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Abstract. Classical logiccannot be used to effectively reason about systemswith
uncertainty (lack of essential information) or inconsistency (contradictory infor-
mation often occurring when information is gathered from multiple sources). In
this paper we propose the use of quasi-boolean multi-valued logics for reason-
ing about such systems. We aso give semantics to a multi-valued extension of
CTL, describe animplementation of asymbolic multi-valued CTL model-checker
called Xchek, and analyzeits correctness and running time.

1 Introduction

Inthelast few years, model checking [9] hasbecome established as one of the most effec-
tive automated techniques for analyzing correctness of software artifacts. Given a sys-
tem and aproperty, amodel checker buildsthe reachability graph (explicitly or symboli-
cally) by exhaustively exploring the state-space of the system. Model-checking hasbeen
effectively applied to reasoning about correctness of hardware, communication proto-
cols, software requirements and code, etc. A number of industrial model checkers have
been developed, including SPIN [18], SMV [22], and Murg¢ [12].

Despite their variety, existing model-checkers are typically limited to reasoning in
classical logic. However, there are a number of problems in software engineering for
which classical logicisinsufficient. One of theseisreasoning under uncertainty, or when
essential information is not available. This can occur either when complete information
isnot known or cannot be obtained (e.g., during requirementsanalysis), or when thisin-
formation has been removed (abstraction). Classical model-checkerstypically deal with
uncertainty by creating extrastates, one for each value of the unknown variable and each
feasible combination of values of known variables. However, this approach adds signif-
icant extra complexity to the analysis.

Classical reasoning is also insufficient for modelsthat contain inconsi stency. Incon-
sistency arisesfrequently in software engineering [ 15]. In requirements engineering, mod-
els are frequently inconsistent because they combine conflicting points of view. During
design and implementation, inconsistency arises when integrating components devel-
oped by different people. Conventional reasoning systems cannot cope with inconsis-
tency; the presence of asingle contradiction resultsin trivialization — anything follows
from A A = A. Hence, faced with an inconsistent description and the need to perform
automated reasoning, we must either discard information until consistency is achieved
again, or adopt anon-classical logic. The problem with the former approach is that we
may be forced to make premature decisions about which information to discard [19].



Although inconsistency in software engineering occurs very frequently, there have been
relatively few attempts to develop automated reasoning tools for inconsistent models.
Two notable exceptions are Hunter and Nuseibeh [20], who use a Quasi-Classical (QC)
logic to reason about evolving specifications, and Menzies et a. [23], who use a para-
consistent form of abductiveinference to reason about information from multiple points
of view.

Paraconsistent logics are a promising alternative to classical reasoning— they per-
mit some contradictionsto be true, without the resulting trivialization of classical logic.
The development of paraconsistent logics has been driven largely by the need for au-
tomated reasoning systems that do not give spurious answersiif their databases become
inconsistent. They are al so of interest to mathematiciansas away of addressing the para-
doxes in semantics and set theory. A number of different types of paraconsistent logic
have been studied [24]. For example, relevance logics use an alternative form of entail-
ment that requiresa*relevant” connection between the antecedentsand the conseguents.
Non-truth functional logicsuse aweaker form of negation so that proof rulessuch asdis-
junctivesyllogism(i.e., (AV B, —B) F A) fail. Multi-valued logics use additional truth
valuesto represent different types of contradiction.

Multi-valued | ogics provide a sol ution to both reasoning under uncertainty and under
inconsistency. For example, we can use “no information available” and “no agreement”
as logic values. In fact, model-checkers based on three-valued and four-valued logics
have already been studied. For example, [8] used athree-valued logic for interpreting re-
sults of model-checking with abstract interpretation, whereas[16, 17] used four-valued
logics for reasoning about abstractions of detailed gate or switch-level designs of cir-
cuits.

Different multi-valued logicsare useful for different purposes. For example, we may
wish to have several levels of uncertainty. We may wish to use different multi-valued
logics to support different ways of merging information from multiple sources. keep-
ing track of the origin of each piece of information, doing a majority vote, giving pri-
ority to one information source, etc. Thus, rather than restricting ourselves to any par-
ticular multi-valued logic, we are interested in extending the classical symbolic model-
checking procedure to enable reasoning about arbitrary multi-valued logics, aslong as
conjunction, disunction and negation of the logical values are specified.

Thiswork is part of the Xbel! (the Multi-Valued Belief Exploration L ogics) project,
outlined in [14]. The description of the system together with the description of the de-
sired multi-valued logic and the set of correctness criteriaexpressed in CTL becomein-
put to our model -checker, called X chek, which returns a value of the logic best charac-
terizing the validity of the formulain each initial state.

Therest of this paper is organized as follows: Section 2 describes a ssimple thermo-
stat system which is used as a running example throughout the paper. Section 3 gives
background on CTL model-checking. Section 4 describesthe typesof |ogics that we can
analyze and the ways to represent them. Section 5 describes the multi-valued transition
structures and extends CTL to reasoning over them. Section 6 discusses the implemen-
tation of Xchek, whereas Section 7 contains the analysis of its correctness and running

! pronounced “ Chibel”
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Fig. 1. Models of the thermostat.(a) Heat only; (b) AC only; (c) combined model.

time. We conclude the paper with a summary of results and outline of future work in
Section 8.

2 Example

Consider three models of the thermostat given in Figure 1. Figure 1(a) describesa very
simple thermostat that can run a heater if the temperature falls below desired. The sys-
tem has one indicator (Below), a switch to turn it off and on (Running) and a variable
indicating whether the heater isrunning (Heat). The system startsin state OFF2 and tran-
sitionsinto IDLE; when it is turned on, where it awaits the reading of the temperature
indicator. Once the temperature is determined, the system transitions either into IDLE,
orintoHEAT. Thevalue of the temperatureindicator isunknownin statesOFF and IDLE; .
To model this, we could duplicate the states, assigning Below the value T in one copy
and F in the other — the route typically taken by conventional model-checkers. Alter-
natively, we can model the system using the three-valued logic: T, F and M (Maybe),
assigning Below the value M, as depicted in Figure 1(a)3.
We can ask this thermostat model a number of questions:

Prop. 1. Can the system transition into IDLE; from everywhere?
Prop. 2. Can the heater be turned on when the temperature becomes below desired?
Prop. 3. Can the system be turned off in every computation?

2 Throughout this paper state |abels are capitalized. Thus, HEAT is a state and Heat isavariable
name.

3 Each state in this and the other two systems in Figure 1 contains a self-loop with the value T
which we omitted to avoid clutter.



Figure 1(b) describes another aspect of the thermostat system —running the air con-
ditioner. The behavior of this system issimilar to that of the heater, with one difference:
this system handles the failure of the temperature indicator. If the temperature reading
cannot be obtained in states AC or IDLE,, the system transitionsinto state IDLE; .

Finally, Figure 1(c) containsa merged model, describing the behavior of thethermo-
stat that can run both the heater and the air conditioner. In this merge, we used the same
three-valued logic, for smplicity. When the individual descriptions agreethat the value
of avariableor transitionisT (F), itismappedinto T (F) inthe combined model; al other
values are mapped into M. During the merge, we used the simple invariants describing
the behavior of the environment (Below — —Above, Above — —Below). Thus, the
value of Below in state AC isinferred to be F. Note that the individual descriptions dis-
agree on some states and transitions. For example, they disagree on atransition between
IDLE, and IDLE;; thusit receivesthe value M. Also, it is possible that the heater is on
whilethe air conditioner is running.

Further details on the merge procedure are outside the scope of this paper, except
to note that we could have chosen any of a number of different multi-valued logicsto
handle different combinationsof valuesin theindividual models. For example, we could
have used a 9-valued logic where each valueis a tuple formed from the val ues of thetwo
individual models.

We can ask the combined model a number of questions that cannot be answered by
either individual model, e.g.

Prop. 4. Isheat on only if air conditioning is off?
Prop. 5. Can heat be on when the temperature is above desired?

3 CTL Mode-Checking

CTL model-checking is an automatic technique for verifying properties expressed in a
propositional branching-timetemporal logic called Computational TreeLogic(CTL) [9].
The system is defined by aKripke structure, and properties are evaluated on atree of in-
finite computations produced by the model of the system. The standard notation M, s =
P indicatesthat aformula P holdsin a state s of amodel A . If aformula holdsin the
initial state, it is considered to hold in the model.

A Kripke structure consists of a set of states .S, atransition relation R C .S x S, an
initial state s; € S, aset of atomic propositions A, and alabeling function L : S — 24.
R must betotal,i.e Vs € S, 3t € S, st, (s,) € R. If astate s, has no successors, we
add asdlf-looptoit, sothat (s,, s,) € R. Foreachs € S, thelabeling function provides
alist of atomic propositionswhich are True in this state.

CTL isdefined asfollows:

1. Every atomic propositiona € A isaCTL formula
2. If ¢ and ¢ are CTL formulas, then soare —¢, o A, o V b, EXp, AXp, EFp,
AFp, E[pUy], AlpUy].

Thelogic connectives —, A and Vv havetheir usual meanings. The existential (universal)
quantifier £ (A) isused to quantify over paths. The operator X means* at the next step”,



F represents” sometimein thefuture”, and U is“until”. Therefore, £ X ¢ (AX ¢) means
that » holds in some (every) immediate successor of the current program state; F F'
(AF ) means that ¢ holds in the future along some (every) path emanating from the
current state; E[pU ] (A[pU]) means that for some (every) computation path start-
ing from the current state, ¢ continuously holds until 1) becomes true. Finally, we use
EG(y) and AG () to represent the property that ¢ holds at every statefor some (every)
path emanating from s,. Formally,

M,sq = aiff a € L(so)
M, so |E —piff M sq @
M,so EeAYiff MisoEe A M,sqg =¥
M,so EeVyiff MisoEe V M,sqg =¥
M,so | E EXpift 3t €S, (sg,t) ER AN Mty
M,sg |E AXpiff VE€ S, (so,t) ER—= Mt E ¢

M, sq = E[pU] iff there exists some path sq, s1, ...
Ji, i>0 A M,s; =9 A
Vi, 0<j<i—>M,s; Eg
M, sy E AleU] iff for every path sq, 51, ...,
3, i>0 A M,s; =9 A
Vi, 0<j<i—=M,s; Ee.

where the remaining operators are defined as follows:

s.t.

bl

AF(p) = A[TU ] (def. of AF)
EF(p) = E[TU] (def. of EF)
AG(p) = "EF(—y) (def. of AG)
EG(p) = ~AF(—p) (def. of EG)

Definitionsof AF and E'F' indicate that we are using a“ strong until”, that is, E[pU ]
and A[eU1] aretrue only if ¢ eventually occurs.

4 SpecifyingtheLogic

Since our model checker worksfor different multi-valued logics, we need away to spec-
ify the particular logic wewishto use. We can specify alogic by giving itsinferencerules
or by defining conjunction, digunction and negation operations on the elements of the
logic. Since our goal is model-checking as opposed to theorem proving, we chose the
latter approach. Further, the logic should be as close to classical as possible; in particu-
lar, the defined operations should be idempotent, commutative, etc. Such properties can
be easily guaranteed if we ensure that the values of the logic form alattice. Indeed, |at-
tices are anatural way to specify our logics. In this section we give a brief introduction
to lattice theory and describe the types of lattices used by our model-checker.

4.1 Lattice Theory

We introduce lattice theory here following the presentation in [2].
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Fig. 2. Examplesof logic lattices: (a) atwo-valued lattice representing classical logic; (b) athree-
valued lattice reflecting uncertainty; (c) a four-valued boolean lattice, a product of two (2-Bool,
) lattices; (d) afour-valued quasi-boolean lattice.

Definition 1 Latticeisa partial order (£, C) for which a uniqueleast upper bound and
greatest lower bound, denoted a LI b and a M b exist for each pair of elements (a, b).

Thefollowing are the properties of |attices:

ala = a (idempotence)
alla = a
alb=>bUa (commutativity)
allb="5bNa
al(bUc) = (aUb)Uc (associativity)
afl(bMe) = (aMb)Me
al(afb) =a (absorption)
af(alb) =a

aCad ANDEVY =>alnbEd MY (monotonicity)

aCd ANDCV =albTd UV

aTlbanda Ll b are referred to as meet and join, representing for us conjunction and
disjunction operations, respectively. Figure 2 gives examples of afew logic lattices. Our
partial order operation @ C b meansthat “b is more true than a”.

Definition 2 Alattice isdistributiveif

al(Nc)=(aUb)MN(alc) (distributivity)
afl(bUc)=(aMb)U(aMc)

All latticesin Figure 2 are distributive.

Definition 3 Alatticeiscompleteif the least upper bound and the greatest |ower bound
for each subset of elements of the lattice is an element of the lattice. Every complete
lattice has a top and bottom.

1 =nL (L characterization)
T =UL (T characterization)

In this paper we use T to indicate T of the lattice, and F to indicate its L, although in
principle T and L might be labelled differently.

Finite | attices are complete by definition. Thus, all lattices representing finite-valued
logics are complete.



Definition 4 Acompletedistributivelatticeis called a complete Boolean latticeif every
element ¢ € £ hasa unique complement —a € £ satisfying the following conditions:

——a=a (- involution) a C b < —a J—b (- antimonotonic)
—(amb)=-all-b (de Morgan) af-a= L (— contradiction)
—(aUb)=—-aM—-b (de Morgan) all-a=T (— exhaustiveness)

In fact, — involution, de Morgan and antimonotoni c laws follow from — contradiction
and — exhaustiveness.

Definition 5 A product of two lattices (£1,C), (L2, E) isalattice (L1 x L2), with the
ordering C holding between two pairsiff it holds for each component separately, i.e.

(a,b) C (¢, by alad ANBCY

Bottom, top, complement, meet and join in the product lattice are component-wise ex-
tensions of the corresponding operations of the component lattices. Product of two lat-
tices preserves their distributivity, completeness and boolean properties. For example,
out of the four latticesin Figure 2, only (2-Bool, C) and (4-Bool, C) are boolean. The
former is boolean because - T = F, = F = T. Thelatter is a product of two (2-Bool, C)
lattices and thus is complete, distributive and boolean. The lattice (3-QBooal, C) is not
boolean because—- M =M, andM M =M # L.

4.2 Quasi-Boolean L attices

Definition 6 Adistributivelattice(£, C) isquasi-boolean[4] (also called deMorgan[13])
if there exists a unary operator — defined for it, with the following properties (a, b are
elementsof (£, C)):

=(aMb) =—-all—-b (de Morgan) -—a =a (= involution)
—(alUb) =—al—b aCb< —ad-b (- antimonotonic)

Thus, —a is a quasi-complement of a.

Therefore, all boolean lattices are al so quasi-boolean, whereas the converseis not true.
L ogicsrepresented by quasi-boolean latticeswill bereferred to as quasi-boolean logics.

Theorem 1 A product of two quasi-boolean latticesis quasi-boolean

Proof:
Refer to the Appendix for proof of this and other theorems of this paper. d

For example, the lattice (3-QBool, C), first defined in [21], and all its products are
guasi-boolean. Werefer to n-valued boolean lattices as (n-Bool, C) and to quasi-bool ean
lattices as (n-QBool, C). (4-QBool, C) is alattice for alogic proposed by Belnap for
reasoning about inconsistent databases [3, 1]. Thislatticeis quasi-boolean (—N = N; =B
= B) and thus not isomorphic to (4-Bool, C).

In the rest of this paper we assume that the negation operator given for our logic
makes the lattice quasi-boolean. What do quasi-boolean lattices look like? Below we



define lattices which are (geometrically) horizontally-symmetric and show that, with
negation defined by the horizontal symmetry, this is a sufficient condition for quasi-
booleanness. We define:

Definition 7 Alattice (£, C) is horizontally-symmetric if there exists a bijective func-
tion H such that for every pair a, b € L,

aCb < H(a)d H(b) (order — embedding)
H(H(a)) =a (Hinvolution)

Theorem 2 Let (£, C) bea horizontally-symmetric lattice. Then the following hold for
any two elementsa, b € £:

H(anb) = H(a)U H(b)
H(aUb) = H(a) N H(b)

Thus, horizontal symmetry is a sufficient condition for the corresponding lattice to
be quasi-boolean, with —a = H (a) for each element of the lattice, since it guarantees
antimonotonicity and involution by definition, and de Morgan laws via Theorem 2.

5 Multi-Valued CTL Model-Checking

In this section we extend the notion of boolean model-checking described in Section 3
by defining multi-valued Kripke structures and multi-valued CTL.

5.1 Defining the Model

A statemachine M isamulti-valued Kripke (XKripke) structureif M = (S, S, R, I, A, L),
where

— L isaquasi-boolean logic represented by alattice (£, C).

— A is a(finite) set of atomic propositions, otherwise referred to as variables (e.g.
Running, Below, Heat in Figure 1(a)). For simplicity, we assume that all variables
are of the same type.

— Sisaf(finite) set of states; each state is identified by a unique (within A7) label s.
Sp C S isthe non-empty set of initial states.

— Eachtransition (s, ) in M hasalogical valuein £, referred to as (s, t), or, when
M isclear from the context, simply as (s, ). Then, R : £ — 29%5 isthe labeling
function mapping logical value v € £ into a set of transitions {(s, ¢)} where the
valueof each (s,t) isv, i.e.

Yo e L, R(w)={(s;1) | s€S AtES A (s,8) = v}

We also ensure that there is at least one non-false transition out of each state, ex-
tending the classical notion of Kripke structures. Formally,

VseS,dteS,welst.v#EL A (s,t) € R(v)



—AXo = EX(-p) (negation of “next”)
A[LU) = E[LUg] = ¢ (L“until")
AleU¢]l =9 V (o N AX AlpUy] A EX AleUv)) (AU fixpoint)

(

EloUy¢]l =9 V (¢ A EXE[pU)) EU ﬁxpoint)

Fig. 3. Propertiesof CTL operators.

To avoid clutter, we follow the convention of finite-state machines of not drawing F
transitions. Thus, in Figure 1(a), transition between IDLE, and IDLE; isF, whereas
in Figure 1(c) this transition is M. We refer to a value that a variable (an atomic
proposition) a takesin state s as <a>i”, or, when M isclear from context, simply as
<a>.s )

— I : Ax £ — 29 isalabeling function that maps each atomic proposition (variable)
a and each logical value v to a set of stateswherethevalue of a isw, i.e,

Voe L Vae A, I(a,v)={s | s€S A (&) = v}

L

Thus, the expression ({¢), = T) V ({s,t) = F) means that we check whether the
value of ¢ in s isT, or whether the value of thetransition (s, t) is F. Alternatively,
and equivalently, we can think of astate s asavector of variables A and their values
in £ together with aunique label s.

5.2 Multi-Valued CTL

Herewegive semanticsof CTL operatorsonaXKripkestructure M/ over aquasi-boolean
logic L. Wewill refer to thislanguage as multi-valued CTL, or XCTL. L isdescribed by a
finite, quasi-boolean lattice (£, C), and thusthe conjunction 1, disjunction L and nega-
tion — operations are available. In extending the CTL operators, we want to ensure that
the expected CTL properties, given in Figure 3, are still preserved. Note that the AU
fixpoint is somewhat unusual because it includes an additional conjunct, EX A[fUg].
Thereason for thisterm isto preserve a*“ strong until” semanticsfor statesthat have no
outgoing T transitions. Thisterm was introduced by [6] for reasoning about non-Kripke
structures.

We start defining XCTL by giving the semantics of propositional operators. Here, s
isastateand v € L isalogic value:

(a), =v %ff a€ I(v)
(mp), = wiff (), = v
(p Ay, =vifl (), N (¥),) =2
(pVah), =viff ((p), U (¥),) =v

We proceed by defining £ X and AX operators. Recall from Section 3 that these
operatorswere defined using existential and universal quantification over next states. We
extend the notion of quantification for multi-valued reasoning by using conjunction and
disjunction operators. Thistreatment of quantification is standard [3, 25]. The semantics
of EX and AX operatorsis given below:

<EX§0>5 =viff (VtEsucc(s)(<8’t> A <§0>t)) =v
(AXp), =viff (/\tEsucc(s)(<8’t> = {p))) = v
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Fig. 4. Architecture of Xchek.
Theorem 3 Definitionsof (X ) and (AX ), preservethe negation of “ next” prop-

erty, i.e.
Vs €S, "(AXg), = (EX—p),

Finally, we define AU and EU operatorsusing the AU and E'U fixpoint properties
and the above definition of AX and FX:

(ElpUd]), = viff (), V() A Viesuee(s) (8,0 AE[PUY]),))) = v
(AlpUe), = viff (), V ((#)s N Atesuce(s)((s:8) = (AlpU]),)
A Viesuee(s)((:8) A (AlpUY]),))) = v

The remaining CTL operators, AF(¢), EF(¢), AG(y), EG(y) arethe abbrevia-
tionsfor A[TU ], E[TU |, ~EF(—), ~AF (—¢), respectively.

— —

6 Xchek: A Multi-Valued M odel-Checker

In this section we describe our implementation of a multi-valued CTL model-checker.
This symbolic model-checker, called Xchek, is written in Java, and its architecture is
depicted in Figure 4. The checking engine receives the XCTL formulas to verify, the
model of the system represented as an XKripke structure, and a lattice of logic values,
and checks whether the specified property holds, returning an answer (one of the val-
ues of the passed lattice) and a counter-example, if appropriate. Xchek uses four sup-
plementary libraries: XDDs (a multi-valued extension of binary decision diagrams [5],
described in [10]), alibrary for handling quasi-boolean lattices, a partition handler and
atableinverter. The functionality of the latter two librariesis described bel ow.

6.1 TableLibrary

TheTablelibrary contains several tables, indexed by the elementsof thelattice, that give
quick accessto avariety of operationson lattice elements. In order to enable thisindex-
ing, wedefineord : £ — N — atotal order on the elementsof our lattice (£, C). 0rd()
isabijection, mapping each element v € £ onto theset {1...|£|}. For example, we can
order the elements of the lattice (3-QBool, C) asfollows:

ord(T)=1 0rd(M) =2 0rd(F) =3
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ThisorderingisreferredtoasT < M < F.

Using 0rd() and the primitive |attice operations, we compute inverted tables: given
avalue, these tables give pairs of elements yielding this value when the corresponding
operation is performed on them. Three inverted tables, InvTable,, InvTable , and
InvTable, are computed, one for each operator. For atable 7" and a value v, we use
notation 7,, to indicate an e ement associated with value v.

InvTable, iSdefined as

Vv € £, InvTablea , = {(v1,v2) | v1,v2 € L A v1 Moy = v}

For example, for the lattice (3-QBooal, C), InvTables m = {(M, M), (T, M), (M, T)}.
InvTabley, and InvTable_, are similar, where InvTable_, usestheidentity

a—b = —alb (definition of —)

Afterwards, we build generalized versions of the inverted tablesfor conjunction and dis-
junction over more than two operands. We call themBigOPTable, andBigOPTable,,.
Givenalogicvaluev, BigOPTable, , givessetsof logic values, wherethe correspond-
ing operation over theelements of the set yieldsv. For example, for thelattice (3-QBooal,
C), BigOPTable, y; is{{M}, {M, T}}. BigOPTable, isdefined as

Vv € L, BigOPTable, , = {V |V € P(L) A AV = v}

BigOPTable, isdefined similarly.

6.2 ThePartition Handler

Central tothe design of X chek isthe notion of apartition. A partition separatesthe states
of the model into subsets corresponding to the different values of the logic for a propo-
sition . More formally, apartition [¢]™ for aproperty ¢ and amachine M isatuple of
sets, ordered via0rd(), such that the ith element of the tupleis a set of states where ¢
hasthe value 0rd=! (i) in M. When the choice of M is clear, we omit it from notation,
referring to a partition simply as [¢]. The sets of states in a partition are mutually dis-
joint; thus, each proposition partitions the state space. For avaluev € £, wewrite [¢],
toindicate the set of statesassociated with ». For an examplein Figure 1(a) and ordering
T <M < F, [Below| = ({Heat}, {0ff, IDLE; }, {IDLE;}). Thus,

Vse SVveL, (s€lply & (p), =)

In fact, operations () and [] are Galois-connected. We also refer to PartitionType as
atype (s;|1 <i < |£] — s; € 27). Notethat [¢] is of type PartitionType; however, an
element of PartitionType does not require its sets to be mutually-digjoint, although the
union of the sets should still cover the entire state-space.

Further, we define a predecessor function pred() which receives apartition [¢] and
an operator op € {A, —} and returns a PartitionType. A state s is associated with value
v1 iNpred([¢], A) iff s has asuccessor statet where ¢ hasvalue vy, and (s, t) op v, =
v1. Thefunctionisgivenin Figure 5. Notethat theresult of pred isnot necessarily apar-
tition: astate canbein morethan one set. For thelattice (3-QBool, C), itsordering T < M
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function pred ([¢], op){
foreachv € £
[pred]v :={s | 3t € S,3(v1, v2) € InvTableyp v,s.t.
((s,t) € R(v1)) A ({#), = v2)}
return pred
}

function do0P([¢], op, [¥]) {
foreachv € £

[result]y :={¢(a) N (b) | (a,b) € InvTableyp, }
return result
}
function doBig0P(op, [¢]) {
foreachv € £
[result], =0
foreach V' € BigOPTable,, ,
[result]y := {nviev[w]"i _lee(ﬁ—V) [¢]v;} U [result]y
return result

}
function QUnt il(quantifier, [¢], [¢]) {
QUo =[4]
repeat
EXTerm; 41 := doBigOP(V, pred(QU;, A))
if (quantifier isA)
AXTerm; 41 = doBigOP(A, pred(QU;, —))
else
AXTerm; 41 = [¢]
foreach V1, U2,V3,V04 € L
toMove = [¢]s; N [¥]s, N[AXTerm;t1]s, N [EXTermit1]s,
dest ;= (’Ul Muos I U4) L v
move al the statesin toMove to [QUi41, Jdest
until QU¢+1 = QU1
return QU
}
procedur e Check(p){
Case
pE A return [p] where
Vv € L, [pl, :=I(p,v)
p =" return [p] where
Vv € L, [plo := [¢]-o
p=¢@A¢: returndoOp([¢], A, [¢])
p=pV: returndoop([@]vvv[d}])
p=EXoy: return doBig0OP(V, pred([¢], A))
p=AXy: return doBigOP(A, pred([¢], —))
p = E[pU]: return QUntil(E, [¢], [¢])
p = AleU¢]: return QUntil(4, [¢], [¢])
}

Fig. 5. Algorithm for X chek.
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< Fandthemodel in Figure 1(c), pred([Running], A) returns ({ IDLE;, IDLE;, Heat},
{IDLE,, IDLE;}, {IDLE;, IDLE,, AC, HEAT, OFF}.

We further define functions do0p() and doBig0p(), described in Figure 5. These
functionseval uatethe expression using the appropriatetable (InvTable,, Or BigdPTable
Given partitions [¢] and [¢/], doQP returns a partition for ¢ op . For the lattice (3-
QBool, C) and the model in Figure 1(c), [do0P([Above], V, [Below])]T returns a set of
statesin which Above V Below is T, namely, {AC, HEAT}.

doBig0P(op, [¢]) computes BigOP over acollection of states. Here, [¢] is required
to be of PartitionTypebut doesnot need to beapartition, that is, the union of setsof states
associated with each value of [¢] includes the entire state space, but these sets are not
necessarily pairwisedisjoint. Big0PTable,, , includes sets of states such that the oper-
ation op performed onthemyieldsv. Thus, for each V inBigOPTable,,, ,, We compute
the intersection of states for which ¢ hasavaluein V' and subtract the union of states
in which ¢ does not have avaluein V. [result], includes the union of all states com-
puted viathe above processfor al V inBigOPTable,, . For the model in Figure 1(c),
[doBigOP(V, [Heat])]T returnsaset of states S’ for which \/, _ ;, [Heat], = T, namely,
{IDLE,, IDLE;, HEAT}. Notethat if [¢] represents apartition, doBig0P(op, [¢]) Simply
returns a partition [] where [¢], = [¢], forv € L.

op)'

6.3 Algorithm of Xchek

Thehigh-level algorithm, inspired by Bultan’ ssymbolic model checker for infinite-state
systems [6, 7] and an abstract model-checker of [8], is given in procedure Check() in
Figure 5. The algorithm recursively goes through the structure of the property under the
analysis, associating each subproperty ¢ with a partition [¢]. In fact, Check alwaysre-
turns partitions on the state-space (see Theorem 5). For the examplein Figure 1(c) and
thelatticeordering T < M < F,

Check(—Running) = ({OFF}, {}, {IDLE;, IDLE,, AC, HEAT})
Check(Above V Below) = ({AC,HEAT}, {OFF, IDLE, }, {IDLE})
Check(AX —HEAT) = ({OFF, AC},{}, {IDLE;, IDLE;, HEAT})

FunctionQUntil() determinesthevalueof EU and AU using afixpoint algorithmgiven
in Figure 5. It starts with assigning Q U, the lowest (“most false”) value it can attain,
i.e., the value of . At each iteration, the algorithm computes EXTerm; 1, equal to
EXQU;. If the function is called with the universal quantifier, then it also computes
AXTerm; 1, equal to AXQU;. Otherwise, AXTerm;; iSnot necessary, and thus we
let AXTerm; ;1 be [¢]. AXQU,; and EXQU; are computed by invoking the function
doBig0P() and passing it the result of the appropriate pred call. Then, for each state s,
the algorithm determines where this state shoul d be by computing dest := () .U ({¢), 1
[AXTerm;41]s M [EXTerm;41]5). If dest valueisdifferent fromthe one s had in QU;,
then it has to be moved to the appropriate placein QU; 1. The algorithm proceeds until
no further changesto QU; can be made.

For example, suppose we are computing E[—Below U Heat] for our model in Fig-
ure1(c) under theordering T < M < F. QU isinitializedto ({HEAT}, {AC}, {OFF, IDLE,,
IDLE;}). IDLE; hasHEAT among its successors, so [EXTermy |ipie, iST. Thus,
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[Heat]IDLE2 L ([_|B610W]IDLE;2 I [EXTGI'IH1]IDL52 =FU (T I T) =T

and so IDLE, should moveto T. Using asimilar process, wedecidethat dest for IDLE, in
QU, isM, andthat destfor AC and OFF in QU5 are T and M, respectively. Thenext itera-
tion does not change QU», and thustheal gorithm terminatesreturning ({HEAT, AC, IDLE; },
{OFF, IDLE, }, {}).

Property|[XCTL formulation |Heater Model |AC Model | Combined Model

Prop. 1. |AG EXIDLE, F T F
Prop. 2.|A [~Heat U Below] T - T
Prop. 3. |[AG AF—-Running F F F
Prop. 4.|AG (Heat « AC) - - F
Prop. 5.|AG (Above — —Heat) - - M

Table 1. Results of verifying properties of the thermostat system.

The properties of the thermostat system that we identified in Section 2 can be trans-
latedinto XCTL asdescribed in Table 1. Thetable alsoliststhe values of these properties
in each of the modelsgivenin Figure 1. We use“—" to indicate that the result cannot be
obtained from thismodel. For example, the two individual models disagree on the ques-
tion of reachability of state IDLE, from every statein the model, whereas the combined
model concludesthat itisF.

7 Correctnessand Ter mination of Xchek

In this section, we analyze running time of Xchek and prove its correctness and termi-
nation.
7.1 Complexity

Theorem 4 Procedure Check(p) terminates on every XCTL formula p.

Computation of Until takes the longest time. Each state can change its position in
QU; at most h times, where A is the height of the lattice (£, C). Thus, the maximum
number of iterations of theloop in QUntil is|S| x h. Each iteration takes the time to
computedoBigOP onpred: O(|£] x 214! x |S|+|£[° x |5]?), plusthe timeto compute
toMove and dest sets: |£]* x O(|S|). Therefore, the running time of QUntil is

O21%1 x |S)? x |S| x h) = 02! x |S*)
and the running time of the entire model-checking algorithm on a property p is
021 [ x [p])

Notethat in reality the running timeis smaller, because BigOPTable can be optimized
and because set operations are BDD-based.
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ProcedureBooleanCheck(p)

Case _
pEA sreturn I(p, T)
p=p sreturn (S — @)

p=eAY return (e Ny)
p=eVy return (e U)
p=EXp :returnpre(y)
p=AXe return(S —pre(S — ¢))
p=E[pU¢]: Qo =0
Qiy1 = QiU (Y V (¢ A EXQi))
return @, when @,, = Qn+1
p=AlpU¢]: Qo =0
Qi1 =QiU(PV (¢ A EXQi A AX Qi)
return Q, when @, = Qn+1

Fig. 6. Boolean Model-Checking Algorithm(adapted from [6]).
7.2 Correctness

In this section we prove correctness of Xchek by showing that it always returns exactly
one answer (well-foundness) and that thisanswer iscorrect, i.e., it preservesthe proper-
ties of XCTL. We a so show that multi-valued model -checking reduces to well-known
boolean model-checking [22] if (£, C) is the two-valued lattice representing classical
logic.

We start by determining that procedure Check() associates each state s with exactly
onelogical value for each XCTL property p.

Theorem 5 The answer returned by procedure Check() is always well-founded, i.e.

(a) Vp € P,Vs € S,3v; € L,s.t. s € [Check(p)]y, (Each state in one set)
(b) Vp € P,Vs € S,3v;,v; € L,s.t.
(s € [Check(p)],; A s € [Check(p)]y,;) = vi = v; (Each state only in one set)

Now we show that our algorithm preservesthe expected properties of XCTL formu-
lasgivenin Figure 3.

Theorem 6 Xchek preserves the negation of “ next” property, i.e.

Vs € S,s € [Check(AXp)]y < s € [Check(EX )]y

Theorem 7 Xchek preserves fixpoint propertiesof AU and EU, i.e.

(1) Vs € S, (Check(A[pU1)])), = (Check(e))), L ((Check(p)), M (Check(AX A[pU1])),
M (Check(EXA[pU])),)
(2) Vs € S, (Check(E[@U])), = (Check(y))), U ((Check(yp)), M{Check(EX E[pU])),)

L “until” followseasily from AU and EU fixpoints.

Our last correctness criterium is that the answers given by Xchek on (2-Bool, C), a
two-val ued bool ean | attice representing classical logic, are the same as given by aregu-
lar symbolic model -checker. We start by defining a*boolean symbolic model-checker”
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on Kripke structures, following [6] and changing some notation to makeiit closer to the
one used in this paper. In particular, labeling functions used in boolean model-checking
typically map aformulainto a set of stateswhereit istrue, with the assumptionthat itis
falsein all other states. Thus, ¢ mapsinto {¢)+ in our notation. The algorithm is given
in Figure 6, with pre defined asfollows:

pre(Q)={s|t€ @ A (s,t) € R}

That is, pre(Q) computes all the states that can reach elementsin () in one step.

Theorem 8 Xchek, called on (2-Bool, C), retur nsthe same answer sas a boolean model -
checker. More precisely, Vs € S, Vp € P,

(1) s € [Check(p)]T = s € BooleanCheck(p)
(2) s € [Check(p)]L = s € BooleanCheck(p)

8 Conclusion and Future Work

Multi-valued logics are a useful tool for describing models that contain incompletein-
formation or inconsistency. In this paper we presented an extension of classical CTL
model -checking to reasoning about arbitrary quasi-boolean logics. We also described
an implementation of asymbolic multi-valued model-checker X chek and proved itster-
mination and correctness.

We plan to extend the work presented here in a number of directions to ensure that
Xchek can effectively reason about non-trivial systems. Wewill start by addressing some
of thelimitationsof our MV-Kripkestructures. In particul ar, so far we have assumed that
our variablesare of the sametype, with elements described by values of the | attice asso-
ciated with that machine. We need to generalize this approach to variables of different
types.

Further, in this work we have only addressed single-processor models. We believe
that synchronous systems can be easily handled by our framework, and it is essential
to extend our model-checking engine to reasoning about synchronous as well as asyn-
chronous systems.

We are also in the process of defining and studying a number of optimizations for
storage and retrieval of logic tables. These optimizations and the use of the XDD li-
brary do not change the worst-case running-time of X chek, computedin Section 7. How-
ever, they significantly affect average-caserunningtime. Oncetheimplementation of the
model-checker is complete, we intend to conduct a series of case studies to ensure that
it scales up to reasoning about non-trivial systems.

Finally, we are interested in studying the properties of Xchek in the overall frame-
work of Xbel. This framework involves reasoning about multiple inconsistent descrip-
tions of a system. We are interested in characterizing the relationship between the types
of merge of individual descriptions and the interpretation of answers given by Xchek on
the merged model.
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A Appendix

Inthisappendix wegive proofsfor thetheoremsappearing in the main body of the paper.
The proofs follow the calculational style of [11]. Section A.1 presents proofs of theo-
rems of lattice theory; Section A.2 gives proofs of correctness of the definition of XCTL
operators; Section A.3 lists properties of logic tables computed for X chek; finally, Sec-
tion A.4 uses the properties given in Section A.3 to prove correctness and termination
of the implementation of Xchek.

A.1 Lattice Theory

L attices have a number of properties that hold for them. We list several of them here,
without proof.

aCb & Ve,cCa=cCb
aCb & Ve,aCe<bLe
alMbCband albC a

C introduction)
C introduction)
M elimination)

aCbAalCec = albMec
aCalbandbCT alb
aCecANbCec = albCe
aCb o alb=2"b

aCb & alNb=a

Thefollowing are the properties of the product of two lattices (£,

J—L,1><L,2 = (J—£17 J—Ez)

TL1XL2 = (T»C17 Tﬁ

() = (=0, 2b)
(a,b) M (a’,b") = (aMd', 6110
(a,b) U (a’,b') = (aUd',bLIb)

(
(= of pairs
(
(

Ll introduction)
LI elimination)
correspondence)
correspondence)

(
(
(
(M introduction)
(
(
(
(

C) and (£, C):

(L of pairs)

T of pairs)

)
M of pairs)
Ll of pairs)
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Theorem 1. A product of two quasi-boolean latticesis quasi-boolean, that is,

(1) () = (a,0)
(2) =((a1,61) M (az, bs)) = (a1, =b1) U (maz, —bs)
(3) =((a1,b1) U (a2, b2)) = (a1, =b1) M (maz, —bs)
Proof:
(1) —=(a,b) (2) —((a1,b1) M (az,b2))
& (- of pairs) & (M of pairs)
ﬁ(ﬁc%ﬁb) ﬂ((al |_|a2:),(b1 |_|b2))
& (- of pairs), (— involution) & (- of pairs)
(a,b) (ﬁ(al |_|a2),ﬁ(b1 |_|b2))
& (de Morgan)
(ﬂal (] —az, ﬁbl (] ﬁbg)
& (U of pairs)
(ﬂal, ﬁbl) U (ﬁCEQ7 ﬁ1)2)
The proof for (3) is similar. |

Theorem 2. Let (£, C) beahorizontally-symmetric lattice. Then the following hold for
any two elementsa, b € L:

Proof:
We will prove the first of these equations here. The second one is a dual. We show

(1) H(amt) T H(a) U Hb) (1)
(2) H(ar1t) 3 H{a) U H(b) (2)

(1) H(anb) C H(a)U H(b)
< (C introduction)
¥z, (H(aNb) C H(2)) < (H(a)U H(b) C H(2))
< (H is order-embedding)
Vz,(z Camnb) < (H(a) UH(b) C H(z))
< (M elimination)
Vz, (zCa A zCb) < (H(a)UH(b) C H(2))
< (H is order-embedding)
Vz, (H(a) EH(z) A H(b) E H(z)) < (H(a) UH(b) T H(2))
< (U introduction, since H(a) C H(a) U H(b)), (transitivity)
T
(2) H(a)UuH(b) C H(aTb)
< (U elimination)
H(a)E H(aMb) A H(b) C H(ab)
< (H is order-embedding)
afllbCa A allbCh
< (M elimination)
T



20

A2 XCTL

Theorem 3. Definitionsof (EX ¢), and (AX ¢), preservethenegation of “ next” prop-
erty, i.e.
Vs €5, =(AXp), = (EX=p),

Proof:
Let s € S be an arbitrary state. Then,

~(AX¢),
= (definition of AX)
ﬁ(/\t(:-succ(s)“sv t> — <90>t))
= (de Morgan), because — is a quasi-boolean operator
vtesucc(s) ﬁ((‘g7t> — <90>t)
= (definition of —), (de Morgan)
Vtesucc(s) (ﬁﬁ<57 t) A ﬁ<90>t)
= (- involution), because — is a quasi-boolean operator
\/tesucc(s) (s, ) A=(@),)
= (definition of {—¢),)
vtesucc(s) (<S7 t> A <ﬁ<lo>t)
= (definition of £ .X)
(EX—¢),

A.3 TableLibrary
Here we give properties of inverse and BigOP tables defined in Section 6.1.

Lemma 1. Thefollowing are properties of inversetables, withop € {A,V, —}:

Yv e L, (a,b) € InvTable,, , < (a,—b) € InvTablen -, (— of InvTable)

Vv € L, (a,b) € InvTable, , < (—a,—b) € InvTabley -, (de Morgan of InvTable)

Vv € L, InvTable,, , # ) (non — emptiness of InvTable)
Yvi,v9 € £,3vs € £,s8.t. (v1,v2) € InvTable,yy o, (completeness of InvTable)
Y1, v2,vs,v4 € L, ((v1,v2) € InvTableyy o, A

(vi,v2) € InvTable,, o, ) — (V3 = v4) (uniqueness of InvTable)
Proof:
From the definition of inverse tables, negation properties, the definition of — and lattice
properties. d

Lemma 2. Thefollowing are the properties of BigOP tables, with op € {A, V}:

Yv € L, (0 € BigOPTable, , > L € BigOPTable, _,) A
(VW e P(L) -0, V € BigOPTable, , <
{-v|v €V} €BigOPTable, _,) (negation of BigOPTable)
Yv € L, (0 € BigOPTable, , <> L € BigOPTable, _,) A

(YW € P(L) -0, V € BiglPTable, , <
{-v|v €V} €BigOPTable, _,) (negation of BigOPTable)
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Yv € L, BigOPTable,, , # 0 (non-emptiness of BigOPTable)
YV € P(L),Jv € L,s.t. V € BigOPTable,, , (completenessof BigOPTable)
vV € P(L),Yvi,vs € L, (V € BigOPTable,, , A

V € BigOPTable,, , ) — (v1 = v2) (uniqueness of BigOPTable)

Proof:
By construction of BigOP tables and by the idempotency property of lattices. a

Lemma 3. The following are the properties of predecessor relations:

Vo,¥s € S,3qv € L,s.t. s € [pred([¢], op)]v (completeness of pred)
[pred([¢], A)]y = [pred([—¢], —=)]-v (implication of pred)

Proof:

(completeness of pred)

Pick ¢, pick a state s, pick ¢ € succ(s). Then, let vy = (s,t) and v2 = {¢),. Further, let
v = v; op v2. Then, by the completeness of InvTable property, s € [pred([¢], op)]s.

(implication of pr ed)
Let s € S be an arbitrary state. Then,

s € [pred([¢], Alv)
& (definition of pred)

3t € S,3(v1,v2) € InvTablen o,s.t. (s,£) € R(v1) A (@), = v2
& (— of InvTable)

3t € S,3(v1, —w2) € InvTables -, s.t. (s,t) € R(v1) A (@), = v2
& (definition of pred)

s € [pred([~¢], ~]-0)

A.4 Correctnessand Termination
Theorem 4. Procedure Check(p) terminates on every XCTL formula p.

Proof:

Proof is on the structure of property p. Obviously, for all operators except “until”, Check(p)
terminates. We give proof for computing AU here. To prove that the execution of QUnt il
terminates, it suffices to show thatVs € S, V1, (QU;), C (QU;41),. Then, QU; can change

value at most k times, where h is the height of lattice (£, C).
The proof goes by induction on :. Pick s € S. Then,

Base case: (QUo),
= (definition of QUntil)
(),
C (monotonicity of M, L)
(), U ({e), M {(AXTerm;) M (EXTerm;) )
= (definition of QUntil)
(Qui),
IH: (QUi), E(QUi+1),
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Prove: (QUis1), C{QUiya),
Proof: (QUitr),
= (definition of QUntil)
(¥), U ({¢), M{AXTerm;y1), M (EXTerm;11),)
= (definition of QUntil)
(W), U ({), M |_|t€succ(s)(—l<s7 £y L(QU;) )N I_ltGSUCC(S)(<S7 £y 1{QU;),))
C (IH), (monotonicity)
<¢>S U (<¢>S ml Htesucc(S)(ﬁ<s7 t> u <QU1‘+1>S) M |_|tegucc(s)(<57 t) M <QLT¢+1>5))
= (definition of QUntil)
(¥), U ({), M{AXTerm;y2), M (EXTerm;12),)
= (definition of QUntil)
(QUisz2),

Theorem 5. The answer returned by function Check is always well-founded, i.e.

(a) Vp € P,Vs € S,3v; € L,s.t. s € [Check(p)]y, (Each state in one set)
(b) Vp € P,Vs € S,3v;,v; € L,s.t.
(s € [Check(p)],, A s € [Check(p)]y,) = vi = v; (Each state only in one set)

Proof:
The proof is by induction on the length of p.

Base case:p € A. Check(p) uses I which is guaranteed to return a partition by definition.

IH: Assume Check(p) returns a partition when |p| < n.
Prove: Check(p) returns a partition when |p| = n + 1.
Proof:
p=- Then, ¢() is a partition by IH, and —w is onto by — involution.

p=¢ At¢ Pickstate s € S. Since [¢] and [¢] are partitions, Jvi, vz € L S.t.
s € [el, and s € [¢]u,.
(a) By completeness of InvTable, Jvs,s.t. s € InvTablen,y,,
SO s € [plus-
(b) By uniqueness of InvTable.
p=¢ Ve The proofis similar to the one above.
p=FEXyp. Pickastates e S.
CreateasetV = {v | s € [pred([¢], A)]+}
(a) By completeness of BigOPTable, Jv; € L, s.t. s € [doBigOP(V,pred([¢], A))]o;-
(b) By uniqueness of BigOPTable, the above-found v; is unique.
p= AXe. The proofis similar to the one above.
p = E[oUv] Partitionness is maintained as an invariant of QUntil:
QUntil starts of with a partition, and move preserves partition.
p = AlpU¢] Same as above.

Theorem 6. Xchek preserves the negation of “ next” property, i.e.

Vs € S,s € [Check(AXp)]y, < s € [Check(EX )]y
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Proof:

We prove
(1) s € [Check(AX )]y = s € [Check(EX—¢)]-v
(2) s € [Check(EX—¢)]-w = s € [Check(AX¢)],

(1) s € [Check(AX ).
= (definition of Check)
s € [doBigOP(A, pred([e¢], =))]v
= (definition of doBig0P)
3V € [BigOPTable,],,s.t. (s € ﬂvlev[pred([go],—f)]m) A
(s 2 U, iz v lored(le]—2)lu.)
= (negation of BigOPTable)
3V, € [BigOPTable,]-v,s.t. (s € ﬂ-'vle‘/l [pred([¢], —=)]v;) A
(s € Unrern v pred(iel, 1)
= (implication of pred)
3V, € [BigOPTable,]-y,s.t. (s € ﬂ-'vievl [pred([—¢], A)]-v;) A
(s 2 UL cn o [ored(=¢], Alv,)
= (definition of doBig0P)
s € [doBigOP(V, pred([=¢], A))]-w;
= (definition of Check)
s € [Check( EX[—¢])]-v

Proof of (2) is similar, and is based on implication of pred and negation of BigOPTable. [1
Theorem 7. Xchek preserves fixpoint propertiesof AU and EU, i.e.

(1) ¥s € S, (Check(A[pU])), = (Check()), U ((Check(yp)), M (Check(AX A[pU])),
M (Check(EX A[pU])),)
(2) Vs € S, (Check(E[@U])), = (Check(y)), U ((Check(yp)), M{Check(EX E[pU])),)

Proof:
Pick a state s.

(1) s € [Check(A[eUu])l.
& (definition of Check)
s € [QUnti1(4, (¢, [ul)l,
& (definition of QUntil)
dn > 0, s.t., QUn+1 = QUn
A s €[QUnt1]v & (v = (Check(¥))), U ({Check(p)), M (AXTermpt1), M(EXTermn41),))
& (definition of AXTerm), (definition of EXTerm), (definition of AX in Check)
dn > 0, s.t., QUn+1 = QUn
A s €[QUnt1]v & (v = (Check(¥)), U ({Check(p)), M (Check(AX QUn)),
M{Check(EXQU,)).))
< (combining the two conjuncts)
s € [QUy]y & (v = (Check(y)), U ({(Check(y)), M{Check(AXQU,)), M(Check(EXQUL)),))
& (AlgUy] = QU,,)
(Check(AlpU])), = (Check()),U
({(Check(y)), M (Check(AX AleU1])), M {Check( EX E[pU¥])),)

s

Proof of (2) is similar. |
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In our last theorem we want to prove that the result of calling Xchek with (2-Bool,
C), alattice representing classical logic, is the same as the result of the boolean CTL
model-checker.

We start by defining inverse and BigOP tables for aboolean lattice:

InvTable, 1 = {(T,T)} BigOPTable, + = {{T}, 0}
InvTablen ; = {(T, L), (L, L), (L, T)} BigOPTable/\:L ={{L},{L, T}}
InvTabley v = {(T,L1),(T,T),(L, T)} BigOPTable, + = {{T},{T,L}}
InvTabley ;| = {(L,L1)} BigOPTable, ; = {{Ll},0}

Lemmad4. Thefollowingrelationsholdfor each s € .S when multi-valued model-checking
iscalled on (2-Boal, C):

property of [pred([¢], A)]
property of [pred([¢], =)
property of [pred([¢], A)]
property of [pred([¢], =)]L

AL = s € —pre(p)

[pred(
Vs € S,s € [pred(
[pred(
[pred( J1 = 5 € pre(-y)

[¢], N)]
[¢], =)t = s € —pre(—p)
o)

o —

Proof:
We prove properties of [pred([¢], A)]T and [pred([¢],—)]r. The others follow from (im-
plication of pred). For an arbitrary state s € .S

property of [pred([¢], A)]T:
s € [pred([e], A)lT
= (definition of pred)
3t € S,3(v1,v2) € InvTablen 1,s.t. (s,t) € R(v1) A{p), = v2
= (value of InvTablea, 1)
dte s, st (s,t) e RA(p), =T
= (definition of pre)
s € pre(yp)
property of [pred([¢], —)]:
s € [pred(fp], =)]v
= (definition of pred)
dt € S,3(v1,v2) € InvTable, T,s.t. (s,t) € R(v1) A (), = v2
= (value of InvTabley, 1)
3t € 5,~(((s,1) € R(T)) A ((~e), = T))
= (definition of pre)
s & pre(-p)

a

Theorem 8. Xchek, called on (2-Bool, C), returnsthe sameanswer sasa boolean model -
checker. More precisely, Vs € S, Vp € P,

(1) s € [Check(p)]T = s € BooleanCheck(p)
(2) s € [Check(p)]L = s € BooleanCheck(p)

Proof:
The proof is by induction on the structure of property p.
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p € A : Check(p) and BooleanCheck(p) give the same answers by definition.
IH: Assume (1) and (2) hold for properties of length < n.
Prove: (1) and (2) hold for properties of length n + 1.
Proof: For brevity, we omit most of the proof, showing only the proofs for ¢ A ¢, EX and AU.

p=r"g! (2):
=

=
=

=

s € [Check(p)]T

(definition of Check)

s € [e]L

(definition of Check)

s € [Check(p)] L

(1H)

s ¢ BooleanCheck(yp)
(definition of BooleanCheck)
s € BooleanCheck(p)

Proof for (2) is similar

p=¢ A (2):
=

=
=

=

s € [Check(p)]T

(definition of doOp)

s €{p), N s€(Y), N (a,b) € InvTables T
(value of InvTablea, 1)

8 € <90>T A s € <¢>T

(changing notation)

s €(pNy)

(definition of BooleanCheck)

s € BooleanCheck(p)

Proof for (2) is similar. Because of the value of InvTablen, 1,

ERS

(), N s€(¥), A (a,b) € InvTablena 1 implies

that s & (@)1 Vs & (¢) .
p=p V. Proofs are similar to the ones above and are based on values of

InvTabley,t and InvTabley ;.

p=EXey: 2):
=

=

=

s € [Check(p)]T

(definition of Check)

s € [doBigOP(V, pred([e¢], A))]T

(definition of doBig0P), (value of BigOPTable, 1)

[result]r = 0 U ([pred(p, A)] — [pred(p, A)]L)
U([pred(e, A)]T N [pred(e, A)]L)

(properties of [pred([¢], —)]r and [pred([¢], —)] L)

[result]t = (pre(¢) — (S — pre(¢))) U (pre(¢) N (S — pre(¢)))

(set theory)

s € pre(yp)

(definition of BooleanCheck)

s € BooleanCheck(p)

s € [Check(p)]L

(definition of Check), (definition of doBigOP), (value of BigOPTable,, ,)

[result].. = 0 U ([pred(p, A)]1 — [pred(p, A)]7)

(properties of [pred([¢], —)] and [pred([¢], —)] L), (logic)

s ¢ pre(p)

(definition of BooleanCheck)

s € BooleanCheck(p)

p=AXeg: The proof of (1) and (2) is similar to the one above and is based
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p = AlpUy]

Base case:

IH:
Prove:
Proof:

=

on properties of [pred([¢], A)]+ and [pred([¢], A)] L, values of
BigOPTable, ; and BigOPTable, | .

Since Check(p) expands into computing QU,, in QUntil(A, [¢], [¢]),
the proof for (1) goes by induction on n — the length of the path
from s to a state where ¢ holds.

n=20.
QU1 =QUy N s €[Qo]T
s € [¥]r
(definition of BooleanCheck)
s €
(definition of BooleanCheck)
s € BooleanCheck(p)
Assume (1) holds for all n < k.
(1) holds forn = k& + 1.
s € [Check(p)]L
(definition of QUnt i1), (definition of EXTerm), (definition of AXTerm)
(QUktz = QUikt1) A (($) U ((¢), M{AXQUkt1), M(EXQUk41),) = T)
(boolean lattice rules)
(QUi42 = QUi41) A

(D) =TV{e)s =T A {AXQUrt1), = T A (EXQUi41), = T))
(Theorem 8 for p = AX ¢), (Theorem 8 for p = EX ), (IH)
s € BooleanCheck(¢)) V (s € BooleanCheck(y) A

s € BooleanCheck(AXQr) A s € BooleanCheck(EX Q%))
(definition of BooleanCheck)
s € BooleanCheck(p)

(2)s € [Check(p)] L
(definition of Check), (definition of AXTerm), (definition of EXTerm)
Vi, (1), U ((¢), N (AXQUS), M (AXQUY),) = L
(boolean lattice laws)
Vi,(¢), =L A ({¢), =L V{AXQU;), = LV(EXQU;), = 1)
(Theorem 8 for p = AX ), (Theorem 8 for p = EX ), (Base Case)
Vi, s ¢ BooleanCheck(ty)) A (s & BooleanCheck(y)V

s € BooleanCheck(AX Q;) V s & BooleanCheck(EXQ;))
(definition of BooleanCheck)
Vi,s € Qi & s € BooleanCheck

p = E[eU%¢]: The proof of (1) and (2) is similar to the one above.



