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Preface
(January 1, 1997)

“Some half dozen persons have written technically on combinatory logic, and
most of these, including ourselves, have published something erroneous. Since
some of our fellow sinners are among the most careful and competent logicians
on the contemporary scene, we regard this as evidence that the subject is re-
fractory. Thus fullness of exposition is necessary for accuracy; and excessive
condensation would be false economy here, even more than it is ordinarily.”

Haskell B. Curry and Robert Feys
in the Preface to Combinatory Logic [2], May 31, 1956

In September of 1987 a meeting was held at the conference on Functional Programming
Languages and Computer Architecture (FPCA ’87) in Portland, Oregon, to discuss an un-
fortunate situation in the functional programming community: there had come into being
more than a dozen non-strict, purely functional programming languages, all similar in ex-
pressive power and semantic underpinnings. There was a strong consensus at this meeting
that more widespread use of this class of functional languages was being hampered by the
lack of a common language. It was decided that a committee should be formed to design
such a language, providing faster communication of new ideas, a stable foundation for real
applications development, and a vehicle through which others would be encouraged to use
functional languages. This document describes the result of that committee’s efforts: a
purely functional programming language called Haskell, named after the logician Haskell
B. Curry whose work provides the logical basis for much of ours.

Goals

The committee’s primary goal was to design a language that satisfied these constraints:

1. It should be suitable for teaching, research, and applications, including building large
systems.

2. It should be completely described via the publication of a formal syntax and semantics.

3. It should be freely available. Anyone should be permitted to implement the language
and distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide consensus.

5. It should reduce unnecessary diversity in functional programming languages.

The committee hopes that Haskell can serve as a basis for future research in language
design. We hope that extensions or variants of the language may appear, incorporating
experimental features.
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This Report

This report is the official specification of the Haskell language and should be suitable for
writing programs and building implementations. It is not a tutorial on programming in
Haskell such as the ‘Gentle Introduction’ [5], so some familiarity with functional languages
is assumed.

Version 1.4 of the report was unveiled in 1997. It makes some minor corrections to
version 1.3 and adds a few new features as described below. Version 1.4 is described in two
separate documents: the Haskell Language Report (this document) and the Haskell Library
Report[8].

Highlights of Haskell 1.3

Libraries

For the first time, we distinguish between Prelude and Library entities. Entities defined
by the Prelude, a module named Prelude, are in scope unless explicitly hidden. Entities
defined in library modules are in scope only if that module is explicitly imported. The
library modules specified by Haskell are described in the Haskell Library Report.

Monadic I/O

Monadic I/O has proven to be more general and in many respects simpler than the stream-
based I/O system used in Haskell 1.2. Here are the highlights of the I/O definition.

• We define a monadic programming model for Haskell. Expressions of type IO a denote
computations that may engage in I/O before returning an answer of type a.

• The IO monad admits computations that fail and recovers from such failures.

• We define a new type of handles, to mediate I/O operations on files and other I/O
devices. Handles are part of the I/O library.

• We define input polling and input of characters. In contrast, Haskell 1.2 represented
character input as a single String (that is, a lazy list of characters), containing all
the characters available for input throughout the program execution.

• Monadic I/O provides an extensible framework capable of incorporating advanced
operating system and GUI interfaces in libraries.

• Monadic programming has been made more readable through the introduction of a
special do syntax.
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Constructor Classes

Constructor classes are a natural generalization of the original Haskell type system, sup-
porting polymorphism over type constructors. For example, the monadic operators used by
the I/O system have been generalized using constructor classes to arbitrary monads just as
(+) has been generalized to arbitrary numeric types using type classes.

New Datatype Features

A number of enhancements have been made to Haskell type declarations. These include:

• Strictness annotations allow structures to be represented in a more efficient manner.

• The components of a constructor may be labeled using field names. Selection, con-
struction, and update operations that reference fields by name rather than position
are now available.

• The newtype declaration defines a type that renames an existing datatype without
changing the underlying object representation. Unlike type synonyms, types defined
by newtype are distinct from their definition.

Improvements in the Module System

A number of substantial changes to the module system have been made. Instead of renam-
ing, qualified names are used to resolve name conflicts. All names are now redefinable; there
is no longer a PreludeCore module containing names that cannot be reused. Interface files
are no longer specified by this report; all issues of separate compilation are now left up to
the implementation.

The n+k Pattern Controversy

For technical reasons, many people feel that n+k patterns are an incongruous language
design feature that should be eliminated from Haskell. On the other hand, they serve
as a vehicle for teaching introductory programming, in particular recursion over natural
numbers. Alternatives to n+k patterns have been explored, but are too premature to
include in Haskell 1.3. Thus the 1.3 committee decided to retain this feature at present
but to discourage the use of n+k patterns by Haskell users. This feature may be altered or
removed in future versions of Haskell and should be avoided. Implementors are encouraged
to provide a mechanism for users to selectively enable or disable n+k patterns.

Highlights of Haskell 1.4

Version 1.4 of the report makes the following changes in the language:
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• The character set has been changed to Unicode.

• List comprehensions have been generalized to arbitrary monads.

• Import and export of class methods and constructors is no longer restricted to ‘all
or nothing’ as previously. Any subset of class methods or data constructors may be
selected for import or export. Also, constructors and class methods can now be named
directly on import and export lists instead of as components of a type or class.

• Qualified names may now be used as field names in patterns and updates.

• Ord is no longer a superclass of Enum. Some of the default methods for Enum have
changed.

• Context restrictions on newtype declarations have been relaxed.

• The Prelude is now more explicit about some instances for Read and Show.

• The fixity of >>= has changed.

These changes are relatively minor – the version 1.3 report is nearly identical to this one.

Haskell Resources

We welcome your comments, suggestions, and criticisms on the language or its presentation
in the report. A common mailing list for technical discussion of Haskell uses the following
electronic mail addresses:

• haskell@haskell.org forwards mail to all subscribers of the Haskell list.

• haskell-request@haskell.org is used to add and remove subscribers from the mail-
ing list. To subscribe or unsubscribe send messages of the form:

subscribe haskell
unsubscribe haskell

You may wish to subscribe or remove a mailing address other than the reply-to address
contained in your mail message. These commands may include an explicit email
address:

subscribe haskell bjm@wotsamatta.edu

Please do not send subscription requests direct to the mailing list.

• Each implementation has an email address for discussions of specific Haskell systems.
Please send questions and comments regarding these directly to the associated groups
instead of the global Haskell community.

Web pages for Haskell, which includes an on-line version of this report, a tutorial,
extensions to Haskell, information about upgrading programs from prior Haskell versions,
and information about Haskell implementations can be found at the following sites:
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• http://haskell.org

• http://www.dcs.gla.ac.uk/fp/software/ghc

• http://www.cs.chalmers.se/Haskell

• http://www.cs.nott.ac.uk/Research/fpg/haskell.html
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1 Introduction

Haskell is a general purpose, purely functional programming language incorporating many
recent innovations in programming language design. Haskell provides higher-order func-
tions, non-strict semantics, static polymorphic typing, user-defined algebraic datatypes,
pattern-matching, list comprehensions, a module system, a monadic I/O system, and a rich
set of primitive datatypes, including lists, arrays, arbitrary and fixed precision integers, and
floating-point numbers. Haskell is both the culmination and solidification of many years of
research on lazy functional languages.

This report defines the syntax for Haskell programs and an informal abstract semantics
for the meaning of such programs. We leave as implementation dependent the ways in
which Haskell programs are to be manipulated, interpreted, compiled, etc. This includes
such issues as the nature of programming environments and the error messages returned for
undefined programs (i.e. programs that formally evaluate to ⊥).

1.1 Program Structure

In this section, we describe the abstract syntactic and semantic structure of Haskell, as well
as how it relates to the organization of the rest of the report.

1. At the topmost level a Haskell program is a set of modules, described in Section 5.
Modules provide a way to control namespaces and to re-use software in large programs.

2. The top level of a module consists of a collection of declarations, of which there are
several kinds, all described in Section 4. Declarations define things such as ordinary
values, datatypes, type classes, and fixity information.

3. At the next lower level are expressions, described in Section 3. An expression denotes
a value and has a static type; expressions are at the heart of Haskell programming “in
the small.”

4. At the bottom level is Haskell’s lexical structure, defined in Section 2. The lexical
structure captures the concrete representation of Haskell programs in text files.

This report proceeds bottom-up with respect to Haskell’s syntactic structure.

The sections not mentioned above are Section 6, which describes the standard built-
in datatypes and classes in Haskell, and Section 7, which discusses the I/O facility in
Haskell (i.e. how Haskell programs communicate with the outside world). Also, there are
several appendices describing the Prelude, the concrete syntax, literate programming, the
specification of derived instances, and pragmas supported by most Haskell compilers.

Examples of Haskell program fragments in running text are given in typewriter font:

let x = 1
z = x+y

in z+1
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“Holes” in program fragments representing arbitrary pieces of Haskell code are written in
italics, as in if e1 then e2 else e3 . Generally the italicized names are mnemonic, such as
e for expressions, d for declarations, t for types, etc.

1.2 The Haskell Kernel

Haskell has adopted many of the convenient syntactic structures that have become popular
in functional programming. In all cases, their formal semantics can be given via translation
into a proper subset of Haskell called the Haskell kernel. It is essentially a slightly sugared
variant of the lambda calculus with a straightforward denotational semantics. The trans-
lation of each syntactic structure into the kernel is given as the syntax is introduced. This
modular design facilitates reasoning about Haskell programs and provides useful guidelines
for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a static type. Values and types are not mixed in
Haskell. However, the type system allows user-defined datatypes of various sorts, and per-
mits not only parametric polymorphism (using a traditional Hindley-Milner type structure)
but also ad hoc polymorphism, or overloading (using type classes).

Errors in Haskell are semantically equivalent to ⊥. Technically, they are not distinguish-
able from nontermination, so the language includes no mechanism for detecting or acting
upon errors. Of course, implementations will probably try to provide useful information
about errors.

1.4 Namespaces

Haskell provides a lexical syntax for infix operators (either functions or constructors). To
emphasize that operators are bound to the same things as identifiers, and to allow the two
to be used interchangeably, there is a simple way to convert between the two: any function
or constructor identifier may be converted into an operator by enclosing it in backquotes,
and any operator may be converted into an identifier by enclosing it in parentheses. For
example, x + y is equivalent to (+) x y, and f x y is the same as x `f̀ y. These lexical
matters are discussed further in Section 2.

There are six kinds of names in Haskell: those for variables and constructors denote
values; those for type variables, type constructors, and type classes refer to entities related
to the type system; and module names refer to modules. There are three constraints on
naming:

1. Names for variables and type variables are identifiers beginning with lowercase letters;
the other four kinds of names are identifiers beginning with uppercase letters.

2. Constructor operators are operators beginning with “:”; variable operators are oper-
ators not beginning with “:”.
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3. An identifier must not be used as the name of a type constructor and a class in the
same scope.

These are the only constraints; for example, Int may simultaneously be the name of a
module, class, and constructor within a single scope.

1.5 Layout

In the syntax given in the rest of the report, layout lists are always preceded by the keyword
where, let, do, or of, and are enclosed within curly braces ({ }) with the individual
declarations separated by semicolons (;). Layout lists usually contain declarations, but do
and case introduce lists of other sorts. For example, the syntax of a let expression is:

let { decl1 ; decl2 ; ... ; decln [;] } in exp

Haskell permits the omission of the braces and semicolons by using layout to convey the
same information. This allows both layout-sensitive and -insensitive styles of coding, which
can be freely mixed within one program. Because layout is not required, Haskell programs
can be straightforwardly produced by other programs.

The layout (or “off-side”) rule takes effect whenever the open brace is omitted after the
keyword where, let, do, or of. When this happens, the indentation of the next lexeme
(whether or not on a new line) is remembered and the omitted open brace is inserted (the
whitespace preceding the lexeme may include comments). For each subsequent line, if it
contains only whitespace or is indented more, then the previous item is continued (nothing
is inserted); if it is indented the same amount, then a new item begins (a semicolon is
inserted); and if it is indented less, then the layout list ends (a close brace is inserted). A
close brace is also inserted whenever the syntactic category containing the layout list ends;
that is, if an illegal lexeme is encountered at a point where a close brace would be legal, a
close brace is inserted. The layout rule matches only those open braces that it has inserted;
an explicit open brace must be matched by an explicit close brace. Within these explicit
open braces, no layout processing is performed for constructs outside the braces, even if a
line is indented to the left of an earlier implicit open brace.

Given these rules, a single newline may actually terminate several layout lists. Also,
these rules permit:

f x = let a = 1; b = 2
g y = exp2

in exp1

making a, b and g all part of the same layout list.

To facilitate the use of layout at the top level of a module (an implementation may
allow several modules may reside in one file), the keyword module and the end-of-file token
are assumed to occur in column 0 (whereas normally the first column is 1). Otherwise, all
top-level declarations would have to be indented.
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See also Section B.3.

As an example, Figure 1 shows a (somewhat contrived) module and Figure 2 shows the
result of applying the layout rule to it. Note in particular: (a) the line beginning }};pop,
where the termination of the previous line invokes three applications of the layout rule,
corresponding to the depth (3) of the nested where clauses, (b) the close braces in the
where clause nested within the tuple and case expression, inserted because the end of the
tuple was detected, and (c) the close brace at the very end, inserted because of the column
0 indentation of the end-of-file token.

When comparing indentations for standard Haskell programs, a fixed-width font with
this tab convention is assumed: tab stops are 8 characters apart (with the first tab stop in
column 9), and a tab character causes the insertion of enough spaces (always ≥ 1) to align
the current position with the next tab stop. Particular implementations may alter this rule
to accommodate variable-width fonts and alternate tab conventions, but standard Haskell
programs must observe this rule.
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module AStack( Stack, push, pop, top, size ) where
data Stack a = Empty

| MkStack a (Stack a)

push :: a -> Stack a -> Stack a
push x s = MkStack x s

size :: Stack a -> Integer
size s = length (stkToLst s) where

stkToLst Empty = []
stkToLst (MkStack x s) = x:xs where xs = stkToLst s

pop :: Stack a -> (a, Stack a)
pop (MkStack x s)

= (x, case s of r -> i r where i x = x) -- (pop Empty) is an error

top :: Stack a -> a
top (MkStack x s) = x -- (top Empty) is an error

Figure 1: A sample program

module AStack( Stack, push, pop, top, size ) where
{data Stack a = Empty

| MkStack a (Stack a)

;push :: a -> Stack a -> Stack a
;push x s = MkStack x s

;size :: Stack a -> Integer
;size s = length (stkToLst s) where

{stkToLst Empty = []
;stkToLst (MkStack x s) = x:xs where {xs = stkToLst s

}};pop :: Stack a -> (a, Stack a)
;pop (MkStack x s)

= (x, case s of {r -> i r where {i x = x}}) -- (pop Empty) is an error

;top :: Stack a -> a
;top (MkStack x s) = x -- (top Empty) is an error
}

Figure 2: Sample program with layout expanded
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2 Lexical Structure

In this section, we describe the low-level lexical structure of Haskell. Most of the details
may be skipped in a first reading of the report.

2.1 Notational Conventions

These notational conventions are used for presenting syntax:

[pattern] optional
{pattern} zero or more repetitions
(pattern) grouping

pat1 | pat2 choice
pat〈pat ′〉 difference—elements generated by pat

except those generated by pat ′

fibonacci terminal syntax in typewriter font

Because the syntax in this section describes lexical syntax, all whitespace is expressed
explicitly; there is no implicit space between juxtaposed symbols. BNF-like syntax is used
throughout, with productions having the form:

nonterm → alt1 | alt2 | . . . | altn

Care must be taken in distinguishing metalogical syntax such as | and [. . .] from concrete
terminal syntax (given in typewriter font) such as | and [...], although usually the context
makes the distinction clear.

Haskell uses the Unicode[10] character set. However, source programs are currently
biased toward the ASCII character set used in earlier versions of Haskell.

Haskell uses a pre-processor to convert non-Unicode character sets into Unicode. This
pre-processor converts all characters to Unicode and uses the escape sequence \uhhhh , where
the "h" are hex digits, to denote escaped unicode characters. Since this translation occurs
before the program is compiled, escaped Unicode characters may appear in identifiers and
any other place in the program.

This syntax depends on properties of the Unicode characters as defined by the Unicode
consortium. Haskell compilers are expected to make use of new versions of Unicode as they
are made available.

2.2 Lexical Program Structure

program → { lexeme | whitespace }
lexeme → varid | conid | varsym | consym | literal | special | reservedop | reservedid
literal → integer | float | char | string
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special → ( | ) | , | ; | [ | ] | _ | ` | { | }

whitespace → whitestuff {whitestuff }
whitestuff → whitechar | comment | ncomment
whitechar → newline | return | linefeed | vertab | formfeed

| space | tab | UNIwhite
newline → a newline (system dependent)
return → a carriage return
linefeed → a line feed
space → a space
tab → a horizontal tab
vertab → a vertical tab
formfeed → a form feed
uniWhite → any UNIcode character defined as whitespace
comment → -- {any} newline
ncomment → {- ANYseq {ncomment ANYseq} -}
ANYseq → {ANY }〈{ANY } ( {- | -} ) {ANY }〉
ANY → any | newline | vertab | formfeed
any → graphic | space | tab | nonbrkspc
graphic → large | small | digit | symbol | special | : | " | ’

small → ASCsmall | UNIsmall
ASCsmall → a | b | . . . | z
UNIsmall → any Unicode lowercase letter

large → ASClarge | UNIlarge
ASClarge → A | B | . . . | Z
UNIlarge → any uppercase or titlecase Unicode letter
symbol → ASCsymbol | UNIsymbol
ASCsymbol → ! | # | $ | % | & | * | + | . | / | < | = | > | ? | @

| \ | ^ | | | - | ~
UNIsymbol → Any Unicode symbol or punctuation
digit → 0 | 1 | . . . | 9
udigit → digit | UNIdigit
UNIdigit → A Unicode numberic
octit → 0 | 1 | . . . | 7
hexit → digit | A | . . . | F | a | . . . | f

Characters not in the category ANY are not valid in Haskell programs and should result
in a lexing error. Comments are valid whitespace. An ordinary comment begins with two
consecutive dashes (--) and extends to the following newline. A nested comment begins
with {- and ends with -}; it can be between any two lexemes. All character sequences
not containing {- nor -} are ignored within a nested comment. Nested comments may
be nested to any depth: any occurrence of {- within the nested comment starts a new
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nested comment, terminated by -}. Within a nested comment, each {- is matched by a
corresponding occurrence of -}. In an ordinary comment, the character sequences {- and
-} have no special significance, and, in a nested comment, the sequence -- has no special
significance. Nested comments are used for compiler pragmas, as explained in Appendix E.

If some code is commented out using a nested comment, then any occurrence of {- or -}
within a string or within an end-of-line comment in that code will interfere with the nested
comments.

2.3 Identifiers and Operators

varid → (small {small | large | udigit | ’ | _})〈reservedid〉
conid → large {small | large | udigit | ’ | _}
reservedid → case | class | data | default | deriving | do | else

| if | import | in | infix | infixl | infixr | instance
| let | module | newtype | of | then | type | where

specialid → as | qualified | hiding

An identifier consists of a letter followed by zero or more letters, digits, underscores, and
single quotes. Identifiers are lexically distinguished into two classes: those that begin with
a lower-case letter (variable identifiers) and those that begin with an upper-case letter
(constructor identifiers). Identifiers are case sensitive: name, naMe, and Name are three
distinct identifiers (the first two are variable identifiers, the last is a constructor identifier).
Some identifiers, here indicated by specialid , have special meanings in certain contexts but
can be used as ordinary identifiers.

varsym → ( symbol {symbol | :} )〈reservedop〉
consym → (: {symbol | :})〈reservedop〉
reservedop → .. | :: | = | \ | | | <- | -> | @ | ~ | =>
specialop → - | !

Operator symbols are formed from one or more symbol characters, as defined above,
and are lexically distinguished into two classes: those that start with a colon (constructors)
and those that do not (functions). Some operators, here indicated by specialop, have special
meanings in certain contexts but can be used as ordinary operators.

The sequence -- immediately terminates a symbol; thus +--+ parses as the symbol +
followed by a comment.

Other than the special syntax for prefix negation, all operators are infix, although each
infix operator can be used in a section to yield partially applied operators (see Section 3.5).
All of the standard infix operators are just predefined symbols and may be rebound.

Although case is a reserved word, cases is not. Similarly, although = is reserved, == and
~= are not. At each point, the longest possible lexeme is read, using a context-independent



2.4 Numeric Literals 9

deterministic lexical analysis (i.e. no lookahead beyond the current character is required).
Any kind of whitespace is also a proper delimiter for lexemes.

In the remainder of the report six different kinds of names will be used:

varid (variables)
conid (constructors)
tyvar → varid (type variables)
tycon → conid (type constructors)
tycls → conid (type classes)
modid → conid (modules)

Variables and type variables are represented by identifiers beginning with small letters, and
the other four by identifiers beginning with capitals; also, variables and constructors have
infix forms, the other four do not. Namespaces are also discussed in Section 1.4.

External names may optionally be qualified in certain circumstances by prepending them
with a module identifier. This applies to variable, constructor, type constructor and type
class names, but not type variables or module names. Qualified names are discussed in
detail in Section 5.1.2.

qvarid → [modid .] varid
qconid → [modid .] conid
qtycon → [modid .] tycon
qtycls → [modid .] tycls
qvarsym → [modid .] varsym
qconsym → [modid .] consym

2.4 Numeric Literals

decimal → digit{digit}
octal → octit{octit}
hexadecimal→ hexit{hexit}

integer → decimal
| 0o octal | 0O octal
| 0x hexadecimal | 0X hexadecimal

float → decimal . decimal [(e | E)[- | +]decimal ]

There are two distinct kinds of numeric literals: integer and floating. Integer literals may
be given in decimal (the default), octal (prefixed by 0o or 0O) or hexadecimal notation
(prefixed by 0x or 0X). Floating literals are always decimal. A floating literal must contain
digits both before and after the decimal point; this ensures that a decimal point cannot be
mistaken for another use of the dot character. Negative numeric literals are discussed in
Section 3.4. The typing of numeric literals is discussed in Section 6.3.1.
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2.5 Character and String Literals

char → ’ (graphic〈’ | \〉 | space | escape〈\&〉) ’

string → " {graphic〈" | \〉 | space | escape | gap} "
escape → \ ( charesc | ascii | decimal | o octal | x hexadecimal )
charesc → a | b | f | n | r | t | v | \ | " | ’ | &
ascii → ^cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

cntrl → ASClarge | @ | [ | \ | ] | ^ | _
gap → \ whitechar {whitechar} \

Character literals are written between single quotes, as in ’a’, and strings between
double quotes, as in "Hello".

Escape codes may be used in characters and strings to represent special characters.
Note that a single quote ’ may be used in a string, but must be escaped in a character;
similarly, a double quote " may be used in a character, but must be escaped in a string.
\ must always be escaped. The category charesc also includes portable representations for
the characters “alert” (\a), “backspace” (\b), “form feed” (\f), “new line” (\n), “carriage
return” (\r), “horizontal tab” (\t), and “vertical tab” (\v).

Escape characters for the Unicode character set, including control characters such as \^X,
are also provided. Numeric escapes such as \137 are used to designate the character with
decimal representation 137; octal (e.g. \o137) and hexadecimal (e.g. \x37) representations
are also allowed. Numeric escapes that are out-of-range of the Unicode standard (16 bits)
are an error.

Consistent with the “consume longest lexeme” rule, numeric escape characters in strings
consist of all consecutive digits and may be of arbitrary length. Similarly, the one ambiguous
ASCII escape code, "\SOH", is parsed as a string of length 1. The escape character \& is
provided as a “null character” to allow strings such as "\137\&9" and "\SO\&H" to be
constructed (both of length two). Thus "\&" is equivalent to "" and the character ’\&’ is
disallowed. Further equivalences of characters are defined in Section 6.1.2.

A string may include a “gap”—two backslants enclosing white characters—which is
ignored. This allows one to write long strings on more than one line by writing a backslant
at the end of one line and at the start of the next. For example,

"Here is a backslant \\ as well as \137, \
\a numeric escape character, and \^X, a control character."

String literals are actually abbreviations for lists of characters (see Section 3.7).
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3 Expressions

In this section, we describe the syntax and informal semantics of Haskell expressions, includ-
ing their translations into the Haskell kernel, where appropriate. Except in the case of let
expressions, these translations preserve both the static and dynamic semantics. Some of the
names and symbols used in the syntax are not reserved. These are indicated by the ‘special’
productions in the lexical syntax. Examples include ! (used only in data declarations) and
as (used in import declarations).

Free variables and constructors used in these translations refer to entities defined by
the Prelude. To avoid clutter, we use True instead of Prelude.True or map instead of
Prelude.map. (Prelude.True is a qualified name as described in Section 5.1.2.)

In the syntax that follows, there are some families of nonterminals indexed by precedence
levels (written as a superscript). Similarly, the nonterminals op, varop, and conop may
have a double index: a letter l , r , or n for left-, right- or non-associativity and a precedence
level. A precedence-level variable i ranges from 0 to 9; an associativity variable a varies
over {l , r , n}. Thus, for example

aexp → ( expi+1 qop(a,i) )

actually stands for 30 productions, with 10 substitutions for i and 3 for a.

exp → exp0 :: [context =>] type (expression type signature)
| exp0

expi → expi+1 [qop(n,i) expi+1 ]
| lexpi

| rexpi

lexpi → (lexpi | expi+1 ) qop(l,i) expi+1

lexp6 → - exp7

rexpi → expi+1 qop(r,i) (rexpi | expi+1 )
exp10 → \ apat1 . . . apatn -> exp (lambda abstraction, n ≥ 1 )

| let decllist in exp (let expression)
| if exp then exp else exp (conditional)
| case exp of { alts [;] } (case expression)
| do { stmts [;] } (do expression)
| fexp

fexp → [fexp] aexp (function application)

aexp → qvar (variable)
| gcon (general constructor)
| literal
| ( exp ) (parenthesized expression)
| ( exp1 , . . . , expk ) (tuple, k ≥ 2 )
| [ exp1 , . . . , expk ] (list, k ≥ 1 )
| [ exp1 [, exp2 ] .. [exp3 ] ] (arithmetic sequence)
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Item Associativity

simple terms, parenthesized terms –
irrefutable patterns (~) –
as-patterns (@) right
function application left
do, if, let, lambda(\), case (leftwards) right
case (rightwards) right

infix operators, prec. 9 as defined
. . . . . .
infix operators, prec. 0 as defined

function types (->) right
contexts (=>) –
type constraints (::) –
do, if, let, lambda(\) (rightwards) right
sequences (..) –
generators (<-) –
grouping (,) n-ary
guards (|) –
case alternatives (->) –
definitions (=) –
separation (;) n-ary

Table 1: Precedence of expressions, patterns, definitions (highest to lowest)

| [ exp | qual1 , . . . , qualn ] (list comprehension, n ≥ 1 )
| ( expi+1 qop(a,i) ) (left section)
| ( qop(a,i) expi+1 ) (right section)
| qcon { fbind1 , . . . , fbindn } (labeled construction, n ≥ 0 )
| aexp{qcon} { fbind1 , . . . , fbindn } (labeled update, n ≥ 1 )

As an aid to understanding this grammar, Table 1 shows the relative precedence of
expressions, patterns and definitions, plus an extended associativity. − indicates that the
item is non-associative.

The grammar is ambiguous regarding the extent of lambda abstractions, let expressions,
and conditionals. The ambiguity is resolved by the metarule that each of these constructs
extends as far to the right as possible. As a consequence, each of these constructs has two
precedences, one to its left, which is the precedence used in the grammar; and one to its
right, which is obtained via the metarule. See the sample parses below.
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Expressions involving infix operators are disambiguated by the operator’s fixity (see
Section 5.6). Consecutive unparenthesized operators with the same precedence must both
be either left or right associative to avoid a syntax error. Given an unparenthesized ex-
pression “x qop(a,i) y qop(b,j ) z”, parentheses must be added around either “x qop(a,i) y”
or “y qop(b,j )z” when i = j unless a = b = l or a = b = r.

Negation is the only prefix operator in Haskell; it has the same precedence as the infix
- operator defined in the Prelude (see Figure 2, page 63).

The separation of function arrows from case alternatives solves the ambiguity that oth-
erwise arises when an unparenthesized function type is used in an expression, such as the
guard in a case expression.

Sample parses are shown below.

This Parses as
f x + g y (f x) + (g y)
- f x + y (- (f x)) + y
let { ... } in x + y let { ... } in (x + y)
z + let { ... } in x + y z + (let { ... } in (x + y))
f x y :: Int (f x y) :: Int
\ x -> a+b :: Int \ x -> ((a+b) :: Int)

For the sake of clarity, the rest of this section shows the syntax of expressions without
their precedences.

3.1 Errors

Errors during expression evaluation, denoted by⊥, are indistinguishable from non-termination.
Since Haskell is a lazy language, all Haskell types include ⊥. That is, a value of any type
may be bound to a computation that, when demanded, results in an error. When evalu-
ated, errors cause immediate program termination and cannot be caught by the user. The
Prelude provides two functions to directly cause such errors:

error :: String -> a
undefined :: a

A call to error terminates execution of the program and returns an appropriate error indi-
cation to the operating system. It should also display the string in some system-dependent
manner. When undefined is used, the error message is created by the compiler.

Translations of Haskell expressions use error and undefined to explicitly indicate where
execution time errors may occur. The actual program behavior when an error occurs is up
to the implementation. The messages passed to the error function in these translations
are only suggestions; implementations may choose to display more or less information when
an error occurs.



14 3 EXPRESSIONS

3.2 Variables, Constructors, and Operators

aexp → qvar (variable)
| gcon (general constructor)
| literal

gcon → ()
| []
| (,{,})
| qcon

qvar → qvarid | ( qvarsym ) (qualified variable)
qcon → qconid | ( qconsym ) (qualified constructor)

Alphanumeric operators are formed by enclosing an identifier between grave accents
(backquotes). Any variable or constructor may be used as an operator in this way. If fun
is an identifier (either variable or constructor), then an expression of the form fun x y is
equivalent to x `fuǹ y . If no fixity declaration is given for `fuǹ then it defaults to highest
precedence and left associativity (see Section 5.6).

Similarly, any symbolic operator may be used as a (curried) variable or constructor by
enclosing it in parentheses. If op is an infix operator, then an expression or pattern of the
form x op y is equivalent to (op) x y .

Qualified names may only be used to reference an imported variable or constructor (see
Section 5.1.2) but not in the definition of a new variable or constructor. Thus

let F.x = 1 in F.x -- invalid

incorrectly uses a qualifier in the definition of x, regardless of the module containing this
definition. Qualification does not affect the nature of an operator: F.+ is an infix operator
just as + is.

Special syntax is used to name some constructors for some of the built-in types, as found
in the production for gcon and literal . These are described in Section 6.1.

An integer literal represents the application of the function fromInteger to the appro-
priate value of type Integer. Similarly, a floating point literal stands for an application of
fromRational to a value of type Rational (that is, Ratio Integer).

Translation: The integer literal i is equivalent to fromInteger i , where fromInteger
is a method in class Num (see Section 6.3.1).
The floating point literal f is equivalent to fromRational (n Ratio.% d), where
fromRational is a method in class Fractional and Ratio.% constructs a rational
from two integers, as defined in the Ratio library. The integers n and d are chosen so
that n/d = f .
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3.3 Curried Applications and Lambda Abstractions

fexp → [fexp] aexp (function application)
exp → \ apat1 . . . apatn -> exp

Function application is written e1 e2 . Application associates to the left, so the parentheses
may be omitted in (f x) y. Because e1 could be a data constructor, partial applications
of data constructors are allowed.

Lambda abstractions are written \ p1 . . . pn -> e, where the pi are patterns. An ex-
pression such as \x:xs->x is syntactically incorrect, and must be rewritten as \(x:xs)->x.

The set of patterns must be linear—no variable may appear more than once in the set.

Translation: The lambda abstraction \ p1 . . . pn -> e is equivalent to

\ x1 . . . xn -> case (x1, . . . , xn) of (p1, . . . , pn) -> e

where the xi are new identifiers. Given this translation combined with the semantics of
case expressions and pattern matching described in Section 3.17.3, if the pattern fails
to match, then the result is ⊥.

3.4 Operator Applications

exp → exp1 qop exp2

| - exp (prefix negation)

The form e1 qop e2 is the infix application of binary operator qop to expressions e1 and
e2 .

The special form -e denotes prefix negation, the only prefix operator in Haskell, and is
syntax for negate (e). The binary - operator does not necessarily refer to the definition of
- in the Prelude; it may be rebound by the module system. However, unary - will always
refer to the negate function defined in the Prelude. There is no link between the local
meaning of the - operator and unary negation.

Prefix negation has the same precedence as the infix operator - defined in the Prelude
(see Table 2, page 63). Because e1-e2 parses as an infix application of the binary oper-
ator -, one must write e1(-e2) for the alternative parsing. Similarly, (-) is syntax for
(\ x y -> x-y), as with any infix operator, and does not denote (\ x -> -x)—one must
use negate for that.

Translation: e1 op e2 is equivalent to (op) e1 e2 . -e is equivalent to negate (e).
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3.5 Sections

aexp → ( exp qop )
| ( qop exp )

Sections are written as ( op e ) or ( e op ), where op is a binary operator and e is an
expression. Sections are a convenient syntax for partial application of binary operators.

The normal rules of syntactic precedence apply to sections; for example, (*a+b) is
syntactically invalid, but (+a*b) and (*(a+b)) are valid. Syntactic associativity, however,
is not taken into account in sections; thus, (a+b+) must be written ((a+b)+).

Because - is treated specially in the grammar, (- exp) is not a section, but an applica-
tion of prefix negation, as described in the preceding section. However, there is a subtract
function defined in the Prelude such that (subtract exp) is equivalent to the disallowed
section. The expression (+ (- exp)) can serve the same purpose.

Translation: For binary operator op and expression e, if x is a variable that does
not occur free in e, the section (op e) is equivalent to \ x -> x op e, and the section
(e op) is equivalent to (op) e.

3.6 Conditionals

exp → if exp1 then exp2 else exp3

A conditional expression has the form if e1 then e2 else e3 and returns the value of e2

if the value of e1 is True, e3 if e1 is False, and ⊥ otherwise.

Translation: if e1 then e2 else e3 is equivalent to:

case e1 of { True -> e2 ; False -> e3 }

where True and False are the two nullary constructors from the type Bool, as defined
in the Prelude.

3.7 Lists

aexp → [ exp1 , . . . , expk ] (k ≥ 1 )

Lists are written [e1, . . . , ek], where k ≥ 1 ; the empty list is written []. Standard
operations on lists are given in the Prelude (see Appendix A, notably Section A.1).
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Translation: [e1, . . . , ek] is equivalent to

e1 : (e2 : ( . . . (ek : [])))

where : and [] are constructors for lists, as defined in the Prelude (see Section 6.1.3).
The types of e1 through ek must all be the same (call it t), and the type of the overall
expression is [t] (see Section 4.1.1).

3.8 Tuples

aexp → ( exp1 , . . . , expk ) (k ≥ 2 )

Tuples are written (e1, . . . , ek), and may be of arbitrary length k ≥ 2 . Standard opera-
tions on tuples are given in the Prelude (see Appendix A).

Translation: (e1, . . . , ek) for k ≥ 2 is an instance of a k -tuple as defined in the
Prelude, and requires no translation. If t1 through tk are the types of e1 through ek ,
respectively, then the type of the resulting tuple is (t1, . . . , tk) (see Section 4.1.1).

3.9 Unit Expressions and Parenthesized Expressions

aexp → ()
| ( exp )

The form (e) is simply a parenthesized expression, and is equivalent to e. The unit expres-
sion () has type () (see Section 4.1.1); it is the only member of that type apart from ⊥ (it
can be thought of as the “nullary tuple”)—see Section 6.1.5.

Translation: (e) is equivalent to e.

3.10 Arithmetic Sequences

aexp → [ exp1 [, exp2 ] .. [exp3 ] ]

The form [e1, e2 .. e3] denotes an arithmetic sequence from e1 in increments of e2 − e1

of values not greater than e3 (if the increment is nonnegative) or not less than e3 (if the
increment is negative). Thus, the resulting list is empty if the increment is nonnegative and
e3 is less than e1 or if the increment is negative and e3 is greater than e1 . If the increment
is zero, an infinite list of e1 s results if e3 is not less than e1 . If e3 is omitted, the result
is an infinite list, unless the element type is finite, in which case the implied limit is the
greatest value of the type if the increment is nonnegative, or the least value, otherwise.
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The forms [e1.. e3] and [e1..] are similar to those above, but with an implied incre-
ment of one.

Arithmetic sequences may be defined over any type in class Enum, including Char, Int,
and Integer (see Figure 5 , page 67 and Section 4.3.3). For example, [’a’..’z’] denotes
the list of lowercase letters in alphabetical order.

Translation: Arithmetic sequences satisfy these identities:

[ e1.. ] = enumFrom e1

[ e1,e2.. ] = enumFromThen e1 e2

[ e1..e3 ] = enumFromTo e1 e3

[ e1,e2..e3 ] = enumFromThenTo e1 e2 e3

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are class methods
in the class Enum as defined in the Prelude (see Figure 5 , page 67 ).

3.11 List Comprehensions

aexp → [ exp | qual1 , . . . , qualn ] (list comprehension, n ≥ 1 )
qual → pat <- exp

| let decllist
| exp

A list comprehension has the form [ e | q1, . . . , qn ],n ≥ 1 , where the qi qualifiers are
either

• generators of the form p <- e, where p is a pattern (see Section 3.17) of type t and e
is an expression of type Monad m => m t

• guards, which are arbitrary expressions of type Bool

• local bindings that provide new definitions for use in the generated expression e or
subsequent guards and generators.

While list comprehensions are commonly used to generate lists, the definition of list
comprehensions uses monadic operations that can be used with other types besides lists.
This syntax provides a slightly more concise way of expressing some forms of do expressions
(see Section 3.14). For simplicity, we will describe this construct only as it applies to lists.

Such a list comprehension returns the list of elements produced by evaluating e in the
successive environments created by the nested, depth-first evaluation of the generators in
the qualifier list. Binding of variables occurs according to the normal pattern matching
rules (see Section 3.17), and if a match fails then that element of the list is simply skipped
over. Thus:

[ x | xs <- [ [(1,2),(3,4)], [(5,4),(3,2)] ],
(3,x) <- xs ]
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yields the list [4,2]. If a qualifier is a guard, it must evaluate to True for the previous
pattern match to succeed. As usual, bindings in list comprehensions can shadow those in
outer scopes; for example:

[ x | x <- x, x <- x ] = [ z | y <- x, z <- y]

Translation: List comprehensions satisfy these identities, which may be used as a
translation into the kernel:

[ e | q1 . . . qn ] = do {T (q1 );. . .;T (qn); return e}
T (b) = guard b
T (let decllist) = let decllist
T (p <- l) = p <- l

where e ranges over expressions, p ranges over patterns, l ranges over list-valued ex-
pressions, and b ranges over boolean expressions. The return and guard functions are
as defined in the Prelude.

As indicated by the translation of list comprehensions, variables bound by let have fully
polymorphic types while those defined by <- are lambda bound and are thus monomorphic
(see Section 4.5.4).

3.12 Let Expressions

exp → let decllist in exp

Let expressions have the general form let { d1 ; . . . ; dn } in e, and introduce a nested,
lexically-scoped, mutually-recursive list of declarations (let is often called letrec in other
languages). The scope of the declarations is the expression e and the right hand side of the
declarations. Declarations are described in Section 4. Pattern bindings are matched lazily;
an implicit ~ makes these patterns irrefutable. For example,

let (x,y) = undefined in e

does not cause an execution-time error until x or y is evaluated.
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Translation: The dynamic semantics of the expression let { d1 ; . . . ; dn } in e0

are captured by this translation: After removing all type signatures, each declaration
di is translated into an equation of the form pi = ei , where pi and ei are patterns
and expressions respectively, using the translation in Section 4.4.2. Once done, these
identities hold, which may be used as a translation into the kernel:

let {p1 = e1; ...; pn = en} in e0 = let (~p1,...,~pn) = (e1,...,en) in e0

let p = e1 in e0 = case e1 of ~p -> e0

where no variable in p appears free in e1

let p = e1 in e0 = let p = fix ( \ ~p -> e1) in e0

where fix is the least fixpoint operator. Note the use of the irrefutable patterns in the
second and third rules. This translation does not preserve the static semantics because
the use of case precludes a fully polymorphic typing of the bound variables. The static
semantics of the bindings in a let expression are described in Section 4.4.2.

3.13 Case Expressions

exp → case exp of { alts [;] }
alts → alt1 ; . . . ; altn (n ≥ 1 )
alt → pat -> exp [where decllist ]

| pat gdpat [where decllist ]

gdpat → gd -> exp [ gdpat ]
gd → | exp0

A case expression has the general form

case e of { p1 match1 ; . . . ; pn matchn }

where each matchi is of the general form

| gi1 -> ei1

. . .
| gimi -> eimi

where decllisti

Each alternative pi matchi consists of a pattern pi and its matches, matchi , which consists
of pairs of guards gij and bodies eij (expressions), as well as optional bindings (decllisti )
that scope over all of the guards and expressions of the alternative. An alternative of the
form

pat -> exp where decllist

is treated as shorthand for:
pat | True -> expr
where decllist
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A case expression must have at least one alternative and each alternative must have at
least one body. Each body must have the same type, and the type of the whole expression
is that type.

A case expression is evaluated by pattern matching the expression e against the in-
dividual alternatives. The matches are tried sequentially, from top to bottom. The first
successful match causes evaluation of the corresponding alternative body, in the environ-
ment of the case expression extended by the bindings created during the matching of that
alternative and by the decllisti associated with that alternative. If no match succeeds, the
result is ⊥. Pattern matching is described in Section 3.17, with the formal semantics of
case expressions in Section 3.17.3.

3.14 Do Expressions

exp → do { stmts [;]} (do expression)
stmts → exp [; stmts]

| pat <- exp ; stmts
| let decllist ; stmts

A do expression provides a more readable syntax for monadic programming.

Translation: Do expressions satisfy these identities, which may be used as a transla-
tion into the kernel:

do {e} = e
do {e;stmts} = e >> do {stmts}
do {p <- e; stmts} = e >>= \p -> do {stmts}

where p is failure-free
do {p <- e; stmts} = let ok p = do {stmts}

ok _ = zero
in e >>= ok

where p is not failure-free
do {let decllist; stmts} = let decllist in do {stmts}

>>, >>=, and zero are operations in the classes Monad and MonadZero, as defined in the
Prelude., and ok is a new identifier not appearing in p.

A failure-free pattern is one that can only be refuted by ⊥. Failure-free patterns are
defined as follows:

• All irrefutable patterns are failure-free (irrefutable patterns are described in Section
3.17.1).

• If C is the only constructor in its type, then C p1 . . . pn is failure-free when each of
the pi is failure free.
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• If pattern p is failure-free, then the pattern v@p is failure-free.

This translation requires a monad in class MonadZero if any pattern bound by <- is not
failure-free. Otherwise, only class methods from Monad are generated. Type errors resulting
from patterns that are not failure-free can be corrected by using ~ to force the pattern to
be failure-free.

As indicated by the translation of do, variables bound by let have fully polymorphic
types while those defined by <- are lambda bound and are thus monomorphic.

3.15 Datatypes with Field Labels

A datatype declaration may optionally include field labels for some or all of the components
of the type (see Section 4.2.1). Readers unfamiliar with datatype declarations in Haskell
may wish to read Section 4.2.1 first. These field labels can be used to construct, select from,
and update fields in a manner that is independent of the overall structure of the datatype.

Different datatypes cannot share common field labels in the same scope. A field label
can be used at most once in a constructor. Within a datatype, however, a field name can be
used in more than one constructor provided the field has the same typing in all constructors.

3.15.1 Field Selection

aexp → qvar

Field names are used as selector functions. When used as a variable, a field name serves
as a function that extracts the field from an object. Selectors are top level bindings and so
they may be shadowed by local variables but cannot conflict with other top level bindings of
the same name. This shadowing only affects selector functions; in other record constructs,
field labels cannot be confused with ordinary variables.

Translation: A field label f introduces a selector function defined as:

f x = case x of { C1 p11 . . . p1k -> e1 ; . . . ; Cn pn1 . . . pnk -> en }

where C1 . . . Cn are all the constructors of the datatype containing a field labeled with
f , pij is y when f labels the j th component of Ci or _ otherwise, and ei is y when some
field in Ci has a label of f or undefined otherwise.

3.15.2 Construction Using Field Labels

aexp → qcon { fbind1 , . . . , fbindn } (labeled construction, n ≥ 0 )
fbind → var | qvar = exp
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A constructor with labeled fields may be used to construct a value in which the components
are specified by name rather than by position. Unlike the braces used in declaration lists,
these are not subject to layout; the { and } characters must be explicit. (This is also true of
field updates and field patterns.) Construction using field names is subject to the following
constraints:

• Only field labels declared with the specified constructor may be mentioned.

• A field name may not be mentioned more than once.

• Fields not mentioned are initialized to ⊥.

• When the = exp is omitted and there is a variable with the same name as the field
label in scope, the field is initialized to the value of that variable.

• A compile-time error occurs when any strict fields (fields whose declared types are
prefixed by !) are omitted during construction. Strict fields are discussed in Sec-
tion 4.2.1.

Translation: In the binding f = v , the field f labels v . Any binding f that omits the
= v is expanded to f = f .

C { bs } = C (pickC
1 bs undefined) . . . (pickC

k bs undefined)

k is the arity of C .
The auxiliary function pickC

i bs d is defined as follows:

If the ith component of a constructor C has the field name f , and if f = v
appears in the binding list bs , then pickC

i bs d is v . Otherwise, pickC
i bs d

is the default value d .

3.15.3 Updates Using Field Labels

aexp → aexp〈qcon〉 { fbind1 , . . . , fbindn } (labeled update, n ≥ 1 )

Values belonging to a datatype with field names may be non-destructively updated. This
creates a new value in which the specified field values replace those in the existing value.
Updates are restricted in the following ways:

• All labels must be taken from the same datatype.

• At least one constructor must define all of the labels mentioned in the update.

• No label may be mentioned more than once.

• An execution error occurs when the value being updated does not contain all of the
specified labels.
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• When the = exp is omitted, the field is updated to the value of the variable in scope
with the same name as the field label.

Translation: Using the prior definition of pick ,

e { bs } = case e of
C1 v1 . . . vk1 -> C (pickC

1 bs v1 ) . . . (pickC
k bs vk1 )

...
Cj v1 . . . vkj

-> C (pickC
1 bs v1 ) . . . (pickC

k bs vkj
)

_ -> error "Update error"

where {C1 , . . . ,Cj } is the set of constructors containing all labels in b, and ki is the
arity of Ci .

Here are some examples using labeled fields:

data T = C1 {f1,f2 :: Int}
| C2 {f1 :: Int,

f3,f4 :: Char}

Expression Translation
C1 {f1 = 3} C1’ 3 undefined
C2 {f1 = 1, f4 = ’A’, f3 = ’B’} C2’ 1 ’B’ ’A’
x {f1 = 1} case x of C1’ _ f2 -> C1’ 1 f2

C2’ _ f3 f4 -> C2’ 1 f3 f4

The field f1 is common to both constructors in T. The constructors C1’ and C2’ are ‘hidden
constructors’, see the translation in Section 4.2.1. A compile-time error will result if no single
constructor defines the set of field names used in an update, such as x {f2 = 1, f3 = ’x’}.

3.16 Expression Type-Signatures

exp → exp :: [context =>] type

Expression type-signatures have the form e :: t , where e is an expression and t is a type
(Section 4.1.1); they are used to type an expression explicitly and may be used to resolve
ambiguous typings due to overloading (see Section 4.3.4). The value of the expression is
just that of exp. As with normal type signatures (see Section 4.4.1), the declared type may
be more specific than the principal type derivable from exp, but it is an error to give a type
that is more general than, or not comparable to, the principal type.

3.17 Pattern Matching

Patterns appear in lambda abstractions, function definitions, pattern bindings, list compre-
hensions, do expressions, and case expressions. However, the first five of these ultimately
translate into case expressions, so defining the semantics of pattern matching for case ex-
pressions is sufficient.



3.17 Pattern Matching 25

3.17.1 Patterns

Patterns have this syntax:

pat → var + integer (successor pattern)
pat | pat0

pat i → pat i+1 [qconop(n,i) pat i+1 ]
| lpat i

| rpat i

lpat i → (lpat i | pat i+1 ) qconop(l,i) pat i+1

lpat6 → - (integer | float) (negative literal)
rpat i → pat i+1 qconop(r,i) (rpat i | pat i+1 )
pat10 → apat

| gcon apat1 . . . apatk (arity gcon = k , k ≥ 1 )

apat → var [ @ apat ] (as pattern)
| gcon (arity gcon = 0 )
| qcon { fpat1 , . . . , fpatk } (labeled pattern, k ≥ 0 )
| literal
| _ (wildcard)
| ( pat ) (parenthesized pattern)
| ( pat1 , . . . , patk ) (tuple pattern, k ≥ 2 )
| [ pat1 , . . . , patk ] (list pattern, k ≥ 1 )
| ~ apat (irrefutable pattern)

fpat → var = pat
| var

The arity of a constructor must match the number of sub-patterns associated with it; one
cannot match against a partially-applied constructor.

All patterns must be linear —no variable may appear more than once.

Patterns of the form var@pat are called as-patterns, and allow one to use var as a name
for the value being matched by pat . For example,

case e of { xs@(x:rest) -> if x==0 then rest else xs }

is equivalent to:

let { xs = e } in
case xs of { (x:rest) -> if x==0 then rest else xs }

Patterns of the form _ are wildcards and are useful when some part of a pattern is not
referenced on the right-hand-side. It is as if an identifier not used elsewhere were put in its
place. For example,

case e of { [x,_,_] -> if x==0 then True else False }
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is equivalent to:

case e of { [x,y,z] -> if x==0 then True else False }

In the pattern matching rules given below we distinguish two kinds of patterns: an
irrefutable pattern is: a variable, a wildcard, N apat where N is a constructor defined by
newtype and apat is irrefutable (see Section 4.2.3), var@apat where apat is irrefutable, or
of the form ~apat (whether or not apat is irrefutable). All other patterns are refutable.

3.17.2 Informal Semantics of Pattern Matching

Patterns are matched against values. Attempting to match a pattern can have one of three
results: it may fail ; it may succeed, returning a binding for each variable in the pattern; or
it may diverge (i.e. return ⊥). Pattern matching proceeds from left to right, and outside to
inside, according to these rules:

1. Matching a value v against the irrefutable pattern var always succeeds and binds var
to v . Similarly, matching v against the irrefutable pattern ~apat always succeeds.
The free variables in apat are bound to the appropriate values if matching v against
apat would otherwise succeed, and to ⊥ if matching v against apat fails or diverges.
(Binding does not imply evaluation.)

Matching any value against the wildcard pattern _ always succeeds and no binding is
done.

Operationally, this means that no matching is done on an irrefutable pattern until one
of the variables in the pattern is used. At that point the entire pattern is matched
against the value, and if the match fails or diverges, so does the overall computation.

2. Matching a value con v against the pattern con pat , where con is a constructor defined
by newtype, is equivalent to matching v against the pattern pat . That is, constructors
associated with newtype serve only to change the type of a value.

3. Matching ⊥ against a refutable pattern always diverges.

4. Matching a non-⊥ value can occur against three kinds of refutable patterns:

(a) Matching a non-⊥ value against a pattern whose outermost component is a con-
structor defined by data fails if the value being matched was created by a differ-
ent constructor. If the constructors are the same, the result of the match is the
result of matching the sub-patterns left-to-right against the components of the
data value: if all matches succeed, the overall match succeeds; the first to fail or
diverge causes the overall match to fail or diverge, respectively.

(b) Numeric literals are matched using the overloaded == function. The behavior of
numeric patterns depends entirely on the definition of == for the type of object
being matched.
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(c) Matching a non-⊥ value x against a pattern of the form n+k (where n is a variable
and k is a positive integer literal) succeeds if x ≥ k , resulting in the binding of
n to x − k , and fails if x < k . The behavior of n+k patterns depends entirely on
the underlying definitions of >=, fromInteger, and - for the type of the object
being matched.

5. Matching against a constructor using labeled fields is the same as matching ordinary
constructor patterns except that the fields are matched in the order they are named
in the field list. All fields listed must be declared by the constructor; fields may not
be named more than once. Fields not named by the pattern are ignored (matched
against _).

6. The result of matching a value v against an as-pattern var@apat is the result of
matching v against apat augmented with the binding of var to v . If the match of v
against apat fails or diverges, then so does the overall match.

Aside from the obvious static type constraints (for example, it is a static error to match
a character against a boolean), these static class constraints hold: an integer literal pattern
can only be matched against a value in the class Num and a floating literal pattern can only
be matched against a value in the class Fractional. A n+k pattern can only be matched
against a value in the class Integral.

Many people feel that n+k patterns should not be used. These patterns may be removed
or changed in future versions of Haskell. Compilers should support a flag that disables the
use of these patterns.

Here are some examples:

1. If the pattern [1,2] is matched against [0,⊥], then 1 fails to match against 0, and
the result is a failed match. But if [1,2] is matched against [⊥,0], then attempting
to match 1 against ⊥ causes the match to diverge.

2. These examples demonstrate refutable vs. irrefutable matching:

(\ ~(x,y) -> 0) ⊥ ⇒ 0
(\ (x,y) -> 0) ⊥ ⇒ ⊥

(\ ~[x] -> 0) [] ⇒ 0
(\ ~[x] -> x) [] ⇒ ⊥

(\ ~[x,~(a,b)] -> x) [(0,1),⊥] ⇒ (0,1)
(\ ~[x, (a,b)] -> x) [(0,1),⊥] ⇒ ⊥

(\ (x:xs) -> x:x:xs) ⊥ ⇒ ⊥
(\ ~(x:xs) -> x:x:xs) ⊥ ⇒ ⊥:⊥:⊥

Additional examples illustrating some of the subtleties of pattern matching may be found
in Section 4.2.3.
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(a) case e of { alts } = (\v -> case v of { alts }) e
where v is a completely new variable

(b) case v of { p1 match1; . . . ; pn matchn }
= case v of { p1 match1 ;

_ -> . . . case v of {
pn matchn
_ -> error "No match" }. . .}

where each matchi has the form:
| gi,1 -> ei,1 ; . . . ; | gi,mi -> ei,mi where { declsi }

(c) case v of { p | g1 -> e1 ; . . .
| gn -> en where { decls }

_ -> e′ }
= case e′ of
{y -> (where y is a completely new variable)
case v of {

p -> let { decls } in
if g1 then e1 . . . else if gn then en else y

_ -> y }}

(d) case v of { ~p -> e; _ -> e′ }
= (\x′1 . . . x

′
n -> e1 ) (case v of { p-> x1 }) . . . (case v of { p -> xn})

where e1 = e [x′1/x1, . . . , x
′
n/xn]

x1, . . . , xn are all the variables in p; x′1, . . . , x
′
n are completely new variables

(e) case v of { x@p -> e; _ -> e′ }
= case v of { p -> ( \ x -> e ) v ; _ -> e′ }

(f) case v of { _ -> e; _ -> e′ } = e

Figure 3: Semantics of Case Expressions, Part 1

Top level patterns in case expressions and the set of top level patterns in function or
pattern bindings may have zero or more associated guards. A guard is a boolean expression
that is evaluated only after all of the arguments have been successfully matched, and it
must be true for the overall pattern match to succeed. The environment of the guard is
the same as the right-hand-side of the case-expression alternative, function definition, or
pattern binding to which it is attached.

The guard semantics have an obvious influence on the strictness characteristics of a
function or case expression. In particular, an otherwise irrefutable pattern may be evaluated
because of a guard. For example, in

f ~(x,y,z) [a] | a==y = 1

both a and y will be evaluated by a standard definition of ==.
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3.17.3 Formal Semantics of Pattern Matching

The semantics of all pattern matching constructs other than case expressions are defined
by giving identities that relate those constructs to case expressions. The semantics of
case expressions themselves are in turn given as a series of identities, in Figures 3–4. Any
implementation should behave so that these identities hold; it is not expected that it will
use them directly, since that would generate rather inefficient code.

In Figures 3–4: e, e ′ and ei are expressions; g and gi are boolean-valued expressions;
p and pi are patterns; v , x , and xi are variables; K and K ′ are algebraic datatype (data)
constructors (including tuple constructors); N is a newtype constructor;

and k is a character, string, or numeric literal.

Rule (b) matches a general source-language case expression, regardless of whether it
actually includes guards—if no guards are written, then True is substituted for the guards
gi ,j in the matchi forms. Subsequent identities manipulate the resulting case expression
into simpler and simpler forms.

Rule (h) in Figure 4 involves the overloaded operator ==; it is this rule that defines the
meaning of pattern matching against overloaded constants.

These identities all preserve the static semantics. Rules (d), (e), and (j) use a lambda
rather than a let; this indicates that variables bound by case are monomorphically typed
(Section 4.1.3).
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(g) case v of { K p1 . . . pn -> e; _ -> e′ }
= case v of {

K x1 . . . xn -> case x1 of {
p1 -> . . . case xn of { pn -> e ; _ -> e′ } . . .
_ -> e′ }

_ -> e′ }

at least one of p1, . . . , pn is not a variable; x1, . . . , xn are new variables

(h) case v of { k -> e; _ -> e′ } = if (v==k) then e else e′

(i) case v of { x -> e; _ -> e′ } = case v of { x -> e }

(j) case v of { x -> e } = ( \ x -> e ) v

(k) case N v of { N p -> e; _ -> e′ }
= case v of { p -> e; _ -> e′ }
where N is a newtype constructor

(l) case ⊥ of { N p -> e; _ -> e′ } = case ⊥ of { p -> e }
where N is a newtype constructor

(m) case v of { K { f1 = p1 , f2 = p2 , . . . } -> e ; _ -> e′ }
= case e′ of {

y ->
case v of {
K { f1 = p1 } ->

case v of { K { f2 = p2 , . . . } -> e ; _ -> y };
_ -> y }}

where f1, f2, . . . are fields of constructor K; y is a new variable

(n) case v of { K { f = p } -> e ; _ -> e′ }
= case v of {

K p1 . . . pn -> e ; _ -> e′ }
where pi is p if f labels the ith component of K, _ otherwise

(o) case v of { K {} -> e ; _ -> e′ }
= case v of {

K _ . . . _ -> e ; _ -> e′ }
(p) case (K ′ e1 . . . em) of { K x1 . . . xn -> e; _ -> e′ } = e′

where K and K ′ are distinct data constructors of arity n and m, respectively

(q) case (K e1 . . . en) of { K x1 . . . xn -> e; _ -> e′ }
= case e1 of { x′1 -> . . . case en of { x′n -> e[x′1/x1 . . . x

′
n/xn] }. . .}

where K is a constructor of arity n; x′1 . . . x
′
n are completely new variables

(r) case e0 of { x+k -> e; _ -> e′ }
= if e0 >= k then let {x′ = e0-k} in e[x′/x] else e′ (x′ is a new variable)

Figure 4: Semantics of Case Expressions, Part 2
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4 Declarations and Bindings

In this section, we describe the syntax and informal semantics of Haskell declarations.

module → module modid [exports] where body
| body

body → { [impdecls ;] [[fixdecls ;] topdecls [;]] }
| { impdecls [;] }

topdecls → topdecl1 ; . . . ; topdecln (n ≥ 0 )
topdecl → type simpletype = type

| data [context =>] simpletype = constrs [deriving ]
| newtype [context =>] simpletype = con atype [deriving ]
| class [context =>] simpleclass [where { cbody [;] }]
| instance [context =>] qtycls inst [where { valdefs [;] }]
| default (type1 , . . . , typen) (n ≥ 0 )
| decl

decls → decl1 ; . . . ; decln (n ≥ 0 )
decl → signdecl

| valdef
decllist → { decls [;] }

signdecl → vars :: [context =>] type

vars → var1 , . . . , varn (n ≥ 1 )

The declarations in the syntactic category topdecls are only allowed at the top level of
a Haskell module (see Section 5), whereas decls may be used either at the top level or in
nested scopes (i.e. those within a let or where construct).

For exposition, we divide the declarations into three groups: user-defined datatypes,
consisting of type, newtype, and data declarations (Section 4.2); type classes and over-
loading, consisting of class, instance, and default declarations (Section 4.3); and nested
declarations, consisting of value bindings and type signatures (Section 4.4).

Haskell has several primitive datatypes that are “hard-wired” (such as integers and
floating-point numbers), but most “built-in” datatypes are defined with normal Haskell
code, using normal type and data declarations. These “built-in” datatypes are described
in detail in Section 6.1.

4.1 Overview of Types and Classes

Haskell uses a traditional Hindley-Milner polymorphic type system to provide a static type
semantics [3, 4], but the type system has been extended with type and constructor classes
(or just classes) that provide a structured way to introduce overloaded functions.
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A class declaration (Section 4.3.1) introduces a new type class and the overloaded
operations that must be supported by any type that is an instance of that class. An
instance declaration (Section 4.3.2) declares that a type is an instance of a class and
includes the definitions of the overloaded operations—called class methods—instantiated
on the named type.

For example, suppose we wish to overload the operations (+) and negate on types Int
and Float. We introduce a new type class called Num:

class Num a where -- simplified class declaration for Num
(+) :: a -> a -> a
negate :: a -> a

This declaration may be read “a type a is an instance of the class Num if there are (over-
loaded) class methods (+) and negate, of the appropriate types, defined on it.”

We may then declare Int and Float to be instances of this class:

instance Num Int where -- simplified instance of Num Int
x + y = addInt x y
negate x = negateInt x

instance Num Float where -- simplified instance of Num Float
x + y = addFloat x y
negate x = negateFloat x

where addInt, negateInt, addFloat, and negateFloat are assumed in this case to be
primitive functions, but in general could be any user-defined function. The first declaration
above may be read “Int is an instance of the class Num as witnessed by these definitions
(i.e. class methods) for (+) and negate.”

More examples of type and constructor classes can be found in the papers by Jones [6]
or Wadler and Blott [11]. The term ‘type class’ was used to describe the original Haskell
1.0 type system; ‘constructor class’ was used to describe an extension to the original type
classes. There is no longer any reason to use two different terms: in this report, ‘type class’
includes both the original Haskell type classes and the constructor classes introduced by
Jones.

4.1.1 Syntax of Types

type → btype [-> type] (function type)

btype → [btype] atype (type application)

atype → gtycon
| tyvar
| ( type1 , . . . , typek ) (tuple type, k ≥ 2 )
| [ type ] (list type)
| ( type ) (parenthesised constructor)
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gtycon → qtycon
| () (unit type)
| [] (list constructor)
| (->) (function constructor)
| (,{,}) (tupling constructors)

The syntax for Haskell type expressions is given above. Just as data values are built using
data constructors, type values are built from type constructors . As with data constructors,
the names of type constructors start with uppercase letters.

To ensure that they are valid, type expressions are classified into different kinds, which
take one of two possible forms:

• The symbol ∗ represents the kind of all nullary type constructors.

• If κ1 and κ2 are kinds, then κ1 → κ2 is the kind of types that take a type of kind κ1

and return a type of kind κ2.

The main forms of type expression are as follows:

1. Type variables, written as identifiers beginning with a lowercase letter. The kind of a
variable is determined implicitly by the context in which it appears.

2. Type constructors. Most type constructors are written as identifiers beginning with
an uppercase letter. For example:

• Char, Int, Integer, Float, Double and Bool are type constants with kind ∗.
• Maybe and IO are unary type constructors, and treated as types with kind ∗ → ∗.
• The declarations data T ... or newtype T ... add the type constructor T to

the type vocabulary. The kind of T is determined by kind inference.

Special syntax is provided for some type constructors:

• The trivial type is written as () and has kind ∗. It denotes the “nullary tuple”
type, and has exactly one value, also written () (see Sections 3.9 and 6.1.5).

• The function type is written as (->) and has kind ∗ → ∗ → ∗.
• The list type is written as [] and has kind ∗ → ∗.
• The tuple types are written as (,), (,,), and so on. Their kinds are ∗ → ∗ → ∗,
∗ → ∗ → ∗ → ∗, and so on.

Use of the (->) and [] constants is described in more detail below.

3. Type application. If t1 is a type of kind κ1 → κ2 and t2 is a type of kind κ1, then
t1 t2 is a type expression of kind κ2.

4. A parenthesized type, having form (t), is identical to the type t .
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For example, the type expression IO a can be understood as the application of a constant,
IO, to the variable a. Since the IO type constructor has kind ∗ → ∗, it follows that both
the variable a and the whole expression, IO a, must have kind ∗. In general, a process of
kind inference (see Section 4.6) is needed to determine appropriate kinds for user-defined
datatypes, type synonyms, and classes.

Special syntax is provided to allow certain type expressions to be written in a more
traditional style:

1. A function type has the form t1 -> t2 , which is equivalent to the type (->) t1 t2 .
Function arrows associate to the right.

2. A tuple type has the form (t1, . . . , tk) where k ≥ 2 , which is equivalent to the type
(,. . . ,) t1 . . . tk where there are k − 1 commas between the parenthesis. It denotes
the type of k -tuples with the first component of type t1 , the second component of
type t2 , and so on (see Sections 3.8 and 6.1.4).

3. A list type has the form [t], which is equivalent to the type [] t . It denotes the type
of lists with elements of type t (see Sections 3.7 and 6.1.3).

Although the tuple, list, and function types have special syntax, they are not different from
user-defined types with equivalent functionality.

Expressions and types have a consistent syntax. If ti is the type of expression or pattern
ei , then the expressions (\ e1 -> e2), [e1], and (e1 , e2) have the types (t1 -> t2), [t1],
and (t1 , t2), respectively.

With one exception, the type variables in a Haskell type expression are all assumed to
be universally quantified; there is no explicit syntax for universal quantification [3]. For
example, the type expression a -> a denotes the type ∀ a. a → a. For clarity, however,
we often write quantification explicitly when discussing the types of Haskell programs.

The exception referred to is that of the distinguished type variable in a class declaration
(Section 4.3.1).

4.1.2 Syntax of Class Assertions and Contexts

context → class
| ( class1 , . . . , classn ) (n ≥ 1 )

class → qtycls tyvar
simpleclass → tycls tyvar
tycls → conid
tyvar → varid

A class assertion has form qtycls tyvar , and indicates the membership of the parameterized
type tyvar in the class qtycls . A class identifier begins with an uppercase letter.
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A context consists of one or more class assertions, and has the general form

( C1 u1 , . . . , Cn un )

where C1 , . . . , Cn are class identifiers, and u1 , . . . , un are type variables; the parentheses
may be omitted when n = 1 . In general, we use c to denote a context and we write c => t
to indicate the type t restricted by the context c. The context c must only contain type
variables referenced in t . For convenience, we write c => t even if the context c is empty,
although in this case the concrete syntax contains no =>.

4.1.3 Semantics of Types and Classes

In this subsection, we provide informal details of the type system. (Wadler and Blott [11]
and Jones [6] discuss type and constructor classes, respectively, in more detail.)

The Haskell type system attributes a type to each expression in the program. In general,
a type is of the form ∀ u. c ⇒ t , where u is a set of type variables u1 , . . . , un . In any
such type, any of the universally-quantified type variables ui that are free in c must also be
free in t . Furthermore, the context c must be of the form given above in Section 4.1.2; that
is, it must have the form (C1 u1 , . . . , Cn un) where C1 , . . . , Cn are class identifiers, and
u1 , . . . , un are type variables.

The type of an expression e depends on a type environment that gives types for the
free variables in e, and a class environment that declares which types are instances of
which classes (a type becomes an instance of a class only via the presence of an instance
declaration or a deriving clause).

Types are related by a generalization order (specified below); the most general type that
can be assigned to a particular expression (in a given environment) is called its principal
type. Haskell’s extended Hindley-Milner type system can infer the principal type of all ex-
pressions, including the proper use of overloaded class methods (although certain ambiguous
overloadings could arise, as described in Section 4.3.4). Therefore, explicit typings (called
type signatures) are usually optional (see Sections 3.16 and 4.4.1).

The type ∀ u. c1 ⇒ t1 is more general than the type ∀ w . c2 ⇒ t2 if and only if
there is a substitution S whose domain is u such that:

• t2 is identical to S (t1 ).

• Whenever c2 holds in the class environment, S (c1 ) also holds.

The main point about contexts above is that, given the type ∀ u. c ⇒ t , the presence of
C ui in the context c expresses the constraint that the type variable ui may be instantiated
as t ′ within the type expression t only if t ′ is a member of the class C . For example, consider
the function double:

double x = x + x

The most general type of double is ∀ a. Num a ⇒ a → a. double may be applied to
values of type Int (instantiating a to Int), since Int is an instance of the class Num. However,
double may not be applied to values of type Char, because Char is not an instance of class
Num.
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4.2 User-Defined Datatypes

In this section, we describe algebraic datatypes (data declarations), renamed datatypes
(newtype declarations), and type synonyms (type declarations). These declarations may
only appear at the top level of a module.

4.2.1 Algebraic Datatype Declarations

topdecl → data [context =>] simpletype = constrs [deriving ]

simpletype → tycon tyvar1 . . . tyvark (k ≥ 0 )

constrs → constr1 | . . . | constrn (n ≥ 1 )
constr → con [!] atype1 . . . [!] atypek (arity con = k , k ≥ 0 )

| (btype | ! atype) conop (btype | ! atype) (infix conop)
| con { fielddecl1 , . . . , fielddecln } (n ≥ 1 )

fielddecl → vars :: (type | ! atype)

deriving → deriving (dclass | (dclass1 , . . . , dclassn))(n ≥ 0 )
dclass → qtycls

The precedence for constr is the same as that for expressions—normal constructor appli-
cation has higher precedence than infix constructor application (thus a : Foo a parses as
a : (Foo a)).

An algebraic datatype declaration introduces a new type and constructors over that
type and has the form:

data c => T u1 . . . uk = K1 t11 . . . t1k1 | · · · | Kn tn1 . . . tnkn

where c is a context. This declaration introduces a new type constructor T with constituent
data constructors K1 , . . . , Kn whose types are given by:

Ki :: ∀ u1 . . . uk . ci ⇒ ti1 → · · · → tiki
→ (T u1 . . . uk )

where ci is the largest subset of c that constrains only those type variables free in the types
ti1 , . . . , tiki

. The type variables u1 through uk must be distinct and may appear in c and
the tij ; it is a static error for any other type variable to appear in c or on the right-hand-side.
The new type constant T has a kind of the form κ1 → . . .→ κk → ∗ where the kinds κi of
the argument variables ui are determined by kind inference as described in Section 4.6. This
means that T may be used in type expressions with anywhere between 0 and k arguments.

For example, the declaration

data Eq a => Set a = NilSet | ConsSet a (Set a)

introduces a type constructor Set of kind ∗ → ∗, and constructors NilSet and ConsSet
with types

NilSet :: ∀ a. Set a
ConsSet :: ∀ a. Eq a ⇒ a → Set a → Set a
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In the example given, the overloaded type for ConsSet ensures that ConsSet can only
be applied to values whose type is an instance of the class Eq. The context in the data
declaration has no other effect whatsoever.

The visibility of a datatype’s constructors (i.e. the “abstractness” of the datatype) out-
side of the module in which the datatype is defined is controlled by the form of the datatype’s
name in the export list as described in Section 5.5.

The optional deriving part of a data declaration has to do with derived instances, and
is described in Section 4.3.3.

Labeled Fields A data constructor of arity k creates an object with k components. These
components are normally accessed positionally as arguments to the constructor in expres-
sions or patterns. For large datatypes it is useful to assign field labels to the components
of a data object. This allows a specific field to be referenced independently of its location
within the constructor.

A constructor definition in a data declaration using the { } syntax assigns labels to the
components of the constructor. Constructors using field labels may be freely mixed with
constructors without them. A constructor with associated field labels may still be used as
an ordinary constructor; features using labels are simply a shorthand for operations using
an underlying positional constructor. The arguments to the positional constructor occur in
the same order as the labeled fields. For example, the declaration

data C = F { f1,f2 :: Int, f3 :: Bool}

defines a type and constructor identical to the one produced by

data C = F Int Int Bool

Operations using field labels are described in Section 3.15. A data declaration may use
the same field label in multiple constructors as long as the typing of the field is the same
in all cases after type synonym expansion. A label cannot be shared by more than one
type in scope. Field names share the top level namespace with ordinary variables and class
methods and must not conflict with other top level names in scope.

Strictness Flags Whenever a data constructor is applied, each argument to the construc-
tor is evaluated if and only if the corresponding type in the algebraic datatype declaration
has a strictness flag (!).
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Translation: A declaration of the form

data c => T u1 . . . uk = . . . | K s1 . . . sn | . . .

where each si is either of the form !ti or ti , replaces every occurance of K in an
expression by

(\ x1 . . . xn -> ( ((K op1 x1 ) op2 x2 ) . . . ) opn xn)

where opi is the lazy apply function $ if si is of the form ti , and opi is the strict apply
function ‘strict‘ (see Section 6.2.7) if si is of the form ! ti . Pattern matching on K
is not affected by strictness flags.

Strictness flags may require the explicit inclusion of an Eval context in a data declaration
(see Section 6.2.7). This occurs precisely when the context of a strict function used in the
above translation propagates to a type variable. For example, in

data (Eval a) => Pair a b = MakePair !a b

the class assertion (Eval a) is required by the use of strict in the translation of the
constructor MakePair. This context must be explicitly supplied by the programmer. The
Eval context may be implied by a more general one; for example, the Num class includes
Eval as a superclass to avoid mentioning Eval in the following:

data (Integral a) => Rational a = !a :% !a -- Rational library

For some types, the Eval context may not be expressible (see Section 4.5.3. For example,
in

data T a b = T !(a b)

the context Eval (a b) would be required. Since this context is not legal, the strictness
flag cannot be used in this situation.

4.2.2 Type Synonym Declarations

topdecl → type simpletype = type
simpletype → tycon tyvar1 . . . tyvark (k ≥ 0 )

A type synonym declaration introduces a new type that is equivalent to an old type. It has
the form

type T u1 . . . uk = t

which introduces a new type constructor, T . The type (T t1 . . . tk ) is equivalent to the type
t [t1/u1 , . . . , tk/uk ]. The type variables u1 through uk must be distinct and are scoped
only over t ; it is a static error for any other type variable to appear in t . The kind of
the new type constructor T is of the form κ1 → . . . → κk → κ where the kinds κi of the
arguments ui and κ of the right hand side t are determined by kind inference as described
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in Section 4.6. For example, the following definition can be used to provide an alternative
way of writing the list type constructor:

type List = []

Type constructor symbols T introduced by type synonym declarations cannot be partially
applied; it is a static error to use T without the full number of arguments.

Although recursive and mutually recursive datatypes are allowed, this is not so for type
synonyms, unless an algebraic datatype intervenes. For example,

type Rec a = [Circ a]
data Circ a = Tag [Rec a]

is allowed, whereas

type Rec a = [Circ a] -- invalid
type Circ a = [Rec a] --

is not. Similarly, type Rec a = [Rec a] is not allowed.

Type synonyms are a strictly syntactic mechanism to make type signatures more read-
able. A synonym and its definition are completely interchangeable.

4.2.3 Datatype Renamings

topdecl → newtype [context =>] simpletype = con atype [deriving ]
simpletype → tycon tyvar1 . . . tyvark (k ≥ 0 )

A declaration of the form

newtype c => T u1 . . . uk = N t

introduces a new type whose representation is the same as an existing type. The type
( T u1 . . . uk ) renames the datatype t . It differs from a type synonym in that it creates
a distinct type that must be explicitly coerced to or from the original type. Also, unlike
type synonyms, newtype may be used to define recursive types. The constructor N in an
expression coerces a value from type t to type ( T u1 . . . uk ). Using N in a pattern
coerces a value from type ( T u1 . . . uk) to type t . These coercions may be implemented
without execution time overhead; newtype does not change the underlying representation
of an object.

New instances (see Section 4.3.2) can be defined for a type defined by newtype but may
not be defined for a type synonym. A type created by newtype differs from an algebraic
datatype in that the representation of an algebraic datatype has an extra level of indirection.
This difference makes access to the representation less efficient. The difference is reflected
in different rules for pattern matching (see Section 3.17). Unlike algebraic datatypes, the
newtype constructor N is unlifted, so that N ⊥ is the same as ⊥.

The following examples clarify the differences between data (algebraic datatypes), type
(type synonyms), and newtype (renaming types.) Given the declarations
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data D1 = D1 Int
data D2 = D2 !Int
type S = Int
newtype N = N Int
d1 (D1 i) = 42
d2 (D2 i) = 42
s i = 42
n (N i) = 42

the expressions ( d1 ⊥ ), ( d2 ⊥ ) and (d2 (D2 ⊥ ) ) are all equivalent to ⊥, whereas
( n ⊥ ), ( n ( N ⊥ ) ), ( d1 ( D1 ⊥ ) ) and ( s ⊥ ) are all equivalent to 42. In partic-
ular, ( N ⊥ ) is equivalent to ⊥ while ( D1 ⊥ ) is not equivalent to ⊥.

The optional deriving part of a newtype declaration is treated in the same way as the
deriving component of a data declaration; see Section 4.3.3.

Every type, both those declared by data and newtype, is made an instance of the Eval
class by an implicit derived instance declaration for Eval (see Section 6.2.7). It is as if there
was an implicit “deriving(Eval)” on every type declaration. For newtype, the instance
declaration has the form

instance CEval => Eval (T u1 . . . uk) where
(N x) ‘seq‘ y = x ‘seq‘ y

where CEval is the context obtained by simplifying Eval t . For example, the declaration

newtype Age = MkAge Int

gives rise to the instance declaration

instance Eval Age where
(MkAge x) ‘seq‘ y = x ‘seq‘ y

since simplifying Eval Int yields the empty context. On the other hand,

newtype Id a = MkId a

gives rise to

instance Eval a => Eval (Id a) where
(MkId a) ‘seq‘ b = a ‘seq‘ b

This derived instance may lead to a context reduction error (see Section 4.5.3). A static
error occurs when it is not possible to find CEval for a newtype declaration (just as with
other derived instances). For example

newtype T a = MkT (a Int)

is illegal, because one cannot reduce the context Eval (a Int). The derived Eval instance
for data declarations has an empty context and thus will never generate static errors. Types
that cannot be renamed by newtype due to this context problem are the same as those that
cannot be marked as strict in a data declaration (see Section 4.2.1).
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4.3 Type Classes and Overloading

4.3.1 Class Declarations

topdecl → class [context =>] simpleclass [where { cbody [;] }]
cbody → [ cmethods [ ; cdefaults ] ]
cmethods → signdecl1 ; . . . ; signdecln (n ≥ 1 )
cdefaults → valdef1 ; . . . ; valdefn (n ≥ 1 )

A class declaration introduces a new class and the operations (class methods) on it. A class
declaration has the general form:

class c => C u where { v1 :: c1 => t1 ; . . . ; vn :: cn => tn ;
valdef1 ; . . . ; valdefm }

This introduces a new class name C ; the type variable u is scoped only over the class method
signatures in the class body. The context c specifies the superclasses of C , as described
below; the only type variable that may be referred to in c is u. The class declaration intro-
duces new class methods v1 , . . . , vn , whose scope extends outside the class declaration,
with types:

vi :: ∀u,w. (Cu, ci)⇒ ti

The ti must mention u; they may mention type variables w other than u, and the type of
vi is polymorphic in both u and w . The ci may constrain only w ; in particular, the ci may
not constrain u. For example:

class Foo a where
op :: Num b => a -> b -> a

Here the type of op is ∀ a, b. (Foo a, Num b) ⇒ a → b → a.

Default class methods for any of the vi may be included in the class declaration as a
normal valdef ; no other definitions are permitted. The default class method for vi is used
if no binding for it is given in a particular instance declaration (see Section 4.3.2).

Class methods share the top level namespace with variable bindings and field names;
they must not conflict with other top level bindings in scope. That is, a class method can
not have the same name as a top level definition, a field name, or another class method.

A class declaration with no where part may be useful for combining a collection of
classes into a larger one that inherits all of the class methods in the original ones. For
example:

class (Read a, Show a) => Textual a

In such a case, if a type is an instance of all superclasses, it is not automatically an instance
of the subclass, even though the subclass has no immediate class methods. The instance
declaration must be given explicitly with no where part.

The superclass relation must not be cyclic; i.e. it must form a directed acyclic graph.
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4.3.2 Instance Declarations

topdecl → instance [context =>] qtycls inst [where { valdefs [;] }]
inst → gtycon

| ( gtycon tyvar1 . . . tyvark ) (k ≥ 0 , tyvars distinct)
| ( tyvar1 , . . . , tyvark ) (k ≥ 2 , tyvars distinct)
| [ tyvar ]
| ( tyvar1 -> tyvar2 ) tyvar1 and tyvar2 distinct

valdefs → valdef1 ; . . . ; valdefn (n ≥ 0 )

An instance declaration introduces an instance of a class. Let

class c => C u where { cbody }

be a class declaration. The general form of the corresponding instance declaration is:

instance c′ => C (T u1 . . . uk ) where { d }

where k ≥ 0 and T is not a type synonym. The constructor being instanced, (T u1 . . . uk),
is a type constructor applied to simple type variables u1 , . . . uk , which must be distinct.
This prohibits instance declarations such as:

instance C (a,a) where ...
instance C (Int,a) where ...
instance C [[a]] where ...

The constructor (T u1 . . . uk ) must have an appropriate kind for the class C ; this can
be determined using kind inference as described in Section 4.6. The declarations d may
contain bindings only for the class methods of C . The declarations may not contain any
type signatures since the class method signatures have already been given in the class
declaration.

If no binding is given for some class method then the corresponding default class method
in the class declaration is used (if present); if such a default does not exist then the class
method of this instance is bound to undefined and no compile-time error results.

An instance declaration that makes the type T to be an instance of class C is called
a C-T instance declaration and is subject to these static restrictions:

• A type may not be declared as an instance of a particular class more than once in the
program.

• The class and type must have the same kind.

• Assume that the type variables in the instance type (T u1 . . . uk ) satisfy the con-
straints in the instance context c′. Under this assumption, the following two conditions
must also be satisfied:

1. The constraints expressed by the superclass context c[(T u1 . . . uk)/u] of C
must be satisfied. In other words, T must be an instance of each of C ’s super-
classes and the contexts of all superclass instances must be implied by c′.
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2. Any constraints on the type variables in the instance type that are required for
the class method declarations in d to be well-typed must also be satisfied.

In fact, except in pathological cases it is possible to infer from the instance declaration
the most general instance context c′ satisfying the above two constraints, but it is
nevertheless mandatory to write an explicit instance context.

The following illustrates the restrictions imposed by superclass instances:

class Foo a => Bar a where ...

instance (Eq a, Show a) => Foo [a] where ...

instance Num a => Bar [a] where ...

This is perfectly valid. Since Foo is a superclass of Bar, the second instance declaration
is only valid if [a] is an instance of Foo under the assumption Num a. The first instance
declaration does indeed say that [a] is an instance of Foo under this assumption, because
Eq and Show are superclasses of Num.

If the two instance declarations instead read like this:
instance Num a => Foo [a] where ...

instance (Eq a, Show a) => Bar [a] where ...

then the program would be invalid. The second instance declaration is valid only if [a] is
an instance of Foo under the assumptions (Eq a, Show a). But this does not hold, since
[a] is only an instance of Foo under the stronger assumption Num a.

Further examples of instance declarations may be found in Appendix A.

4.3.3 Derived Instances

As mentioned in Section 4.2.1, data and newtype declarations contain an optional deriving
form. If the form is included, then derived instance declarations are automatically generated
for the datatype in each of the named classes. These instances are subject to the same
restrictions as user-defined instances. When deriving a class C for a type T , instances for
all superclasses of C must exist for T , either via an explicit instance declaration or by
including the superclass in the deriving clause.

Derived instances provide convenient commonly-used operations for user-defined data-
types. For example, derived instances for datatypes in the class Eq define the operations ==
and /=, freeing the programmer from the need to define them.

The only classes in the Prelude for which derived instances are allowed are Eq, Ord,
Enum, Bounded, Show, and Read, all defined in Figure 5, page 67. The precise details of how
the derived instances are generated for each of these classes are provided in Appendix D,
including a specification of when such derived instances are possible. Instances of class Eval
are always implicitly derived for algebraic datatypes. The class Eval may not be explicitly
listed in a deriving form or defined by an explicit instance declaration. Classes defined by
the standard libraries may also be derivable.
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A static error results if it is not possible to derive an instance declaration over a class
named in a deriving form. For example, not all datatypes can properly support class
methods in Enum. It is also a static error to give an explicit instance declaration for a class
that is also derived.

If the deriving form is omitted from a data or newtype declaration, then no instance
declarations (except for Eval) are derived for that datatype; that is, omitting a deriving
form is equivalent to including an empty deriving form: deriving ().

4.3.4 Defaults for Overloaded Numeric Operations

topdecl → default (type1 , . . . , typen) (n ≥ 0 )

A problem inherent with Haskell-style overloading is the possibility of an ambiguous type.
For example, using the read and show functions defined in Appendix D, and supposing that
just Int and Bool are members of Read and Show, then the expression

let x = read "..." in show x -- invalid

is ambiguous, because the types for show and read,

show :: ∀ a. Show a ⇒ a → String
read :: ∀ a. Read a ⇒ String → a

could be satisfied by instantiating a as either Int in both cases, or Bool. Such expressions
are considered ill-typed, a static error.

We say that an expression e is ambiguously overloaded if, in its type ∀ u. c ⇒ t , there
is a type variable u in u that occurs in c but not in t . Such types are invalid.

For example, the earlier expression involving show and read is ambiguously overloaded
since its type is ∀ a. Show a, Read a ⇒ String.

Overloading ambiguity can only be circumvented by input from the user. One way is
through the use of expression type-signatures as described in Section 3.16. For example, for
the ambiguous expression given earlier, one could write:

let x = read "..." in show (x::Bool)

which disambiguates the type.

Occasionally, an otherwise ambiguous expression needs to be made the same type as
some variable, rather than being given a fixed type with an expression type-signature. This
is the purpose of the function asTypeOf (Appendix A): x ‘asTypeOf‘ y has the value of
x , but x and y are forced to have the same type. For example,

approxSqrt x = encodeFloat 1 (exponent x ‘div‘ 2) ‘asTypeOf‘ x

(See Section 6.3.6.)

Ambiguities in the class Num are most common, so Haskell provides another way to
resolve them—with a default declaration:

default (t1 , . . . , tn)
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where n ≥ 0 , and each ti must be a monotype for which Num ti holds. In situations where an
ambiguous type is discovered, an ambiguous type variable is defaultable if at least one of its
classes is a numeric class (that is, Num or a subclass of Num) and if all of its classes are defined
in the Prelude or a standard library (Figures 6–7, pages 74–75 show the numeric classes,
and Figure 5, page 67, shows the classes defined in the Prelude.) Each defaultable variable
is replaced by the first type in the default list that is an instance of all the ambiguous
variable’s classes. It is a static error if no such type is found.

Only one default declaration is permitted per module, and its effect is limited to that
module. If no default declaration is given in a module then it assumed to be:

default (Int, Double)

The empty default declaration default () must be given to turn off all defaults in a module.

4.4 Nested Declarations

The following declarations may be used in any declaration list, including the top level of a
module.

4.4.1 Type Signatures

signdecl → vars :: [context =>] type

A type signature specifies types for variables, possibly with respect to a context. A type
signature has the form:

v1 , . . . , vn :: c => t

which is equivalent to asserting vi :: c => t for each i from 1 to n. Each vi must have a
value binding in the same declaration list that contains the type signature; i.e. it is invalid
to give a type signature for a variable bound in an outer scope. Moreover, it is invalid to
give more than one type signature for one variable.

As mentioned in Section 4.1.1, every type variable appearing in a signature is universally
quantified over that signature, and hence the scope of a type variable is limited to the type
signature that contains it. For example, in the following declarations

f :: a -> a
f x = x :: a -- invalid

the a’s in the two type signatures are quite distinct. Indeed, these declarations contain a
static error, since x does not have type ∀ a. a. (The type of x is dependent on the type of
f; there is currently no way in Haskell to specify a signature for a variable with a dependent
type; this is explained in Section 4.5.4.)

If a given program includes a signature for a variable f , then each use of f is treated as
having the declared type. It is a static error if the same type cannot also be inferred for
the defining occurrence of f .
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If a variable f is defined without providing a corresponding type signature declaration,
then each use of f outside its own declaration group (see Section 4.5) is treated as having
the corresponding inferred, or principal type . However, to ensure that type inference is still
possible, the defining occurrence, and all uses of f within its declaration group must have
the same monomorphic type (from which the principal type is obtained by generalization,
as described in Section 4.5.2).

For example, if we define

sqr x = x*x

then the principal type is sqr :: ∀ a. Num a ⇒ a → a, which allows applications such
as sqr 5 or sqr 0.1. It is also valid to declare a more specific type, such as

sqr :: Int -> Int

but now applications such as sqr 0.1 are invalid. Type signatures such as

sqr :: (Num a, Num b) => a -> b -- invalid
sqr :: a -> a -- invalid

are invalid, as they are more general than the principal type of sqr.

Type signatures can also be used to support polymorphic recursion. The following
definition is pathological, but illustrates how a type signature can be used to specify a type
more general than the one that would be inferred:

data T a = K (T Int) (T a)
f :: T a -> a
f (K x y) = if f x == 1 then f y else undefined

If we remove the signature declaration, the type of f will be inferred as T Int -> Int due
to the first recursive call for which the argument to f is T Int. Polymorphic recursion
allows the user to supply the more general type signature, T a -> a.

4.4.2 Function and Pattern Bindings

decl → valdef

valdef → lhs = exp [where decllist ]
| lhs gdrhs [where decllist ]

lhs → pat0

| funlhs

funlhs → var apat { apat }
| pat i+1 varop(a,i) pat i+1

| lpat i varop( l,i) pat i+1

| pat i+1 varop( r,i) rpat i

gdrhs → gd = exp [gdrhs]
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gd → | exp0

We distinguish two cases within this syntax: a pattern binding occurs when lhs is pat ;
otherwise, the binding is called a function binding. Either binding may appear at the
top-level of a module or within a where or let construct.

Function bindings. A function binding binds a variable to a function value. The general
form of a function binding for variable x is:

x p11 . . . p1k match1

. . .
x pn1 . . . pnk matchn

where each pij is a pattern, and where each matchi is of the general form:

= ei where { declsi }

or
| gi1 = ei1

. . .
| gimi = eimi

where { declsi }

and where n ≥ 1 , 1 ≤ i ≤ n, mi ≥ 1 . The former is treated as shorthand for a particular
case of the latter, namely:

| True = ei where { declsi }

Note that all clauses defining a function must be contiguous, and the number of patterns
in each clause must be the same. The set of patterns corresponding to each match must be
linear—no variable is allowed to appear more than once in the entire set.

Alternative syntax is provided for binding functional values to infix operators. For
example, these two function definitions are equivalent:

plus x y z = x+y+z
x `plus̀ y = \ z -> x+y+z

Translation: The general binding form for functions is semantically equivalent to the
equation (i.e. simple pattern binding):

x x1 x2 ... xk = case (x1, ..., xk) of (p11 , . . . , p1k) match1

. . .
(pm1 , . . . , pmk) matchm

where the xi are new identifiers.
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Pattern bindings. A pattern binding binds variables to values. A simple pattern binding
has form p = e. The pattern p is matched “lazily” as an irrefutable pattern, as if there
were an implicit ~ in front of it. See the translation in Section 3.12.

The general form of a pattern binding is p match , where a match is the same structure
as for function bindings above; in other words, a pattern binding is:

p | g1 = e1

| g2 = e2

. . .
| gm = em

where { decls }

Translation: The pattern binding above is semantically equivalent to this simple
pattern binding:

p = let decls in
if g1 then e1 else
if g2 then e2 else
...
if gm then em else error "Unmatched pattern"

4.5 Static Semantics of Function and Pattern Bindings

The static semantics of the function and pattern bindings of a let expression or where
clause are discussed in this section.

4.5.1 Dependency Analysis

In general the static semantics are given by the normal Hindley-Milner inference rules.
A dependency analysis transformation is first performed to enhance polymorphism. Two
variables bound by value declarations are in the same declaration group if either

1. they are bound by the same pattern binding, or

2. their bindings are mutually recursive (perhaps via some other declarations that are
also part of the group).

Application of the following rules causes each let or where construct (including the where
defining the top level bindings in a module) to bind only the variables of a single declaration
group, thus capturing the required dependency analysis:2

1. The order of declarations in where/let constructs is irrelevant.

2. let {d1; d2} in e = let {d1} in (let {d2} in e)
(when no identifier bound in d2 appears free in d1 )

2A similar transformation is described in Peyton Jones’ book [9].
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4.5.2 Generalization

The Hindley-Milner type system assigns types to a let-expression in two stages. First, the
right-hand side of the declaration is typed, giving a type with no universal quantification.
Second, all type variables that occur in this type are universally quantified unless they
are associated with bound variables in the type environment; this is called generalization.
Finally, the body of the let-expression is typed.

For example, consider the declaration

f x = let g y = (y,y)
in ...

The type of g’s definition is a → (a, a). The generalization step attributes to g the poly-
morphic type ∀ a. a → (a, a), after which the typing of the “...” part can proceed.

When typing overloaded definitions, all the overloading constraints from a single dec-
laration group are collected together, to form the context for the type of each variable
declared in the group. For example, in the definition:

f x = let g1 x y = if x>y then show x else g2 y x
g2 p q = g1 q p

in ...

The types of the definitions of g1 and g2 are both a → a → String, and the accumulated
constraints are Ord a (arising from the use of >), and Show a (arising from the use of show).
The type variables appearing in this collection of constraints are called the constrained type
variables.

The generalization step attributes to both g1 and g2 the type

∀ a. (Ord a, Show a) ⇒ a → a → String

Notice that g2 is overloaded in the same way as g1 even though the occurrences of > and
show are in the definition of g1.

If the programmer supplies explicit type signatures for more than one variable in a
declaration group, the contexts of these signatures must be identical up to renaming of the
type variables.

4.5.3 Context Reduction Errors

As mentioned in Section 4.1.3, the context of a type may constrain only type variables.
Hence, types produced by generalization must be expressed in a form in which all context
constraints have be reduced to apply only to type variables. Consider, for example, the
definition:

f xs y = xs == [y]

Its type is given by
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f :: Eq a => [a] -> a -> Bool

and not

f :: Eq [a] => [a] -> a -> Bool

Even though the equality is taken at the list type, the context must be simplified, using the
instance declaration for Eq on lists, before generalization. If no such instance is in scope, a
static error occurs.

The context may also fail to simplify, leading to a static error, because it contains a
constraint of the form C (m t) where m is one of the the type variable being generalized.
That is, the class C applies to a type expression that is not a type variable or a type
constructor. For example:, the

f x = show (return x)

The type of return is Monad m => a -> m a; the type of show is Show a => a -> String.
The type of f should be (Monad m, Show (m a)) => a -> String. The context to be
simplified will therefore be (Monad m, Show (m a)), which cannot be further reduced,
resulting in a static error.

Code generated by derived instance functions (see Section 4.3.3) may lead to general-
ization errors. For example, in the type

data Apply a b = App (a b) deriving Show

the derived Show instance will produce a context Show (a b), which cannot be reduced and
thus results in a static error. Context reduction error may also arise from strictness flags in
data declarations (see Section 4.2.1) and the implicitly derived Eval instance in newtype
declarations (see Section 4.2.3).

4.5.4 Monomorphism

Sometimes it is not possible to generalize over all the type variables used in the type of the
definition. For example, consider the declaration

f x = let g y z = ([x,y], z)
in ...

In an environment where x has type a, the type of g’s definition is a → b → ([a], b).
The generalization step attributes to g the type ∀ b. a → b → ([a], b); only b can be
universally quantified because a occurs in the type environment. We say that the type of g
is monomorphic in the type variable a .

The effect of such monomorphism is that the first argument of all applications of g must
be of a single type. For example, it would be valid for the “...” to be

(g True, g False)

(which would, incidentally, force x to have type Bool) but invalid for it to be

(g True, g ’c’)
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In general, a type ∀ u. c ⇒ t is said to be monomorphic in the type variable a if a is free
in ∀ u. c ⇒ t .

It is worth noting that the explicit type signatures provided by Haskell are not powerful
enough to express types that include monomorphic type variables. For example, we cannot
write

f x = let
g :: a -> b -> ([a],b)
g y z = ([x,y], z)

in ...

because that would claim that g was polymorphic in both a and b (Section 4.4.1). In this
program, g can only be given a type signature if its first argument is restricted to a type
not involving type variables; for example

g :: Int -> b -> ([Int],b)

This signature would also cause x to have type Int.

4.5.5 The Monomorphism Restriction

Haskell places certain extra restrictions on the generalization step, beyond the standard
Hindley-Milner restriction described above, which further reduces polymorphism in partic-
ular cases.

The monomorphism restriction depends on the binding syntax of a variable. Recall that
a variable is bound by either a function binding or a pattern binding, and that a simple
pattern binding is a pattern binding in which the pattern consists of only a single variable
(Section 4.4.2).

Two rules define the monomorphism restriction:

Rule 1. We say that a given declaration group is unrestricted if and only if:

(a): every variable in the group is bound by a function binding or a simple pattern
binding, and

(b): an explicit type signature is given for every variable in the group that is bound
by simple pattern binding.

The usual Hindley-Milner restriction on polymorphism is that only type variables free
in the environment may be generalized. In addition, the constrained type variables
of a restricted declaration group may not be generalized in the generalization step for
that group. (Recall that a type variable is constrained if it must belong to some type
class; see Section 4.5.2.)

Rule 2. The type of a variable exported from a module must be completely polymorphic;
that is, it must not have any free type variables. It follows from Rule 1 that if all
top-level declaration groups are unrestricted, then Rule 2 is automatically satisfied.
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Rule 1 is required for two reasons, both of which are fairly subtle. First, it prevents com-
putations from being unexpectedly repeated. For example, genericLength is a standard
function (in library List) whose type is given by

genericLength :: Num a => [b] -> a

Now consider the following expression:

let { len = genericLength xs } in (len, len)

It looks as if len should be computed only once, but without Rule 1 it might be computed
twice, once at each of two different overloadings. If the programmer does actually wish the
computation to be repeated, an explicit type signature may be added:

let { len :: Num a => a; len = genericLength xs } in (len, len)

When non-simple pattern bindings are used, the types inferred are always monomorphic in
their constrained type variables, irrespective of whether a type signature is provided. For
example, in

(f,g) = ((+),(-))

both f and g are monomorphic regardless of any type signatures supplied for f or g.

Rule 1 also prevents ambiguity. For example, consider the declaration group

[(n,s)] = reads t

Recall that reads is a standard function whose type is given by the signature

reads :: (Read a) => String -> [(a,String)]

Without Rule 1, n would be assigned the type ∀ a. Read a ⇒ a and s the type ∀ a.
Read a ⇒ String. The latter is an invalid type, because it is inherently ambiguous. It is
not possible to determine at what overloading to use s. Rule 1 makes n and s monomorphic
in a.

Lastly, Rule 2 is required because there is no way to enforce monomorphic use of an
exported binding, except by performing type inference on modules outside the current
module. Exported variables are handled in the same way as non-exported ones even though
their usage outside the module could theoreticly be used to determine monomorphic type.
For example, in the program

module M(x) where
x = 1

the monomorphism restriction prevents the type of x from being generalized to Num a => a.
Since references to x outside module M cannot be used to determine the type of x, the
defaulting rule (see Section 4.3.4) assigns the type Int to x.

The monomorphism rule has a number of consequences for the programmer. Anything
defined with function syntax usually generalizes as a function is expected to. Thus in

f x y = x+y

the function f may be used at any overloading in class Num. There is no danger of recom-
putation here. However, the same function defined with pattern syntax:
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f = \x -> \y -> x+y

requires a type signature if f is to be fully overloaded. Many functions are most naturally
defined using simple pattern bindings; the user must be careful to affix these with type
signatures to retain full overloading. The standard prelude contains many examples of this:

sum :: (Num a) => [a] -> a
sum = foldl (+) 0

4.6 Kind Inference

This section describes the rules that are used to perform kind inference, i.e. to calculate a
suitable kind for each type constructor and class appearing in a given program.

The first step in the kind inference process is to arrange the set of datatype, synonym,
and class definitions into dependency groups. This can be achieved in much the same way
as the dependency analysis for value declarations that was described in Section 4.5. For
example, the following program fragment includes the definition of a datatype constructor
D, a synonym S and a class C, all of which would be included in the same dependency group:

data C a => D a = Foo (S a)
type S a = [D a]
class C a where

bar :: a -> D a -> Bool

The kinds of variables, constructors, and classes within each group are determined using
standard techniques of type inference and kind-preserving unification [6]. For example, in
the definitions above, the parameter a appears as an argument of the function constructor
(->) in the type of bar and hence must have kind ∗. It follows that both D and S must
have kind ∗ → ∗ and that every instance of class C must have kind ∗.

It is possible that some parts of an inferred kind may not be fully determined by the
corresponding definitions; in such cases, a default of ∗ is assumed. For example, we could
assume an arbitrary kind κ for the a parameter in each of the following examples:

data App f a = A (f a)
data Tree a = Leaf | Fork (Tree a) (Tree a)

This would give kinds (κ → ∗) → κ → ∗ and κ → ∗ for App and Tree, respectively, for
any kind κ, and would require an extension to allow polymorphic kinds. Instead, using the
default binding κ = ∗, the actual kinds for these two constructors are (∗ → ∗)→ ∗ → ∗ and
∗ → ∗, respectively.

Defaults are applied to each dependency group without consideration of the ways in
which particular type constructor constants or classes are used in later dependency groups
or elsewhere in the program. For example, adding the following definition to those above
do not influence the kind inferred for Tree (by changing it to (∗ → ∗) → ∗, for instance),
and instead generates a static error because the kind of [], ∗ → ∗, does not match the kind
∗ that is expected for an argument of Tree:
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type FunnyTree = Tree [] -- invalid

This is important because it ensures that each constructor and class are used consistently
with the same kind whenever they are in scope.
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5 Modules

A module defines a collection of values, datatypes, type synonyms, classes, etc. (see Sec-
tion 4) in an environment created by a set of imports, resources brought into scope from
other modules, and exports some of these resources, making them available to other mod-
ules. We use the term entity to refer to a value, type, or classes defined in, imported into,
or perhaps exported from a module.

A Haskell program is a collection of modules, one of which, by convention, must be
called Main and must export the value main. The value of the program is the value of the
identifier main in module Main, and main must have type IO () (see Section 7).

Modules may reference other modules via explicit import declarations, each giving the
name of a module to be imported and specifying its entities to be imported. Modules may
be mutually recursive.

The name-space for modules is flat, with each module being associated with a unique
module name (which are Haskell identifiers beginning with a capital letter; i.e. modid).
There is one distinguished module, Prelude, which is imported into all programs by default
(see Section 5.3), plus a set of standard library modules that may be imported as required
(see the Haskell Library Report[8]).

5.1 Module Structure

A module defines a mutually recursive scope containing declarations for value bindings,
data types, type synonyms, classes, etc. (see Section 4).

module → module modid [exports] where body
| body

body → { [impdecls ;] [[fixdecls ;] topdecls [;]] }
| { impdecls [;] }

modid → conid
impdecls → impdecl1 ; . . . ; impdecln (n ≥ 1 )
topdecls → topdecl1 ; . . . ; topdecln (n ≥ 0 )

A module begins with a header: the keyword module, the module name, and a list
of entities (enclosed in round parentheses) to be exported. The header is followed by
an optional list of import declarations that specify modules to be imported, optionally
restricting the imported bindings. This is followed by an optional list of fixity declarations
and the module body. The module body is simply a list of top-level declarations (topdecls),
as described in Section 4.

An abbreviated form of module, consisting only of the module body, is permitted. If
this is used, the header is assumed to be ‘module Main(main) where’. If the first lexeme
in the abbreviated module is not a {, then the layout rule applies for the top level of the
module.
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5.1.1 Export Lists

exports → ( export1 , . . . , exportn [ , ] ) (n ≥ 0 )

export → qvar
| qtycon [(..) | ( qcname1 , . . . , qcnamen )] (n ≥ 0 )
| qtycls [(..) | ( qvar1 , . . . , qvarn )] (n ≥ 0 )
| module modid

qcname → qvar | qcon

An export list identifies the entities to be exported by a module declaration. A module
implementation may only export an entity that it declares, or that it imports from some
other module. If the export list is omitted, all values, types and classes defined in the
module are exported, but not those that are imported.

Entities in an export list may be named as follows:

1. A value, field name, or class method, whether declared in the module body or import-
ed, may be named by giving the name of the value as a qvarid . Operators should be
enclosed in parentheses to turn them into qvarid ’s.

2. An algebraic datatype T declared by a data or newtype declaration may be named
in one of three ways:

• The form T names the type but not the constructors or field names. The ability
to export a type without its constructors allows the construction of abstract
datatypes (see Section 5.5).

• The form T(qcname1, . . . ,qcnamen), where the qcnamei name only construc-
tors and field names in T , names the type and some or all of its constructors and
field names. The qcnamei must not contain duplications.

• The abbreviated form T(..) names the type and all its constructors and field
names that are currently in scope (whether qualified or not).

Data constructors cannot be named in export lists in any other way.

3. A type synonym T declared by a type declaration may be named by the form T .

4. A class C with operations f1, . . . , fn declared in a class declaration may be named
in one of three ways:

• The form C names the class but not the class methods.

• The form C(f1, . . . ,fn), where the fi must be class methods C, names the class
and some or all of its methods. The fi must not contain duplications.

• The abbreviated form C(..) names the class and all its methods that are in
scope (whether qualified or not).



5.1 Module Structure 57

5. The set of all entities brought into scope from a module m by one or more unqualified
import declarations may be named by the form ‘module m’, which is equivalent to
listing all of the entities imported from the module. For example:

module Queue( module Stack, enqueue, dequeue ) where
import Stack
...

Here the module Queue uses the module name Stack in its export list to abbreviate
all the entities imported from Stack.

6. A module can name its own local definitions in its export list using its name in the
‘module m’ syntax. For example:

module Mod1(module Mod1, module Mod2) where
import Mod2
import Mod3

Here module Mod1 exports all local definitions as well as those imported from Mod2
but not those imported from Mod3. Note that module M where is the same as using
module M(module M) where.

The qualifier (see Section 5.1.2) on a name only identifies the module an entity is imported
from; this may be different from the module in which the entity is defined. For example, if
module A exports B.c, this is referenced as ‘A.c’, not ‘A.B.c’. In consequence, names in
export lists must remain distinct after qualifiers are removed. For example:

module A ( B.f, C.f, g, B.g ) where -- an invalid module
import qualified B(f,g)
import qualified C(f)
g = True

There are name clashes in the export list between B.f and C.f and between g and B.g even
though there are no name clashes within module A.

5.1.2 Import Declarations

impdecl → import [qualified] modid [as modid ] [impspec]
impspec → ( import1 , . . . , importn [ , ] ) (n ≥ 0 )

| hiding ( import1 , . . . , importn [ , ] ) (n ≥ 0 )

import → var
| tycon [ (..) | ( cname1 , . . . , cnamen )] (n ≥ 1 )
| tycls [(..) | ( var1 , . . . , varn )] (n ≥ 0 )

cname → var | con

The entities exported by a module may be brought into scope in another module with
an import declaration at the beginning of the module. The import declaration names the
module to be imported and optionally specifies the entities to be imported. A single module
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may be imported by more than one import declaration. Imported names serve as top level
declarations: they scope over the entire body of the module but may be shadowed by local
non-top-level bindings. The effect of multiple import declarations is cumulative: an entity
is in scope if it is named by any of the import declarations in a module. The ordering of
imports is irrelevant.

Exactly which entities are to be imported can be specified in one of three ways:

1. The imported entities can be specified explicitly by listing them in parentheses. Items
in the list have the same form as those in export lists, except qualifiers are not permit-
ted and the ‘module modid ’ entity is not permitted. When the (..) form of import
is used for a type or class, the (..) refers to all of the constructors, methods, or field
names exported from the module.

The list must name only entities exported by the imported module. The list may be
empty, in which case nothing except the instances are imported.

2. Entities can be excluded by using the form hiding(import1 , . . . , importn ), which
specifies that all entities exported by the named module should imported except for
those named in the list. Data constructors may be named directly in hiding lists
without being prefixed by the associated type. Thus, in

import M hiding (C)

any constructor, class, or type named C is excluded. In contrast, using C in an import
list names only a class or type. The hiding clause only applies to unqualified names.
In the previous example, the name M.C is brought into scope. A hiding clause has no
effect in an import qualified declaration.

The effect of multiple import declarations is strictly cumulative: hiding an entity
on one import declaration does not prevent the same entity from being imported by
another import from the same module.

3. Finally, if impspec is omitted then all the entities exported by the specified module
are imported.

When an import declaration uses the qualified keyword, the names brought into scope
must be prefixed by the name of the imported module (or a local alias, if an as clause is
present). A qualified name is written as modid.name . This allows full programmer control
of the unqualified namespace: a locally defined entity can share the same name as a qualified
import:

module Ring where
import qualified Prelude -- All Prelude names must be qualified

l1 + l2 = l1 ++ l2 -- This + differs from the one in the Prelude
l1 * l2 = nub (l1 + l2)

succ = (Prelude.+ 1)

The qualifier does not change the syntactic treatment of a name: Prelude.+ is an infix
operator with the same fixity as the definition of + in the Prelude. Qualifiers may be
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applied to names imported by an unqualified import; this allows a qualified import to be
replaced with an unqualified one without forcing changes in the references to the imported
names.

Imported modules may be assigned a local alias in the importing module using the as
clause. For example, in

import qualified Complex as C

entities must be referenced using ‘C.’ as a qualifier instead of ‘Complex.’. This also allows
a different module to be substituted for Complex without changing the qualifiers used for
the imported module. It is an error for more than one module in scope to use the same
qualifier. Qualifiers can only be used for imported entities: locally defined names within a
module may not include a qualifier unless the module explicitly imports itself.

Since qualifier names are part of the lexical syntax, no spaces are allowed between the
qualifier and the name. Sample parses are shown below.

This Lexes as this
f.g f . g (three tokens)
F.g F.g (qualified ‘g’)
f.. f .. (two tokens)
F.. F.. (qualified ‘.’)
F. F . (two tokens)

It may be that a particular entity is imported into a module by more than one route
— for example, because it is exported by two modules, both of which are imported by a
third module. Benign name clashes of this form are allowed, but it is a static error for two
different entities to have the same name. When two entities have the same name, they are
considered to be the same object if and only if they are defined by the same module. Two
different qualified names may refer to the same entity; the name of the importing module
does not affect the identity of an entity.

It is an error for two different entities to have the same name. This is valid:
module A
import B(f)
import qualified C(f)

as long as only one imported f is unqualified and f is not defined at the top level of A.
Qualifiers are the only way to resolve name clashes between imported entities.

5.1.3 Importing and Exporting Instance Declarations

Instance declarations cannot be explicitly named on import or export lists. All instances
in scope within a module are always exported and any import brings all instances in from
the imported module. Thus, an instance declaration is in scope if and only if a chain of
import declarations leads to the module containing the instance declaration. For example,
import M() would not bring any new names in scope from module M, but would bring in
any instance visible in M.
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5.2 Closure

Every module in a Haskell program must be closed. That is, every name explicitly mentioned
by the source code must be either defined locally or imported from another module. Entities
that the compiler requires for type checking or other compile time analysis need not be
imported if they are not mentioned by name. The Haskell compilation system is responsible
for finding any information needed for compilation without the help of the programmer.
That is, the import of a variable x does not require that the datatypes and classes in the
signature of x be brought into the module along with x unless these entities are referenced
by name in the user program. The Haskell system silently imports any information that
must accompany an entity for type checking or any other purposes. Such entities need not
even be explicitly exported: the following program is valid even though T does not escape
M1:

module M1(x) where
data T = T
x = T

module M2 where
import M1(x)
y = x

In this example, there is no way to supply an explicit type signature for y since T is not
in scope. Whether or not T is explicitly exported, module M2 knows enough about T to
correctly type check the program.

The type of an exported entity is unaffected by non-exported type synonyms. For
example, in

module M(x) where
type T = Int
x :: T
x = 1

the type of x is both T and Int; these are interchangeable even when T is not in scope. That
is, the definition of T is available to any module that encounters it whether or not the name
T is in scope. The only reason to export T is to allow other modules to refer it by name;
the type checker finds the definition of T if needed whether or not it is exported.

5.3 Standard Prelude

Many of the features of Haskell are defined in Haskell itself as a library of standard da-
tatypes, classes, and functions, called the “Standard Prelude.” In Haskell, the Prelude is
contained in the the module Prelude. There are also many predefined library modules,
which provide less frequently used functions and types. For example, arrays, tables, and
most of the input/output are all part of the standard libraries. These are defined in the
Haskell Library Report[8], a separate document. Separating libraries from the Prelude has
the advantage of reducing the size and complexity of the Prelude, allowing it to be more
easily assimilated, and increasing the space of useful names available to the programmer.
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Prelude and library modules differ from other modules in that their semantics (but not
their implementation) are a fixed part of the Haskell language definition. This means, for
example, that a compiler may optimize calls to functions in the Prelude without being
concerned that a future change to the program will alter the semantics of the Prelude
function.

5.3.1 The Prelude Module

The Prelude module is imported automatically into all modules as if by the statement
‘import Prelude’, if and only if it is not imported with an explicit import declaration.
This provision for explicit import allows values defined in the Prelude to be hidden from
the unqualified name space. The Prelude module is always available as a qualified import:
an implicit ‘import qualified Prelude’ is part of every module and names prefixed by
‘Prelude.’ can always be used to refer to entities in the Prelude.

The semantics of the entities in Prelude is specified by an implementation of Prelude
written in Haskell, given in Appendix A. Some datatypes (such as Int) and functions
(such as Int addition) cannot be specified directly in Haskell. Since the treatment of such
entities depends on the implementation, they are not formally defined in the appendix. The
implementation of Prelude is also incomplete in its treatment of tuples: there should be an
infinite family of tuples and their instance declarations, but the implementation only gives
a scheme.

5.3.2 Shadowing Prelude Names

The rules about the Prelude have been cast so that it is possible to use Prelude names for
nonstandard purposes; however, every module that does so must have an import declaration
that makes this nonstandard usage explicit. For example:

module A where
import Prelude hiding (null)
null x = []

Module A redefines null, but it must indicate this by importing Prelude without null.
Furthermore, A exports null, but every module that imports null unqualified from A must
also hide null from Prelude just as A does. Thus there is little danger of accidentally
shadowing Prelude names.

It is possible to construct and use a different module to serve in place of the Prelude.
Other than the fact that it is implicitly imported, the Prelude is an ordinary Haskell module;
it is special only in that some objects in the Prelude are referenced by special syntactic
constructs. Redefining names used by the Prelude does not affect the meaning of these
special constructs. For example, in

module B where
import qualified Prelude
import MyPrelude

...
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B imports nothing from Prelude, but the explicit import qualified Prelude declaration
prevents the automatic import of Prelude. import MyPrelude brings the non-standard
prelude into scope. As before, the standard prelude names are hidden explicitly. Special
syntax, such as lists or tuples, always refers to prelude entities: there is no way to redefine
the meaning of [x] in terms of a different implementation of lists.

5.4 Separate Compilation

Depending on the Haskell implementation used, separate compilation of mutually recursive
modules may require that imported modules contain additional information so that they
may be referenced before they are compiled. Explicit type signatures for all exported values
may be necessary to deal with mutual recursion. The precise details of separate compilation
are not defined by this report.

5.5 Abstract Datatypes

The ability to export a datatype without its constructors allows the construction of abstract
datatypes (ADTs). For example, an ADT for stacks could be defined as:

module Stack( StkType, push, pop, empty ) where
data StkType a = EmptyStk | Stk a (StkType a)
push x s = Stk x s
pop (Stk _ s) = s
empty = EmptyStk

Modules importing Stack cannot construct values of type StkType because they do not
have access to the constructors of the type.

It is also possible to build an ADT on top of an existing type by using a newtype
declaration. For example, stacks can be defined with lists:

module Stack( StkType, push, pop, empty ) where
newtype StkType a = Stk [a]
push x (Stk s) = Stk (x:s)
pop (Stk (x:s)) = Stk s
empty = Stk []

5.6 Fixity Declarations

fixdecls → fix1 ; . . . ; fixn (n ≥ 1 )
fix → infixl [digit ] ops

| infixr [digit ] ops
| infix [digit ] ops

ops → op1 , . . . , opn (n ≥ 1 )
op → varop | conop
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A fixity declaration gives the fixity and binding precedence of a set of operators. Fixity
declarations must appear only at the start of a module and may only be given for identifiers
defined in that module. Fixity declarations cannot subsequently be overridden, and an
identifier can only have one fixity definition.

There are three kinds of fixity, non-, left- and right-associativity (infix, infixl, and
infixr, respectively), and ten precedence levels, 0 to 9 inclusive (level 0 binds least tightly,
and level 9 binds most tightly). If the digit is omitted, level 9 is assumed. Any operator
lacking a fixity declaration is assumed to be infixl 9 (See Section 3 for more on the use of
fixities). Table 2 lists the fixities and precedences of the operators defined in the Prelude.

Prec- Left associative Non-associative Right associative
edence operators operators operators

9 !! .
8 ^, ^^, **
7 *, /, ‘div‘,

‘mod‘, ‘rem‘, ‘quot‘
6 +, -
5 \\ :, ++
4 ==, /=, <, <=, >, >=,

‘elem‘, ‘notElem‘
3 &&
2 ||
1 >>, >>=
0 $, ‘seq‘

Table 2: Precedences and fixities of prelude operators

Fixity is a property of the name of an identifier or operator: the same fixity attaches to
every occurrence of an operator name in a module, whether at the top level or rebound at
an inner level. For example:

module Foo
import Bar
infix 3 ‘op‘

f x = ... where p ‘op‘ q = ...

Here ‘op‘ has fixity 3 wherever it is in scope, provided Bar does not export the identifier
op. If Bar does export op, then the example becomes invalid, because the fixity (or lack
thereof) of op is defined in Bar (or wherever Bar imported op from). If op is imported as
a qualified name from Bar, no conflict may occur: the fixity of a qualified name does not
affect unqualified uses of the same name.
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6 Predefined Types and Classes

The Haskell Prelude contains predefined classes, types, and functions that are implicitly
imported into every Haskell program. In this section, we describe the types and classes
found in the Prelude. Most functions are not described in detail here as they can easily be
understood from their definitions as given in Appendix A. Other predefined types such as
arrays, complex numbers, and rationals are defined in the Haskell Library Report.

6.1 Standard Haskell Types

These types are defined by the Haskell Prelude. Numeric types are described in Section
6.3. When appropriate, the Haskell definition of the type is given. Some definitions may
not be completely valid on syntactic grounds but they faithfully convey the meaning of the
underlying type.

6.1.1 Booleans

data Bool = False | True deriving
(Read, Show, Eq, Ord, Enum, Bounded)

The boolean type Bool is an enumeration. The basic boolean functions are && (and), ||
(or), and not. The name otherwise is defined as True to make guarded expressions more
readable.

6.1.2 Characters and Strings

The character type Char is an enumeration and consists of 16 bit values, conforming to
the Unicode standard [10]. The lexical syntax for characters is defined in Section 2.5;
character literals are nullary constructors in the datatype Char. Type Char is an instance
of the classes Read, Show, Eq, Ord, Enum, and Bounded. The toEnum and fromEnum functions,
standard functions over bounded enumerations, map characters onto Int values in the range
[ 0 , 2 16 − 1 ].

Note that ASCII control characters each have several representations in character liter-
als: numeric escapes, ASCII mnemonic escapes, and the \^X notation. In addition, there
are the following equivalences: \a and \BEL, \b and \BS, \f and \FF, \r and \CR, \t and
\HT, \v and \VT, and \n and \LF.

A string is a list of characters:

type String = [Char]

Strings may be abbreviated using the lexical syntax described in Section 2.5. For example,
"A string" abbreviates

[ ’A’,’ ’,’s’,’t’,’r’, ’i’,’n’,’g’]
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6.1.3 Lists

data [a] = [] | a : [a] deriving (Eq, Ord)

Lists are an algebraic datatype of two constructors, although with special syntax, as de-
scribed in Section 3.7. The first constructor is the null list, written ‘[]’ (“nil”), and the
second is ‘:’ (“cons”). The module PreludeList (see Appendix A.1) defines many standard
list functions. Arithmetic sequences and list comprehensions, two convenient syntaxes for
special kinds of lists, are described in Sections 3.10 and 3.11, respectively. Lists are an
instance of classes Read, Show, Eq, Ord, Monad, MonadZero, and MonadPlus.

6.1.4 Tuples

Tuples are algebraic datatypes with special syntax, as defined in Section 3.8. Each tuple
type has a single constructor. There is no upper bound on the size of a tuple. However, some
Haskell implementations may restrict the size of tuples and limit the instances associated
with larger tuples. The Prelude and libraries define tuple functions such as zip for tuples
up to a size of 7. All tuples are instances of Eq, Ord, Bounded, Read, and Show. Classes
defined in the libraries may also supply instances for tuple types. The constructor for a tuple
is written by omitting the expressions surrounding the commas: thus (x,y) and (,) x y
produce the same value. The following functions are defined for pairs (2-tuples): fst, snd,
curry, and uncurry. Similar functions are not predefined for larger tuples.

6.1.5 The Unit Datatype

data () = () deriving (Eq, Ord, Bounded, Enum, Read, Show)

The unit datatype () has one non-⊥ member, the nullary constructor (). See also Sec-
tion 3.9.

6.1.6 The Void Datatype

data Void

The Void has no constructors; only ⊥ is an instance of this type.

6.1.7 Function Types

Functions are an abstract type: no constructors directly create functional values. Functions
are an instance of the Show class but not Read. The following simple functions are found
the Prelude: id, const, (.), flip, ($), and until.
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6.1.8 The IO and IOError Types

The IO type serves as a tag for operations (actions) that interact with the outside world.
The IO type is abstract: no constructors are visible to the user. IO is an instance of the
Monad and Show classes. Section 7 describes I/O operations.

IOError is an abstract type representing errors raised by I/O operations. It is an
instance of Show and Eq. Values of this type are constructed by the various I/O functions
and are not presented in any further detail in this report. The Library Report contains
many other I/O functions.

6.1.9 Other Types

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)
data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)
data Ordering = LT | EQ | GT deriving

(Eq, Ord, Bounded, Enum, Read, Show)

The Maybe type is an instance of classes Functor, Monad, MonadZero and MonadPlus. The
Ordering type is used by compare in the class Ord. The functions maybe and either are
found in the Prelude.

6.2 Standard Haskell Classes

Figure 5 shows the hierarchy of Haskell classes defined in the Prelude and the Prelude types
that are instances of these classes. The Void type is not mentioned in this figure since it is
not a member of any class.
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Figure 5: Standard Haskell Classes
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6.2.1 The Eq Class

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

All basic datatypes except for functions and IO are instances of this class. Instances of Eq
can be derived for any user-defined datatype whose constituents are also instances of Eq.

6.2.2 The Ord Class

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

-- note that (min x y, max x y) = (x,y) or (y,x)
max x y | x >= y = x

| otherwise = y
min x y | x < y = x

| otherwise = y

The Ord class is used for totally ordered datatypes. All basic datatypes except for functions
and IO are instances of this class. Instances of Ord can be derived for any user-defined
datatype whose constituent types are in Ord. The declared order of the constructors in the
data declaration determines the ordering in derived Ord instances. The Ordering datatype
allows a single comparison to determine the precise ordering of two objects. The defaults
allow a user to create an Ord instance either with a type-specific compare function or with
type-specific == and <= functions.
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6.2.3 The Read and Show Classes

type ReadS a = String -> [(a,String)]
type ShowS = String -> String

class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]

class Show a where
showsPrec :: Int -> a -> ShowS
showList :: [a] -> ShowS

The Read and Show classes are used to convert values to or from strings. Derived instances
of Read and Show replicate the style in which a constructor is declared: infix constructors
and field names are used on input and output. Strings produced by showsPrec are usually
readable by readsPrec. Functions and the IO type are not in Read.

For convenience, the Prelude provides the following auxiliary functions:

reads :: (Read a) => ReadS a
reads = readsPrec 0

shows :: (Show a) => a -> ShowS
shows = showsPrec 0

read :: (Read a) => String -> a
read s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> x
[] -> error "PreludeText.read: no parse"
_ -> error "PreludeText.read: ambiguous parse"

show :: (Show a) => a -> String
show x = shows x ""

shows and reads use a default precedence of 0. The show function returns a String
instead of a ShowS; the read function reads input from a string, which must be completely
consumed by the input process. The lex function used by read is also part of the Prelude.
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6.2.4 The Enum Class

class (Ord a) => Enum a where
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,n’..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

enumFromTo n m = takeWhile (<= m) (enumFrom n)
enumFromThenTo n n’ m

= takeWhile (if n’ >= n then (<= m) else (>= m))
(enumFromThen n n’)

Class Enum defines operations on sequentially ordered types. The toEnum and fromEnum
functions map values from a type in Enum onto Int. These functions are not meaningful for
all instances of Enum: floating point values or Integer may not be mapped onto an Int.
An runtime error occurs if either toEnum or fromEnum is given a value not mappable to
the result type. Instances of Enum may be derived for any enumeration type (types whose
constructors have no fields). There are also Enum instances for floats.

6.2.5 Monadic Classes

class Functor f where
map :: (a -> b) -> (f a -> f b)

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a

class (Monad m) => MonadZero m where
zero :: m a

class (MonadZero m) => MonadPlus m where
(++) :: m a -> m a -> m a

These classes define the basic monadic operations. See Section 7 for more information about
monads. The monadic classes serve to organize a set of operations common to a number of
related types. These types are all container types : that is, they contain a value or values of
another type. (To be precise, types in these classes must have kind ∗ → ∗.) In the Prelude,
lists, Maybe, and IO are all predefined container types.

The Functor class is used for types that can be mapped over. Lists, IO, and Maybe are
in this class. The IO type, Maybe, and lists are instances of Monad. The do syntax provides
a more readable notation for the operators in Monad. Both lists and Maybe are instances
of the MonadZero class. The MonadPlus class provides a ‘monadic addition’ operator: ++.
In the Prelude, Maybe and lists are in this class. For lists, ++ defines concatenation. For
Maybe, the ++ function returns the first non-empty value (if any).
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Instances of these classes should satisfy the following laws:

map id = id
map (f . g) = map f . map g
map f xs = xs >>= return . f
return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h
m >> zero = zero
zero >>= m = zero
m ++ zero = m
zero ++ m = m

All instances defined in the Prelude satisfy these laws.

The Prelude provides the following auxiliary functions:

accumulate :: Monad m => [m a] -> m [a]
sequence :: Monad m => [m a] -> m ()
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
guard :: MonadZero m => Bool -> m ()

6.2.6 The Bounded Class

class Bounded a where
minBound, maxBound :: a

The Bounded class is used to name the upper and lower limits of a type. Ord is not
a superclass of Bounded since types that are not totally ordered may also have upper and
lower bounds. The types Int, Char, Bool, (), Ordering, and all tuples are instances of
Bounded. The Bounded class may be derived for any enumeration type; minBound is the
first constructor listed in the data declaration and maxBound is the last. Bounded may also
be derived for single-constructor datatypes whose constituent types are in Bounded.

6.2.7 The Eval Class

class Eval a where
strict :: (a -> b) -> a -> b
seq :: a -> b -> b
strict f x = x ‘seq‘ f x

Class Eval is a special class for which no instances may be explicitly defined. An Eval
instance is implicitly derived for every datatype. Functions as well as all other built-in
types are in Eval. (As a consequence, ⊥ is not the same as \x -> ⊥ since seq can be used
to distinguish them.)
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The functions seq and strict are defined by the equations:

seq ⊥ b = ⊥
seq a b = b, if a 6= ⊥
strict f x = seq x (f x )

These functions are usually introduced to improve performance by avoiding unneeded lazi-
ness. Strict datatypes (see Section 4.2.1) are defined in terms of the strict function. This
class explicitly marks functions and types that employ polymorphic strictness.

The Eval instance for a type T with a constructor C implicitly derived by the compiler
is:

instance Eval T where
x ‘seq‘ y = case x of

C -> y
_ -> y -- catches any other constructors in T

The case is used to force evaluation of the first argument to ‘seq‘ before returning the
second argument. The constructor mentioned by seq is arbitrary: any constructor from T
can be used.

6.3 Numbers

Haskell provides several kinds of numbers; the numeric types and the operations upon
them have been heavily influenced by Common Lisp and Scheme. Numeric function names
and operators are usually overloaded, using several type classes with an inclusion relation
shown in Figure 5, page 67. The class Num of numeric types is a subclass of Eq, since
all numbers may be compared for equality; its subclass Real is also a subclass of Ord,
since the other comparison operations apply to all but complex numbers (defined in the
Complex library). The class Integral contains both fixed- and arbitrary-precision integers;
the class Fractional contains all non-integral types; and the class Floating contains all
floating-point types, both real and complex.

The Prelude defines only the most basic numeric types: fixed sized integers (Int), ar-
bitrary precision integers (Integer), single precision floating (Float), and double precision
floating (Double). Other numeric types such as rationals and complex numbers are defined
in libraries. In particular, the type Rational is a ratio of two Integer values, as defined
in the Rational library.

The default floating point operations defined by the Haskell Prelude do not conform to
current language independent arithmetic (LIA) standards. These standards require consid-
erable more complexity in the numeric structure and have thus been relegated to a library.
Some, but not all, aspects of the IEEE standard floating point standard have been accounted
for in class RealFloat.

Table 3 lists the standard numeric types. The type Int covers at least the range
[ − 2 29 , 2 29 − 1 ]. As Int is an instance of the Bounded class, maxBound and minBound
can be used to determine the exact Int range defined by an implementation. Float is



6.3 Numbers 73

Type Class Description
Integer Integral Arbitrary-precision integers
Int Integral Fixed-precision integers
(Integral a) => Ratio a RealFrac Rational numbers
Float RealFloat Real floating-point, single precision
Double RealFloat Real floating-point, double precision
(RealFloat a) => Complex a Floating Complex floating-point

Table 3: Standard Numeric Types

implementation-defined; it is desirable that this type be at least equal in range and precision
to the IEEE single-precision type. Similarly, Double should cover IEEE double-precision.
The results of exceptional conditions (such as overflow or underflow) on the fixed-precision
numeric types are undefined; an implementation may choose error (⊥, semantically), a
truncated value, or a special value such as infinity, indefinite, etc.

The standard numeric classes and other numeric functions defined in the Prelude are
shown in Figures 6–7. Figure 5 shows the class dependencies and built-in types that are
instances of the numeric classes.

6.3.1 Numeric Literals

The syntax of numeric literals is given in Section 2.4. An integer literal represents the ap-
plication of the function fromInteger to the appropriate value of type Integer. Similarly,
a floating literal stands for an application of fromRational to a value of type Rational
(that is, Ratio Integer). Given the typings:

fromInteger :: (Num a) => Integer -> a
fromRational :: (Fractional a) => Rational -> a

integer and floating literals have the typings (Num a) => a and (Fractional a) => a,
respectively. Numeric literals are defined in this indirect way so that they may be interpreted
as values of any appropriate numeric type. See Section 4.3.4 for a discussion of overloading
ambiguity.

6.3.2 Arithmetic and Number-Theoretic Operations

The infix class methods (+), (*), (-), and the unary function negate (which can also be
written as a prefix minus sign; see section 3.4) apply to all numbers. The class methods
quot, rem, div, and mod apply only to integral numbers, while the class method (/) applies
only to fractional ones. The quot, rem, div, and mod class methods satisfy these laws:

(x `quot̀ y)*y + (x `rem̀ y) == x
(x `div̀ y)*y + (x `mod̀ y) == x
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class (Eq a, Show a, Eval a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a

Figure 6: Standard Numeric Classes and Related Operations, Part 1

‘quot‘ is integer division truncated toward zero, while the result of ‘div‘ is truncated
toward negative infinity. The quotRem class method takes a dividend and a divisor as
arguments and returns a (quotient, remainder) pair; divMod is defined similarly:

quotRem x y = (x `quot̀ y, x `rem̀ y)
divMod x y = (x `div̀ y, x `mod̀ y)

Also available on integral numbers are the even and odd predicates:

even x = x `rem̀ 2 == 0
odd = not . even

Finally, there are the greatest common divisor and least common multiple functions: gcd x
y is the greatest integer that divides both x and y . lcm x y is the smallest positive integer
that both x and y divide.
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class (Real a, Fractional a) => RealFrac a where
properFraction :: (Integral b) => a -> (b,a)
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

class (RealFrac a, Floating a) => RealFloat a where
floatRadix :: a -> Integer
floatDigits :: a -> Int
floatRange :: a -> (Int,Int)
decodeFloat :: a -> (Integer,Int)
encodeFloat :: Integer -> Int -> a
exponent :: a -> Int
significand :: a -> a
scaleFloat :: Int -> a -> a
isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE

:: a -> Bool

fromIntegral :: (Integral a, Num b) => a -> b
gcd, lcm :: (Integral a) => a -> a-> a
(^) :: (Num a, Integral b) => a -> b -> a
(^^) :: (Fractional a, Integral b) => a -> b -> a

fromRealFrac :: (RealFrac a, Fractional b) => a -> b

atan2 :: (RealFloat a) => a -> a -> a

Figure 7: Standard Numeric Classes and Related Operations, Part 2

6.3.3 Exponentiation and Logarithms

The one-argument exponential function exp and the logarithm function log act on floating-
point numbers and use base e. logBase a x returns the logarithm of x in base a. sqrt
returns the principal square root of a floating-point number. There are three two-argument
exponentiation operations: (^) raises any number to a nonnegative integer power, (^^) rais-
es a fractional number to any integer power, and (**) takes two floating-point arguments.
The value of x^0 or x^^0 is 1 for any x , including zero; 0**y is undefined.

6.3.4 Magnitude and Sign

A number has a magnitude and a sign. The functions abs and signum apply to any number
and satisfy the law:

abs x * signum x == x

For real numbers, these functions are defined by:
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abs x | x >= 0 = x
| x < 0 = -x

signum x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

6.3.5 Trigonometric Functions

The circular and hyperbolic sine, cosine, and tangent functions and their inverses are pro-
vided for floating-point numbers. A version of arctangent taking two real floating-point
arguments is also provided: For real floating x and y , atan2 y x differs from atan (y/x)
in that its range is ( −π , π ] rather than (− π / 2 , π / 2 ) (because the signs of the
arguments provide quadrant information), and that it is defined when x is zero.

The precise definition of the above functions is as in Common Lisp, which in turn
follows Penfield’s proposal for APL [7]. See these references for discussions of branch cuts,
discontinuities, and implementation.

6.3.6 Coercions and Component Extraction

The ceiling, floor, truncate, and round functions each take a real fractional argument
and return an integral result. ceiling x returns the least integer not less than x , and
floor x , the greatest integer not greater than x . truncate x yields the integer nearest x
between 0 and x , inclusive. round x returns the nearest integer to x , the even integer if x
is equidistant between two integers.

The function properFraction takes a real fractional number x and returns a pair com-
prising x as a proper fraction: an integral number with the same sign as x and a fraction
with the same type and sign as x and with absolute value less than 1. The ceiling, floor,
truncate, and round functions can be defined in terms of this one.

Two functions convert numbers to type Rational: toRational returns the rational
equivalent of its real argument with full precision; approxRational takes two real fractional
arguments x and ε and returns the simplest rational number within ε of x , where a rational
p/q in reduced form is simpler than another p′/q′ if |p| ≤ |p′| and q ≤ q′. Every real interval
contains a unique simplest rational; in particular, note that 0/1 is the simplest rational of
all.

The class methods of class RealFloat allow efficient, machine-independent access to
the components of a floating-point number. The functions floatRadix, floatDigits, and
floatRange give the parameters of a floating-point type: the radix of the representation,
the number of digits of this radix in the significand, and the lowest and highest values the
exponent may assume, respectively. The function decodeFloat applied to a real floating-
point number returns the significand expressed as an Integer and an appropriately scaled
exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to mbn ,



6.3 Numbers 77

where b is the floating-point radix, and furthermore, either m and n are both zero or
else bd−1 ≤ m < bd , where d is the value of floatDigits x. encodeFloat performs the
inverse of this transformation. The functions significand and exponent together provide
the same information as decodeFloat, but rather than an Integer, significand x yields
a value of the same type as x, scaled to lie in the open interval (−1 , 1 ). exponent 0 is zero.
scaleFloat multiplies a floating-point number by an integer power of the radix.

The functions isNaN, isInfinite, isDenormalized, isNegativeZero, and isIEEE all
support numbers represented using the IEEE standard. For non-IEEE floating point num-
bers, these may all return false.

Also available are the following coercion functions:

fromIntegral :: (Integral a, Num b) => a -> b
fromRealFrac :: (RealFrac a, Fractional b) => a -> b
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7 Basic Input/Output

The I/O system in Haskell is purely functional, yet has all of the expressive power found in
conventional programming languages. To achieve this, Haskell uses a monad to integrate
I/O operations into a purely functional context.

The I/O monad used by Haskell mediates between the values natural to a functional
language and the actions that characterize I/O operations and imperative programming
in general. The order of evaluation of expressions in Haskell is constrained only by data
dependencies; an implementation has a great deal of freedom in choosing this order. Actions,
however, must be ordered in a well-defined manner for program execution – and I/O in
particular – to be meaningful. Haskell’s I/O monad provides the user with a way to specify
the sequential chaining of actions, and an implementation is obliged to preserve this order.

The term monad comes from a branch of mathematics known as category theory. From
the perspective of a Haskell programmer, however, it is best to think of a monad as an
abstract datatype. In the case of the I/O monad, the abstract values are the actions men-
tioned above. Some operations are primitive actions, corresponding to conventional I/O
operations. Special operations (methods in the class Monad, see Section 6.2.5) sequentially
compose actions, corresponding to sequencing operators (such as the semi-colon) in imper-
ative languages.

7.1 Standard I/O Functions

Although Haskell provides fairly sophisticated I/O facilities, as defined in the IO library,
it is possible to write many Haskell programs using only the few simple functions that are
exported from the Prelude, and which are described in this section.

All I/O functions defined here are character oriented. The treatment of the newline
character will vary on different systems. For example, two characters of input, return and
linefeed, may read as a single newline character. These functions cannot be used portably
for binary I/O.

Output Functions These functions write to the standard output device (this is normally
the user’s terminal).

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO () -- adds a newline
print :: Show a => a -> IO ()

The print function outputs a value of any printable type to the standard output device
(this is normally the user’s terminal). Printable types are those that are instances of class
Show; print converts values to strings for output using the show operation and adds a
newline.

For example, a program to print the first 20 integers and their powers of 2 could be
written as:
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main = print ([(n, 2^n) | n <- [0..19]])

Input Functions These functions read input from the standard input device (normally
the user’s terminal).

getChar :: IO Char
getLine :: IO String
getContents :: IO String
interact :: (String -> String) -> IO ()
readIO :: Read a => String -> IO a
readLine :: Read a => IO a

Both getChar and getLine raise an exception on end-of-file; the IOError value associated
with end-of-file is defined in a library. The getContents operation returns all user input as
a single string, which is read lazily as it is needed. The interact function takes a function
of type String->String as its argument. The entire input from the standard input device
(normally the user’s terminal) is passed to this function as its argument, and the resulting
string is output on the standard output device. The readIO function is similar to read
except that it signals parse failure to the I/O monad instead of terminating the program.
The readLine function combines getLine and readIO.

By default, these input functions echo to standard output. Functions in the I/O library
provide full control over echoing.

The following program simply removes all non-ASCII characters from its standard input
and echoes the result on its standard output. (The isAscii function is defined in a library.)

main = interact (filter isAscii)

Files These functions operate on files of characters. Files are named by strings using some
implementation-specific method to resolve strings as file names.

The writeFile and appendFile functions write or append the string, their second
argument, to the file, their first argument. The readFile function reads a file and returns
the contents of the file as a string. The file is read lazily, on demand, as with getContents.

type FilePath = String

writeFile :: FilePath -> String -> IO ()
appendFile :: FilePath -> String -> IO ()
readFile :: FilePath -> IO String

Note that writeFile and appendFile write a literal string to a file. To write a value of
any printable type, as with print, use the show function to convert the value to a string
first.

main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
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7.2 Sequencing I/O Operations

The two monadic binding functions, methods in the Monad class, are used to compose a
series of I/O operations. The >> function is used where the result of the first operation is
uninteresting, for example when it is (). The >>= operation passes the result of the first
operation as an argument to the second operation.

(>>=) :: IO a -> (a -> IO b) -> IO b
(>>) :: IO a -> IO b -> IO b

For example,

main = readFile "input-file" >>= \ s ->
writeFile "output-file" (filter isAscii s) >>
putStr "Filtering successful\n"

is similar to the previous example using interact, but takes its input from "input-file"
and writes its output to "output-file". A message is printed on the standard output
before the program completes.

The do notation allows programming in a more imperative syntactic style. A slightly
more elaborate version of the previous example would be:

main = do
putStr "Input file: "
ifile <- getLine
putStr "Output file: "
ofile <- getLine
s <- readFile ifile
writeFile ofile (filter isAscii s)
putStr "Filtering successful\n"

The return function is used to define the result of an I/O operation. For example,
getLine is defined in terms of getChar, using return to define the result the monad:

getLine :: IO String
getLine = do c <- getChar

if c == ’\n’ then return ""
else do s <- getLine

return (c:s)

7.3 Exception Handling in the I/O Monad

The I/O monad includes a simple exception handling system. Any I/O operation may raise
an exception instead of returning a result. Exceptions in the I/O monad are represented by
values of type IOError. This is an abstract type: its constructors are hidden from the user.
The IO library defines functions that construct and examine IOError values. The only



7.3 Exception Handling in the I/O Monad 81

Prelude function that creates an IOError value is userError. User error values include a
string describing the error.

Exceptions are raised and caught using the following functions:

fail :: IOError -> IO a
catch :: IO a -> (IOError -> IO a) -> IO a

The fail function raises an exception; the catch function establishes a handler that receives
any exception raised in the action protected by catch. An exception is caught by the most
recent handler established by catch. These handlers are not selective: all exceptions are
caught. Exception propagation must be explicitly provided in a handler by re-raising any
unwanted exceptions. For example, in

f = catch g (\e -> if IO.isEOFError e then return [] else fail e)

the function f returns [] when an end-of-file exception occurs in g; otherwise, the exception
is propagated to the next outer handler. The isEOFError function is part of IO library.

When an exception propagates outside the main program, the Haskell system prints the
associated IOError value and exits the program.

The exceptions raised by the I/O functions in the Prelude are defined in the Library
Report.
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A Standard Prelude

In this appendix the entire Haskell prelude is given. It is organized into a root module
and three sub-modules. Primitives that are not definable in Haskell, indicated by names
starting with prim, are defined in a system dependent manner in module PreludeBuiltin
and are not shown here. Instance declarations that simply bind primitives to class methods
are omitted. Some of the more verbose instances with obvious functionality have been left
out for the sake of brevity.

Declarations for special types such as Integer, (), or (->) are included in the Prelude
for completeness even though the declaration may be incomplete or syntactically invalid.
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module Prelude (
module PreludeList, module PreludeText, module PreludeIO,
Bool(False, True),
Maybe(Nothing, Just),
Either(Left, Right),
Ordering(LT, EQ, GT),
Char, String, Int, Integer, Float, Double, IO, Void,
Ratio, Rational,

-- List type: []((:), [])
-- Tuple types: (,), (,,), etc.
-- Trivial type: ()
-- Functions: (->)

Eq((==), (/=)),
Ord(compare, (<), (<=), (>=), (>), max, min),
Enum(toEnum, fromEnum, enumFrom, enumFromThen,

enumFromTo, enumFromThenTo),
Bounded(minBound, maxBound),
Eval(seq, strict),
Num((+), (-), (*), negate, abs, signum, fromInteger),
Real(toRational),
Integral(quot, rem, div, mod, quotRem, divMod, toInteger),
Fractional((/), recip, fromRational),
Floating(pi, exp, log, sqrt, (**), logBase, sin, cos, tan,

asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh),
RealFrac(properFraction, truncate, round, ceiling, floor),
RealFloat(floatRadix, floatDigits, floatRange, decodeFloat,

encodeFloat, exponent, significand, scaleFloat, isNaN,
isInfinite, isDenormalized, isIEEE, isNegativeZero),

Monad((>>=), (>>), return),
MonadZero(zero),
MonadPlus((++)),
Functor(map),
succ, pred,
mapM, mapM_, guard, accumulate, sequence, filter, concat, applyM,
maybe, either,
(&&), (||), not, otherwise,
subtract, even, odd, gcd, lcm, (^), (^^),
fromIntegral, fromRealFrac, atan2,
fst, snd, curry, uncurry, id, const, (.), flip, ($), until,
asTypeOf, error, undefined ) where
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import PreludeBuiltin -- Contains all ‘prim’ values
import PreludeList
import PreludeText
import PreludeIO
import Ratio(Ratio, Rational, (%), numerator, denominator)

infixr 9 .
infixr 8 ^, ^^, **
infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘
infixl 6 +, -
infixr 5 :, ++
infix 4 ==, /=, <, <=, >=, >
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 0 $, ‘seq‘

-- Standard types, classes, instances and related functions

-- Equality and Ordered classes

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=),
(>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

-- An instance of Ord should define either compare or <=
-- Using compare can be more efficient for complex types.

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT
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-- note that (min x y, max x y) = (x,y) or (y,x)
max x y

| x >= y = x
| otherwise = y

min x y
| x < y = x
| otherwise = y

-- Enumeration and Bounded classes

class Enum a where
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,n’..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

enumFromTo x y = map toEnum [fromEnum x .. fromEnum y]
enumFromThenTo x y z =

map toEnum [fromEnum x, fromEnum y .. fromEnum z]

succ, pred :: Enum a => a -> a
succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum

class Bounded a where
minBound :: a
maxBound :: a

-- Numeric classes

class (Eq a, Show a, Eval a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

x - y = x + negate y

class (Num a, Ord a) => Real a where
toRational :: a -> Rational
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class (Real a, Enum a) => Integral a where
quot, rem :: a -> a -> a
div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

n ‘quot‘ d = q where (q,r) = quotRem n d
n ‘rem‘ d = r where (q,r) = quotRem n d
n ‘div‘ d = q where (q,r) = divMod n d
n ‘mod‘ d = r where (q,r) = divMod n d
divMod n d = if signum r == - signum d then (q-1, r+d) else qr

where qr@(q,r) = quotRem n d

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a

recip x = 1 / x

class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a

x ** y = exp (log x * y)
logBase x y = log y / log x
sqrt x = x ** 0.5
tan x = sin x / cos x
tanh x = sinh x / cosh x
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class (Real a, Fractional a) => RealFrac a where
properFraction :: (Integral b) => a -> (b,a)
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

truncate x = m where (m,_) = properFraction x

round x = let (n,r) = properFraction x
m = if r < 0 then n - 1 else n + 1

in case signum (abs r - 0.5) of
-1 -> n
0 -> if even n then n else m
1 -> m

ceiling x = if r > 0 then n + 1 else n
where (n,r) = properFraction x

floor x = if r < 0 then n - 1 else n
where (n,r) = properFraction x

class (RealFrac a, Floating a) => RealFloat a where
floatRadix :: a -> Integer
floatDigits :: a -> Int
floatRange :: a -> (Int,Int)
decodeFloat :: a -> (Integer,Int)
encodeFloat :: Integer -> Int -> a
exponent :: a -> Int
significand :: a -> a
scaleFloat :: Int -> a -> a
isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE

:: a -> Bool

exponent x = if m == 0 then 0 else n + floatDigits x
where (m,n) = decodeFloat x

significand x = encodeFloat m (- floatDigits x)
where (m,_) = decodeFloat x

scaleFloat k x = encodeFloat m (n+k)
where (m,n) = decodeFloat x

-- Numeric functions

subtract :: (Num a) => a -> a -> a
subtract = flip (-)

even, odd :: (Integral a) => a -> Bool
even n = n ‘rem‘ 2 == 0
odd = not . even
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gcd :: (Integral a) => a -> a -> a
gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"
gcd x y = gcd’ (abs x) (abs y)

where gcd’ x 0 = x
gcd’ x y = gcd’ y (x ‘rem‘ y)

lcm :: (Integral a) => a -> a -> a
lcm _ 0 = 0
lcm 0 _ = 0
lcm x y = abs ((x ‘quot‘ (gcd x y)) * y)

(^) :: (Num a, Integral b) => a -> b -> a
x ^ 0 = 1
x ^ n | n > 0 = f x (n-1) x

where f _ 0 y = y
f x n y = g x n where

g x n | even n = g (x*x) (n ‘quot‘ 2)
| otherwise = f x (n-1) (x*y)

_ ^ _ = error "Prelude.^: negative exponent"

(^^) :: (Fractional a, Integral b) => a -> b -> a
x ^^ n = if n >= 0 then x^n else recip (x^(-n))

fromIntegral :: (Integral a, Num b) => a -> b
fromIntegral = fromInteger . toInteger

fromRealFrac :: (RealFrac a, Fractional b) => a -> b
fromRealFrac = fromRational . toRational

atan2 :: (RealFloat a) => a -> a -> a
atan2 y x = case (signum y, signum x) of

( 0, 1) -> 0
( 1, 0) -> pi/2
( 0,-1) -> pi
(-1, 0) -> -pi/2
( _, 1) -> atan (y/x)
( _,-1) -> atan (y/x) + pi
( 0, 0) -> error "Prelude.atan2: atan2 of origin"

-- Monadic classes

class Functor f where
map :: (a -> b) -> f a -> f b
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class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a

m >> k = m >>= \_ -> k

class (Monad m) => MonadZero m where
zero :: m a

class (MonadZero m) => MonadPlus m where
(++) :: m a -> m a -> m a

accumulate :: Monad m => [m a] -> m [a]
accumulate = foldr mcons (return [])

where mcons p q = p >>= \x -> q >>= \y -> return (x:y)

sequence :: Monad m => [m a] -> m ()
sequence = foldr (>>) (return ())

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = accumulate (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
mapM_ f as = sequence (map f as)

guard :: MonadZero m => Bool -> m ()
guard p = if p then return () else zero

-- This subsumes the list-based filter function.

filter :: MonadZero m => (a -> Bool) -> m a -> m a
filter p = applyM (\x -> if p x then return x else zero)

-- This subsumes the list-based concat function.

concat :: MonadPlus m => [m a] -> m a
concat = foldr (++) zero

applyM :: Monad m => (a -> m b) -> m a -> m b
applyM f x = x >>= f

-- Eval Class

class Eval a where
seq :: a -> b -> b
strict :: (a -> b) -> a -> b
strict f x = x ‘seq‘ f x

-- Trivial type

data () = () deriving (Eq, Ord, Enum, Bounded)
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-- Function type

data a -> b -- No constructor for functions is exported.

-- identity function
id :: a -> a
id x = x

-- constant function
const :: a -> b -> a
const x _ = x

-- function composition
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \ x -> f (g x)

-- flip f takes its (first) two arguments in the reverse order of f.
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

-- right-associating infix application operator (useful in continuation-
-- passing style)
($) :: (a -> b) -> a -> b
f $ x = f x

-- Empty type

data Void -- No constructor for Void is exported. Import/Export
-- lists must use Void instead of Void(..) or Void()

-- Boolean type

data Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded)

-- Boolean functions

(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x

not :: Bool -> Bool
not True = False
not False = True

otherwise :: Bool
otherwise = True
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-- Character type

data Char = ... ’a’ | ’b’ ... -- 2^16 unicode values

instance Eq Char where
c == c’ = fromEnum c == fromEnum c’

instance Ord Char where
c <= c’ = fromEnum c <= fromEnum c’

instance Enum Char where
toEnum = primIntToChar
fromEnum = primCharToInt
enumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Char)]
enumFromThen c c’ = [fromEnum c, fromEnum c’ .. fromEnum lastChar]

where lastChar :: Char
lastChar | c’ < c = minBound

| otherwise = maxBound

instance Bounded Char where
minBound = ’\0’
maxBound = ’\xffff’

type String = [Char]

-- Maybe type

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x

instance Functor Maybe where
map f Nothing = Nothing
map f (Just x) = Just (f x)

instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= k = Nothing
return = Just

instance MonadZero Maybe where
zero = Nothing

instance MonadPlus Maybe where
Nothing ++ ys = ys
xs ++ ys = xs
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-- Either type

data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x) = f x
either f g (Right y) = g y

-- IO type

data IO a -- abstract

instance Functor IO where
map f x = x >>= (return . f)

instance Monad IO where ...

-- Ordering type

data Ordering = LT | EQ | GT
deriving (Eq, Ord, Enum, Read, Show, Bounded)

-- Standard numeric types. The data declarations for these types cannot
-- be expressed directly in Haskell since the constructor lists would be
-- far too large.

data Int = minBound ... -1 | 0 | 1 ... maxBound
instance Eq Int where ...
instance Ord Int where ...
instance Num Int where ...
instance Real Int where ...
instance Integral Int where ...
instance Enum Int where ...
instance Bounded Int where ...

data Integer = ... -1 | 0 | 1 ...
instance Eq Integer where ...
instance Ord Integer where ...
instance Num Integer where ...
instance Real Integer where ...
instance Integral Integer where ...
instance Enum Integer where ...
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data Float
instance Eq Float where ...
instance Ord Float where ...
instance Num Float where ...
instance Real Float where ...
instance Fractional Float where ...
instance Floating Float where ...
instance RealFrac Float where ...
instance RealFloat Float where ...

data Double
instance Eq Double where ...
instance Ord Double where ...
instance Num Double where ...
instance Real Double where ...
instance Fractional Double where ...
instance Floating Double where ...
instance RealFrac Double where ...
instance RealFloat Double where ...

-- The Enum instances for Floats and Doubles are slightly unusual.
-- The ‘toEnum’ function truncates numbers to Int. The definitions
-- of enumFrom and enumFromThen allow floats to be used in arithmetic
-- series: [0,0.1 .. 1.0]. However, roundoff errors make these somewhat
-- dubious. This example may have either 10 or 11 elements, depending on
-- how 0.1 is represented.

instance Enum Float where
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromThen = numericEnumFromThen
enumFromTo = numericEnumFromTo
enumFromThenTo = numericEnumFromThenTo

instance Enum Double where
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromThen = numericEnumFromThen
enumFromTo = numericEnumFromTo
enumFromThenTo = numericEnumFromThenTo
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numericEnumFrom :: (Real a) => a -> [a]
numericEnumFromThen :: (Real a) => a -> a -> [a]
numericEnumFromTo :: (Real a) => a -> a -> [a]
numericEnumFromThenTo :: (Real a) => a -> a -> a -> [a]
numericEnumFrom = iterate (+1)
numericEnumFromThen n m = iterate (+(m-n)) n
numericEnumFromTo n m = takeWhile (<= m) (numericEnumFrom n)
numericEnumFromThenTo n n’ m

= takeWhile (if n’ >= n then (<= m) else (>= m))
numericEnumFromThen n m

-- Lists

data [a] = [] | a : [a] deriving (Eq, Ord)

instance Functor [] where
map f [] = []
map f (x:xs) = f x : map f xs

instance Monad [] where
m >>= k = concat (map k m)
return x = [x]

instance MonadZero [] where
zero = []

instance MonadPlus [] where
xs ++ ys = foldr (:) ys xs

-- Tuples

data (a,b) = (a,b) deriving (Eq, Ord, Bounded)
data (a,b,c) = (a,b,c) deriving (Eq, Ord, Bounded)

-- component projections for pairs:
-- (NB: not provided for triples, quadruples, etc.)
fst :: (a,b) -> a
fst (x,y) = x

snd :: (a,b) -> b
snd (x,y) = y

-- curry converts an uncurried function to a curried function;
-- uncurry converts a curried function to a function on pairs.
curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> ((a, b) -> c)
uncurry f p = f (fst p) (snd p)
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-- Misc functions

-- until p f yields the result of applying f until p holds.
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x

| p x = x
| otherwise = until p f (f x)

-- asTypeOf is a type-restricted version of const. It is usually used
-- as an infix operator, and its typing forces its first argument
-- (which is usually overloaded) to have the same type as the second.
asTypeOf :: a -> a -> a
asTypeOf = const

-- error stops execution and displays an error message

error :: String -> a
error = primError

-- It is expected that compilers will recognize this and insert error
-- messages that are more appropriate to the context in which undefined
-- appears.

undefined :: a
undefined = error "Prelude.undefined"
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A.1 Prelude PreludeList

-- Standard list functions

module PreludeList (
head, last, tail, init, null, length, (!!),
foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1,
iterate, repeat, replicate, cycle,
take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,
any, all, elem, notElem, lookup,
sum, product, maximum, minimum, concatMap,
zip, zip3, zipWith, zipWith3, unzip, unzip3)

where

import qualified Char(isSpace)

infixl 9 !!
infix 4 ‘elem‘, ‘notElem‘

-- head and tail extract the first element and remaining elements,
-- respectively, of a list, which must be non-empty. last and init
-- are the dual functions working from the end of a finite list,
-- rather than the beginning.

head :: [a] -> a
head (x:_) = x
head [] = error "PreludeList.head: empty list"

last :: [a] -> a
last [x] = x
last (_:xs) = last xs
last [] = error "PreludeList.last: empty list"

tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "PreludeList.tail: empty list"

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs
init [] = error "PreludeList.init: empty list"

null :: [a] -> Bool
null [] = True
null (_:_) = False
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-- length returns the length of a finite list as an Int.
length :: [a] -> Int
length [] = 0
length (_:l) = 1 + length l

-- List index (subscript) operator, 0-origin
(!!) :: [a] -> Int -> a
(x:_) !! 0 = x
(_:xs) !! n | n > 0 = xs !! (n-1)
(_:_) !! _ = error "PreludeList.!!: negative index"
[] !! _ = error "PreludeList.!!: index too large"

-- foldl, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a list, reduces the list using
-- the binary operator, from left to right:
-- foldl f z [x1, x2, ..., xn] == (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn
-- foldl1 is a variant that has no starting value argument, and thus must
-- be applied to non-empty lists. scanl is similar to foldl, but returns
-- a list of successive reduced values from the left:
-- scanl f z [x1, x2, ...] == [z, z ‘f‘ x1, (z ‘f‘ x1) ‘f‘ x2, ...]
-- Note that last (scanl f z xs) == foldl f z xs.
-- scanl1 is similar, again without the starting element:
-- scanl1 f [x1, x2, ...] == [x1, x1 ‘f‘ x2, ...]

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "PreludeList.foldl1: empty list"

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of

[] -> []
x:xs -> scanl f (f q x) xs)

scanl1 :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl1 _ [] = error "PreludeList.scanl1: empty list"

-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the
-- above functions.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
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foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "PreludeList.foldr1: empty list"

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs

where qs@(q:_) = scanr f q0 xs

scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 f [x] = [x]
scanr1 f (x:xs) = f x q : qs

where qs@(q:_) = scanr1 f xs
scanr1 _ [] = error "PreludeList.scanr1: empty list"

-- iterate f x returns an infinite list of repeated applications of f to x:
-- iterate f x == [x, f x, f (f x), ...]
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

-- repeat x is an infinite list, with x the value of every element.
repeat :: a -> [a]
repeat x = xs where xs = x:xs

-- replicate n x is a list of length n with x the value of every element
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

-- cycle ties a finite list into a circular one, or equivalently,
-- the infinite repetition of the original list. It is the identity
-- on infinite lists.

cycle :: [a] -> [a]
cycle xs = xs’ where xs’ = xs ++ xs’

-- take n, applied to a list xs, returns the prefix of xs of length n,
-- or xs itself if n > length xs. drop n xs returns the suffix of xs
-- after the first n elements, or [] if n > length xs. splitAt n xs
-- is equivalent to (take n xs, drop n xs).

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n > 0 = x : take (n-1) xs
take _ _ = error "PreludeList.take: negative argument"
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drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) | n > 0 = drop (n-1) xs
drop _ _ = error "PreludeList.drop: negative argument"

splitAt :: Int -> [a] -> ([a],[a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs) | n > 0 = (x:xs’,xs’’) where (xs’,xs’’) = splitAt (n-1) xs
splitAt _ _ = error "PreludeList.splitAt: negative argument"

-- takeWhile, applied to a predicate p and a list xs, returns the longest
-- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs
-- returns the remaining suffix. Span p xs is equivalent to
-- (takeWhile p xs, dropWhile p xs), while break p uses the negation of p.

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = (x:xs’,xs’’) where (xs’,xs’’) = span p xs
| otherwise = (xs,[])

break p = span (not . p)
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-- lines breaks a string up into a list of strings at newline characters.
-- The resulting strings do not contain newlines. Similary, words
-- breaks a string up into a list of words, which were delimited by
-- white space. unlines and unwords are the inverse operations.
-- unlines joins lines with terminating newlines, and unwords joins
-- words with separating spaces.

lines :: String -> [String]
lines "" = []
lines s = let (l, s’) = break (== ’\n’) s

in l : case s’ of
[] -> []
(_:s’’) -> lines s’’

words :: String -> [String]
words s = case dropWhile Char.isSpace s of

"" -> []
s’ -> w : words s’’

where (w, s’’) = break Char.isSpace s’

unlines :: [String] -> String
unlines = concatMap (++ "\n")

unwords :: [String] -> String
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ’ ’:s) ws

-- reverse xs returns the elements of xs in reverse order. xs must be finite.
reverse :: [a] -> [a]
reverse = foldl (flip (:)) []

-- and returns the conjunction of a Boolean list. For the result to be
-- True, the list must be finite; False, however, results from a False
-- value at a finite index of a finite or infinite list. or is the
-- disjunctive dual of and.
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

-- Applied to a predicate and a list, an determines if any element
-- of the list satisfies the predicate. Similarly, for all.
any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p
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-- elem is the list membership predicate, usually written in infix form,
-- e.g., x ‘elem‘ xs. notElem is the negation.
elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== x)
notElem x = all (/= x)

-- lookupB key assocs looks up a key in an association list.
lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys)

| key == x = Just y
| otherwise = lookup key xys

-- sum and product compute the sum or product of a finite list of numbers.
sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1

-- maximum and minimum return the maximum or minimum value from a list,
-- which must be non-empty, finite, and of an ordered type.
maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "PreludeList.maximum: empty list"
maximum xs = foldl1 max xs

minimum [] = error "PreludeList.minimum: empty list"
minimum xs = foldl1 min xs

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

-- zip takes two lists and returns a list of corresponding pairs. If one
-- input list is short, excess elements of the longer list are discarded.
-- zip3 takes three lists and returns a list of triples. Zips for larger
-- tuples are in the List library

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3 = zipWith3 (,,)
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-- The zipWith family generalises the zip family by zipping with the
-- function given as the first argument, instead of a tupling function.
-- For example, zipWith (+) is applied to two lists to produce the list
-- of corresponding sums.

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)

= z a b : zipWith z as bs
zipWith _ _ _ = []

zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)

= z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _ = []

-- unzip transforms a list of pairs into a pair of lists.

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

unzip3 :: [(a,b,c)] -> ([a],[b],[c])
unzip3 = foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs))

([],[],[])
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A.2 Prelude PreludeText

module PreludeText (
ReadS, ShowS,
Read(readsPrec, readList),
Show(showsPrec, showList),
reads, shows, show, read, lex,
showChar, showString, readParen, showParen ) where

-- The omitted instances can be implemented in standard Haskell but
-- they have been omitted for the sake of brevity

import Char(isSpace, isAlpha, isDigit, isAlphanum, isHexDigit,
showLitChar, readLitChar, lexLitChar)

import Numeric(showSigned, showInt, readSigned, readDec, showFloat,
readFloat, lexDigits)

type ReadS a = String -> [(a,String)]
type ShowS = String -> String

class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]

readList = readParen False (\r -> [pr | ("[",s) <- lex r,
pr <- readl s])

where readl s = [([],t) | ("]",t) <- lex s] ++
[(x:xs,u) | (x,t) <- reads s,

(xs,u) <- readl’ t]
readl’ s = [([],t) | ("]",t) <- lex s] ++

[(x:xs,v) | (",",t) <- lex s,
(x,u) <- reads t,
(xs,v) <- readl’ u]

class Show a where
showsPrec :: Int -> a -> ShowS
showList :: [a] -> ShowS

showList [] = showString "[]"
showList (x:xs) = showChar ’[’ . shows x . showl xs

where showl [] = showChar ’]’
showl (x:xs) = showString ", " . shows x .

showl xs

reads :: (Read a) => ReadS a
reads = readsPrec 0
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shows :: (Show a) => a -> ShowS
shows = showsPrec 0

read :: (Read a) => String -> a
read s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> x
[] -> error "PreludeText.read: no parse"
_ -> error "PreludeText.read: ambiguous parse"

show :: (Show a) => a -> String
show x = shows x ""

showChar :: Char -> ShowS
showChar = (:)

showString :: String -> ShowS
showString = (++)

showParen :: Bool -> ShowS -> ShowS
showParen b p = if b then showChar ’(’ . p . showChar ’)’ else p

readParen :: Bool -> ReadS a -> ReadS a
readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r
mandatory r = [(x,u) | ("(",s) <- lex r,

(x,t) <- optional s,
(")",u) <- lex t ]
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-- This lexer is not completely faithful to the Haskell lexical syntax.
-- Current limitations:
-- Qualified names are not handled properly
-- A ‘--’ does not terminate a symbol
-- Octal and hexidecimal numerics are not recognized as a single token

lex :: ReadS String
lex "" = [("","")]
lex (c:s)

| isSpace c = lex (dropWhile isSpace s)
lex (’\’’:s) = [(’\’’:ch++"’", t) | (ch,’\’’:t) <- lexLitChar s,

ch /= "’" ]
lex (’"’:s) = [(’"’:str, t) | (str,t) <- lexString s]

where
lexString (’"’:s) = [("\"",s)]
lexString s = [(ch++str, u)

| (ch,t) <- lexStrItem s,
(str,u) <- lexString t ]

lexStrItem (’\\’:’&’:s) = [("\\&",s)]
lexStrItem (’\\’:c:s) | isSpace c

= [("\\&",t) |
’\\’:t <-

[dropWhile isSpace s]]
lexStrItem s = lexLitChar s

lex (c:s) | isSingle c = [([c],s)]
| isSym c = [(c:sym,t) | (sym,t) <- [span isSym s]]
| isAlpha c = [(c:nam,t) | (nam,t) <- [span isIdChar s]]
| isDigit c = [(c:ds++fe,t) | (ds,s) <- [span isDigit s],

(fe,t) <- lexFracExp s ]
| otherwise = [] -- bad character

where
isSingle c = c ‘elem‘ ",;()[]{}_‘"
isSym c = isPrint c && not (isAlphaNum c) &&

not (isSingle c) && not (c ‘elem‘ "_’")
isIdChar c = isAlphanum c || c ‘elem‘ "_’"

lexFracExp (’.’:c:cs) | isDigit c
= [(’.’:ds++e,u) | (ds,t) <- lexDigits (c:cs),

(e,u) <- lexExp t]
lexFracExp s = [("",s)]

lexExp (e:s) | e ‘elem‘ "eE"
= [(e:c:ds,u) | (c:t) <- [s], c ‘elem‘ "+-",

(ds,u) <- lexDigits t] ++
[(e:ds,t) | (ds,t) <- lexDigits s]

lexExp s = [("",s)]
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instance Show Int where
showsPrec = showSigned showInt

instance Read Int where
readsPrec p = readSigned readDec

instance Show Integer where
showsPrec = showSigned showInt

instance Read Integer where
readsPrec p = readSigned readDec

instance Show Float where
showsPrec = showFloat

instance Read Float where
readsPrec p = readFloat

instance Show Double where
showsPrec = showFloat

instance Read Double where
readsPrec p = readFloat

instance Show () where
showsPrec p () = showString "()"

instance Read () where
readsPrec p = readParen False

(\r -> [((),t) | ("(",s) <- lex r,
(")",t) <- lex s ] )

instance Show Char where
showsPrec p ’\’’ = showString "’\\’’"
showsPrec p c = showChar ’\’’ . showLitChar c . showChar ’\’’

showList cs = showChar ’"’ . showl cs
where showl "" = showChar ’"’

showl (’"’:cs) = showString "\\\"" . showl cs
showl (c:cs) = showLitChar c . showl cs
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instance Read Char where
readsPrec p = readParen False

(\r -> [(c,t) | (’\’’:s,t)<- lex r,
(c,’\’’) <- readLitChar s])

readList = readParen False (\r -> [(l,t) | (’"’:s, t) <- lex r,
(l,_) <- readl s ])

where readl (’"’:s) = [("",s)]
readl (’\\’:’&’:s) = readl s
readl s = [(c:cs,u) | (c ,t) <- readLitChar s,

(cs,u) <- readl t ]

instance (Show a) => Show [a] where
showsPrec p = showList

instance (Read a) => Read [a] where
readsPrec p = readList

-- Tuples

instance (Show a, Show b) => Show (a,b) where
showsPrec p (x,y) = showChar ’(’ . shows x . showChar ’,’ .

shows y . showChar ’)’

instance (Read a, Read b) => Read (a,b) where
readsPrec p = readParen False

(\r -> [((x,y), w) | ("(",s) <- lex r,
(x,t) <- reads s,
(",",u) <- lex t,
(y,v) <- reads u,
(")",w) <- lex v ] )

-- Other tuples have similar Read and Show instances

-- Functions

instance Show (a->b) where
showsPrec p f = showString "<<function>>"

instance Show (IO a) where
showsPrec p f = showString "<<IO action>>"
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A.3 Prelude PreludeIO

module PreludeIO (
FilePath, IOError, fail, userError, catch,
putChar, putStr, putStrLn, print,
getChar, getLine, getContents, interact,
readFile, writeFile, appendFile, readIO, readLn

) where

import PreludeBuiltin

type FilePath = String

data IOError -- The internals of this type are system dependent

instance Show IOError where ...
instance Eq IOError where ...

fail :: IOError -> IO a
fail = primFail

userError :: String -> IOError
userError = primUserError

catch :: IO a -> (IOError -> IO a) -> IO a
catch = primCatch

putChar :: Char -> IO ()
putChar = primPutChar

putStr :: String -> IO ()
putStr s = mapM_ s putChar

putStrLn :: String -> IO ()
putStrLn s = do putStr s

putStr "\n"

print :: Show a => a -> rIO ()
print x = putStrLn (show x)

getChar :: IO Char
getChar = primGetChar

getLine :: IO String
getLine = do c <- getChar

if c == ’\n’ then return "" else
do s <- getLine

return (c:s)
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getContents :: IO String
getContents = primGetContents

interact :: (String -> String) -> IO ()
interact f = do s <- getContents

putStr (f s)

readFile :: FilePath -> IO String
readFile = primReadFile

writeFile :: FilePath -> String -> IO ()
writeFile = primWriteFile

appendFile :: FilePath -> String -> IO ()
appendFile = primAppendFile

-- raises an exception instead of an error
readIO :: Read a => String -> IO a
readIO s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> return x
[] -> fail (userError "PreludeIO.readIO: no parse")
_ -> fail (userError

"PreludeIO.readIO: ambiguous parse")

readLn :: Read a => IO a
readLn = do l <- getLine

r <- readIO l
return r
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B Syntax

B.1 Notational Conventions

These notational conventions are used for presenting syntax:

[pattern] optional
{pattern} zero or more repetitions
(pattern) grouping

pat1 | pat2 choice
pat〈pat ′〉 difference—elements generated by pat

except those generated by pat ′

fibonacci terminal syntax in typewriter font

BNF-like syntax is used throughout, with productions having the form:

nonterm → alt1 | alt2 | . . . | altn

There are some families of nonterminals indexed by precedence levels (written as a
superscript). Similarly, the nonterminals op, varop, and conop may have a double index: a
letter l , r , or n for left-, right- or nonassociativity and a precedence level. A precedence-
level variable i ranges from 0 to 9; an associativity variable a varies over {l , r , n}. Thus,
for example

aexp → ( expi+1 qop(a,i) )

actually stands for 30 productions, with 10 substitutions for i and 3 for a.

In both the lexical and the context-free syntax, there are some ambiguities that are to
be resolved by making grammatical phrases as long as possible, proceeding from left to
right (in shift-reduce parsing, resolving shift/reduce conflicts by shifting). In the lexical
syntax, this is the “consume longest lexeme” rule. In the context-free syntax, this means
that conditionals, let-expressions, and lambda abstractions extend to the right as far as
possible.

B.2 Lexical Syntax

program → { lexeme | whitespace }
lexeme → varid | conid | varsym | consym | literal | special | reservedop | reservedid
literal → integer | float | char | string
special → ( | ) | , | ; | [ | ] | _ | ` | { | }

whitespace → whitestuff {whitestuff }
whitestuff → whitechar | comment | ncomment
whitechar → newline | return | linefeed | vertab | formfeed
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| space | tab | UNIwhite
newline → a newline (system dependent)
return → a carriage return
linefeed → a line feed
space → a space
tab → a horizontal tab
vertab → a vertical tab
formfeed → a form feed
uniWhite → any UNIcode character defined as whitespace
comment → -- {any} newline
ncomment → {- ANYseq {ncomment ANYseq} -}
ANYseq → {ANY }〈{ANY } ( {- | -} ) {ANY }〉
ANY → any | newline | vertab | formfeed
any → graphic | space | tab | nonbrkspc
graphic → large | small | digit | symbol | special | : | " | ’

small → ASCsmall | UNIsmall
ASCsmall → a | b | . . . | z
UNIsmall → any Unicode lowercase letter

large → ASClarge | UNIlarge
ASClarge → A | B | . . . | Z
UNIlarge → any uppercase or titlecase Unicode letter
symbol → ASCsymbol | UNIsymbol
ASCsymbol → ! | # | $ | % | & | * | + | . | / | < | = | > | ? | @

| \ | ^ | | | - | ~
UNIsymbol → Any Unicode symbol or punctuation
digit → 0 | 1 | . . . | 9
udigit → digit | UNIdigit
UNIdigit → A Unicode numberic
octit → 0 | 1 | . . . | 7
hexit → digit | A | . . . | F | a | . . . | f

varid → (small {small | large | udigit | ’ | _})〈reservedid〉
conid → large {small | large | udigit | ’ | _}
reservedid → case | class | data | default | deriving | do | else

| if | import | in | infix | infixl | infixr | instance
| let | module | newtype | of | then | type | where

specialid → as | qualified | hiding

varsym → ( symbol {symbol | :} )〈reservedop〉
consym → (: {symbol | :})〈reservedop〉
reservedop → .. | :: | = | \ | | | <- | -> | @ | ~ | =>
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specialop → - | !

varid (variables)
conid (constructors)
tyvar → varid (type variables)
tycon → conid (type constructors)
tycls → conid (type classes)
modid → conid (modules)

qvarid → [ modid . ] varid
qconid → [ modid . ] conid
qtycon → [ modid . ] tycon
qtycls → [ modid . ] tycls
qvarsym → [ modid . ] varsym
qconsym → [ modid . ] consym

decimal → digit{digit}
octal → octit{octit}
hexadecimal→ hexit{hexit}

integer → decimal
| 0o octal | 0O octal
| 0x hexadecimal | 0X hexadecimal

float → decimal . decimal [(e | E)[- | +]decimal ]

char → ’ (graphic〈’ | \〉 | space | escape〈\&〉) ’

string → " {graphic〈" | \〉 | space | escape | gap} "
escape → \ ( charesc | ascii | decimal | o octal | x hexadecimal )
charesc → a | b | f | n | r | t | v | \ | " | ’ | &
ascii → ^cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

cntrl → ASClarge | @ | [ | \ | ] | ^ | _
gap → \ whitechar {whitechar} \

B.3 Layout

Definitions: The indentation of a lexeme is the column number indicating the start of that
lexeme; the indentation of a line is the indentation of its leftmost lexeme. To determine
the column number, assume a fixed-width font with this tab convention: tab stops are 8
characters apart, and a tab character causes the insertion of enough spaces to align the
current position with the next tab stop.
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In the syntax given in the rest of the report, layout lists are always preceded by the key-
word where, let, do, or of, and are enclosed within curly braces ({ }) with the individual
declarations separated by semicolons (;). Layout lists usually contain declarations, but do
and case introduce lists of other sorts. For example, the syntax of a let expression is:

let { decl1 ; decl2 ; ... ; decln [;] } in exp

Haskell permits the omission of the braces and semicolons by using layout to convey the
same information. This allows both layout-sensitive and -insensitive styles of coding, which
can be freely mixed within one program. Because layout is not required, Haskell programs
can be straightforwardly produced by other programs.

The layout (or “off-side”) rule takes effect whenever the open brace is omitted after the
keyword where, let, do, or of. When this happens, the indentation of the next lexeme
(whether or not on a new line) is remembered and the omitted open brace is inserted (the
whitespace preceding the lexeme may include comments). For each subsequent line, if it
contains only whitespace or is indented more, then the previous item is continued (nothing
is inserted); if it is indented the same amount, then a new item begins (a semicolon is
inserted); and if it is indented less, then the layout list ends (a close brace is inserted). A
close brace is also inserted whenever the syntactic category containing the layout list ends;
that is, if an illegal lexeme is encountered at a point where a close brace would be legal, a
close brace is inserted. The layout rule matches only those open braces that it has inserted;
an explicit open brace must be matched by an explicit close brace. Within these explicit
open braces, no layout processing is performed for constructs outside the braces, even if a
line is indented to the left of an earlier implicit open brace.

Given these rules, a single newline may actually terminate several layout lists. Also,
these rules permit:

f x = let a = 1; b = 2
g y = exp2

in exp1

making a, b and g all part of the same layout list.

To facilitate the use of layout at the top level of a module (an implementation may
allow several modules may reside in one file), the keyword module and the end-of-file token
are assumed to occur in column 0 (whereas normally the first column is 1). Otherwise, all
top-level declarations would have to be indented.

Section 1.5 gives an example that uses the layout rule.
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B.4 Context-Free Syntax

module → module modid [exports] where body
| body

body → { [impdecls ;] [[fixdecls ;] topdecls [;]] }
| { impdecls [;] }

impdecls → impdecl1 ; . . . ; impdecln (n ≥ 1 )

exports → ( export1 , . . . , exportn [ , ] ) (n ≥ 0 )

export → qvar
| qtycon [(..) | ( qcname1 , . . . , qcnamen )] (n ≥ 0 )
| qtycls [(..) | ( qvar1 , . . . , qvarn )] (n ≥ 0 )
| module modid

qcname → qvar | qcon

impdecl → import [qualified] modid [as modid ] [impspec]
impspec → ( import1 , . . . , importn [ , ] ) (n ≥ 0 )

| hiding ( import1 , . . . , importn [ , ] ) (n ≥ 0 )

import → var
| tycon [ (..) | ( cname1 , . . . , cnamen )] (n ≥ 1 )
| tycls [(..) | ( var1 , . . . , varn )] (n ≥ 0 )

cname → var | con

fixdecls → fix1 ; . . . ; fixn (n ≥ 1 )
fix → infixl [digit ] ops

| infixr [digit ] ops
| infix [digit ] ops

ops → op1 , . . . , opn (n ≥ 1 )

topdecls → topdecl1 ; . . . ; topdecln (n ≥ 0 )
topdecl → type simpletype = type

| data [context =>] simpletype = constrs [deriving ]
| newtype [context =>] simpletype = con atype [deriving ]
| class [context =>] simpleclass [where { cbody [;] }]
| instance [context =>] qtycls inst [where { valdefs [;] }]
| default (type1 , . . . , typen) (n ≥ 0 )
| decl
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decls → decl1 ; . . . ; decln (n ≥ 0 )
decl → signdecl

| valdef
decllist → { decls [;] }

signdecl → vars :: [context =>] type

vars → var1 , . . . , varn (n ≥ 1 )

type → btype [-> type] (function type)

btype → [btype] atype (type application)

atype → gtycon
| tyvar
| ( type1 , . . . , typek ) (tuple type, k ≥ 2 )
| [ type ] (list type)
| ( type ) (parenthesized constructor)

gtycon → qtycon
| () (unit type)
| [] (list constructor)
| (->) (function constructor)
| (,{,}) (tupling constructors)

context → class
| ( class1 , . . . , classn ) (n ≥ 1 )

class → qtycls tyvar

simpletype → tycon tyvar1 . . . tyvark (k ≥ 0 )
constrs → constr1 | . . . | constrn (n ≥ 1 )
constrs → constr1 | . . . | constrn (n ≥ 1 )
constr → con [!] atype1 . . . [!] atypek (arity con = k , k ≥ 0 )

| (btype | ! atype) conop (btype | ! atype) (infix conop)
| con { fielddecl1 , . . . , fielddecln } (n ≥ 1 )

fielddecl → vars :: (type | ! atype)
deriving → deriving (dclass | (dclass1 , . . . , dclassn))(n ≥ 0 )
dclass → qtycls

simpleclass → tycls tyvar
cbody → [ cmethods [ ; cdefaults ] ]
cmethods → signdecl1 ; . . . ; signdecln (n ≥ 1 )
cdefaults → valdef1 ; . . . ; valdefn (n ≥ 1 )
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inst → gtycon
| ( gtycon tyvar1 . . . tyvark ) (k ≥ 0 , tyvars distinct)
| ( tyvar1 , . . . , tyvark ) (k ≥ 2 , tyvars distinct)
| [ tyvar ]
| ( tyvar1 -> tyvar2 ) tyvar1 and tyvar2 distinct

valdefs → valdef1 ; . . . ; valdefn (n ≥ 0 )

valdef → lhs = exp [where decllist ]
| lhs gdrhs [where decllist ]

lhs → pat0

| funlhs

funlhs → var apat { apat }
| pat i+1 varop(a,i) pat i+1

| lpat i varop( l,i) pat i+1

| pat i+1 varop( r,i) rpat i

gdrhs → gd = exp [gdrhs]

gd → | exp0

exp → exp0 :: [context =>] type (expression type signature)
| exp0

expi → expi+1 [qop( n,i) expi+1 ]
| lexpi

| rexpi

lexpi → (lexpi | expi+1 ) qop( l,i) expi+1

lexp6 → - exp7

rexpi → expi+1 qop( r,i) (rexpi | expi+1 )
exp10 → \ apat1 . . . apatn -> exp (lambda abstraction, n ≥ 1 )

| let decllist in exp (let expression)
| if exp then exp else exp (conditional)
| case exp of { alts [;] } (case expression)
| do { stmts [;] } (do expression)
| fexp

fexp → [fexp] aexp (function application)

aexp → qvar (variable)
| gcon (general constructor)
| literal
| ( exp ) (parenthesized expression)
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| ( exp1 , . . . , expk ) (tuple, k ≥ 2 )
| [ exp1 , . . . , expk ] (list, k ≥ 1 )
| [ exp1 [, exp2 ] .. [exp3 ] ] (arithmetic sequence)
| [ exp | qual1 , . . . , qualn ] (list comprehension, n ≥ 1 )
| ( expi+1 qop(a,i) ) (left section)
| ( qop(a,i) expi+1 ) (right section)
| qcon { fbind1 , . . . , fbindn } (labeled construction, n ≥ 0 )
| aexp{qcon} { fbind1 , . . . , fbindn } (labeled update, n ≥ 1 )

qual → pat <- exp
| let decllist
| exp

alts → alt1 ; . . . ; altn (n ≥ 1 )
alt → pat -> exp [where decllist ]

| pat gdpat [where decllist ]

gdpat → gd -> exp [ gdpat ]

stmts → exp [; stmts]
| pat <- exp ; stmts
| let decllist ; stmts

fbinds → { fbind1 , . . . , fbindn } (n ≥ 0 )
fbind → var | qvar = exp

pat → var + integer (successor pattern)
| pat0

pat i → pat i+1 [qconop( n,i) pat i+1 ]
| lpat i

| rpat i

lpat i → (lpat i | pat i+1 ) qconop( l,i) pat i+1

lpat6 → - (integer | float) (negative literal)
rpat i → pat i+1 qconop( r,i) (rpat i | pat i+1 )
pat10 → apat

| gcon apat1 . . . apatk (arity gcon = k , k ≥ 1 )

apat → var [ @ apat ] (as pattern)
| gcon (arity gcon = 0 )
| qcon { fpat1 , . . . , fpatk } (labeled pattern, k ≥ 0 )
| literal
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| _ (wildcard)
| ( pat ) (parenthesized pattern)
| ( pat1 , . . . , patk ) (tuple pattern, k ≥ 2 )
| [ pat1 , . . . , patk ] (list pattern, k ≥ 1 )
| ~ apat (irrefutable pattern)

fpat → var = pat
| var

gcon → ()
| []
| (,{,})
| qcon

var → varid | ( varsym ) (variable)
qvar → qvarid | ( qvarsym ) (qualified variable)
con → conid | ( consym ) (constructor)
qcon → qconid | ( qconsym ) (qualified constructor)
varop → varsym | ` varid̀ (variable operator)
qvarop → qvarsym | ` qvarid̀ (qualified variable operator)
conop → consym | ` conid̀ (constructor operator)
qconop → qconsym | ` qconid̀ (qualified constructor operator)
op → varop | conop (operator)
qop → qvarop | qconop (qualified operator)
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C Literate comments

The “literate comment” convention, first developed by Richard Bird and Philip Wadler for
Orwell, and inspired in turn by Donald Knuth’s “literate programming”, is an alternative
style for encoding Haskell source code. The literate style encourages comments by making
them the default. A line in which “>” is the first character is treated as part of the program;
all other lines are comment. Within the program part, the usual “--” and “{- -}” comment
conventions may still be used. To capture some cases where one omits an “>” by mistake,
it is an error for a program line to appear adjacent to a non-blank comment line, where a
line is taken as blank if it consists only of whitespace.

By convention, the style of comment is indicated by the file extension, with “.hs”
indicating a usual Haskell file and “.lhs” indicating a literate Haskell file. Using this style,
a simple factorial program would be:

This program prompts the user for a number and prints the factorial
of that number:

> main :: IO ()

> main = do putStr "Enter a number: "
> l <- readLine
> putStr "n!= "
> print (fact (read l))

This is the factorial function.

> fact :: Integer -> Integer
> fact 0 = 1
> fact n = n * fact (n-1)

An alternative style of literate programming is particularly suitable for use with the
LaTeX text processing system. In this convention, only those parts of the literate program
that are entirely enclosed between \begin{code}. . .\end{code} delimiters are treated as
program text; all other lines are comment. It is not necessary to insert additional blank
lines before or after these delimiters, though it may be stylistically desirable. For example,

\documentstyle{article}

\begin{document}

\section{Introduction}

This is a trivial program that prints the first 20 factorials.

\begin{code}
main :: IO ()
main = print [ (n, product [1..n]) | n <- [1..20]]
\end{code}

\end{document}
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This style uses the same file extension. It is not advisable to mix these two styles in the
same file.
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D Specification of Derived Instances

A derived instance is an instance declaration that is generated automatically in conjunction
with a data or newtype declaration. The body of a derived instance declaration is derived
syntacticly from the definition of the associated type. Derived instances are possible only
for classes known to the compiler: those defined in either the Prelude or a standard library.
In this appendix, we describe the derivation of classes defined by the Prelude.

If T is an algebraic datatype declared by:

data c => T u1 . . . uk = K1 t11 . . . t1k1 | · · · | Kn tn1 . . . tnkn

deriving (C1, . . . , Cm)

(where m ≥ 0 and the parentheses may be omitted if m = 1 ) then a derived instance
declaration is possible for a class C if these conditions hold:

1. C is one of Eq, Ord, Enum, Bounded, Show, or Read.

2. There is a context c′ such that c′ ⇒ C tij holds for each of the constituent types tij .

3. If C is Bounded, the type must be either an enumeration (all constructors must by
nullary) or have only one constructor.

4. If C is Enum, the type must be an enumeration.

5. There must be no explicit instance declaration elsewhere in the program that makes
T u1 . . . uk an instance of C .

For the purposes of derived instances, a newtype declaration is treated as a data declaration
with a single constructor.

If the deriving form is present, an instance declaration is automatically generated for
T u1 . . . uk over each class Ci . If the derived instance declaration is impossible for any of
the Ci then a static error results. If no derived instances are required, the deriving form
may be omitted or the form deriving () may be used.

Each derived instance declaration will have the form:

instance (c, C ′1 u ′1, . . . , C ′j u ′j ) => Ci (T u1 . . . uk ) where { d }

where d is derived automatically depending on Ci and the data type declaration for T (as
will be described in the remainder of this section), and u ′1 through u ′j form a subset of u1

through uk . When inferring the context for the derived instances, type synonyms must be
expanded out first. Free names in the declarations d are all defined in the Prelude; the
qualifier ‘Prelude.’ is implicit here. The remaining details of the derived instances for each
of the derivable Prelude classes are now given.
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Derived instances of Eq and Ord. The class methods automatically introduced by de-
rived instances of Eq and Ord are (==), (/=), compare, (<), (<=), (>), (>=), max, and min.
The latter seven operators are defined so as to compare their arguments lexicographically
with respect to the constructor set given, with earlier constructors in the datatype declara-
tion counting as smaller than later ones. For example, for the Bool datatype, we have that
(True > False) == True.

Derived comparisons always traverse constructors from left to right. These examples
illustrate this property:

(1,undefined) == (2,undefined) ⇒ False
(undefined,1) == (undefined,2) ⇒ ⊥

Derived instances of Enum Derived instance declarations for the class Enum are only
possible for enumerations. The nullary constructors are assumed to be numbered left-
to-right with the indices 0 through n − 1. Enum introduces the class methods toEnum,
fromEnum, enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, which are used to
define arithmetic sequences as described in Section 3.10.

The toEnum and fromEnum operators map enumerated values to and from the Int type.
enumFrom n returns a list corresponding to the complete enumeration of n’s type starting at
the value n. Similarly, enumFromThen n n’ is the enumeration starting at n, but with second
element n’, and with subsequent elements generated at a spacing equal to the difference
between n and n’. enumFromTo and enumFromThenTo are as defined by the default class
methods for Enum (see Figure 5, page 67). For example, given the datatype:

data Color = Red | Orange | Yellow | Green deriving (Enum)

we would have:
[Orange..] == [Orange, Yellow, Green]
fromEnum Yellow == 2

Derived instances of Bounded. The Bounded class introduces the class methods minBound
and maxBound, which define the minimal and maximal elements of the type. For an enumer-
ation, the first and last constructors listed in the data declaration are the bounds. For a
type with a single constructor, the constructor is applied to the bounds for the constituent
types. For example, the following datatype:

data Pair a b = Pair a b deriving Bounded

would generate the following Bounded instance:

instance (Bounded a,Bounded b) => Bounded (Pair a b) where
minBound = Pair minBound minBound
maxBound = Pair maxBound maxBound
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Derived instances of Read and Show. The class methods automatically introduced by
derived instances of Read and Show are showsPrec, readsPrec, showList, and readList.
They are used to coerce values into strings and parse strings into values.

The function showsPrec d x r accepts a precedence level d (a number from 0 to 10),
a value x, and a string r. It returns a string representing x concatenated to r. showsPrec
satisfies the law:

showsPrec d x r ++ s == showsPrec d x (r ++ s)

The representation will be enclosed in parentheses if the precedence of the top-level con-
structor operator in x is less than d. Thus, if d is 0 then the result is never surrounded in
parentheses; if d is 10 it is always surrounded in parentheses, unless it is an atomic expres-
sion. The extra parameter r is essential if tree-like structures are to be printed in linear
time rather than time quadratic in the size of the tree.

The function readsPrec d s accepts a precedence level d (a number from 0 to 10) and
a string s, and returns a list of pairs (x,r) such that showsPrec d x r == s. readsPrec
is a parse function, returning a list of (parsed value, remaining string) pairs. If there is no
successful parse, the returned list is empty.

showList and readList allow lists of objects to be represented using non-standard
denotations. This is especially useful for strings (lists of Char).

readsPrec will parse any valid representation of the standard types apart from lists, for
which only the bracketed form [. . . ] is accepted. See Appendix A for full details.

A precise definition of the derived Read and Show instances for general types is beyond
the scope of this report. However, the derived Read and Show instances have the following
properties:

• The result of show is a syntactically correct Haskell expression containing only con-
stants given the fixity declarations in force at the point where the type is declared.

• The result of show is readable by read if all component types are readable. (This
is true for all instances defined in the Prelude but may not be true for user-defined
instances.)

• The instance generated by Read allows arbitrary whitespace between tokens on the
input string. Extra parenthesis are also allowed.

• The result of show contains only the constructor names defined in the data type,
parenthesis, and spaces. When labeled constructor fields are used, braces, commas,
field names, and equal signs are also used. No leading or trailing spaces are generated.
Parenthesis are only added where needed. No line breaks are added.

• If a constructor is defined using labeled field syntax then the derived show for that
constructor will this same syntax; the fields will be in the order declared in the data
declaration. The derived Read instance will use this same syntax: all fields must be
present and the declared order must be maintained.
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• If a constructor is defined in the infix style, the derived Show instance will also use
infix style. The derived Read instance will require that the constructor be infix.

The derived Read and Show instances may be unsuitable for some uses. Some problems
include:

• Circular structures cannot be printed or read by these instances.

• The printer loses shared substructure; the printed representation of an object may be
much larger that necessary.

• The parsing techniques used by the reader are very inefficient; reading a large structure
may be quite slow.

• There is no user control over the printing of types defined in the Prelude. For example,
there is no way to change the formatting of floating point numbers.

D.1 An example

As a complete example, consider a tree datatype:

data Tree a = Leaf a | Tree a :^: Tree a
deriving (Eq, Ord, Read, Show)

Automatic derivation of instance declarations for Bounded and Enum are not possible, as Tree
is not an enumeration or single-constructor datatype. The complete instance declarations
for Tree are shown in Figure 8, Note the implicit use of default class method definitions—for
example, only <= is defined for Ord, with the other class methods (<, >, >=, max, and min)
being defined by the defaults given in the class declaration shown in Figure 5 (page 67).
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infix 4 :^:
data Tree a = Leaf a | Tree a :^: Tree a

instance (Eq a) => Eq (Tree a) where
Leaf m == Leaf n = m==n
u:^:v == x:^:y = u==x && v==y

_ == _ = False

instance (Ord a) => Ord (Tree a) where
Leaf m <= Leaf n = m<=n
Leaf m <= x:^:y = True
u:^:v <= Leaf n = False
u:^:v <= x:^:y = u<x || u==x && v<=y

instance (Show a) => Show (Tree a) where

showsPrec d (Leaf m) = showParen (d >= 10) showStr
where

showStr = showString "Leaf " . showsPrec 10 m

showsPrec d (u :^: v) = showParen (d > 4) showStr
where

showStr = showsPrec 5 u .
showString " :^: " .
showsPrec 5 v

instance (Read a) => Read (Tree a) where

readsPrec d r = readParen (d > 4)
(\r -> [(u:^:v,w) |

(u,s) <- readsPrec 5 r,
(":^:",t) <- lex s,
(v,w) <- readsPrec 5 t]) r

++ readParen (d > 9)
(\r -> [(Leaf m,t) |

("Leaf",s) <- lex r,
(m,t) <- readsPrec 10 s]) r

Figure 8: Example of Derived Instances
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E Compiler Pragmas

Some compiler implementations support compiler pragmas, which are used to give additional
instructions or hints to the compiler, but which do not form part of the Haskell language
proper and do not change a program’s semantics. This section summarizes this existing
practice. An implementation is not required to respect any pragma, but the pragma should
be ignored if an implementation is not prepared to handle it. Lexically, pragmas appear as
comments, except that the enclosing syntax is {-# #-}.

E.1 Inlining

decl → {-# inline [digit ] qvars #-}
decl → {-# notInline qvars #-}

The optional digit represents the level of optimization at which the inlining is to occur. If
omitted, it is assumed to be 0. A compiler may use a numeric optimization level setting
in which increasing level numbers indicate increasing amounts of optimization. Trivial
inlinings that have no impact on compilation time or code size should have an optimization
level of 0; more complex inlinings that may lead to slow compilation or large executables
should be associated with higher optimization levels.

Compilers will often automatically inline simple expressions. This may be prevented by
the notInline pragma.

E.2 Specialization

decl → {-# specialize spec1 , . . . , speck #-} (k ≥ 1 )
spec → vars :: type

Specialization is used to avoid inefficiencies involved in dispatching overloaded functions.
For example, in

factorial :: Num a => a -> a
factorial 0 = 0
factorial n = n * factorial (n-1)
{-# specialize factorial :: Int -> Int,

factorial :: Integer -> Integer #-}

calls to factorial in that the compiler can detect that the parameter is either Int or
Integer will use specialized versions of factorial which do not involved overloaded nu-
meric operations.
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E.3 Optimization

decl → optdecl
exp0 → optdecl exp0

optdecl → {-# optimize optd1 , . . . , optdk #-} (k ≥ 1 )
optd → digit

| speed digit
| space digit
| compilationSpeed digit
| debug digit

The optimize pragma provides explicit control over the optimization levels of the compiler.
If used as a declaration, this applies to all values defined in the declaration group (and
recursively to any nested values). Used as an expression, it applies only to the prefixed
expression. If no attribute is named, the speed attribute is assumed.
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Index entries that refer to nonterminals in the Haskell syntax are shown in an italic font.
Code entities defined in the standard prelude (Appendix A) or in the Haskell Library
Report[8] are shown in typewriter font. Ordinary index entries are shown in a roman
font.

!!, 63, 96, 97
$, 63, 84, 90
&&, 64, 84, 90
(), see trivial type and unit expression
*, 63, 73, 74, 84, 85
**, 63, 74, 75, 84, 86
+, 63, 73, 74, 84, 85
+, see also n+k pattern
++, 63, 70, 84, 89
-, 63, 73, 74, 84, 85
-, see also negation
., 63, 65, 84, 90
/, 63, 73, 74, 84, 86
/=, 63, 68, 84
/=, 123
:, 63, 65, 84
::, 24
<, 63, 68, 84
<, 123
<=, 63, 68, 84
<=, 123
==, 63, 68, 84
==, 123
>, 63, 68, 84
>, 123
>=, 63, 68, 84
>=, 123
>>, 63, 70, 80, 84, 89
>>=, 63, 70, 80, 84, 89
@, see as-pattern
[] (nil), 65
⊥, 13
^, 63, 75, 84, 88
^^, 63, 75, 84, 88
_, see wildcard pattern
~, see irrefutable pattern

abbreviated module, 55
abs, 74, 75, 85
abstract datatype, 37, 62
accumulate, 71, 89
acos, 74, 86
acosh, 74, 86
aexp, 12, 16–18, 118
algebraic datatype, 36, 56, 122
all, 100
alt, 20, 118
alts, 20, 118
ambiguous type, 44
and, 100
ANY, 7, 112
any, 7, 112
any, 100
ANYseq, 7, 112
apat, 25, 119
appendFile, 79, 110
application, 15

function, see function application
operator, see operator application

applyM, 89
approxRational, 75, 76
arctangent, 76
arithmetic operator, 73
arithmetic sequence, 17, 65
as-pattern (@), 25, 27
ascii, 10, 113
ASCII character set, 6
ASClarge, 7, 112
ASCsmall, 7, 112
ASCsymbol, 7, 112
asin, 74, 86
asinh, 74, 86
asTypeOf, 95
atan, 74, 76, 86
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atan2, 75, 76, 88
atanh, 74, 86
atype, 33, 116

basic input/output, 78
binding, 31

function, see function binding
pattern, see pattern binding
simple pattern, see simple pattern bind-

ing
body, 31, 55, 115
Bool (datatype), 64, 90
boolean, 64
Bounded (class), 71, 85

derived instance, 43, 123
instance for Char, 91

break, 99
btype, 33, 116

case expression, 20
catch, 81, 109
cbody, 41, 117
cdefaults, 41, 117
ceiling, 75, 76, 87
Char (datatype), 64, 91
Char (module), 103
char, 10, 113
character, 64

literal syntax, 10
character set

ASCII, see ASCII character set
transparent, see transparent charac-

ter set
charesc, 10, 113
class, 31, 41
class, 34, 116
class assertion, 34
class declaration, 41, 56

with an empty where part, 41
class environment, 35
class method, 32, 41, 42
closure, 60
cmethods, 41, 117
cname, 57, 115
cntrl, 10, 113
coercion, 76

comment, 7
end-of-line, 7
nested, 7

comment, 7, 112
compare, 68, 84, 123
con, 14, 119
concat, 89
concatMap, 101
conditional expression, 16
conid, 8, 9, 113
conop, 14, 119
const, 65, 90
constr, 36, 116
constrs, 36, 116
constructed pattern, 26
constructor class, v, 31
constructor expression, 33
consym, 8, 113
context, 34
context, 34, 116
context reduction, 49
cos, 74, 86
cosh, 74, 86
cosine, 76
curry, 65, 94
Curry, Haskell B., iii
cycle, 98

data declaration, 22, 36
datatype, 36

abstract, see abstract datatype
algebraic, see algebraic datatype
declaration, see data declaration
recursive, see recursive datatype
renaming, see newtype declaration

dclass, 36, 116
decimal, 9, 113
decl, 31, 47, 116
declaration, 31

class, see class declaration
datatype, see data declaration
default, see default declaration
fixity, see fixity declaration
import, see import declaration
instance, see instance declaration
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within a class declaration, 41
within a let expression, 19
within an instance declaration, 42

declaration group, 48
decllist, 31, 116
decls, 31, 116
decodeFloat, 75, 76, 87
default class method, 41, 42, 123, 125
default declaration, 44
dependency analysis, 48
derived instance, 43, see also instance dec-

laration
deriving, 36, 116
digit, 7, 112
div, 63, 73, 74, 84, 86
divMod, 74, 86
do expression, iv, 21, 80
do expressions, 70
Double (datatype), 73, 75, 93
drop, 99
dropWhile, 99

Either (datatype), 66, 92
either, 66, 92
elem, 63, 96, 101
encodeFloat, 75, 77, 87
entity, 55
Enum (class), 18, 44, 70, 85

derived instance, 43, 123
instance for Char, 91
instance for Double, 93
instance for Float, 93
superclass of Integral, 86

enumFrom, 70, 85, 123
enumFromThen, 70, 85, 123
enumFromThenTo, 70, 85, 123
enumFromTo, 70, 85, 123
environment

class, see class environment
type, see type environment

EQ, 66
Eq (class), 68, 72, 84

derived instance, 43, 123
instance for Char, 91
superclass of Num, 85

superclass of Ord, 84
error, 2, 13
error, 13, 95
escape, 10, 113
Eval (class), 38, 71, 89

superclass of Num, 85
even, 74, 87
exception handling, 80
expi , 12, 117
exp, 12, 15, 16, 19–21, 24, 117
exp, 74, 75, 86
exponent, 75, 77, 87
exponentiation, 75
export, 56, 115
export list, 56
exports, 56, 115
expression, 2, 11

case, see case expression
conditional, see conditional expression
let, see let expression
simple case, see simple case expres-

sion
type, see type expression
unit, see unit expression

expression type-signature, 24, 44

fail, 81, 109
False, 64
fbind, 23, 118
fbinds, 118
fexp, 12, 15, 117
field label, see label, 37

construction, 22
selection, 22
update, 23

field names, v
fielddecl, 36, 116
FilePath (type synonym), 79, 109
filter, 89
fix, 63, 115
fixdecls, 63, 115
fixity, 14
fixity declaration, 62
flip, 65, 90
Float (datatype), 72, 75, 93
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float, 9
floatDigits, 75, 76, 87
Floating (class), 72, 74, 86

superclass of RealFloat, 87
floating literal pattern, 27
floatRadix, 75, 76, 87
floatRange, 75, 76, 87
floor, 75, 76, 87
foldl, 97
foldl1, 97
foldr, 97
foldr1, 98
formal semantics, 1
formfeed, 7, 112
fpat, 25, 118
fpats, 25, 118
Fractional (class), 14, 72, 74, 86

superclass of Floating, 86
superclass of RealFrac, 87

fromEnum, 70, 85, 123
fromInteger, 14, 73, 74, 85
fromIntegral, 75, 77, 88
fromRational, 14, 73, 74, 86
fromRealFrac, 75, 77, 88
fst, 65, 94
function, 65
function binding, 46, 47
function type, 33, 34
functional language, iii
Functor (class), 70, 88

instance for [], 94
instance for IO, 92
instance for Maybe, 91

funlhs, 47, 117

gap, 10, 113
gcd, 74, 75, 88
gcon, 14, 119
gd, 20, 47, 117
gdpat, 20, 118
gdrhs, 47, 117
generalization, 49
generalization order, 35
generator, 18
getChar, 79, 109

getContents, 79, 110
getLine, 79, 109
graphic, 7, 112
GT, 66
gtycon, 33, 42, 116
guard, 18, 20, 28
guard, 71, 89

Haskell, iii, 1
Haskell implementations, vi
Haskell kernel, 2
Haskell mailing list, vi
Haskell web pages, vi
head, 96
hexadecimal, 9, 113
hexit, 7, 112
hiding, 58, 61
Hindley-Milner type system, 2, 31, 48

id, 65, 90
identifier, 8
if-then-else expression, see conditional ex-

pression
impdecl, 57, 115
impdecls, 55, 115
import, 57, 115
import declaration, 57
impspec, 57, 115
init, 96
inlining, 127
input/output, iv
inst, 42, 117
instance declaration, 42, see also derived

instance
importing and exporting, 59
with an empty where part, 41

Int (datatype), 72, 75, 92
Integer (datatype), 75, 92
integer, 9
integer literal pattern, 27
Integral (class), 72, 74, 86
interact, 79, 110
interface file, v
IO (datatype), 66, 92
IOError (datatype), 66, 109
irrefutable pattern, 19, 26, 28, 48
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iterate, 98

Just, 66

kind, 33, 34, 36, 38, 42, 53
kind inference, 34, 36, 38, 42, 53

label, 22
lambda abstraction, 15
large, 7, 112
last, 96
layout, 3, 113, see also off-side rule
lcm, 74, 75, 88
Left, 66
length, 97
let expression, 19

in do expressions, 21
in list comprehensions, 18

lex, 105
lexeme, 7, 112
lexical structure, 6
lexpi , 12, 117
lhs, 47, 117
libraries, iv, 60
linear pattern, 15, 25, 47
linearity, 15, 25, 47
lines, 100
list, 16, 33, 65
list comprehension, vi, 18, 65
list type, 34
literal, 7, 112
literate comments, 120
log, 74, 75, 86
logarithm, 75
logBase, 74, 75, 86
longest lexeme rule, 8, 10
lookup, 101
lpat i , 25, 118
LT, 66

magnitude, 75
Main (module), 55
main, 55
map, 70, 88
mapM, 71, 89
mapM_, 71, 89

max, 68, 84, 123
maxBound, 71, 85, 123
maximum, 101
maxInt, 75
Maybe (datatype), 66, 91
maybe, 66, 91
method, see class method
min, 68, 84, 123
minBound, 71, 85, 123
minimum, 101
minInt, 75
mod, 63, 73, 74, 84, 86
modid, 9, 55, 113, 115
module, 55
module, 31, 55, 115
Monad (class), 21, 70, 89

instance for [], 94
instance for Maybe, 91
superclass of MonadZero, 89

monad, iv, 21, 70, 78
monad comprehension

special, see list comprehension
MonadPlus (class), 70, 89

instance for [], 94
instance for Maybe, 91

MonadZero (class), 21, 70, 89
instance for [], 94
instance for Maybe, 91
superclass of MonadPlus, 89

monomorphic type variable, 29, 50, 51
monomorphism restriction, 51
Moose, Bullwinkle J., vi

n+k pattern, v, 27
name

qualified, see qualified name
special, see special name

namespaces, 2, 9
ncomment, 7, 112
negate, 15, 73, 74, 85
negation, 13, 15, 16
newline, 7, 112
newtype declaration, v, vi, 26, 29, 39
nonbrkspc, 7, 112
not, 64, 90
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notElem, 63, 96, 101
Nothing, 66
null, 96
Num (class), 14, 44, 72, 74, 85

superclass of Fractional, 86
superclass of Real, 85

number, 72
literal syntax, 9
translation of literals, 14

Numeric (module), 103
numeric type, 73
numericEnumFrom, 94
numericEnumFromThen, 94
numericEnumFromThenTo, 94
numericEnumFromTo, 94

octal, 9, 113
octit, 7, 112
odd, 74, 87
off-side rule, 3, 114, see also layout
op, 14, 63, 119
operator, 8, 15
operator application, 15
ops, 63, 115
or, 100
Ord (class), 68, 72, 84

derived instance, 43, 123
instance for Char, 91
superclass of Real, 85

Ordering (datatype), 66, 92
otherwise, 64, 90
overloaded functions, 31
overloaded pattern, see pattern-matching
overloading, 41

ambiguous, 44
defaults, 44

pat i , 25, 118
pat, 25, 118
pattern, 20, 25

@, see as-pattern
_, see wildcard pattern
constructed, see constructed pattern
failure-free, 21
floating, see floating literal pattern
integer, see integer literal pattern

irrefutable, 21, see irrefutable pattern
linear, see linear pattern
n+k , see n+k pattern
refutable, see refutable pattern

pattern binding, 46, 48
pattern-matching, 24

overloaded constant, 29
pi, 74, 86
polymorphic recursion, 46
polymorphism, 2
pragmas, 127
precedence, 36, see also fixity
pred, 85
Prelude, 11

implicit import of, 61
Prelude (module), 60, 61, 83
PreludeBuiltin (module), 84, 109
PreludeIO (module), 84, 109
PreludeList (module), 83, 84, 96
PreludeText (module), 84, 103
principal type, 35, 46
print, 78, 109
product, 101
program, 7, 112
program structure, 1
properFraction, 75, 76, 87
putChar, 78, 109
putStr, 78, 109
putStrLn, 78, 109

qcname, 56, 115
qcon, 14, 119
qconid, 9, 113
qconop, 14, 119
qconsym, 9, 113
qop, 14, 15, 119
qtycls, 9, 113
qtycon, 9, 113
qual, 18, 118
qualified name, 9, 58
qualifier, 18
quantification, 34
quot, 73, 74, 84, 86
quotRem, 74, 86
qvar, 14, 119
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qvarid, 9, 113
qvarop, 14, 119
qvarsym, 9, 113

Ratio (module), 84
Read (class), 69, 103

derived instance, 43, 124
instance for [a], 107
instance for Char, 107
instance for Double, 106
instance for Float, 106
instance for Integer, 106
instance for Int, 106

read, 69, 104
readFile, 79, 110
readIO, 79, 110
readLine, 79
readList, 69, 103, 124
readLn, 110
readParen, 104
ReadS (type synonym), 69, 103
reads, 69, 103
readsPrec, 69, 103, 124
Real (class), 72, 74, 85

superclass of Integral, 86
superclass of RealFrac, 87

RealFloat (class), 75, 76, 87
RealFrac (class), 75, 87

superclass of RealFloat, 87
recip, 74, 86
recursive datatype, 39
refutable pattern, 26
rem, 63, 73, 74, 84, 86
repeat, 98
replicate, 98
reservedid, 8, 113
reservedop, 8, 113
return, 70, 89
reverse, 100
rexpi , 12, 117
Right, 66
round, 75, 76, 87
rpat i , 25, 118

scaleFloat, 75, 87
scanl, 97

scanl1, 97
scanr, 98
scanr1, 98
section, 8, 16, see also operator applica-

tion
semantics

formal, see formal semantics
separate compilation, 62
seq, 71, 84, 89
sequence, 71, 89
Show (class), 69, 103

derived instance, 43, 124
instance for [a], 107
instance for Char, 106
instance for Double, 106
instance for Float, 106
instance for Integer, 106
instance for Int, 106
instance for IO, 107
superclass of Num, 85

show, 69, 104
showChar, 104
showList, 69, 103, 124
showParen, 104
ShowS (type synonym), 69, 103
shows, 69, 104
showsPrec, 69, 103, 124
showString, 104
sign, 75
signature, see type signature
signdecl, 41, 45, 116
significand, 75, 77, 87
signum, 74, 75, 85
simple pattern binding, 48
simpleclass, 34, 117
simpletype, 36, 38, 39, 116
sin, 74, 86
sine, 76
sinh, 74, 86
small, 7, 112
snd, 65, 94
space, 7, 112
span, 99
special, 7, 112
special name, 8, 11
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specialid, 8
specialop, 8
splitAt, 99
sqrt, 74, 75, 86
standard prelude, 60, see also Prelude
stmts, 21, 118
strict, 71, 89
strictness annotations, v
strictness flag, 37
strictness flags, 72
String (type synonym), 64, 91
string, 64

literal syntax, 10
transparent, see transparent string

string, 10, 113
subtract, 87
succ, 85
sum, 101
superclass, 41
symbol, 7, 112, 113
synonym, see type synonym
syntax, 111

tab, 7, 112
tail, 96
take, 98
takeWhile, 99
tan, 74, 86
tangent, 76
tanh, 74, 86
toEnum, 70, 85, 123
toInteger, 86
topdecl (class), 41
topdecl (data), 36
topdecl (default), 44
topdecl (instance), 42
topdecl (newtype), 39
topdecl (type), 38
topdecl, 31, 116
topdecls, 31, 55, 116
toRational, 74, 76, 85
trigonometric function, 76
trivial type, 17, 33, 65
True, 64
truncate, 75, 76, 87

tuple, 17, 33, 65
tuple type, 34
tycls, 9, 34, 113
tycon, 9, 113
type, 2, 32, 35

ambiguous, see ambiguous type
constructed, see constructed type
function, see function type
list, see list type
monomorphic, see monomorphic type
numeric, see numeric type
principal, see principal type
trivial, see trivial type
tuple, see tuple type

type, 33, 116
type class, v, 2, 31, see class
type environment, 35
type expression, 33
type renaming, see newtype declaration
type signature, 35, 42, 45

for an expression, see expression type-
signature

type synonym, 38, 42, 56, 122, see also
datatype

recursive, 39
tyvar, 9, 34, 113

uncurry, 65, 94
undefined, 13, 95
Unicode character set, vi, 6, 10
UNIlarge, 7, 112
UNIsmall, 7, 112
UNIsymbol, 7, 112
unit datatype, see trivial type
unit expression, 17
UNIwhite, 7, 112
unlines, 100
until, 65, 95
unwords, 100
unzip, 102
unzip3, 102
userError, 109

valdef, 41, 47, 117
valdefs, 42, 117
value, 2
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var, 14, 119
varid, 8, 9, 113
varop, 14, 119
vars, 45, 116
varsym, 8, 113
vertab, 7, 112
Void (datatype), 65, 90

whitechar, 7, 112
whitespace, 7, 112
whitestuff, 7, 112
wildcard pattern (_), 25
words, 100
writeFile, 79, 110

zero, 70, 89
zip, 65, 101
zip3, 101
zipWith, 102
zipWith3, 102
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