
* Supported by National Natural Science Foundation of China under Grant No. 69682002 and No.69725003

1

Towards execution in automatic test suite generation
Yixin Zhao Jianping Wu

Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China

 Email: zhaoyx@csnet1.cs.tsinghua.edu.cn Fax: 8610-62788109
 jianping@cernet.edu.cn

Abstract Only executable test suite generated automatically has practical usage. The authors devise and implement the algorithm of

"parametrizing and executizing" in the TUGEN system and discuss the result, limitation and its reason Basing on these work and

the study in the executability of the transition and the satiability problem of the predicate, the authors further present and implement

another algorithm called "executable parametrizing" to overcome the deficiency of the previous one and further improve the

practicability and efficiency of TUGEN. After analysis and comparison, the authors outline the focus of the future research.

Key words automatic test suite generation, parameterization, executization, complexity

1. Introduction
Automatic generating test suite is still a hot point of protocol test [1-3]. With the rapid development of

network technology, the traditional way of writing test suite by hand has fallen far behind the actual requirement.
Automatically generated test suites considerably save human labor while offering much more test cases, and, if
cooperated with proper test system, such as PITS [4], it can realize the automatilization of the whole test
procedure. Despite the fruitful research [5-7] done so far, much is left to do to make the automatically generated
test suite executable. Non-executable test suite can not be used in actual test activity, and it is only useful for
theoretically analysis. But since there are non-executable test cases in the suite, the accuracy of analysis is
inevitably affected.

In the development of TUGEN [5], much of the emphasis lies in the executability of the automatically
generated test suite. The algorithm of "Parametrizing and executizing" is designed and implemented, which
guarantees that all the test cases generated are executable [8]. However, for some test cases, although there do
exist proper parameters to make them executable, this algorithm can’t find these parameters efficiently. Further
study shows that, it is the procedure of "parametrizing first, executizing second" that raises this problem. It is
realized the problem of the executability of transitions and the complexity of predication satisfiability must be
resolved well first in the work of automatic generating test suite. Based on all these, the algorithm of "executable
parametrizing" is devised and implemented, which possesses maturity in theory and gets desirable results in
practice.

This paper is composed of six parts. Chapter 2 briefs automatic generating test suite. Chapter 3 analyzes the
algorithm of "parametrizing and executizing". Chapter 4 discusses the problems of the executability of transitions
and the complexity of predicate satisfiability. Chapter 5 explains and analyzes the algorithm of "executable
parametrizing". In the last chapter, a conclusion is given.

2 Brief of automatic generating test suite
In traditional procedure of conformance test, test suite generation is the most difficult part of all, which is

always undertaken by experts familiar with protocols. Not only are subjective errors introduced inevitably, the
number of test cases is also very limited. For example, there are only about 200 test cases in ISO/IEC 8882-3
Packet layer conformance test suite. One of the trends in protocol test is generating test suite automatically or
computer aided. Researchers have devoted themselves to this field, devised models and algorithms, and
implemented several tools or systems to generate test suites. Figure 1 is the main process of TUGEN [5], which is
a typical automatic test suite generating system.

2

The input of TUGEN is the External Behavior Expression (EBE) [9] of the protocol. The EBE is defined as
below:

Def.1 EBE is a four-tuple <S,s0,T,R>, where S is the external state set, s0 is the initial external state, T is the
transition set of S and R is the logic relation and timing relation set of T.

Def.2 A transition between external states is the interactions exchanged between the system and its
external environment in terms of input and/or output primitives and their parameters. The general form
of a transition is given by Tij = < Ip, Oq >, where Tij ∈ T, Ip ∈ I, Oq∈ O, and:

1) I is a set of input primitives from the external environment, and each input primitive is denoted by :
Ip (Xp1, . . . , Xpn), where Ip is the input primitive identifier, and Xp1, . . . , Xpn (n>=0) are
parameters of the input primitive Ip .

2) O is a set of output primitives to the external environment, and each output primitive is denoted by:
Oq (Yq1, . . ., Yqm), where Oq is the output primitive identifier, and Yq1, . . ., Yqm (m>=0) are
parameters of the output primitive Oq.

3) The absence of an input primitive or an output primitive is denoted by "--".

Def.3 The set of logical relations of a transition Rij = (F, P, OP) holds if and only if there exists a
transition Tij from state si to sj.

1) Z is the group of elements that influence the output of transition Tij. Z= PARAMETER ∪ TIMER∪
VAR. Where PARAMETER is the set of input and/or output parameters in the service primitives and
VAR is the set of protocol variables and TIMER is the set of time constructs used to specify time in the
protocol representation,

 2) F is a set of function relations of transition Tij. The output parameters Yq1, . . ., Yqm (m>=0) of
transition Tij will be produced if and only if there exists Z which satisifies a set of function F(Z), that is,
{Yq1, . . ., Yqm }=F(Z).

3) P is a set of predicate relations of transition Tij. The transition Tij will happen if and only if there
exists Z that satisfies the predicate P(Z).

4) OP is a set of operation relations of transition Tij. These operations are mainly used to deal with
system global variables such as protocol parameters and timers and some additional actions that need
to be done during a transition.

5) A transition Tij can be executed if and only if the I associated with the transition (if any) is received,
and the enabling predicate Pij is true. When a transition Tij fires, the associated function Fij and
operation OPij is executed automatically. When protocol variables and timers are set, O is assembled
(their parameters are set) and sent.

Def.2 and Def.3 describe the external behavior of the system, and process the values and their changes of

Syntax check
& semantic

analysis

SIP
search
engine

Parametrizing
& executizing

Practice,
simulation

& evaluation

 Internal
presentation of

protocol

Strategy control &
feedback

Test suite
generation

Formal
description
of protocol

Conner

Figure 1. The process of TUGEN

3

input/output primitives’ parameters. An example described with EBE is given below.
S3 [CONF_REQ <PCO2>, CONF_ACK <PCO2>|

PREDICATE: REQ_SEND = TRUE AND CONF_REQ.LENGTH = CONF_PDU_LENGTH

 AND CONF_REQ.MRU <= SYSTEM_MRU

OPERATION: REQ_RECEIVCED:=TRUE; RECEIVED_ID := CONF_REQ.ID;

 RECEIVED_MRU := CONF_REQ.MRU;

FUNCITON: CONF_ACK.ID := RECEIVED_ID; CONF_ACK.MRU :=RECEIVED_MRU;] S4

The main process of TUGEN contains 4 steps:

Step 1 Input the formal description of the protocol. After syntax and semantic checking, enough information
is extracted to construct the internal presentation of the protocol.
Step 2 Interactive Path (IP) or Sub Interactive Path (SIP) is acquired according to some searching strategy
and constraint mechanism [5].

Even if the parametrizing and executizing step is omitted, test trees with correct, incorrect and
protective branches can still be constructed using SIP. Each leaf node in the test tree will be assigned one
of the three verdicts, on which verification and evaluation can be performed. However, there is no
guarantee that all the test cases are executable, which is not only a waste but also a negative factor for the
accuracy of test suite analysis and evaluation.

Step 3. Executizing process of the test cases.
Step 4. Evaluate the test suite by simulation or test results. When necessary, modify the formal description,
searching strategy, and re-generate the test suite until we get satisfying results.

3 Analysis of the "Parametrizing and executizing" algorithm in TUGEN

The process of "Parametrizing and executizing" algorithm ("A.1" for short) is shown in figure 2.

3.1 Description and analysis of A.1
 Suppose left_value rel_op right_value is a logical expression in the predicate part. rel_op∈ {=,>,>=,<,<=,<>}
which is the logical operator. The left_value and right_value act as their names imply. When the type of
left_value is a variable in protocol formal description, right_value will be constant or status flag. If the type of
left_value is a field (depicted as PDUi.FIELDj) of PDU (Protocol Data Unit) in the description, right_value will
be constant or variable. The key part of A.1 is "Adjust values of PDU fields", the algorithm of which is given
below:

Input: One transition with default values filled and the predicate part evaluated false using these default values.

Output: One transition with adjusted values of PDU fields or none

Step1 Fetch first atomic logical expression of the predicate part

Step2 If the type of left_value is not a field of PDU, then goto Step6

Step3 Evaluate this expression

Figure 2. The process of A.1

Evaluate
predicate

part

Evaluate the
predicate

part

Is the
result true?

Adjust
values of

PDU fields

Fill each PDU
with default

values

Is the
result true?

No

No

Are all
transitions

processed?
YesFetch

one
transition

No

A SIP
acquired

Yes

Yes

Discard
the SIP

Output
executal
be SIP

4

Step4 If result is TRUE, then goto Step6

Step5 CASE rel_op

= : PDUi.FIELDj := right_value;

> : PDUi.FIELDj := right_value + 1;

>= : PDUi.FIELDj := right_value;

< : PDUi.FIELDj := right_value - 1;

<= : PDUi.FIELDj := right_value;

<> : PDUi.FIELDj := right_value + 1;

Step6 If done, then return with adjusted transition

Step7 Fetch next atomic logical expression and goto Step2

Since the values of most PDU fields are constant, they can be filled with default values and be checked for
executability, that is, evaluate the whole predicate part. If the result is true, then this transition is executable after
parameterization. Otherwise, adjustment is needed to make its predicate part true.

We need to stress here that A.1 only adjusts the values of those fields of input PDU and does nothing with
other variables. This is because that the formal description part depicts the action of the protocol implementation,
and therefore the fields of input PDU can be filled by us, that is, determined by the testing part. On the other hand,
variables of protocols are relevant to the procedure and the state of the protocol, so we can’t change their values at
will.

The adjustment module exploits a heuristic approximate algorithm: find all the expressions that are evaluated
false and then adjust them until true. The defect of A.1 is that, it is not necessary to demand all the expressions to
be true to make the whole predicate part true. Even if there are some expressions evaluated false, the whole
predicate part can still be true. For example:

PREDICATE: PDU1.TYPE = TYPE1 AND PDU1.FIELD1 = VALUE1

 AND(PDU_FIELD2 = VALUE2 OR PDU1.FIELD1 = VALUE3)

If the last expression is evaluated false while the previous three expressions are all true, then the predicate part is
still true. On the other hand, A.1 is not sufficient either:

PREDICATE: PDU1.TYPE = TYPE1 AND PDU1.FILED1 = VALUE1

 AND PDU1.FIELD2 = VALUE2 OR PDU1.TYPE = TYPE2

If the value of PDU1.FILED1 is changed to VALUE3 in order to satisfy PDU1.FIELD1 = VALUE, and if
VALUE3<>VALUE1, then the whole predicate part is still evaluated false after the adjustment. The re-evaluation
process in A.1 is to prevent such phenomena. Therefore, A.1 can’t guarantee to generate all the test cases that can
be excutized, but it does guarantee that those non-executable test cases will not appear in the test suite generated.
That is, all the test cases generated are executable. The result of A.1 is shown in table 1.

Protocol
Under Test

Set of All the
searched
cases S

Set of actually
executable test

cases E

Set of executable
test cases filled

with default
values D

Set of
executable test

cases after
adjustment A

Set of
failure of

adjustment
F

Process
time T*

TCP |S| = 3122 |E| = 718 |D| = 437 |A| = 667 |F| = 51 17 min.
PPP |S| = 4723 |E| = 853 |D| = 314 |A| = 793 |F| = 60 24 min.

OSPF |S| = 45128 |E| = 11734 |D| = 5984 |A| = 11261 |F| = 473 13 hours

4 Two open problems in executization
4.1 The executability of the transition

A SIP or a test case is executable, if and only if all the transitions in it are executable. A transition is
executable, if and only if its predicate is satiable (can be evaluated true). But the executability of transition T
always refer to its executability in some path P, that is, it is the executability in the context, which reflects the
procedure and state of the protocol behavior. It is of no use to discuss the executability of one transition alone.

Table 1 Result of A.1 (*running platform is Ultra 1 , 167Mhz with 64M memory and Solaris 2.5.1)

5

The predicate of each transition determines if this transition is executable, but the relation between predicate
and transition is not simply determining and being determined. Instead, we believe each transition is executable
(can occur), which is the primary factor, while the predicate describes the conditions under which the transition
"would like" to happen.

In figure 3, as to state sj (sj≠s0), all the transitions ending at sj are marked as Tij1, Tij2 ,…, Tijm, where
m=d+(sj); All the transitions starting from sj are marked Toj1, Toj2, … ,Tojn, n=d-(sj).

For any transition Tijp, there must be a Tijp, and under some condition Condt , Tijp-Tojq will be on some
executable SIP, that is

ojqijpttijpojq TTCondCondmpTnqT →∃∈∃∈∀ :]..1[,]..1[,

Otherwise, Tijp is called a transition without successor.
On the other hand, for any transition Tojq, there must be a Tijp,

and under some condition Condt , Tijp-Tojq will be on some
executable SIP, that is

ojqijpttijpojq TTCondCondmpTnqT →∃∈∃∈∀ :]..1[,]..1[,

Otherwise, Tojq is called a transition without predecessor.
Obviously, there will be no transition without successor or without predecessor unless there is some error in

protocol itself or its formal description.
4.2 The complexity of the satisfiability problem of predicate

The question of whether one transition is executable, that is, whether there is a set of values to make the
predicate part evaluated true, will end at the satisfiability problem of logical expressions. If we can determine that
the logical expressions of the predicate part are satiable, then we can further find a set of values to make the
predicate part evaluated true. Otherwise, the transition is non-executable. Generally speaking, the satisfiability
problem of conjunctive normal form is a NPC problem, that is:

For logical expression f, f=C1∧C2∧…∧Ck, each Ci is composed of ORed logical variables(or NOTed
variables).Then f is called conjunctive normal form, each Ci is a clause of f. The satisfiability problem of
conjunctive normal form is referring that, for any f, if there exists a set of values to make f evaluated true. (*)

If we induce each logical variable to one atomic logical expression, then the satisfiability problem of
conjunctive normal form is induced to the satisfiability problem of predicate part.

The satisfiability problem of disjunctive normal form is a P problem, which can be solved in polynomial time,
that is:

For logical expression g, g=d1∨d2∨…∨dk, each di is composed of ANDed logical variables(or NOTed
varialbes). Then g is called a disjunctive normal form, each di is a clause of f. The satisfiability problem of
disjunctive normal form is concerned about, for any g, if there exist a set of values to make g true. (**)

Obviously, it only takes polynomial time to solve the satisfiability problem of disjunctive normal form. If we
induce each atomic logical expression to one logical variable defined as above, then the satisfiability problem of
predicate part can be induce to the satisfiability problem of disjunctive normal form. The predicate part of the
protocol description is always in the format of disjunction.

It can be concluded from (*) and (**) that for a general logical expression, the algorithm complexity of its
satisfiability problem is between P and NPC. General logical expressions can be transformed to disjunctive
normal form or conjunctive normal form. But this procedure can’t be guaranteed to accomplish in P time. For
example, the transformation from conjunctive normal form to disjunctive normal form will generate exponential
number of items. Therefore, it is not a proper way to determine the satisfiability problem through transformation,

Tij1

Tijm

Sj

Toj1

Tojn

Figure 3. Executability of a transition

6

for example, after exponential transformation, the satisfiability problem of disjunctive normal form that can be
solved in P time becomes the satisfiability problem of conjunctive normal form, which is a NPC problem.

Since the predicate part only specifies the conditions under which the transition "wish" to occur, then
requirement of description can be fulfilled just by disjunctive normal form. Each clause specifies one condition,
all the possible conditions are ORed together. Then P time to solve the satisfiability problem is guaranteed from
the beginning by algorithm complexity theory. Therefore, it is feasible and necessary to solve the satisfiability
problem of predicate part from the stage of formal description of protocol.

5 Executable parametrizing Algorithm
The primary defect of A.1 is its procedure of processing. First parametrizing then executizing increase the

complexity, instead. Secondly, A.1 is not complete in theory, which will definitely effect the quality of test suite
and the exactness of the valuation.

The "Executable parametrizing Algorithm"(A.2 for short) settles these problems. Firstly, A.2 combines
parametrizing and executizing together to process the test case. To be more exact, it is a parametrizing algorithm
with an eye to the demand of executability, from which comes the "Executable parametrizing". After main
problems are solved theoretically, this algorithm can be further exploited for an exact algorithm to guarantee the
quality of the test suite.

To make A.2 more clear, a simple description of the symbols appeared in EBE is given below:
< protocol symbol> := <const>|<variable>
< variable> := <state variable>|<event variable>|<internal variable>|<PDU field variable>

The "const" defines constant value in protocol, such as C021, C023 in the "protocol type" of PPP [10], which
will remain unchanged and can be used as right value of the operation and function parts or the right value of the
atomic logical expression of the predicate part.

On the other hand, the value of the "variable" may be assigned or modified with the interaction of the
protocol activity. The "state variable" records the information of protocol states and will be processed in the
operation part. The "event variable" keeps track of the events that have happened, such as a "Time Out" event, for
the convenience of the formal description of protocols. The "internal variable" records the values of input and
output PDU, such as the ID value of a received PDU. A complete PDU is composed of all the necessary "PDU
field variables". “Executizing” is to assign proper values to all these variables, especially the values of the field
variables of input PDUs.

Each value concerning the PDU field is actually a 3-tuples (PDU, FIELD, VALUE). Different PDU and
FIELD determines different value ranges of the VALUE. For example, the C021 denoting the protocol type should
be depicted as <CONF_REQ, PROTOCOL, C021>.

5.1 Description of A.2
The 3-tuples of PDU field value is further extended to (PDU, FIELD, VALUE, DOMAIN), where DOMAIN

is the set of the possible values of this PDU field and set to ANY initially, that is, all the possible values of this
field.

Input: A searched SIP
Output: Executable SIP after parametrizing or none (when no executable values exist)

Step1 Fetch the first conjunctive clause

Step2 Initialize PDUi.FIELDj.DOMAIN to ANY

Step3 Take first expression of the conjunctive clause

Step4 If the left_value is of state variable then evaluate the expression

Step5 If result is false, then goto Step12

7

Step6 If left_value is of event variable then evaluate the expression

Step7 If result is false then goto Step12

Step8 If left-value is of PDU field variable(referred as PDUi.FIELDj), then

 CASE rel-op

= :PDUi.FIELDj.DOMAIN ={right_value}

> :PDUi.FIELDj.DOMAIN = PDUi.FIELDj.DOMAIN ∩(right-value,MAX_VALUE]

>=:PDUi.FIELDj.DOMAIN = PDUi.FIELDj.DOMAIN ∩[right-value,MAX_VALUE]

< :PDUi.FIELDj.DOMAIN = PDUi.FIELDj.DOMAIN ∩[MIN_VALUE,right-value)

<=:PDUi.FIELDj.DOMAIN = PDUi.FIELDj.DOMAIN ∩[MIN_VALUE,right-value]

<>:PDUi.FIELDj.DOMAIN = PDUi.FIELDj.DOMAIN ∩(right-value,MAX_VALUE]

Step9 If PDUi.FIELDj.DOMAIN.DOMAINis null, then goto Step12

Step10 If this conjunctive clause is done, then select a value from PDUi.FIELDj.DOMAIN.DOMAIN and assign to

PDUi.FIELDj.VALUE. Successfully return with executable SIP.

Step11 Otherwise, take next expression and goto Step4

Step12 If the predicate part is processed, then return none with this SIP discarded.

Step13 Fetch the next conjunctive clause and goto Step2

5.2 Analysis and evaluation of A.2
A.2 combines parametrizing and executizing together, and is designed with executability as the goal.

Therefore the defects in A.1 have been overcome. A.2 is a precise and P time algorithm with improved efficiency.
A.2 is complete in theory, guaranteeing all the executable test cases will all generated, which improves the quality
and efficiency of test suite generation. The result of A.2 is given in table 2.

Protocol
Under Test

Set of All the
searched
cases S’

Set of actually
executable test

cases E’

Set of
executable test

cases after
processing A’

Set of
failure of

adjustment
F’

Process
time T’

TCP |S’| = 3122 |E’| = 718 |A’| = 718 |F’| = 0 10 min.
PPP |S’| = 4723 |E’| = 853 |A’| = 853 |F’| = 0 18 min.

OSPF |S’| = 45128 |E’| = 11734 |A’| = 11734 |F’| = 0 10 hours

Compared with A.1:
(1) S = S', E = E’ This is because the searching algorithm remains the same
(2) In A.2 there is no longer any "Set of executable test cases filled with default values"
(3) A’ = E’ ,|A’| > |A| ,A’ ⊃ A (4)F’ = Ф ,|F’| < |F| ,F’ ⊂ F (5)T’ < T

From (2) to (5) embody the advantage of A.2 over A.1. Further comparison is given in table 3, where the
correctness is referring to never generating non-executable test cases and the completeness is referring to
generating all the test cases for which there do exist executable parameters. A.2 results in a set of possible values,
and we further improve the test case coverage rate with different data selection strategy.

Name of the
Algorithm

Completeness
in theory

Complexity Exactness Correctness Completeness

Parametrizing and
Executizing

No P No Yes No

Executable
parametrizing

Yes P Yes Yes Yes

6. Conclusion
The test suite automatically generated ought to be executable, which is emphasized in TUGEN. There are

Table 3. Comparison of A.1 and A.2

Table 2 Result of A.2 (*the same running platform as shown in table 1)

8

two algorithms implemented consequently. After the analysis of the defects in the "parametrizing and
executizing algorithm" and the study of executability of the transition and the satisfiability problem of predicate
part, the executable parametrizing algorithm is devised and analyzed with those executable test cases as the goal.
Besides, it also possesses completeness in theory and further improves the feasibility of TUGEN. During the study,
more improvements can be done to the procedure of first searching SIP then executizing it. The executizing can be
performed during the SIP searching, that is, the executability of a transition will become a condition to control the
search, therefore further improvement in the efficiency of TUGEN can be expected in later work.

Reference
1. S.T.Vuong, H.Janssen,Y.Lu, C.Mathieson and B.Do. TESTGEN: An environment for protocol test suite generation and

selection, Computer communications Vol.17 number 14 April 1994:23-27

2. Samuel T. Chanson, Jinsong Zhu. A Unified Approach to Protocol Test Sequence Generation, Proc. IEEE INFOCOM, San

Francisco, March 1993. 137-149

3. ISO/IEC ,JTC1/SC21 WG7. Information Retrieval, Transfer and Management for OSI, FMCT Guidelines on Test Generation

Methods from Formal Descriptions, Annex A and Annex B, ISO, February 1995

4. Wu Jianping. PITS-The protocol integrated test system based on formal technology, Journal of Tsinghua University. 1998,

38(S1):26~29

5. Jianguo Wang, Reibin Hao and Jianping Wu. TUGEN : An automatic test case generator integrating data-flow and control-flow

test methods. Proc. IEEE International Communication Conference, Atlanta.Session 8 Paper 7.1998. 332-343

6. JianPing Wu and Samuel T.Chanson. Testing Sequence Derivation Based on External Behavior Expression. Proc. 2nd

International Workshop on Protocol Test Systems. Berlin. 1989. 172-184

7. Zhao Yi Xin. The PPP conformance test based on automatically generated test suite, Graduate thesis, Tsinghua University, 1998

8. Krishan Sabnani and anton Dahbura. A Protocol Test Generation Procedure. Protocol Specification, Testing and

Verification:VIII,North Holland,1988. 173-191.

9. A.Guerroua and H.Konig. Automation of test case derivation in respect to test purposes,Proc. 7th International Workshop on

Protocol Test Systems,Berlin,Germany,1996. 213-230

10. W. Simpson. The Point-to-Point Protocol (PPP). RFC1661, 1994

