ ¥$©�ª�¬#­ ½ ® � e$f@?	g ÿ�� ù�ü�� y  Æ�?��× �B¨ �S (definition of g$�	�/�B�$�	� )� k � g$�	�/�B�$�	� ÿ�� y�e$f@?	g ÿ�� ùrü�� y  Æ���?� × ��¨S (definition of Ð	Ñ ?IÒ+Ó )� k � Ð	Ñ ?IÒ+Ó ÿqþnû]� ùrü��J�?��× �
Proof of (2) is similar, and is based on implication of e$f@?	g and negation of �/�B�$�	�<>@A+�.�2? .
Theorem 7. � chek preserves fixpoint properties of ��� and x�� , i.e.


DQ2��fgMz\ZS	�pëìCNá��/â	ã'
��P~�v��}w��q��í 0 QÞë�CNá6��â	ãg
lw���í 0 Á�
�ë�C$á���â	ãg
lv���í 0 ÃÔëìCNá���â}ã'
��]y
��~�v��zw��q��í 0
ÃåëìCNá���â	ãg
qxhy
��~�v��zw��q��í 0 �


qc"��fgMz\ZS	�pëìCNá��/â	ã'
qx�~�v��}w��q��í 0 QÞë�CNá6��â	ãg
lw���í 0 Á�
�ë�C$á���â	ãg
lv���í 0 ÃÔëìCNá���â}ã'
qxzyZx�~�v��}w��q��í 0 �
Proof:
Pick a state � .

(1) � k � Ð	Ñ ?IÒ+Ó ÿ�ú�� ü������%�?� �� (definition of Ð	Ñ ?IÒ+Ó )� k � ±+²I�@B/��� ÿ�ú y � ü�� y �,�#�%�?� �� (definition of ±+²I�@B/��� )wXJ�Y[Z
, s.t.,

´ � Ï ¸ {�ý ´ � Ï � k � ´ �ÆÏ ¸ { � � � ÿ j ý � Ð	Ñ ?IÒ+Ó ÿ��¹����*�É�ÿ�� Ð	Ñ ?IÒ+Ó ÿqü����?*�È��J¿ÁÀvÂ��KnDÃ Ï ¸ { �?*�È��JÅ¹ÀÁÂ��KnDÃ9Ï ¸ { �?*D���� (definition of ¿ÁÀvÂ��KnDÃ ), (definition of ÅÆÀvÂ��KnDÃ ), (definition of ú�û in Ð	Ñ ?IÒ+Ó )wXJ�Y[Z
, s.t.,

´ � Ï ¸ {�ý ´ � Ï � k � ´ �ÆÏ ¸ { � � � ÿ j ý � Ð	Ñ ?IÒ+Ó ÿ��¹����*�É�ÿ�� Ð	Ñ ?IÒ+Ó ÿqü����?*�È�� Ð	Ñ ?IÒ+Ó ÿ�únû ´ �¹ÏN���?*Èñ� Ð	Ñ ?IÒ+Ó ÿqþnû ´ �ÆÏ���� * ���� (combining the two conjuncts)� k � ´ � Ï �F\ � ÿ j ý � Ð	Ñ ?IÒ+Ó ÿ��¹��� * É�ÿ�� Ð	Ñ ?IÒ+Ó ÿqü���� * È�� Ð	Ñ ?IÒ+Ó ÿ�únû ´ � Ï ��� * È�� Ð	Ñ ?IÒ+Ó ÿqþnû ´ � Ï ��� * ���� ( ú�� ü������Èý ´ � Ï )� Ð	Ñ ?IÒ+Ó ÿ�ú"��ü����#�%���?*rý � Ð	Ñ ?IÒ+Ó ÿ��Æ���
*�Éÿ�� Ð	Ñ ?IÒ+Ó ÿqü���� * È�� Ð	Ñ ?IÒ+Ó ÿ�únû�ú"��ü����#�J��� * È�� Ð	Ñ ?IÒ+Ó ÿqþnû�þ�� ü������%��� * �
Proof of (2) is similar.
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In our last theorem we want to prove that the result of calling ] chek with (2-Bool,^
), a lattice representing classical logic, is the same as the result of the boolean CTL

model-checker.
We start by defining inverse and BigOP tables for a boolean lattice:

_H`7a&bdcXedf7gXh	ikjmlon7p+q'r9qMs
t uwvyx�zX{&bdcXe�f&g h	ikj lon�n�q|t7r
}&t_H`7a&bdcXedf7g h	ik~ lon7p+q'r9�Ms9ryp��'r;�Ws9ryp���r
q�s�t�uwvyx�zX{&bdcXe�f&g h	ik~ lon�n��|t7r;n��'r
qMtXt_H`7a&bdcXedf7gX� ikj lon7p+q'r9�Ms9ryp�q'r;qWs9ryp���r
q�s�t�uwvyx�zX{&bdcXe�f&g � ikj lon�n�q|t7r;n�q'r
�MtXt_H`7a&bdcXedf7gX� ik~ lon7p+�'r9�Ms
t uwvyx�zX{&bdcXe�f&g � ik~ lon�n��|t7r
}&t
Lemma 4. The following relations hold for each �M�[� when multi-valued model-checking
is called on (2-Bool,

^
):

� ���m� r �M�K� �&� gX��p �k��� r
��s � j�� �����&� gdp � s p  d�?�@ ��9���������W� �&� gX��p � ��� r
��s � j�s� ���m� r �M�K� �&� gX��p �k��� r
��s � j[� ���m ¡�7� g	p  �� s p  d�?�@ ��9���������W� �&� gX��p � ��� r
�¢s � j£s� ���m� r �M�K� �&� gX��p �k��� r
��s � ~�� ���m ¡�7� g	p � s p  d�?�@ ��9���������W� �&� gX��p � ��� r
��s � ~�s� ���m� r �M�K� �&� gX��p �k��� r
��s � ~[� �����&� gdp  �� s p  d�?�@ ��9���������W� �&� gX��p � ��� r
�¢s � ~£s
Proof:
We prove properties of ¤ ¥�¦�§y¨�©�¤ ª	«�¬�­¯®-«�° and ¤ ¥�¦�§y¨H©�¤kª	«�¬²±³®D«²° . The others follow from (im-
plication of ¥�¦�§y¨ ). For an arbitrary state ´�µ�¶ ,

property of ¤ ¥�¦�§y¨X©�¤ ª	«0¬²­¯®D«²° :´·µ�¤ ¥�¦�§y¨H©�¤ ª	«0¬²­¯®D«²°¸ (definition of ¥�¦�§y¨ )¹Xº µ<¶�¬ ¹ ©�»H¼9¬�»;½9®¯µ)¾
¿�ÀHÁ�Â;Ã7ÄH§;Å�Æ ° ¬²Ç
È É
È�©�´y¬ º ®¯µ<ÊË©�»H¼
®d­�Ì�ªwÍ�ÎwÏK»;½¸ (value of ¾
¿�ÀHÁ�Â;Ã7ÄH§ ÅXÆ ° )¹Xº µ<¶�¬¯Ç
È É
È�©�´A¬ º ®¯µ)Ê[­�Ì�ªwÍ Î ÏÑÐ¸ (definition of ¥�¦�§ )´·µ'¥�¦�§A©�ªw®
property of ¤ ¥�¦�§y¨X©�¤ ª	«0¬²±[®D«�° :´·µ�¤ ¥�¦�§y¨H©�¤ ª	«0¬²±[®D«�°¸ (definition of ¥�¦�§y¨ )¹Xº µ<¶�¬ ¹ ©�»H¼9¬�»;½9®¯µ)¾
¿�ÀHÁ�Â;Ã7ÄH§;Ò�Æ ° ¬�Ç
È É
ÈX©�´y¬ º ®¡µ<ÊË©�»H¼�®�­�Ì�ªwÍ Î Ï#»;½¸ (value of ¾
¿�ÀHÁ�Â;Ã7ÄH§9Ó Æ ° )¹Xº µ<¶�¬�Ô¡©�©�©�´y¬ º ®�Õµ�Ê�©�Ð�®�®d­�©�Ì�Ô¯ªwÍ�Î�ÏÑÐ·®�®¸ (definition of ¥�¦�§ )´ÖÕµ'¥�¦�§A©�Ô£ªw®

Theorem 8. ] chek, called on (2-Bool,
^

), returns the same answers as a boolean model-
checker. More precisely,

� �M��� ,
�7× �[Ø ,

p?ÙOs ���Ú�kÛXÜ gdÝyÞ�p × s � j � ��� udß&ß&f&g7cX` ÛXÜ gdÝyÞ�p × sp0à�s ���Ú�kÛXÜ gdÝyÞ�p × s � ~ � ��á� udß&ß&f&g7cX` ÛXÜ gdÝyÞ�p × s
Proof:
The proof is by induction on the structure of property â .
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Base Case:â�µ'ã : äyå7§Hæ;çX©kâ�® and è�éHéHÄH§HÂ;¿�äyå�§Hæ�çH©kâ�® give the same answers by definition.
IH: Assume (1) and (2) hold for properties of length ê�ë .
Prove: (1) and (2) hold for properties of length ëMìîí .
Proof: For brevity, we omit most of the proof, showing only the proofs for ª�­ ï , ðRñ and ã�ò .

â'ÏKÔ¯ª : (1): ´�µó¤ äyå7§Hæ;ç�©kâd®D«²°¸ (definition of äyå7§Hæ;ç )´�µó¤ ª	«²ô¸ (definition of äyå7§Hæ;ç )´�µó¤ äyå7§Hæ;ç�©�ªw®D« ô¸ (IH)´�Õµ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©�ªw®¸ (definition of è�éHéHÄH§HÂ;¿�äyå7§yæ;ç )´�µ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©kâd®
Proof for (2) is similarâ'ÏKª ­ ï : (1): ´�µó¤ äyå7§Hæ;ç�©kâd®D« °¸ (definition of ¨�éHõ;¥ )´�µóÌ�ªwÍ�ö[­(´�µóÌ�ï£Í�ö[­÷©Gø&¬�ù
®�µú¾
¿�ÀHÁ�Â;Ã7ÄH§
ÅXÆ °¸ (value of ¾
¿�ÀHÁ�Â;Ã7ÄH§;Å�Æ ° )´�µóÌ�ªwÍ ° ­(´�µóÌ�ï£Í °¸ (changing notation)´�µó©�ª'û ï£®¸ (definition of è�éHéHÄH§HÂ;¿�äyå7§yæ;ç )´�µ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©kâd®
Proof for (2) is similar. Because of the value of ¾
¿�ÀHÁ�Â;Ã7ÄH§ Å�Ækô ,´RµúÌ�ªwÍ�ö[­(´·µ)Ì�ï£Í?ö[­÷©Gø&¬�ù/®¡µ)¾
¿�ÀHÁ�Â;Ã7ÄH§;Å�Ækô implies
that ´ÖÕµ)Ì�ªwÍ °�ü ´�ÕµóÌ�ï£Í ° .â'ÏKª ü ï : Proofs are similar to the ones above and are based on values of¾
¿�ÀHÁ�Â;Ã7ÄH§;Ó Æ ° and ¾
¿�ÀHÁ�Â;Ã7ÄH§9Ó Æ ô .â'ÏKðRñ)ª : (1): ´�µó¤ äyå7§Hæ;ç�©kâd®D« °¸ (definition of äyå7§Hæ;ç )´�µó¤ ¨�éyèdý
þ�õyÿy© ü ¬0¥�¦�§y¨H©�¤kª	«�¬�­£®�®D«�°¸ (definition of ¨�éyèdý
þ�õyÿ ), (value of èdý
þ�õyÿHÁ�Â;Ã7ÄH§ Ó Æ ° )¤ ���
Ç�� � É+«²°�Ï��	��©�¤ 
����
�	©�ª¯¬+­¯®D«²°��[¤ 
����
��©�ª¯¬�­¯®-« ô ®

��©�¤ 
����
�d©�ª¯¬�­£®F«²°�û�¤ 
����
�d©�ª¯¬�­£®D« ô ®¸ (properties of ¤ ¥�¦�§y¨�©�¤ ª	«�¬�±[®0« ° and ¤ ¥�¦�§y¨X©�¤ ª	«0¬²±[®D«�ô )¤ ���
Ç�� � É+«²°�Ï ©-¥�¦�§H©�ªw®���©�¶���¥�¦�§�©�ªw®�®�®���©-¥�¦�§�©�ªw®�û�©�¶���¥�¦�§�©�ªw®�®�®
= (set theory)´�µ|¥�¦�§H©�ªw®¸ (definition of è�éHéHÄH§HÂ;¿�äyå7§yæ;ç )´�µ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©kâd®
(2): ´�µó¤ äyå7§Hæ;ç�©kâd®D« ô¸ (definition of äyå7§Hæ;ç ), (definition of ¨�éyèdý
þ�õyÿ ), (value of èdý
þ�õyÿHÁ�Â;Ã�ÄH§ Ó Ækô )¤ ���
Ç�� � É+«²ô�Ï��	��©�¤ 
����
�	©�ª¯¬+­¯®D«²ô���¤ 
����
�d©�ª¯¬�­¯®D« ° ®¸ (properties of ¤ ¥�¦�§y¨�©�¤ ª	«�¬�±[®0«�° and ¤ ¥�¦�§y¨X©�¤ ª	«0¬²±[®D« ô ), (logic)´�Õµ|¥�¦�§H©�ªw®¸ (definition of è�éHéHÄH§HÂ;¿�äyå7§yæ;ç )´�µ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©kâd®â'ÏîãRñ)ª : The proof of (1) and (2) is similar to the one above and is based
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on properties of ¤ ¥�¦�§y¨H©�¤ ª	«0¬²­£®D« ° and ¤ ¥�¦�§y¨H©�¤ ª	«0¬²­¯®D«²ô , values ofèdý
þ�õyÿHÁ�Â;Ã7Äy§ Å�Æ ° and èdý
þ�õyÿHÁ�Â;Ã7ÄH§ Å�Ækô .â'ÏîãÖ¤ ªwò�ï « Since äyå7§Hæ;ç�©kâd® expands into computing ��ò�� in ���H¿��dý9Ä;©GãW¬
¤ ª	«0¬
¤ ï�«G® ,
the proof for (1) goes by induction on ë — the length of the path
from ´ to a state where ï holds.

Base case: ë'Ï Z .
��ò ¼ Ï���ò��[­(´Rµó¤ ���
«�°¸ ´Rµú¤ ï « °
(definition of è�éHéHÄH§HÂ;¿�äyå�§Hæ;ç )¸ ´Rµ�� ¼
(definition of è�éHéHÄH§HÂ;¿�äyå�§Hæ;ç )´Rµ�è�éHéHÄH§HÂ;¿�äyå�§Hæ;çy©kâ�®

IH: Assume (1) holds for all ë�ê! .
Prove: (1) holds for ë�Ï" WìÚí .
Proof: ´Rµú¤ äyå7§Hæ;çH©kâd®0« ô¸ (definition of ���H¿��dý9Ä ), (definition of EXTerm), (definition of AXTerm)©#��ò�$
% ½ Ï"��ò�$
% ¼ ® ­÷©�Ì�ï£Í'& É ©�Ì�ªwÍ'&)(óÌGãRñ���ò�$
% ¼ Í'&)(�Ì�ðRñ���ò*$
% ¼ Í'&�®wÏ�Ð�®¸ (boolean lattice rules)©#��ò $
% ½�Ï"��ò $
% ¼/®¯­©�Ì�ï¯Í & Ï�Ð ü ©�Ì�ªwÍ & Ï�Ð ­÷ÌGãTñ���ò*$+% ¼ Í & ÏÑÐ ­÷Ì�ðRñ���ò*$+% ¼ Í & Ï Ð·®�®¸ (Theorem 8 for â'ÏKãRñ)ª ), (Theorem 8 for â'ÏKðRñ)ª ), (IH)´Rµ�è�éHéHÄH§HÂ;¿�äyå�§Hæ;çy©�ï£® ü ©�´Ëµ'è�éHéHÄH§HÂ;¿�äyå�§Hæ;çO©�ªw®¯­´·µ<è�éHéHÄH§HÂ;¿�ä;å7§Hæ�çA©GãRñ�� $ ®'­(´Rµ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©�ðRñ�� $ ®�®¸ (definition of è�éHéHÄH§HÂ;¿�äyå�§Hæ;ç )´Rµ�è�éHéHÄH§HÂ;¿�äyå�§Hæ;çy©kâ�®

(2) ´Ëµ�¤ äyå7§Hæ;çH©kâ�®D« ô¸ (definition of Check), (definition of AXTerm), (definition of EXTerm),.- ¬
Ì�ï¯Í & É ©�Ì�ªwÍ & (�ÌGãRñ���ò�/GÍ & (�ÌGãRñ���ò�/GÍ & ®wÏ10¸ (boolean lattice laws),.- ¬
Ì�ï¯Í
&£Ï10 ­(©�Ì�ªwÍ'&�Ï�0 ü ÌGãTñ���ò / Í'&£Ï�0 ü Ì�ðRñ���ò / Í'& Ï�0·®¸ (Theorem 8 for â'ÏKãRñ)ª ), (Theorem 8 for â'ÏKðRñ)ª ), (Base Case),.- ¬H´�Õµ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©�ï¯®'­÷©�´WÕµ�è�éHéHÄH§HÂ;¿�äyå�§Hæ
çH©�ªw® ü´�Õµ è�éHéHÄH§HÂ;¿�äyå7§Oæ;çH©GãRñ�� / ® ü ´�Õµ è�éHéHÄH§HÂ;¿�äyå�§Hæ;çy©�ðRñ�� / ®�®¸ (definition of è�éHéHÄH§HÂ;¿�äyå�§Hæ;ç ),.- ¬�´MÕµ2� /43 ´MÕµ'è�éHéHÄH§HÂ;¿�äyå7§yæ;çâ'ÏKðÖ¤ ªwò�ï « : The proof of (1) and (2) is similar to the one above.


