
OPMSE: An Object Petri Nets based
Modeling and Simulation Environment

Luo Xueshan, Qiu Dishan, Rao Xianhong, Bao Weidong

Research Center of C3I Systems
National University of Defense Technology

Changsha , Hunan , 410073 P.R.China
Tel: +(731) 4575856 Fax: +(731) 4575856

Email: xsluo@nudt.edu.cn xsluo@public.cs.hn.cn

Abstract: In this paper, the
methodology of integrated simulation is
proposed. The simulation conceptual
framework with modeling, experiment
and analysis is discussed. And an object
model with integrating static, dynamic
and representation characteristics is
presented.

Under the direction of the
above-proposed methodology, an Object
Petri net-based model description
language OPDL is designed and
implemented. Furthermore, an integrated
simulation environment OPMSE is
developed. OPMSE is constituted of two
packages: Model Developer and
Simulator. The architecture of OPMSE
is described.
Classification: Computer tools for nets
Keywords: Petri Nets, Object-Oriented,
Model, Simulation, Integrated
Environment

1 Integrated Simulation Framework

Most research of system
simulation put emphasis on the
experiment. That is they lay stress on
how to obtain the tracks of performance
parameters varied with time going. In
this mode, the model data, experiment
conditions and data managing are put

together. That makes it difficult to reuse
the models and requires the uses to have
both the knowledge of systems and the
skill of programming and simulation.

In view of above drawback, the
integrated simulation framework is
proposed. One of its characteristics is
the separation of the modeling,
experiment and analysis. In modeling
phase users focus on the system
description without thinking of
experiment conditions. During the
experiment phases, users set the
parameters of the mode and run the
model to get the simulation data. Finally
according to analysis of the simulation
data users educe the results.

The framework of this simulation
mode is shown as Fig.1.

Model
Experiment
Condition

Simulator

Simulation
Data

Data Processing
And Analysis

Modeling

Experiment

Analysis

�� �� �� � �	
�� �	
� �� ��� �	 � ��� �� ��
��� �

Because of the separation of the
modeling and experiment, the model

data and the running mechanism are
divided. It makes the real-time
interaction and multimedia
demonstrating of simulation process
possible. At every end of inferential cycle
the simulation environment can get the
model’s state to demonstrate. At the same
time user can modify the model data. In
next inferential cycle the modification will be
operated. It is shown as Fig.2.

Model Data

Interaction
interface

Simulator Multimedia
Server

Fig.2 Interaction, Inference and
Demonstration of Simulation

2 Object Model

To fit the framework of integrated
simulation, An object model with
integrating static, dynamic and
representation characteristics is designed.
It is defined as follows:

O=< X, S, Y, ts, σs, δs, λ, δπ, Am>
X={ (pi, me) | me ∈ Me , pi∈ PI }
Y={ (po, me) | me∈ Me , po∈

PO }
ts : S → E
σs : Me → E
δs : S×E → S
λ : S×E → Y
δπ: S×E → Am

In above expression,
Me means the set of messages among the
objects;
PI, PO respectively means the input ports
and output ports of the objects;
E means the set of events resulted by the
operations and messages;

X means the set of messages imported
from input port pi;
Y means the set of messages exported to
output port po;
S means the set of object states;
ts is the action function under state s.
When object state is s the action
function will be executed and results in
new events.
σs is the message conversion function. It
converts the input messages to
corresponding events.
δs(s,e) is the state conversion function. It
defines the next state when object is in
the state s and event e occurred;
λ is the message output function. It
determines the message exported to
other objects when object is in the state s
and event e occurred;
Am is the multimedia attribute of the
object. It defines the media types,
material and operations, which needed
by the representation of object;
δπ is the media conversion function. It
determined the representation when the
object is in the state s and the event e
occurred.

3 Object Petri Nets based
Description Language (OPDL)

To implement the object model, an
Object Petri Nets based Description
Language is designed. OPDL extents
Petri nets from two aspects:

1. Introduces object-oriented
methods into Petri nets to form Object
Petri Nets(OPN). Object is the basic unit
of model and reusable module;

2. Adds new elements including
switch and inhibitory arc to Petri nets
and attributions to all of the elements to
enhance the description capability.

Using OPDL the basic unit of a

model is the object, which generally
correspond to the realistic parts of the
systems. The similar objects are
abstracted as a class, and all the objects
that belong to the class have the same
basic features. An object is generated
dynamically from the class that it
belongs to in the execution process.
Model building and organizing bases on
the class structure. Therefore modeling
is the process of designing and using
classes. The classes are organized in the
form of class library. The mechanism of
the class inheritance and quotation
supports the reuse of model with high
independence.

The definition of the class
includes four parts:
• Property table: Each item is composed

of property name and property value.
Via the name the value can be
accessed. It is a data space used by the
object;

• OPN description: It is an OPN graph.
Different graphs connect through
input ports and output ports. There are
two types of ports: the external ports
and the internal ports. The external
ports are used to connect with brother
objects or parent object. The internal
ports are used to connect with son
objects and can not be accessed from
outside.

• Initialization function: It is used to
initialize the instance when the object
is created;

• Post-instancing function: It will be
executed after the instance has been
created.

To create an object from a class
the instance function is needed. First the
environment copies the graph and
creates the property table for the object.
Then the initialization function, the

instance function and the post-instancing
function are executed in sequence. All
the functions are written with VBScript.
Furthermore the external module can be
linked to the model.

The expansion of the elements of
Petri nets is as follows:
• Place: The place is a structure, which

has queues to buffer tokens. Each
place corresponds to a color. Only the
tokens with same color can enter the
place. The place has the attributions
such as principle of queue, capacity
and the event processing function.
When a token enters or gets out the
place the event processing function
will be executed.

• Port: The port is a kind of special
place and has the same attributions as
place. But the successor of the output
port must be the input port and the
predecessor of input port must be the
output port.

• Transition: We add the priority and
delay function, predicate function,
action function, event processing
function to transition. Priority is used
in handling the conflict. Delay
function is used in determining the
processing time of transition. Predicate
is a necessary condition that must be
satisfied for the transition to be
enabled. Action is a sequence of
operations that a transition carries out
when it fires. In action function the
multimedia demonstrating can be
defined. At the beginning of transition
firing the event processing function
will be executed. All the functions are
written with VBScript.

• Switch: the switch is a special kind of
transition. The difference between
switch and transition is that switch
does not export tokens at the end of

firing. How the tokens to be distributed
must be dedicated by users.

• Arc: Arc is used to connect the place
and the transition just as Petri nets.
Otherwise it is used to connect the
input port and the output port.

• Inhibitory Arc: Inhibitory Arc is a
special kind of arc. It must start from
the place and end at transition. If a
place and a transition are connected
with a inhibitory arc, the transition is
enabled only if there is not token in the
place.

• Token: Token is defined as a structural
data and corresponds to a color. Token
has a property table. In the functions of
transition the items of property table
can be insert and accessed.

4 The Architecture of OPMSE

OPMSE is an integrated modeling
and simulation Environment including
Model Developer and Experiment
Manager. The architecture of OPMSE is
shown as Fig.3:

Graphical User Interface

Model
Editor

Simulation
RuntimeModel Base

Manager

Model Base

Executable
Object

Generator

Model
Developer

Executable
Models

Token Game
Demonstrator

Simulation
Console

Report
Generator

Experiment
Manager

Simulation
Database

Fig.3 The architecture of OPMSE

• Model Editor: It is a visual and
integrated editor that can edit graphs and
texts. The editor has the ability of
syntax-guided. It does not respond the
operations that don’t satisfy the syntax
rules and prompts with warnings.

• Model Base Manager: It manages
OPDL class libraries. It supports insert,
delete and extract operations of classes
and the merger of libraries.
• Executable Object Generator: It
compiles the OPDL models and
generates the executable objects.
• Simulation Runtime: It provides a
framework for objects running and
simulation. The inference mechanism
scans the data structure of objects,
dealing with the conflict, constructs the
enabled set, firing the transitions and
executes the functions.
• Simulation Console: It reads the
states of the running model and
represents the simulation process
according to the user’s definition. At the
same time it receives and responds the
interaction commands of user. The
inferential cycle is independent, that is,
the inferential process has nothing to do
with the previous ones and the state of
model is discrete. So user can interrupt
the inference at any time and modify the
model’s state. Inference mechanism can
continue working from the new state.
• Token Game Demonstrator: It
demonstrates the running process of
Petri net by changing the color of
transitions and arcs. The number of
tokens in the place also varies with the
running to show the flowing of tokens.
• Report Generator: It records the
simulation parameters and generates the
simulation report. The parameters of a
transition include average service time,
maximum service time, minimum
service time and times of firing. The
parameters of a place include maximum
and minimum queuing lengths,
maximum and minimum waiting time of
tokens, average waiting time of tokens,
total numbers of input and output

tokens.

5 Conclusion

As its major application area
OPMSE addresses discrete event
dynamic systems. It is suitable for the
simulation engineers and developers of
discrete event systems such as C3I system,
CIMS, FMS, communication protocols and
automatic control systems. A criticism that is
often raised against Petri net is the
unmanageable size of the models of complex
system. This drawback can be reduced by
using Petri net structured and layered within
an object-oriented framework and executing
on a network. Distribution also rises the extent
of concurrence. Our farther works focus on
distribution and model verification.

References:

1. Bao Weidong, Study on Integrated

Simulation and Its Support
Environment for C3I Systems,
Doctoral Dissertation of National
University of Defense Technology,
Changsha, 1999;

2. Bao Weidong, Sha Jichang, Luo
Xueshan, Design of a Distributed
Simulator Based on OPNs,
Proceedings of the 1997 IEEE
International Conference on
Intelligent Processing Systems
(ICIPS’97), Beijing, 1997.10;

3. Luo xueshan, Analysis and Design
of C3I Simulation and
Demonstrating System, Reference
Periodical of National Technology,
vol. 18 No.3 1997;

4. Yu Yuncheng, Rapid Prototype of
C3I Systems, Reference Periodical
of National Technology, vol. 15
No.2 1994;

5. Yang Kyulee, OPNets: An
Object-Oriented High Level Petri
Net Model for Real-Time System
Modeling, J. System Software,
1993(20):56-67;

6. Wang weiping, Study on
Object-Oriented Multimedia
Simulation, Doctoral Dissertation of
National University of Defense
Technology, Changsha, 1998.

	1 Integrated Simulation Framework
	2 Object Model
	3 Object Petri Nets based Description Language (OPDL)
	4 The Architecture of OPMSE
	5 Conclusion

