
Object-Oriented Attribute Grammar based

Grammatical Approach to Problem Specification

Maria João Varanda
Instituto Politecnico Bragança, Portugal

Marjan Mernik, Tomaž Kosar, Viljem Žumer
Univerza v Mariboru

Pedro Henriques
Universidade do Minho

August 17, 2004

Contents

1 Introduction 5

2 Related Work 6

3 Basic Concepts 8
3.1 Attribute Grammars . 8
3.2 UML Diagrams . 11

4 A grammatical approach to problem specification 11
4.1 The Principle . 12
4.2 Deriving a context-free grammar from a conceptual class di-

agram . 15
4.3 Deriving an AG from an operational diagram 16
4.4 Generating the rapid prototype of a system 17

5 Case Studies: Specification 18
5.1 CS1: Vending Machine . 19
5.2 CS2: Automatic Teller Machine 29
5.3 CS3: Video Store . 37
5.4 CS4: Cleaning Robot . 48

6 An OO approach to the implementation of AG-based Pro-
cessors 56
6.1 LISA system . 58
6.2 Case Studies Implementation 64

6.2.1 CS1: Vending Machine 64
6.2.2 CS2: Automatic Teller Machine 69
6.2.3 CS3: Video Store . 74
6.2.4 CS4: Cleaning Robot 84

7 Conclusion 91

A Meta-Grammar for OOAG Descriptions 95

3

1 Introduction

This tutorial aims at introducing a method to specify problems based on
attribute grammars (AGs). The grammatical approach to problem solving
lies upon the success reached by attribute grammars in the context of the
specification of language semantics and of the systematic implementation
of language processing tools. It is well-known that language processors can
be generated automatically from AG; the advantages that we obtain from
that approach are obvious: much easier and faster to write and maintain a
specification (a grammar) than a C or Java program; more efficient gener-
ated processors, as we reuse code developed by compiler experts. Besides
that important benefit of creating programs from formal specifications, an-
other relevant lesson comes out from this domain: the syntactic/semantic
approach to problem solving—first build the syntax tree, decorate it (eval-
uating attribute values associated with tree nodes), and then traverse the
tree to transform it into the desired output.
In the technical report we propose a grammatical approach to problem spec-
ification supported by an attribute grammar developed and written in an
object-oriented style (OOAG). We also suggest the use of UML diagrams to
model the analysis phase, and we introduce a method to easily obtain from
the diagrams the grammar-based specification. Then a rapid prototyping
technique will be used to validate the specification in a pragmatic way. The
idea is to translate the OOAG obtained in the first step (specification phase)
into the concrete syntax of a compiler generator in order to create a simula-
tor for that problem. We can then write scenarios (in the language defined
by that OOAG) describing different uses of the system under discussion,
and use the generated simulator to process those scenarios computing the
desired results.
The main contribution of this document—the proposal of our method to
approach the complex task of computer problem solving—is presented in
section 4; we start by discussing the principle that guides such approach
(subsection 4.1), and then we present a template that exhibits the notation
used to write the object-oriented modular attribute grammar that specifies
the problem under analysis (section 5)—the formal definition of the syntax
of this meta-language is given in the appendix A via a context free grammar
(CFG).
Before that explanation and in order to give the necessary background to
understand the rest of the tutorial, section 3 is devoted to the basic concepts
and principles supporting UML and Attribute Grammars. About UML we just

5

explain the diagrams that will be used on the analysis process: Use-Cases
will be used to identify the actions and actors involved in the project; Con-
ceptual Class Diagrams describe the entities (classes) and the relationships
among them; and Operational Diagrams, derived from the Use-Cases, detail
each action. Concerning Attribute Grammars, the notions of attribute, eval-
uation rule and contextual condition are introduced, as well as the notation
used along the report. In that section we also discuss, briefly, the monolithic
and modular approaches to AG development and the attribute evaluation
process.
Section 5 is also very important because it supports the proposal: to illus-
trate the strategy introduced in 4.1, we develop the OOAG to specify four
case studies (subsections 5.1 to 5.4)—after stating the problem, we present
the UML diagrams that results from its analysis, and we describe the struc-
ture of the problem domain using a CFG (obtained with the help of the
Conceptual Class Diagram); then a partial modular AG is written to describe
the computation of the attribute that denotes each goal of the problem
(those AGs are derived taking into Account the Operational Diagrams).
The specification obtained for these case studies will be used to build a
rapid prototype to enable its pragmatic validation, as it will be shown in
section 6. In subsections 6.2, the OOAG written for each problem will
be automatically transformed in a processor—using an AG-based compiler
generator—that reads a scenario (a sentence with data values that describe
a possible system input) and computes the respective solution, the values
of the desired goals (the system output). The language processor generator
used to perform that transformation—the LISA system—will be previously
introduced in subsec. 6.1.
The tutorial ends with a synthesis of the document, and hints for future
work in section 7.

2 Related Work

The grammatical approach to problem solving (software development) can
be seen as an extension of object-oriented design methods [RBP+91] [Fow97]
[GHJV95] where a problem domain model is developed from use-cases and
class diagram. However, their main goal is to develop good software mod-
els. Our goal is to develop rapid prototypes and early validation of user’s
requirements.
Our work is closely related to the Grammar-Oriented Object Design (GOOD)
[Ars01] [LA02], where all valid object interaction sequences of the cluster of

6

objects are identified. Then a meta-model is constructed and represented
as a context-free grammar. Therefore, a context-free grammar represents
the set of all possible interactions (collaborations) of objects in a particular
cluster in order to fulfill the domain goals. When a grammar is interpreted
at a run-time a cluster will dynamically bind the collaborators to the collab-
orations. Hence, GOOD facilitates the creation of dynamically configurable
components, which encapsulates volatile business rules. The rationale be-
hind this is that creating and representing a model of solutions is more
extensible, simpler and more scalable than just creating the single solution.
Possible solutions are modelled with a meta-model and represented as a
context-free grammar. If this grammar is available to the ”users” at run-
time, then they are able to customize the system behavior. Since the inter-
action of objects is obtained from use-case diagrams that describe the func-
tionality of a system, the author called such a grammar a use-case grammar.
In other words, use-cases are described with a domain-specific language. In
the domain analysis the key abstractions are identified and classified as in-
teractions among subsystems that may be realized as software components.
The author in his work distinguishes two types of meta-models: the static
(class diagram) and the dynamic (valid object interaction sequences) meta-
model. The latter is described with a context-free grammar. Our approach
differs from [Ars01] [LA02] since they are using a context-free grammar to
describe behavior of the objects (methods), while in our case the structure of
a class (attributes) is described. An example of a production rule in [Ars01]
[LA02] using the EBNF is:

ShoppingCartOperation ::= {AddItem | DeleteItem |
SaveShoppingCart} CheckOut

Our approach has different goals and advantages. However, it can be seen
as complementary to the GOOD approach. Combining both approaches to
describe the behavior and the structure with a domain-specific language, is
under investigation.
The grammatical approach to software development is also related to the
rapid prototyping research (e.g. [BL02] [LBNE00]). In [BL02] Two-Level
Grammars (TLG) were proposed as an object-oriented requirement specifi-
cation language. Successive refinement steps starting with natural language
lead to more detailed specifications that can be translated to VDM++,
which in turn is translated to Java, yielding a rapid prototype of a system.
With this approach it is possible to obtain the rapid prototype of a system
from natural language specifications. Their Specification Development En-

7

vironment (SDE) has natural language parsing capabilities and can classify
words into nouns (objects/class) and verbs (operations) and their relation-
ships. This initial analysis of requirement documents provides the basis for
further refinement with an attempt to classify the domains (classes) to which
functions (operations) belong. In more complex cases a rapid prototype is
not completely automatically derived since a sufficient degree of interaction
with a user is required to ensure a correct interpretation.
In [LBNE00] Computer-Aided Prototyping Systems (CAPS) were used. Both
approaches support rapid prototyping, where user’s requirements can be
easily tested. Unlike throw away prototypes, the supplemental goal of both
approaches is to use prototype design in a construction of real life systems.
Like our approach, the CAPS supports the incremental prototyping process.
All of system functionalities don’t have to be implemented in the beginning.
The CAPS system has been used as a research tool in the prototyping of a
large war-fighter control system. The CAPS is a software tool which gen-
erates source programs directly from high level requirements specifications.
The generated code can be either in their own domain-specific language
(PSDL) or in the target programming language (Ada). Their approach dif-
fers from ours in the presentation of domain concepts. The domain concepts
in our approach are shown as a context free grammar. In the CAPS they are
represented as data-flow diagrams which can be drawn in a PSDL editor.
In the CAPS, the stress is put on writing the structure of the prototype,
modules, data streams and control constrains. The difference is also in the
aim. The CAPS is a stand alone approach in system development, while
our approach can be seen as supplemental approach to OOA/D.

3 Basic Concepts

3.1 Attribute Grammars

Any compilation can be broken down into two major phases:

• Analysis: to discover the meaning of the source program, i.e. its struc-
ture, and the precise contents

• Synthesis: to create a target program related with the source program

The source program is converted into an abstract representation which em-
bodies the essential properties of the source language. This abstract repre-
sentation may be implemented in many ways, but it is usually conceptualized

8

as a tree. The structure of the tree (nodes labelled by grammar symbols
and productions, hierarchically linked to other nodes) represents the control
and data flow aspects of the program; additional information (attributes) is
attached to the nodes to describe other important values for the compilation
process.
The analysis phase of a language processor can be divided into three tasks:
lexical, syntactical and semantical. The lexical analysis scans the source text
and identifies terminal symbols; the syntactical analysis matches the input
stream of terminal symbols against the grammar to identify the productions
used and rebuild the derivation (syntactic) tree; the semantic analysis deco-
rates tree nodes, computing the value of the attributes describing properties
of the node, and additionally checks their consistency. Notice that the infor-
mation collected in the attributes of a node is derived from the environment
of that node; this allows to deal with context sensitive information based on
a context free grammar.
Attribute Grammars (AG) have proven to be an useful aid in specifying
the construction and decoration processes of the structure tree, because
they constitute a formal definition of all syntactic (context-free) and seman-
tics (context-dependent) language properties. Moreover, also decorated tree
transformation can also be specified through AG
An attribute grammar is based on a context-free grammar (CFG),

G = (N, T, S, P)

It associates: a set, A(X), of attributes with each symbol X in the vocabu-
lary (V) of G (terminal (T) and non-terminal (N) symbols); a set, R(p), of
evaluation rules with each production p ∈ P ; and a set, C(p), of contextual
conditions with each production p ∈ P .
So an attribute grammar is formally defined as the following tuple:

AG = (G, A, R, C)

where A =
⋃

X∈(N∪T) A(X) is the set of all the attributes; R =
⋃

p∈P R(p)
is the set of evaluation rules for all the productions; and C =

⋃
p∈P C(p) is

the set of contextual conditions for all the productions.
Each attribute has a type, and represents a specific property of symbol X;
we write X.a to indicate that attribute a is an element of A(X). For each
X ∈ (N ∪ T), the set of attributes of X is splitted into two disjointed sets:
A(X) = Inh(X) ∪ Syn(X), respectively the inherited and the synthesized
attributes.

9

Each R(p) is a set of formulas

X.a = func(..., Y.b, ...)

that define how to compute, in the precise context of production p, the value
of each attribute a as a function of the value of other attributes b, where
each defined attribute a should be a synthesized attribute associated with
the nonterminal in the lefthand side or an inherited attribute associated
with a nonterminal in the righthand side

a ∈ (Syn(X0) ∪ Inh(Xi)), i ≥ 1

and each used attribute b should be an inherited attribute associated with
the nonterminal in the lefthand side or a synthesized attribute associated
with a symbol in the righthand side

b ∈ (Inh(X0) ∪ Syn(Xi)), i ≥ 1

Each C(p) is a set of predicates

pred(..., X.a, ...)

describing the requirements that must be satisfied in the precise context of
production p. Each predicate, checked for the actual value of the argument
attributes (any synthesized or inherited attribute that occurs in that context
can be an argument), must hold a true value, so that the production is
meaningful (is valid from a semantic point of view).
Although based on a small number of simple concepts, formally well-defined,
a real attribute grammar (to specify an actual programming language) is a
long text with many similar equations, hard to develop and maintain. This
fact, the size of a monolithic specification, led the scientific community to
search for a modular approach aiming at the down-sizing of the specifi-
cations, and the reuse of AG components; in another words, leading to a
effective improvement of the development cycle.
There are mainly two possible approaches: attribute-oriented—one module
to define one attribute, or a set of related attributes (the full CFG will be
repeated in all modules); or symbol-oriented—one module for each grammar
symbol (the CFG is split by the different modules).
Independent of the structural approach (monolithic, or modular), the meta-
language chosen to write the AG is an important concern. The notation used
to write the AG can be more abstract, or more concrete, depending of the

10

purpose: if we just are interested in the AG as a specification document, we
can use a notation close to the mathematical formalism, as simple, abstract
and generic as possible; if we intend to build a language processor based on
the attribute grammar, we need a more concrete notation, not so far from
the implementation language and strategies (the evaluation algorithm, etc.).
To build a semantic-directed language processor, all the analyzers and the
translator should be developed according to the attribute grammar. We can
systematically derive from the AG the semantic module, as it is possible for
the lexical analyzer, and the parser. This enable the construction of tools
that generate the semantic-directed language processor automatically from
the AG. The main difficulty is concerned with the detection of cycles in the
attribute definitions and the efficiency of the evaluation process. However
this is a well-studied problem that is out of the scope of the present report1.

3.2 UML Diagrams

Use-Cases are used to describe the requirements of a system. They are used
in the requirement analysis phase of a project, and contribute to test plans
and user guides. We must start identifying the actors involved. Actors are
anything that interacts with the system. Each actor defines a particular
role. So, a physical person may be represented by several actors because
that person has different roles with regard to the system. Or several physical
people can be represented by one actor if they have the same role. The next
step is to go through all the actors and identify Use-Cases for each one.
Use-Cases describe the things actors want the system to do.
When we pick one particular path through the use case, that is called a
scenario. Each scenario represents one instance of the use case. They
are written from the actor’s point of view and they represent a sequence of
events that describe the functionality of the use case.

4 A grammatical approach to problem specifica-
tion

This section is devoted to the explanation of our proposal, this is, our method
to develop a formal specification for a given problem using a complemen-
tary syntax/semantics approach. To support that strategy we will use an
attribute grammar described in an object-oriented style.

1Because it is not relevant for the problem under discussion.

11

4.1 The Principle

The grammatical approach to problem solving hereafter defended is very
simple. We associate a grammar symbol with each problem concept, or
object class, identified in the analysis phase2. If it is a complex concept
(defined in terms of other concepts), it will be a nonterminal symbol; and
if it is a primitive concept, it will be denoted by a terminal symbol. The
main concept, or the top class, corresponds to the grammar axiom, or start
symbol.
Each goal, or desired result, will be represented by a synthesized attribute
associated with the start symbol. For each result we will write an AG to
specify the evaluation of the corresponding attribute.
The final specification will be the composition, or merge, of those partial
AGs. The development of each partial AG and their composition to obtain
the global AG constitutes the third (and last) step of the proposed approach.
The modularity implicit in any grammar (based on the locality associated
with symbols and productions), suggests that we can think about attribute
grammars (at the specification and implementation levels) in an object-
oriented (OO) manner. AG development, and even the implementation of
AG-based language processors, can be clearly improved if we take profit of
the advantages of the OO-approach to problem solving, such as:

• natural modelling (due to the proximity with real life situations);

• easy evolvability (addition of new properties or new behavior) due to
the extension by inheritance;

• and easy reusability by instantiation of abstract or concrete classes.

Due to these arguments, it is a good choice to use object-orientation in
the design, specification and implementation of AG. So our grammatical
approach to problem specification will be supported by an OOAG.
Syntax and semantics of each symbol will be specified in a module, similar
to a class in an OO-approach. The module name is the symbol name. The
first part3 is the declaration of its attributes, divided in two subsets, the
inherited (context dependent) and the synthesized (computed locally). For
each attribute declared, we identify its type.

2Notice that here we suggest an OO-approach to problem analysis, however our princi-
ple can be also used with other analysis methods, like the traditional Entity-Relationship
and Data-flow diagrams.

3This part is similar to the static description of a class in an OO-approach.

12

A symbol can be constructed in different ways, that is, it can have different
syntactic forms, as stated in the CFG that comes out of the second step. So
the grammar rules, or productions, for the symbol under specification are
declared, each one identified by an unique name.
The functions to be used to evaluate each attribute are then defined, in the
context of each production. Also the contextual conditions, if any, that ex-
press the data constrains4 are defined in the context of each production.
To achieve a good understanding of the user’s world we need to under-
stand the application domain. In other words, we need to identify concepts
and their relationships in the problem domain. For this purpose object-
oriented design (OOD) employs use-case diagrams (UCD) and conceptual
class diagrams (CCD) [Fow97] which we will take as a starting point for
our approach. The UCD [Coc01][Ado02] describes the functionality of the
system and its interaction with an environment. The UCD form founda-
tions for further modelling of developing system. They are also helpful for
generating system test cases. While UCD are narrative descriptions of spe-
cific tasks, the conceptual class diagram captures concepts and relationships
between them. Guidelines for developing the conceptual class diagram can
be found in [RBP+91]. To develop the conceptual class diagram one can
apply iteratively the following steps:

• identification of potential classes (look for nouns in the description of
the problem),

• elimination of unnecessary (eg. redundant, irrelevant) classes,

• identification of potential associations (any dependency between two
classes is an association),

• elimination of unnecessary associations,

• identification of attributes (attributes are properties of individual ob-
jects),

• elimination of unnecessary attributes,

• refining with inheritance.

¿From the use-case diagram and from the conceptual class diagram a skele-
ton design model is obtained which should be robust with respect to changes
of the user’s requirements. To identify concepts and their relationships in

4These constrains must be checked to guarantee the semantic consistence.

13

the problem domain our grammatical approach is not limited to object-
oriented design. Also other approaches, such as entity-relation diagrams
and data-flow diagrams, which show the flow of work and the relationship
between activities and deliverables, can be applied. However, OOD [Boo94]
[GHJV95] is now almost the-facto standard for software system design, and
on account of that, it was also our choice. Therefore, our approach (de-
scribed in Figure 1) is based on the following steps:

• describe the syntax of the problem (the structure of the classes that
characterize problem domain), deriving the context-free grammar from
the conceptual class diagram,

• describe the semantics of the problem (the meaning of the classes in
problem domain), associating attributes to every concept derived from
the use-cases and operational diagrams,

• generate a rapid prototype of the system, using a Compiler Generator
and the attribute grammar obtained in the two previous steps.

The detailed description of the above steps will follow in the next subsec-
tions.

Conceptual Class
Diagram

Context-free Grammar

Attribute Grammar

Compiler = Rapid Prototype

Result = Behaviour
of the System

D
o

m
a
in

-S
p

e
c
if

ic
L

a
n

g
u

a
g

e

DSL Program =
Use Case

Use case diagram

Operational diagram

Figure 1: High-level view of the grammatical approach

14

4.2 Deriving a context-free grammar from a conceptual class
diagram

The role of non-terminals in a context-free grammar is two fold. First, at
higher abstraction level non-terminals are used to describe different con-
cepts in the programming language (e.g. an expression or a declaration in
a general-purpose programming language). On the other hand, at a more
concrete level, non-terminals and terminals are used to describe the struc-
ture of a concept (e.g. an expression consists on two operands separated by
an operator symbol, or a variable declaration consists of a variable type and
a variable name). Therefore both the concepts and relationships between
them, belonging to the specific problem domain, are captured in a context-
free grammar. But, this is also true for the conceptual class diagram which
describes concepts in a problem domain and their relationships. It is clear
that both formalisms can be used for the same purpose and that some rough
transformation from a conceptual class diagram to a context-free grammar
and vice versa should exist. The transformation from a conceptual class
diagram to a context-free grammar is depicted in Tables 1 and 2. In gen-
eral, classes are mapped to non-terminal symbols and instance variables are
mapped to terminal symbols.
Transformation table shows how to derive a context-free grammar from a
conceptual class diagram. A class and a non-terminal are basic concepts in
a conceptual class diagram and in a context-free grammar. The mapping
here is self-evident. A conceptual class diagram contains instance variables,
which define the state of a class instance. Instance variables are represented
in a context-free grammar as terminal symbols. In general, a class diagram
consists also of operations, which will be identified when the semantics of
context-free grammar is going to be defined. Associations represent the
interaction between classes and have to be included in a context-free gram-
mar. The navigability association can be shown with the production A
→ B, where the non-terminal A gets information about attributes of the
non-terminal B. Association has multiplicity. Describing multiplicity with
grammar productions is straightforward as shown in Tables 1 and 2. For
generalization we propose the production A → B | C. The non-terminal A
can be implemented either with the non-terminal B or non-terminal C. The
composition and aggregation are shown as the navigability association. In
the composition the non-terminal B can appear in other productions. On
the other hand, in the aggregation the non-terminal B is reachable only
from the non-terminal A.
In CCD classes can collaborate with more than just one class. For example,

15

Association Class diagram element Grammar

attribute

Class A Class (non-terminal)

attribute (terminal)
Class

Class BClass A
Association A → B

Class BClass A
Navigability A → B

Class B

Class A

Class C

Generalization A → B | C

Class BClass A

A → B

(¬∃X ∈ N, X ⇒ B)
∧X �= A

Aggregation

Class BClass A
Composition A → B

Table 1: From a conceptual class diagram to a context-free grammar

a class A associates with classes B, C and D. In our approach, this collab-
oration is described with CFG production A → B C D. The sequence of
non-terminals on right side of the production should be in natural order and
depends on collaboration of entities in a given problem domain.

4.3 Deriving an AG from an operational diagram

To describe the semantics or the meaning of a concept an attribute gram-
mar is used. Attribute grammars [Knu68] [ME00] are natural extensions of
context-free grammars and as such very well support our approach which
is based on context-free grammars. The syntax and semantics of each sym-
bol is specified in a module; modularity is, on one hand, inherent to the
class concept in OOD, and, on the other hand, it is implicit to grammars
(based on the locality associated with symbols and productions). The first
part of a module is the declaration of its attributes, divided in two subsets,
the inherited (context dependent) and the synthesized (computed locally).

16

Cardinality Class diagram element Grammar

Multiplicity

exactly one
Class BClass A

1
A → B

Optional

multiplicity
Class BClass A

0..1
A → B | ε

Multiplicity

[0..m]
Class BClass A

0..*

A → MoreB

MoreB → MoreB B|ε

Multiplicity

many
Class BClass A

1..*

A → MoreB

MoreB → MoreB B|B

Table 2: Association multiplicity

The functions to be used to evaluate each attribute are then defined, in the
context of each production. Also the contextual conditions, if any, that ex-
press the data constrains are defined in the context of each production. This
step is intellectually most demanding; therefore some additional supporting
techniques based on the use-cases (diagrams and scenarios) should be used;
namely we suggest the use of the operational diagram that is inferred from
the referred scenarios.
The result of this step is a complete attribute grammar specification for a
given problem.

4.4 Generating the rapid prototype of a system

To generate the rapid prototype of a system our compiler-generator LISA
[MLAŽ02] has been used. The LISA system automatically generates a com-
piler or an interpreter and other language-based tools—such as language-
knowledgeable editor, inspectors, and animators [HPM+02]—from an at-
tribute grammar specification. One of LISA’s most important feature is
that it supports incremental development of specifications, which is espe-
cially important in particular tasks of the software development described
in this paper.

17

5 Case Studies: Specification

To illustrate our approach, we will present in this section four case studies.
For each case, we introduce informally (in english) the problem to be solved;
then we present the conceptual class diagram (CCD) and we design a CFG to
introduced the non-terminal and terminal symbols that describe the complex
and primitive concepts existing in the problem domain; and, at last, we
give the semantic specification for each concept (non-terminal or terminal
symbol), using the proposed modular, attribute based, approach.
To specify the OOAG we will use a formalism independent of any concrete
generator (AG-processor). The syntax for each module (describing an AG
symbol) is defined by the grammar in appendix A. That grammar also
specifies the way to build a complete OOAG, and the compositional language
to assembly the partial OOAGs into the final (or global) OOAG.

A Notation for OOAG’s To make next section readable, we show bellow
the template used for a nonterminal symbol:

NonTerm X0:
Inh: { InheritedAttName: AttType }
Syn: { SynthesizedAttName: AttType }

ProdX0Name(X0 -> X1 X2 ... Xn):
X0.SynAttName = FunctionName(X0.InhAttName, ...,

Xk.SynAttName)
.......

Xi.InhAttName = FunctionName’(X0.InhAttName, ...,
Xj.SynAttName)

........
i,j,k >= 1

CC: (PredicateName(Xi.InhAttName, ..., Xj.SynAttName)) &&
.....
(PredicateName’(Xk.InhAttName, ..., Xl.SynAttName))

i,j,k,l >= 0

18

For a terminal, the template is similar: the first keyword is replaced by Term,
the Inh declaration disappears, and ProdX0Name() is replaced by RegExp().

5.1 CS1: Vending Machine

The problem: We want a program for the daily management of a Vending
Machine (VM). Given the stock (name, price and quantity of each choco
available) and the data for each sale (name of chosen choco, and amount
of money introduced), the goal is to compute the income (sum of money
introduced), and the final stock. No choco should be provided if:

• the name does not exist in the stock list or

• the quantity is 0 or

• the amount of money is different from the price.

The problem specification: After the analysis of the problem stated
above, the discovering of the main functionalities is to be done and present
them as use case diagram.

Figure 2: Use case diagram for case study of Vending Machine

For the case study of the Vending Machine we identify three main services
represented with use cases Buy Product, Add Product and SalesReport (Fig.
2). To specify their functionalities, the sequence of actions has to be defined.
Therefore, scenarios for use cases are written (description follows below).

19

Scenario for Buy product use case:
1. Request the name of the product.
2. Request for customer’s money.
3. Check for correct amount of inserted

Money.
4. Update the list of products in

product database. Use case end.
ALT 2a: Quantity of product is zero.

Go to step 1.
ALT 3a: Not enough money. Go to step 2.

Scenario for Add product use case:
1. Request for a product name.
2. Request for a product quantity.
3. Request for a product price.
4. Update the list of products in product

database. Use case end.
ALT 1a: Product name already contained in the

product database. Inserting skipped.
Use case end.

Scenario for Sales report use case:
1. Request the state of product storehouse.
2. Calculate the income of vending machine

services.
3. Print the services income and state of

product database. Use case end.

The Class Diagram:
After a detailed analysis (with the use case diagram and scenarios) of the
problem stated above, we identified vending machine (VM) as the main con-
cept.
Two main concepts that interfere in the management of a vending machine
are: Stocks, and Sales. Stocks is a set of Stock, and each stock (a
product) has a name (ProdName) with attribute name, a price (ProdPrice)
with attribute price, and a quantity(ProdQty) with attribute quantity.
In a similar way, the Sales class is a non-empty set of sale operations;
the data to be kept for each singular sale operation is the product name
(ProdName) and the amount of Money given.

20

The structure of the problem domain can be defined in terms of classes and
relationships as depicted in the conceptual class diagram of figure 3.

Figure 3: Conceptual class diagram for Vending Machine

The Structure:
Remembering that, in our approach, a problem concept is denoted by a
grammar symbol, the CFG bellow formalizes the problem syntax in the
sense that it specifies the structure of the problem domain, relating the
concepts (the object classes) among them. To write the CFG we just follow
the conceptual class diagram drawn above and rules from transformation
tables 1 and 2.

VM -> Stocks Sales
Stocks -> Stocks Stock

| Stock
Stock -> ProdName ProdPrice ProdQty
ProdName -> name
ProdPrice -> price
ProdQty -> quantity
Sales -> Sales Sale

| &
Sale -> ProdName Money
Money -> amount

21

The Semantics: After the generic overview of the classes and the rela-
tionships given by the CCD and the CFG5, we describe their semantics,
writing an attribute grammar module for each non-terminal symbol.
In the 1. phase of defining semantic information, the operational diagram
and attribute mapping tables are defined to support writing specifications
of attribute grammar (2. semantic phase).

The semantics–1.st phase: Capturing semantics of the domain is the
most demanding part of the approach, therefore an auxiliary (supporting)
diagram is proposed.
The semantic constructs in attribute grammar are determinated in subsec-
tion 4.3. The starting point for finding them the use case diagram is used.
Use case diagram is further described with scenarios, which define the in-
teraction between an actor and evolving system. Parsing the scenarios can
bring most of the semantic information needed for writing attribute gram-
mar. To support the derivation of semantic information from scenarios, the
operational diagram (Fig. 4 shows operational diagrams for case study of
Vending Machine) has been used.

Add product

[NOT (IN list)]item name item

-
-
-

item list
item name
item quantity

- item price

- listitem

Buy product

[(name IN list)

]

item item
AND quantity (item list,item name) > 0
AND price(item list, item name)

== customer money

- list
- name

item
item

- customer money

- listitem

Sales report

- listitem
- list
- income

item

Figure 4: The operational diagrams for Vending Machine

Each collaboration of an actor and use case diagram is introduced with
operational diagram. In the diagram actor shows up twice. First appearance

5That defines each complex class in terms of the other classes or atomic values.

22

on the left represents an actor before using the system and on the right
represents an actor after collaboration with the system. In the middle, the
name of influenced use case is noted.
Both actors are supported with semantical information, which we get with
parsing scenarios of involved use case. Left actor possesses information that
the actor needs to collaborate with the system. On the right we write
information that actor synthesizes in collaboration with the use case.
Information in operational diagrams represent semantics of the system and
will be further represented as inherited and synthesized attributes in at-
tribute grammar. Still, the open question is to which non-terminals at-
tributes are associated.
The operational diagram brought some important information about at-
tributes and contextual conditions. The next task is to associate attributes
from operational diagram to non-terminals in context-free grammar. The
table 3 shows the partial attribute mapping to non-terminals.

Operational diagram Non-terminal Side Terminal I(x) S(x)

item list Stock left,right no StkTab FStkTab

item name ProdName left yes name

item quantity ProdQty left yes quantity

item price ProdPrice left yes price

customer money Money left yes amount

income Sale right no sum

Table 3: Attributes mapping to nonterminals

In the first column the attribute names that appeared in operational dia-
gram are written. The next column represent the name of the non-terminal
to which attribute should be associated. The column Side and column Ter-
minal are crucial to determinate, whether attribute should be inherited or
synthesized. The Side column represents the side where attribute in opera-
tional diagram appears. If attribute appears on both sides, attribute should
be inherited, as well as synthesized. If it appears on left side of operational
diagram and is represented as terminal in context-free grammar, the at-
tribute should be defined as synthesized. If attributes appears on the left
side and no terminal can be found in context-free grammar, the attribute
should be inherited. The last case is, when an attribute appears only on the
right side of the operational diagram. This attribute is synthesized.
So far, operational diagram defines attributes important for performing de-

23

fined functionalities of the system. The right side attributes give the infor-
mation of returned data after actor’s collaboration with the system. There-
fore, the right side attributes should be mapped to starting non-terminal.
The starting non-terminals are shown in table 4.

Attribute Starting non-terminal

FStkTab VM

income VM

Table 4: Attributes in starting non-terminal VM

The table 5 shows attribute carrying between non-terminals in attribute
grammar. In the table attributes that must be carried to other non-terminals
are showed. To construct this mapping table the domain must be understood
well. Each attribute, synthesized or inherited must be considered separately.
The main point is to define where each attribute should be carried and with
what purpose. One way to achieve that is to write syntax tree or write
semantic modules for each non-terminal symbol. Detailed description is
written in next subsection with attribute grammar specifications.

Attribute Other nonterminals

FStkTab
Stocks, Sales,

Sale

StkTab
Stocks, Sales,

Sale

sum Sales

Table 5: Attributes in other nonterminals

The alternatives in use case scenarios are basics to find the contextual con-
ditions. The contextual conditions are inserted between square brackets (see
Fig. 4) where basic boolean operator can be used. Contextual conditions
noted on operational diagrams must be also associated to productions of
attribute grammar. Their appearance in productions is closely connected
to the attributes which define the contextual conditions. Contextual con-
ditions are further implemented with functions which evaluates attributes.
The identification of functions are further described in the next semantical
phase.

24

The Semantics–2.nd phase: After detailed semantic description of the
problem domain, we can write specifications in attribute grammar. The
only semantic part left, is to define functions for attribute evaluation. The
specifications are broken into separate non-terminal descriptions.
According to the semantic description (4), vending machine should have two
attributes: FStkTab (the final stock table); and income (the final income).
Notice that the values of stock table is not computed locally to the VM symbol
definition; it depends on the sales processing (Table 5). To perform such
computation, it is necessary to know the stock table before start selling.
This value is defined during the processing of stock item descriptions.
From these statements it is clear that symbols Stock and Sales will be
characterized by a stock table that holds two distinct values along the pro-
cessing time: the initial one (depends on the environment); and the final
one (computed during the sales processing). So both will be associated with
two attributes—StkTab, FStkTab—the first one inherited from the context,
and the second one synthesized from the previous and the attributes associ-
ated to each item. The type, TAB, of those two attributes is a finite function
(a mapping) that associates a name with a pair (price, quantity).
This second attribute income is used to describe the computation of the
vending machine service income. The final result depends on the amount
accumulated on each sale, as stated in the following module for vending
machine.

TAB = FF(string, (string, real, int))

NonTerm VM:
Inh: {}
Syn: { FStkTab: TAB, income:real }

vmManager(VM -> Stocks Sales):
VM.FStkTab = Sales.FStkTab
VM.income = Sales.sum

Stocks.StkTab = {}

Sales.StkTab = Stock.FStkTab

The Stocks is defined in terms of an stock list (non-empty list), and its two
attributes –StkTab, FStkTab (Table 5) – are evaluated in a obvious way:

25

otherwise, we just take as final value the table obtained after storing in the
initial one the data concerned with the new item added.

NonTerm Stocks:
Inh: { StkTab: TAB }
Syn: { FStkTab: TAB }

oneMoreStock(Stocks -> Stocks Stock):
Stocks/0.FStkTab = Stock.FStkTab

Stocks/1.StkTab = Stocks/0.StkTab

Stock.StkTab = Stock/1.FStkTab

firststock(Stocks -> Stock):
Stocks.FStkTab=Stock.FStkTab

Stock.StkTab=Stocks.StkTab

Notice that in the first production of module Stocks it was necessary to
distinguish between the initial Stocks (the first symbol on the RHS of the
production) and the final list of stock items, Stocks (the symbol on the
LHS of the production). To do that, we indexed the occurrences of that
ambiguous symbol with a position number (using 0 for the LHS, and starting
in 1 for the RHS).
The semantic description of the stock table attribute synthesized by Sales
follows the pattern above, as this symbol is also a list (now it may be empty
list, but that makes no changes).

NonTerm Sales:
Inh: { StkTab: TAB }
Syn: { FStkTab: TAB, sum: real }

oneMoreSale(Sales -> Sales Sale):
Sales/0.FStkTab = Sale.FStkTab
Sales/0.sum = Sales/1.sum + Sale.sum

Sales/1.StkTab = Sales/0.StkTab

26

Sale.StkTab = Sales/1.FStkTab

emptySale(Sales -> &):
Sales.FStkTab = Sales.StkTab
Sales.sum = 0.0

According to the definition and analysis presented in the beginning, the final
income is the sum of the money introduced by the customers in each sale. If
the sales list is an empty list, the sum is set to zero; otherwise, we add that
amount to the sum carried by the previous list, as specified in the previous
module.
Those two symbols that represent collections, Stock, Sales, were used to
pass information over the tree; the new values are in fact constructed at
the level of the list items. Therefore, collections should be present in the
non-terminal Stock (Table 3). So we shall say now how the data contained
in a stock item (ProdName), price (ProdPrice) and quantity (ProdQty)—is
included in the initial stock table to produce the final stock table. This is
specified in the Stock module bellow.

insert: TAB * string * real * int --> TAB

NonTerm Stock:
Inh: { StkTab: TAB }
Syn: { FStkTab: TAB }

mkStock(Stock -> ProdName ProdPrice ProdQty):
Stock.FStkTab = insert(Stock.StkTab,

ProdName.name,
ProdPrice.price,
ProdQty.quantity)

CC: (NOT(ProdName.name IN Stock.StkTab))

The function insert() always adds a new triple to the initial stock table,
even if the key element (the name) already exists. So it is necessary to
include a contextual condition (CC) to state that the construction of the
final stock table is valid (i.e. makes sense) if and only if the product name
does not exist in the initial stock table. By other words, re-declarations are
not allowed.

27

The update of the stock table after each sale is defined by the module Sale
bellow. Once again that specification follows a pattern very similar to the
previous one; now instead of the insert() function, we use the update()
function that decreases the stock quantity for the product whose name is
given. This function do not take care of exceptions: if that product name
exists in the stock table, it subtract 1 to its quantity.

update: TAB * string * real --> TAB

NonTerm Sale:
Inh: { StkTab: TAB }
Syn: { FStkTab: TAB, sum: real }

mkSale(Sale -> ProdName Money):
Sale.FStkTab = update(Sale.StkTab, ProdName.name,

Money.amount)
Sale.sum = Money.amount

CC: (ProdName.name IN Sale.StkTab) &&
(qty(Sale.StkTab, ProdName.name) > 0 &&
(Price(Sale.StkTab, ProdName.name) ==

Money.amount))

Three contextual conditions have been included on Sale specification: we
must verify if the chosen product name belongs to the machine product list
(the domain of stock table), the quantity in stock is greater than 0 and
money inserted equivalent to product price.
The semantics for product name, price and quantity is specified using the
values returned by the scanner (represented by the intrinsic attribute named
lexval and associated to each terminal symbol).

NonTerm ProdName:
Inh: {}
Syn: { name: string }

getName(ProdName -> name):
ProdName.name = name.lexval

NonTerm ProdPrice:
Inh: {}

28

Syn: { price: real }

getPrice(ProdPrice -> price):
ProdPrice.price = atof(price.lexval)

NonTerm ProdQty:
Inh: {}
Syn: { quantity: int }

getQuant(ProdQty -> int):
ProdQty.quantity = atoi(int.lexval)

To finish the specification, we need to define the semantics for Money. Its
value is computed from the value returned by the scanner (as done above
for product name, price and quantity).

NonTerm Money:
Inh: {}
Syn: { amount: real }

getMoney(Money -> int):
Money.amount = atoi(int.lexval)

The union of all the modules presented, joining productions, evaluation rules
and contextual conditions, produces an AG that is the formal specification
of the problem stated. From that description we can generate a prototype
to check every decision, as it will be shown in the section 6.2.1.

5.2 CS2: Automatic Teller Machine

The problem The next case study is taken from Two–Level Grammar
(TLG) approach [BL02]. The Grammatical approach to problem solving is
also related to this work, where TLG were proposed as an object-oriented
requirements specification.
We want a program for Automatic Teller Machine (ATM). Each ATM be-
longs to a bank. In bank we keep the list of accounts. The account has three
integer data fields: id, pin and balance.
The ATM machine provides a withdraw service. First, service verifies id and
pin than withdraws an amount of money in the following sequence: first it

29

gets the balance of the account of id and pin from the bank, if the amount is
less or equal to the balance, updates the balance of the account and delivers
the amount. The withdraw service shouldn’t be provided if:

• id doesn’t exist,

• pin is not valid for the account with specific id,

• withdraw amount is bigger than balance.

The problem specification: After the analysis of the problem stated
above, the discovering of the main functionalities is to be done and present
them as use case diagram.

Figure 5: Use case diagram for the case study of Automatic Teller Machine

For the case study of the Automatic Teller Machine (Fig. 5) we identify two
main services represented with use cases Add commissioner and Withdraw
Money. Description of the scenarios follows:

Scenario for Add commissioner use case:
1. Generate the id number of the commissioner.
2. Request commissioner to select the pin for

new bank account.
3. Request commissioner to deposit money.
4. Update the list of commissioners with

new entry. Use case end.
ALT 1a: Id number already contained in the

commissioner database. Go to step 1.

30

Use case end.

Scenario for Withdraw Money use case:
1. Request for account id.
2. Request for commissioner’s pin.
3. Request for withdraw amount.
4. Update the account in commissioners

database. Use case end.
ALT 1a: Account id doesn’t exist. Use case end.
ALT 2a: Account pin not valid. Use case end.
ALT 3a: Withdraw amount greater than

withdraw balance. Use case end.

The Conceptual Class Diagram: The basic step is creating a concep-
tual class diagram. For that purpose, we define basic entities. First entity
which appear in our case study is Bank. The Bank keeps Accounts for cus-
tomers. Next step is to implement Withdraw service. With service defining,
new entity appears, entity ATM. The ATM interacts with both entities, Bank
and Account. Conceptual class diagram is shown on figure 6.

Figure 6: Conceptual Class Diagram for ATM

The Structure: The context-free grammar bellow formalizes the problem
syntax defined above. In our approach, the entities are presented as gram-
mar symbols, the relationships between main concepts are described with

31

transformation table in section 4.

ATM -> Bank Withdraw
Bank -> Accounts
Accounts -> Accounts Account

| Account
Account -> Id Pin Balance
Withdraw -> Withdraw Id Pin Money
Id -> id
Pin -> pin
Balance -> balance
Money -> amount

Semantics: After defining the structure, the stress is in deriving seman-
tic specifications of our problem domain. In our approach, structure was
represented with context-free grammar. For evaluation of CFG an attribute
grammar for each non-terminal should be written. Foundations for attribute
grammar can be found in the conceptual class diagram (with associations
and class attributes), use-case diagram and operational diagrams (descrip-
tion follows in the next subsection).
According to the problem description, operational diagrams and belonging
attribute mapping tables are shown in the first phase and semantic descrip-
tion in the second phase.

The semantics–1.st phase: Closer look at the use case diagram helps
defining semantic constructs for problem domain. From use case diagram,
two operational diagrams are created, for use cases Add commissioner and
Withdraw money (Fig. 7). Parsing scenarios brings information of opera-
tional diagram attributes. Collaboration between system and bank operator
carries attributes possessed and synthesized in the use case of Add Customer.
To perform that service, the actor needs to posses following operational di-
agram attributes: commissioner list and data of new commissioner (id, pin
and balance). The role of first attribute is two fold - for the execution of
operation and as a result of collaboration. Therefore, attribute is presented
on both sides of operational diagram. Other operational diagrams follow
the same pattern. Reading alternatives of scenarios is the main source to
specify the operational diagram conditions as depicted on figure 7.
To describe semantics of the problem domain, the operational diagram
are crucial for defining basic properties of AG attributes (mapping non-

32

Add commissioner

[NOT (id
IN list)]

commissioner
commissioner

-
- id
- pin

commissioner list
commissioner
commissioner

- commissioner balance

- listcommissioner

Withdraw money

[(id AND pin)
IN list) balance

]

(commissioner commissioner
commissioner AND ((

commissioner list, commissioner id) >=
commissioner money)

- list
- id

pin
- withdraw money

commissioner
commissioner
commissioner-

- listcommissioner

Figure 7: The operational diagram for Automatic Teller Machine

terminals, name, inherited or synthesized value), depicted in table 6. The
first attribute from operation Add commissioner is commissioner list. To
start with, the source non-terminal of the attribute has to be defined (Account).
Next, name of the attribute in AG has to be chosen properly (AS). Finally,
the type of attribute in attribute grammar has to be defined. Attribute
commissioner list exists on both sides of operational diagram, therefore at-
tribute is inherited (infix ”in”) and synthesized (infix ”out”) as well.

Operational diagram Non-terminal Side Terminal I(x) S(x)

commissioner list Account left,right no inAS outAS

commissioner id Id left yes id

commissioner pin Pin left yes pin

commissioner balance Balance left yes balance

withdraw money Money left yes amount

Table 6: Attributes mapping to non-terminals

As described at the first case study (Subsection 5.1), the right side attributes
of operational diagrams define basic system information of system opera-
tions. Therefore, attribute outAS is mapped to starting non-terminal as
shown in table 7.

Attribute Starting non-terminal

outAS ATM

Table 7: Attributes in starting non-terminal VM

33

To support evaluation of all system services, some attributes are propa-
gated through non-terminals (Table 8). In the case of operational dia-
gram Withdraw money, the attribute inAS needs to be propagated from the
non-terminal Account to non-terminal Withdraw (non-terminals Accounts,
Withdraw, but not ATM–already present in table 7).

Attribute Other non-terminals

outAS
Accounts, Bank,

Withdraw

inAS Accounts, Withdraw

Table 8: Attributes in other nonterminals

The semantics-2.nd phase: As we can see, the main concept is the non-
terminal ATM. Before performing withdraw service, ATM gets the list of all
bank accounts. The second task of non-terminal ATM is to pass account list
to non-terminal Withdraw to perform withdraw task. The final information
of the accounts collection will be stored in attribute outAS (see Table 7).
Attribute is of type TAB, which is finite function (a mapping) that associates
a name with an account data (string, int, double).

TAB = FF(string, (string, int, double))

NonTerm ATM:
Inh: {}
Syn: {outAs: TAB}

atmWithdraw(ATM -> Bank Withdraw):
ATM.outAS = Withdraw.outAS

Withdraw.inAS = Bank.outAS

For each commissioner bank (non-terminal Bank) keeps the information
about his account. For collection of all accounts information we have two at-
tributes, inAS and outAS. From the names it is clear, that the attributes will
keep distinct values along processing time: inAS will be used for initial value
of environment (inherited attribute), an attribute outAS will be computed
during processing and will contain the final information of all commissioners
(synthesized attribute).

34

NonTerm Bank:
Inh: {}
Syn: {outAs: TAB}

bankManager(Bank -> Accounts):
Bank.outAS = Accounts.outAS

Accounts.inAS = {}

The semantic of non-terminal Accounts follows the principle of non-terminal
Bank.

NonTerm Accounts:
Inh: {inAS: TAB}
Syn: {outAS: TAB}

oneMoreAccount(Accounts -> Accounts Account):
Accounts/0.outAS = Account.outAS

Accounts/1.inAS = Accounts/0.inAS

Account.inAS = Accounts/1.out

oneAccounts(Accounts -> Account):
Accounts.outAS = Account.outAS

Account.inAS = Accounts.inAS

Non-terminals Bank and Accounts are used to pass information that are
read at the level of a leaf Account. Hance, the construction is at the same
level. Semantic constructs of non-terminal Account is shown below. For
each commissioner’s account we get information from non-terminals Id, Pin
and Balance.

insert: TAB * (string * int * real) --> TAB

NonTerm Account:
Inh: {inAS: TAB}

35

Syn: {outAS: TAB}

getCommissioner (Account -> Id Pin Balance)
Account/0.outAS = insert(Account.inAS,
new Account(Id.id, Pin.pin, Balance.balance))

CC: (NOT(Account.id IN Accounts/1.inAS)

The function insert() adds an element of triple: id, pin and balance to
account table. If the element (with same id) is already contained in the list
table, element is not added. This is the reason contextual conditional (CC)
is added. With the condition we ensure, that the construction of the final
account list is valid.
In the module Withdraw, the function get() gets from the table of accounts
the account of commissioner which wants to withdraw the amount of money
from account. If the element (with the same id and pin) is contained in the
list table, withdraw service can be provided. To accomplish this request,
the contextual conditional (CC) is added. Next condition also ensures, that
withdraw service is cancelled if the balance is less than withdraw amount.
The function setAccount(), updates the state of withdrawing account bal-
ance and implements conditional defined above. Finally, update() func-
tion inserts updated commissioner’s account back to account list (attribute
outAs).
The non-terminals Id, Pin and Money holds the Withdraw information: com-
missioners’s id, pin and withdraw amount.

update: TAB * acc --> TAB
get: TAB * string * int --> (string, int, real)
setAccount: (string, int, real) * real --> (string, int, real)

NonTerm Withdraw:
Inh: {inAS: TAB}
Syn: {outAS: TAB}

getCommissioner (Withdraw -> Id Pin Money)
ATM.outAS = update (Withdraw.inAS,

setAccount(get(Withdraw.inAS, Id.id, Pin.pin),
Money.amount))

36

CC: (((Id.id AND Pin.pin) IN Withdraw.inAS) AND
(Balance(Withdraw.inAS, Id.id) >= Money.amount))

The semantics for product Id, Pin, Balance and Money is specified using
the values returned by the scanner (represented by the intrinsic attribute
named lexval and associated to each terminal symbol).

NonTerm Id:
Inh: {}
Syn: { id: string }

getId(Id -> id):
Id.id = id.lexval

NonTerm Pin:
Inh: {}
Syn: { pin: int }

getPin(Pin -> pin):
Pin.pin = atoi(pin.lexval)

NonTerm Balance:
Inh: {}
Syn: { balance: real }

getBalance(Balance -> balance):
Balance.balance = atof(balance.lexval)

NonTerm Money:
Inh: {}
Syn: { amount: real }

getQuant(Money -> amount):
Money.amount = atof(amount.lexval)

5.3 CS3: Video Store

The problem specification: The Video Store (VS) case study is one
of the basic examples of the refactoring [Fow97][vDM02]. The case study

37

represents a prototype program for customer charges at a video store. The
program is told, which movies are rented by customer and for how long each
movie is rented. It calculates the charges, which depend on how long the
movie is rented and on the type of the movie. There are three kinds of
movies: regular, children and new releases.

The problem specification: After the analysis of the problem stated
above, the discovering of the main functionalities is to be done and present
them as use case diagram (Figure 8).

Figure 8: Use case diagram

For the case study of the Video Store we identify three main services rep-
resented with use cases Rent, Add Customer and Add Movie. To specify
their functionalities, the sequence of actions has to be defined. Therefore,
scenarios for use cases are written (description follows below).

Scenario for Rent use case:
1. Request the name of the customer.
2. Request the titles of rented movies.
3. Insert the list of rented movies in

customer’s database.
4. Calculate the charge for rental

service. Use case end.
ALT 1a: Name not in the customer

database. Insert new customer. Use
Add customer.

ALT 2a: Movie title unknown.

38

Go to step 2.

Scenario for Add customer use case:
1. Request for a customer name.
2. Insert the customer in customer

database. Use case end.
ALT 2a: Customer already contained in the

customer database. Inserting skipped.
Use case end.

Scenario for Add movie use case:
1. Request for a movie title.
2. Request for a movie type.
3. Insert the movie in movie database.

Use case end.
ALT 3a: Movie title already contained

in movie database.
Inserting skipped. Use case end.

The Conceptual Class Diagram: Again, from problem specifications
the conceptual class diagram has to be obtained. For that purpose, finding
basic entities has to be done. Conceptual class diagram is shown on figure
9.

The Structure: After describing conceptual class diagram, we are able
to write context free grammar. In our approach we use the transformation
tables 1 and 2 which provides CFG from conceptual class diagram shown
on figure 9.

VideoStore -> Movies Customers
Movies -> Movies Movie

| &
Movie -> title Price
Customers -> Customers Customer

| &
Customer -> name Rentals
Rentals -> Rentals Rental

| &
Rental -> daysRented Movie
Price -> new | child | reg

39

Figure 9: Conceptual class diagram for Video Store

Semantics: According to the problem description, the semantics of the
case study will be described in two phases. First one, conceptually defines
attributes for attribute grammar and the second, showing specifications of
attribute grammar.

The semantics-1.st phase: Again, the starting point for finding seman-
tic constructs, the use case diagram is used. From use case diagram three
distinct operational diagrams are defined - Add movie, Add customer and
Rent (Figure 10). Parsing use case scenarios brings valuable attribute infor-
mation to write operational diagrams. For example, scenario of Add movie
expects movie title, movie type and movie list before operation is performed.
After execution, the movie database is refreshed (step three in scenario),
therefore attribute ”movie list” occurs in right side of operational diagram.
Hance, alternatives in scenario bring the contextual condition as depicted
on figure 10.
Information from operational diagram will be used for describing type of
attributes in attribute grammar (Table 9). Operational diagram Add movie
needs attribute movie list (Figure 10). To begin with, the attribute source
non-terminal has to be defined. For the case of attribute movie list the map-
ping non-terminal is Movies. To perform the same operation, the attribute
is placed at both sides of operational diagram. Therefore, attribute is inher-

40

Add movie

[NOT (movie title IN movie list)]

- movie list
- movie title
- movie type

- movie list

Add customer

[NOT (customer name IN customer list)]

- customer list
- customer name

- customer list

Rent

[(movie title IN movie list) AND
(customer name IN customer list)]

- customer name
- customer list
- rental list (days
rented, movie title)

- customer list
- movie list
- income

Figure 10: The operational diagram

ited (inMS) as well as synthesized (outMS). Further, attributes from opera-
tional diagram Add movie are movie title and movie type. To find mapping
non-terminals, conceptual call diagram has to be studied well (non-terminal
Movie for operational diagram attribute movie title and non-terminal Price
for operational diagram attribute movie type). Both attributes have termi-
nal source (attributes in conceptual class diagram). Therefore, attributes
are defined as synthesized. Detailed explanation of mapping operational
diagram attributes to non-terminals can be found in previous case studies.
The right side attributes from operational diagrams are important to find

Operational diagram Non-terminal Side Terminal I(x) S(x)

customer name Customer left yes name

customer list Customers left,right no inCS outCS

rental list Rentals left yes outRS

days rented Rental left yes daysRented

income Rental right no income

movie list Movies left,right no inMS outMS

movie title Movie left yes title

movie type Price left yes type

Table 9: Attributes mapping to nonterminals

41

Attribute Starting non-terminal

outCS Video Store

outMS Video Store

income Video Store

Table 10: Attributes in starting non-terminal Video Store

information that should be present in starting non-terminal VideoStore. In
the case study of Video Store, three distinct attributes are defined in oper-
ational diagram: customer list, movie list and income. Therefore all three
attributes are synthesized in starting non-terminal (Table 10).

Attribute Other nonterminals

inMS
Customers,

Customer, Rentals

name Rentals

inCS Rentals, Customer

outCS
Customer,

Rentals

type Movie

title Rental

income
Rentals,

Customers, Customer

Table 11: Attributes in other nonterminals

To be able to compute services, attributes are propagated through non-
terminals. Table 11 brings remaining mapping of operational diagrams at-
tributes to non-terminals.

The semantics-2.nd phase: After detailed attribute description, we can
write specifications in attribute grammar. The only semantic part left, is to
define functions for attribute evaluation. The specifications are broken into
separate non-terminal descriptions.
The first production is VideoStore → Movies Customers. The non-termi-
nal defines element of entity movies and customers. To keep video store
information we define two attributes for each entity. Attributes are of type
TABM (movie list) and TABC (customer list), which is a mapping function.

42

Further, the attribute income is used to evaluate renting service (see Table
10).

TABM = FF(string, (string, int))
TABC = FF(string, (string, TABR))

NonTerm VideoStore:
Inh: {}
Syn: {outMS: TABM, outCS: TABC,

income: int}

mkVideoStore(VideoStore ->
Movies Customers):

VideoStore.outMS = Movies.outMS
VideoStore.outCS = Customers.outCS
VideoStore.income = Customers.income

Movies.inMS = {}

Customers.inMS = Movies.outMS
Customers.inCS = {}

For collecting the elements of entity movie, we use non-terminals Movies
and Movie (see Section 4). The semantic of the non-terminal is described
with attributes inMS and outMS (see Table 9), where first attribute inMS is
inherited and outMS synthesized. The function insert() adds an element
of pair (name, type) to movie table. If the movie is already in the collection,
the element is not added in the collection of movies. This is represented
with contextual condition (CC).

insert: TAB * (string * Price) --> TAB

NonTerm Movies:
Inh: {inMS: TABM}
Syn: {outMS: TABM}

oneMoreMovie(Movies -> Movies Movie):
Movies/0.outMS =

insert(Movies/1.outMS,

43

new Movie(Movie.title,
Movie.type))

Movies/1.inMS = Movies/0.inMS

CC: (NOT(Movie.title IN
Movies/1.outMS))

emptyMovies(Movies -> &):
Movies.outMS = Movies.inMS

Semantic constructs of non-terminal Movie are shown below. The symbol
Movie is semantically described with two attributes that represent basic data
of the movie entity.

NonTerm Movie:
Inh: {}
Syn: {title: String, type: Price}

getMovie(Movie -> title Price):
Movie.title = title.lexval
Movie.type = Price.type

The entity Customer follows the same principle as shown at the non-terminal
Movies. The multiplicity 0..m brings the use of the non-terminals Customers
and Customer. The function insert() adds an element (new customer) to
customer list. The insertion is skipped, if the name is already contained in
the list.

insert: TABC * (string) --> TABC

NonTerm Customers:
Inh: {inCS: TABC, inMS: TABM}
Syn: {outCS: TABC, income: int}

oneMoreCustomer(Customers ->
Customers Customer):

Customers/0.outCS = CUSTOMER.outCS;
Customers/0.income = Customers/1.income +

44

Customer.income

Customers/1.inMS = Customers/0.inMS
Customers/1.inCS = Customers/0.inCS

Customer.inMS = Customers/0.inMS
Customer.inCS = Customers/1.outCS

CC: (NOT(Customer.name IN Customers/1.outCS))

emptyCustomer(Customers -> &):
Customers.outCS = Customers.inCS;
Customer.income = 0.0

Semantics constructs of non-terminal Customer consist of attributes name
(type string), inCS (inherited enumeration of customers), outCS (synthe-
sized enumeration of customers) and outMS (synthesized enumeration of
movies).

NonTerm Customer:
Inh: {inCS: TABC, inMS: TABM}
Syn: {name: String, outCS: TABC,

income: int}

getCustomer(Customer ->
name Rentals):

Customer.outCS = Rentals.outCS
Customer.income = Rentals.income
Customer.name = name.lexval

Rentals.inMS = Customer.inMS
Rentals.inCS = insert(Customer.inCS,

new Customer(Customer.name))
Rentals.name = Customer.name

To define rental items, the non-terminal Rentals holds three distinct inher-
ited attributes: inMS, inCS and name. To keep the final value after mapping

45

rentals to specific customer, the synthesized attribute outCS is used. To
support the rental charging service, a synthesized attribute income is ap-
plied.

addRental: TABC * (string, TABR) * (mov, int) --> TABC
getCustomer: TABC * string --> (string, TABR)
getMovie: TABM * string --> mov
getCharge: mov * int --> real

TABR = FF(string, (Movie, int))

NonTerm Rentals:
Inh: {inMS: TABM, inCS: TABC,

name: String}
Syn: {outCS: TABC, income: int}

oneMoreRental(Rentals -> Rentals Rental):
Rentals/0.outCS =

addRental(Rentals/1.outCS,
getCustomer(Rentals/1.outCS,
Rentals/0.name),

new Rental(getMovie(Rentals/0.inMS,
Rental.title),
Rental.daysRented))

Rentals/0.income = Rentals/1.income +
getCharge(getMovie(Rentals/0.inMS,
Rental.title),

Rental.daysRented)

Rentals/1.inMS = Rentals/0.inMS
Rentals/1.inCS = Rentals/0.inCS
Rentals/1.name = Rentals/0.name

CC: ((Rental.title IN Rentals/0.inMS)
AND (Rentals.name IN
Rentals/0.inCS))

emptyRental(Rentals -> &):
Rentals.outCS = Rentals.inCS
Rentals.income = 0.0

46

As shown above, for mapping the rental items to customer, the function
addRentals() is defined. It uses several other functions to provide renting
service as depicted in current modul of attribute grammar specifications.
The mapping process is prevented if rented movie is not present in inherited
attribute inMS and also if customer is not present in inherited attribute
inCS. This is shown above with contextual condition.
The semantic of non-terminal Rental is specified using the values returned
by the scanner. Therefore, attributes title (inherited from non-terminal
Movie) and daysRented are used.

NonTerm Rental:
Inh: {}
Syn: {title: String,

daysRented: int}

getRental(Rental -> daysRented Movie):
Rental.title = Movie.title
Rental.daysRented = atoi (daysRented.lexval)

The non-terminal Price represents class Price from the conceptual class
diagram. This is an abstract class which defines three subclasses, classes
Reg, Child and New (non-terminals Reg, Child and New) in the conceptual
class diagram. Because of the final class rule, non-terminals are replaced
with terminals.

NonTerm Price:
Inh: {}
Syn: {type: Price}

getPriceNew(Price -> new):
Price.type = new New()

getPriceReg(Price -> reg):
Price.type = new Reg()

getPriceChild(Price -> child):
Price.type = new Child()

47

5.4 CS4: Cleaning Robot

The problem:
Consider a small robot whose mission is to clean a rectangular area (for
instance, an industrial pavilion). The robot can move straight-ahead up,
down, right and left, a given number of steps (each step is one length unit);
by default the move instruction corresponds to 1 step. During the movement,
the robot can have the cleaning system on or off.
Let us suppose that the area is L unit length by C unit high; then the
pavilion can be seen as a rectangular grid L × C.
The start position—point with coordinates (0, 0) where the robot is initially
placed, before starting its activity—is the left lower corner of the rectangle.
Each time the robot receives a command to move forward, it is necessary
to validate the movement comparing its current position and the required
number of steps against the pavilion dimensions, so that the robot does not
go out of the boarders (in that case, it will not move); a warning message
should be emitted if the command is invalid.
Simulating the behavior of the Cleaning Robot, the goal of this problem is
to determine the space cleaned (the grid cells visited by the robot when the
cleaning system is on), after a sequence of movement commands.

The problem specification: After the analysis of the case study, the
discovering of the main functionalities is done with an use case diagram
(Figure 11).
For the case study of the Cleaning Robot (Fig. 11) we identified three
main services represented with use cases Define space, Robot movement and
Report. Description of the scenarios follows:

Scenario for Define space use case:
1. Request the length of space.
2. Request the width of space.
3. Construct the pavilion dimensions.

Use case end.

Scenario for Robot movement use case:
1. Request for the direction of next robot movement.
2. Request number of robot steps.
3. Put the cleaning system on or off.
4. Compute the next robot position.

48

Figure 11: Use case diagram for the case study of Cleaning Robot

5. Move cleaning robot toward new position.
Use case end.

ALT 4a: New robot position is out of bounds.
Movement skipped. Use case end.

Scenario for Report use case:
1. Request the cleaning robot to stop.
2. Provide the state of pavilion.
3. Compute the robot position.

Use case end.

The Class Diagram: To solve the problem above, all the information
that we need to handle is the rectangle dimensions and the sequence of
movement commands.
If we call CleanTask to the main concept under analysis, we will say that it
is defined in terms of two other concepts: Dimensions and Moves.
The first one has two components, Length and Width, that express the
number of step units in both dimensions of the rectangular area to clean.
Moves is a sequence of movements, and a Move is described in terms of
Direction (up, down, left, or right), number of Steps, and CleanSystem
status (on, or off).
The Diagram of figure 12 shows the classes and their relationships that result

49

from the problem analysis.

Figure 12: Conceptual class diagram for Cleaning Robot

The Structure: Following the proposed approach, and taking into ac-
count the conceptual class diagram of figure 12, we can formalize the struc-
ture of the problem domain (the complex and primitive concepts and the
inter-relations among them) in terms of the CFG presented bellow. Remem-
ber that the classes are denoted by non terminal symbols, and the atomic
values by terminal symbols.

CleanTask -> Dimensions Moves
Dimensions -> length width
Moves -> Moves Move

| Move
Move -> Direction Steps CleanSystem
Direction -> LEFT | RIGHT | DOWN | UP
Steps -> steps | &
CleanSystem -> ON | OFF | &

The Semantics:
After the generic overview of the classes and the relationships given by the
CCD and the CFG, we describe their semantics, writing an operational
diagram and attribute mapping table. Afterwards, specification of attribute
grammar can be written.

50

Report

- space state - space state

Robot movement

[NOT (IN
)]

robot position
dimension description

-
-

dimension description
robot direction

- robot steps
- cleaning system
- robot position
- space state

- space state
- space description
- robot position

Define space
-
-

x coordinate
y coordinate

- dimension description

Figure 13: The operational diagram for Cleaning Robot

The Semantics–1.st and last phase: Again, use case diagram for sys-
tem Cleaning Robot helps to find semantic information. From use case
diagram three operational diagrams are created, for use cases Define space ,
Robot movement and Report (Fig. 13). Collaboration between robot man-
ager and system carries attributes possessed and synthesized in the use case
of Define space. To perform that service, the actor needs to posses following
operational diagram attributes: x coordinate and y coordinate. Synthesized
attribute is dimension description.

Operational diagram Non-terminal Side Terminal I(x) S(x)

x coordinate Dimensions left yes inAS width

y coordinate Dimensions left yes length

dimension description Dimensions left, right yes inBounds outBounds

robot direction Directions left yes direct

robot steps Steps left yes steps

cleaning system CleanSys left yes clean

robot position Moves left, right no inPos outPos

space state Moves left, right no inCleanPts outCleanPts

Table 12: Attributes mapping to non-terminals

Further, the operational diagrams are used to define semantics of the prob-

51

lem domain (Table 12). The first attribute from operational diagram Define
space is x coordinate. To begin with, the source non-terminal of the at-
tribute has to be defined (Dimensions). Next, name of the attribute in AG
has to be chosen properly (x). Finally, the type of attribute in attribute
grammar has to be defined. Attribute x coordinate has a terminal source in
context-free grammar, therefore attribute is assigned as synthesized.

Attribute Starting non-terminal

outBounds CleanTask

outCleanPts CleanTask

outPos CleanTask

Table 13: Attributes in starting non-terminal CleanTask

Table 13 shows attributes mapped to starting non-terminal CleanTask. To
complete semantics of problem domain, some attributes are propagated
through non-terminals. Table 14 shows non-terminals propagating attribute
values. Detailed description of defined attributes (Tables 12, 13 and 14) fol-
lows in next semantic phase.

Attribute Other non-terminals

outCleanPts Move

outBounds Move

inPos Move

outPos Move

inCleanPts Move

Table 14: Attributes in other nonterminals

The Semantics–2.nd phase: The objective of this AG is to define how
to evaluate the value of the attribute outCleanPts (the set of cleaned points,
corresponding to the grid cells visited by the robot while the cleaning mech-
anism was on) associated with the grammar start symbol CleanTask. This
value is computed starting from the initial position (the attribute inPos
(actual position) is initialized with the coordinates (0, 0)) and determining
the visited cells according to the list of movement commands. To execute
just valid movements, it is necessary to take into Account the area bound-
aries (denoted by the attributes inBounds and outBounds) as declared in

52

the context of the symbol Dimensions.
The following module specifies the statements above.

mkPair: int * int --> point

point: int * int
TAB= FF(point, bool)

NonTerm CleanTask:
Inh: {}
Syn: { outCleanPts: TAB, outBounds: int*int,

outPos: point }

cleanManager(CleanTask -> Dimensions Moves):
CleanTask.outCleanPts = Moves.outCleanPts
CleanTask.outPos = Moves.outPos
CleanTask.outBounds = Dimensions.outBounds

Moves.inCleanPts = {}
Moves.inPos = mkPair(0,0)
Moves.inBounds = Dimensions.outBounds

The symbol Dimensions is semantically described by two integer attributes
that represent the two-dimensional measures (x and y) of the rectangular
surface to clean (outBounds).

NonTerm Dimensions:
Inh: {}
Syn: { x,y: int, outBounds: int*int }

calcDim(Dimensions -> length width):
Dimensions.x = atoi (length.lexval)
Dimensions.y = atoi (width.lexval)
Dimensions.outBounds = mkPair(Dimensions.x,

Dimensions.y)

The main part of this AG is concerned with the evaluation of the cleaned
points table and the final position of the robot. Both computations are

53

specified in the context of the module for symbol Move, that is the ele-
ment constituent of the sequence Moves. Updating the cleaning space table
(outCleanPts) and next robot position (attribute outPos) is performed by
function updateTab() and updatePos(). Function inbounderies() (used
in context condition) validates the new robot position.

updatePos: (int*int) * point * ({LEFT,RIGHT,DOWN,UP}) * int
--> point

inboundaries: (int*int) * point * ({LEFT,RIGHT,DOWN,UP}) * int
--> bool

updateTab: (int*int) * point * TAB * ({LEFT,RIGHT,DOWN,UP}) *
int --> TAB

NonTerm Moves:
Inh: { inCleanPts: TAB

inBounds: int*int
inPos: point }

Syn: { outCleanPts: TAB
outPos: point }

oneMoreMove(Moves -> Moves Move):
Moves/0.outCleanPts = Move.outCleanPts
Moves/0.outPos = Move.outPos

Moves/1.inCleanPts = Moves/0.inCleanPts
Moves/1.inPos = Moves/0.inPos
Moves/1.inBounds = Moves/0.inBounds

Move.inCleanPts = Moves/1.outCleanPts
Move.inPos = Moves/1.outPos
Move.inBounds = Moves/0.inBounds

firstMove(Moves -> Move):
Moves.outCleanPts = Move.outCleanPts
Moves.outPos = Move.outPos

Move.outCleanPts = Moves.inCleanPts
Move.inPos = Moves.inPos
Move.inBounds = Moves.inBounds

54

NonTerm Move:
Inh: { outBounds: int*int

inPos: point
inCleanPts: TAB }

Syn: { outCleanPts: TAB
outPos: point }

getMove(Move -> Direction Steps CleanSystem):
Move.outCleanPts = if (CleanSys.clean==ON)

updateTab(Move.inCleanPts, Move.inBounds,
Move.inPos, Direction.direct, Steps.steps)
else Move.inCleanPts

Move.outPos = updatePos(Move.inPos, Move.inBounds,
Direction.direct, Steps.steps)

CC: (inboundaries(Move.inBounds, Move.inPos,
Direction.direct, Steps.steps))

The semantic definition of the other concepts, the rest of the non-terminal
symbols, is obvious and very easy to write as follows.

NonTerm Direction:
Inh: { }
Syn: { direct: {LEFT,RIGHT,DOWN,UP} }

mkDirLeft(Direction -> LEFT):
Direction.val=LEFT

mkDirRight(Direction -> RIGHT):
Direction.val=RIGHT

mkDirDown(Direction -> DOWN):
Direction.val=DOWN

mkDirUp(Direction -> UP):
Direction.val=UP

NonTerm Steps:

55

Inh: { }
Syn: { steps: int }

mkSteps(Steps -> int):
Steps.val = atoi(steps.lexval)

emptySteps(Steps -> &):
Steps.val = 1

NonTerm CleanSys:
Inh: { }
Syn: { val: {ON,OFF} }

mkCleanOn(CleanSys -> ON):
CleanSys.clean=ON

mkCleanOff(CleanSys -> OFF):
CleanSys.clean=OFF

emptyClean(CleanSys -> &):
CleanSys.clean=ON

6 An OO approach to the implementation of AG-
based Processors

Attribute grammars have been introduced by [Knu68] and since then are
proved to be useful in specifying the semantics of programming languages,
in automatic constructing of compilers/interpreters, in specifying and gen-
erating interactive programming environments and in many other areas.
While implementation of programming languages is the original and most
widely recognized area of attribute grammars, they are also used in many
other areas such as: natural language interfaces, graphical users interfaces,
visual programming, pattern recognition, hardware design, communication
protocols, software engineering, static analysis of programs, databases, etc.
However, only a few commercial compilers have been developed using at-
tribute grammars as a design and implementation tool. In [Wai90] it has
been argued that attribute grammars are unsuitable for production of high-
speed compilers for general-purpose programming languages, since attribute

56

grammars are just a model of compilation and thus too primitive for a real
engineering discipline, and that they do not directly support the genera-
tion and optimization of the machine code. The first problem is concerned
with pragmatic aspects of ordinary attribute grammars. Ordinary attribute
grammars have deficiencies which become apparent in specifications for real
programming languages. Such specifications are large, unstructured, and
hard to understand, modify and maintain. Yet worse, small modifications of
some parts in the specifications have widespread effects on the other parts
of the specifications, since specifications are not modular, extensible and
reusable. There has been a lot of research work on augmenting ordinary at-
tribute grammars with extensions to overcome the deficiencies of attribute
grammars such as lack of modularity, extensibility and reusability. Sev-
eral concepts, such as remote attribute access, object-orientation, templates,
symbol computations, high order features etc., have been implemented in
various attribute grammar specification languages. Therefore, the first prob-
lem has been solved by introducing concepts and primitives from program-
ming paradigms such as object-oriented, functional and logic programming.
A detailed survey of attribute grammar based specification languages is given
in [Paa95]. Let us look in little bit more detail to object-oriented attribute
grammars. The common paradigm is Nonterminal = Class where context-
free grammars define the class hierarchy. Nonterminals act as classes orga-
nized into hierarchy. A slightly broader paradigm is Production = Class
where each production is class that specifies the syntactic structure, at-
tributes and semantic rules. All these elements can be inherited, specialized,
and overriden in subclasses (more specialized nonterminals in the particu-
lar context-free grammar). Our approach is completely different since the
attribute grammar as a whole is a subject to inheritance. It is based on
paradigm Attribute grammar = Class [MLEŽ00]; we named it multiple
attribute grammar inheritance. The benefits of multiple attribute grammar
inheritance are:

• specifications are extensible since the language designer writes only
new and specialized specifications,

• specifications are reusable since specifications are inherited from an-
cestor specifications, and

• for each language increment a compiler can be generated and the lan-
guage tested.

57

6.1 LISA system

Multiple attribute grammar inheritance was successfully implemented in
the compiler/interpreter generator tool LISA ver. 2.0 [MLAŽ00]. Language
designer/implementer is able to add new features (syntax constructs and/or
semantics) to the language in a simple manner by extending lexical, syntax
and semantic specifications. The tool LISA is compiler generator with the
following features:

• LISA is platform independent since it is written in Java

• it offers the possibility to work in a textual or visual environment

• it offers an integrated development environment (Fig. 14) where users
can specify - generate - compile-on-the-fly - execute programs in a
newly specified language

• lexical, syntax and semantic analyzers can be of different types and
can operate standalone; the current version of LISA supports LL, SLR,
LALR, and LR parsers, tree-walk, parallel, L-attribute and Katayama
evaluators

• visual presentation of different structures, such as finite state au-
tomata, BNF, syntax tree, semantic tree, dependency graph

• animation of lexical, syntax and semantic analyzers

• the specification language supports multiple attribute grammar inher-
itance which enable to design a language incrementally or reuse some
fragments from other programming language specifications.

Let us look at the informal definition of multiple attribute grammar inheri-
tance; the formal definition of multiple attribute grammar inheritance is de-
scribed in [MLAŽ99]. Multiple attribute grammar inheritance is a structural
organization of attribute grammars where the attribute grammar inherits
the specifications from ancestor attribute grammars, may add new specifi-
cations, may override some specifications from ancestors or even defeat some
ancestor specifications. With inheritance we can extend the lexical, syntax
and semantic parts of the programming language specification. Therefore,
regular definitions, production rules, attributes, semantic rules and opera-
tions on semantic domains can be inherited, specialized or overridden from
ancestor specifications. In object-oriented languages the properties that con-
sist of instance variables and methods are subject to modification. Since in

58

Figure 14: LISA Integrated Development Environment

attribute grammars semantic rules are tightly coupled with particular pro-
duction rules, properties in multiple attribute grammar inheritance consist
of:

• lexical regular definitions,

• attribute definitions,

• rules which are generalized syntax rules that encapsulate semantic
rules, and

• methods on semantic domains.

Therefore, a language is specified in the following manner:

language L1 [extends L2, ..., LN] {
lexicon {

[[P] overrides | [P] extends] R regular expr.

59

...
}
attributes type A1, ..., AM

...
rule [[Y] extends | [Y] overrides] Z {

X ::= X11 X12 ... X1p compute {
semantic functions }

...
|

Xr1 Xr2 ... Xrt compute {
semantic functions }

;
}

...
method [[N] overrides | [N] extends] M {

operations on semantic domains
}
...

}

In lexical analysis or scanning, the stream of characters representing the
source program is read from left to right and grouped into tokens. The
lexemes matched by the pattern for the token represent strings of characters
in the source program that can be treated together as a lexical unit. Regular
expressions, which are the most frequently used formal method for specifying
patterns are also used in LISA. More precisely, LISA uses regular definitions
where each regular expression is associated with a unique name:

R1 regularexpr1

R2 regularexpr2
...
Rn regularexprn

The name of regular expression (Ri) is an identifier which is described with
following regular expression [a − zA − Z][a − zA − Z 0 − 9]∗. Regular
expression regularexpri is a sequence of characters until the end of current

60

line (spaces are ignored). Regular expressions describe patterns with whom
strings of characters in the source program are matched. LISA uses following
rules for describing regular expressions:

expression matches
x the character ”x”
\x ”x” even if x is a special character
\0xFF character represented by ASCII

code
[s] any character in the string s
[x−y] any character in the range from x to

y
[ˆs] any character not in the string s
x* 0 or more instances of x
x+ 1 or more instances of x
x? 0 or 1 instance of x
x|y an x or y
(x) an x
#s an expression defined by s

Table 15: Regular expressions in LISA

Where special characters (meta-symbols) in LISA’s lexical specifications are:

| \ () * + ? [] - # ^

Some examples of regular expressions written in LISA are:

comment /*[^*]+*/
Some_ink [pr]?ink
Keyword \0x42egin | end
ID [a-zA-Z_][a-zA-Z0-9_]*
NUMBER [0-9]
Integer #NUMBER+
Operator \+ | \- | * | / | < | > | = | := | \#
Delimiter ; | . | \(| \) | ,
WhiteSpace [\ \0x0A\0x0D\0x09]+

The first regular expression describes multi-line comment start with charac-
ters /∗ and end with ∗/ (e.g. /* this is comment */). It is important to notice

61

that above regular expression for comment do not allow that characters be-
tween /* and */ contain the character *. The second regular expression
match with the words pink, rink, and ink; but not with prink. The third
regular expression match with the words Begin and end. Other regular
expressions above are simple and do not need extra explanation.
In syntax analysis, tokens of a source program are grouped into grammatical
phrases. The task of the syntax analyzer or parser is to determine if a
string of tokens can be generated by a grammar phrase. The syntax of the
programming language is usually described by the well known BNF notation.
In LISA standard BNF conventions are used; context-free productions are
specified in the rule part of language definition using following conventions:

X ::= X11 X12 ... X1p

|
X21 X22 ... X2r

|
...
|
Xn1 Xn2 ... Xns

;

where X is a left-hand nonterminal and Xij is a terminal or nonterminal
symbols. To distinguish between nonterminal and terminal symbols LISA
uses following convention. Nonterminal is described with following regular
expression [A−Z][A−Z 0−9]∗. Therefore, first character must be capital
letter followed by capital letters, digits or character . All other symbols are
terminal symbols. Empty production is written as: X ::= epsilon. Special
symbols in syntax specifications are:

::= | epsilon ;

The BNF for arithmetic expressions written in LISA is:

E ::= T EE ;
EE ::= + T EE | epsilon ;
T ::= F_1 TT ;
TT ::= * F_1 TT | epsilon ;
F_1 ::= #Integer ;
F_1 ::= (E) ;

When the syntax of sentences is correct the meaning of sentences or seman-
tics can be computed. The meaning of programs in LISA is described with

62

attribute grammars. An attribute grammar is based on a context-free gram-
mar and associates attributes with the nodes of a parse tree, thus obtaining
an attributed or semantic tree. Attribute evaluation rules are associated
with the each context-free production. In LISA attribute evaluation rules
are written in a block { } which start with keyword compute. This block is
inserted between the last symbol of particular production and the character
; or |. Semantic rule in LISA is actually Java assignment statement; For
example, to the first two above productions the following semantic rules are
associated:

E ::= T EE compute {
E.val = EE.val;
EE.inVal = T.val; }

;

EE ::= + T EE compute {
EE[0].val = EE[1].val;
EE[1].inVal = EE[0].inVal + T.val; }

| epsilon compute {
EE.val = EE.inVal; }

;

Attributes in the node can be of two kinds: the inherited attributes, whose
values are obtained from the siblings and the parent of that node in the
parse tree, and the synthesized attributes, whose values are obtained from
the children of that node in the parse tree. The type of attributes (inherited
or synthesized) is derived by LISA an hence is no need to be specified by
LISA user. However, the type of attributes and nonterminals to which
attributes are attached have to be specified. In LISA the type of attribute
can be any valid Java type. In LISA attributes are defined in the block
which starts with the keyword attributes. Usually, the same attribute name
is attached to many different nonterminals. To avoid unpleasant repeating
the wild character ∗ can be used instead. An example of attribute definitions
for above example is:

attributes int *.val, EE.inVal, TT.inVal;

63

6.2 Case Studies Implementation

6.2.1 CS1: Vending Machine

Next subsection shows implementation of vending machine according to
grammatical specifications described in subsection 5.1. Each stock is de-
scribed with its name, price and quantity. The semantics of language con-
struct is described by attributes (StkTab, FStkTab, price, etc.) already
presented in subsection 5.1. Each attribute has type which have to be de-
fined in concrete implementation. To represent stock, attributes StkTab
and FStkTab, the Hashtable has been chosen. The type of other attributes
are double, int and String. Notice how contextual constraints have been
implemented. They are coded directly in the LISA methods.
Keywords ”stock description” and ”sales description” have been introduced
to explicitly show the difference between stock and sales descriptions. With-
out these keywords the grammar is not LR(1).

language VM_EXAMPLE{

lexicon {
Word [a-zA-Z_][a-zA-Z0-9_]*
Int [0-9]+
Real [0-9]+\.[0-9]*
ignore [\ \0x0A\0x0D\0x09]+
Keyword stock | sales_description

}

attributes
Hashtable *.StkTab, *.FStkTab;
double PRODPRICE.price;
int PRODQTY.quantity;
String PRODNAME.name;
double MONEY.amount;
double VM.income;
double *.sum;

rule VM {
VM ::= stock_description STOCKS sales_description SALES
compute {

VM.FStkTab = SALES.FStkTab;

64

VM.income = SALES.sum;

STOCKS.StkTab = new Hashtable();

SALES.StkTab = STOCKS.FStkTab;
};

}

rule Stocks {
STOCKS ::= STOCKS STOCK compute {

STOCKS[0].FStkTab = STOCK.FStkTab;

STOCKS[1].StkTab = STOCKS[0].StkTab;

STOCK.StkTab = STOCKS[1].FStkTab;
}
| STOCK compute {

STOCKS.FStkTab = STOCK.FStkTab;

STOCK.StkTab = STOCKS.StkTab;
};

}

rule Sales {
SALES ::= SALES SALE compute {

SALES[0].FStkTab = SALE.FStkTab;
SALES[0].sum = SALES[1].sum + SALE.sum;

SALES[1].StkTab = SALES[0].StkTab;

SALE.StkTab = SALES[1].FStkTab;
}
| epsilon compute {

SALES.FStkTab = SALES.StkTab;
SALES.sum = 0.0;

};
}

rule Stock {

65

STOCK ::= PRODNAME PRODPRICE PRODQTY compute {
STOCK.FStkTab = insert(STOCK.StkTab, PRODNAME.name,

PRODPRICE.price, PRODQTY.quantity);
};

}

rule Sale {
SALE ::= PRODNAME MONEY compute {

SALE.FStkTab = update(SALE.StkTab, PRODNAME.name,
MONEY.amount);

SALE.sum = MONEY.amount;
};

}

rule ProdName {
PRODNAME ::= #Word compute {

PRODNAME.name = #Word.value();
};

}

rule ProdPrice {
PRODPRICE ::= #Real compute {

PRODPRICE.price = Double.valueOf(#Real.value()).
doubleValue();

};
}

rule ProdQty {
PRODQTY ::= #Int compute {

PRODQTY.quantity = Integer.valueOf(#Int.value()).
intValue();

};
}

rule Money {
MONEY ::= #Real compute {

MONEY.amount = Double.valueOf(
#Real.value()).doubleValue();

};
}

66

method M_Stock {
class Stock {

String name;
double price;
int qty;
Stock(String name, double price, int qty) {
this.name = name;
this.price = price;
this.qty = qty;

}

public int getQty() {
return qty;

}

public double getPrice() {
return price;

}

public String toString() {
return "(" + price + " Euro," + qty + ")";

}

} // class
} // method

method M_insert {
import java.util.*;
Hashtable insert(Hashtable stock, String name,

double price, int qty) {
Item i = (Item)stock.get(name);
if (i == null) {
stock.put(name, new Item(name, price, qty));

}
else {
System.out.println("Item " +name +

" is already in the stock");
}
return stock;

67

} // java method
} // Lisa method

method M_update {
Hashtable update(Hashtable stock, String name,

double money) {
Item i = (Item)stock.get(name);
if (i != null) {
if ((i.getQty() > 0) && (i.getPrice()==money))

stock.put(name, new Item(name, money,
i.getQty()-1));

else
System.out.println("Item " + name +

"is out of stock or invalid amount of money");
}
else {
System.out.println("Item " +name +

"is not in the stock"); }
return stock;

} // java method
} // Lisa method

} // language VM

¿From above specifications an VM compiler is automatically generated by
LISA system. Keywords ”stock description” and ”sales description” have
been introduced to explicitly show the difference between stock and sales
descriptions. Without these keywords the grammar is not LR(1). One of
the possible scenarios is now described with the following program:

stock_description
mars 0.50 10
kitkat 0.60 15
twix 0.60 5

sales_description
twix 0.60
twix 0.60
mars 0.50
twix 0.60

68

The meaning of above program is the following stock list and income:

FStkTab: {twix =(0.60 Euro, 2),
kitkat =(0.60 Euro, 15),
mars =(0.50 Euro, 9)}

income: 2.30

6.2.2 CS2: Automatic Teller Machine

The implementation of ATM with previous defined grammatical specifica-
tion (see Subsection 5.2) are presented in following subsection. Each account
is described with id of user, his personal identical number (pin) and balance.
To represent Bank attributes, inAS and outAS has been defined. Attributes
are collections of accounts. To show this, Hashtable has been chosen.
Notice how additional code for inserting object of account in Hashtable was
implemented in method insert. LISA specifications of language ATM EX-
AMPLE follows below.
To use accounts inserted in the Bank, we defined ATM withdraw service.
To add withdraw functionality some attributes are added (amount).

language ATM_EXAMLPLE {
lexicon {

id [A-Z][0-9]+
pin [0-9]+
real [0-9]+\.[0-9]*
reserved \account | withdraw
ignore [\ \0x0A\0x0D\0x09]+

}

attributes
Hashtable *.outAS,*.inAS;
String ID.id;
int PIN.pin;
double BALANCE.balance;
double MONEY.amount;

rule ATM {
ATM ::= BANK WITHDRAW compute {

ATM.outAS = WITHDRAW.outAS;

69

WITHDRAW.inAS = BANK.outAS;
};

}

rule Bank {
BANK ::= ACCOUNTS compute {

BANK.outAS = ACCOUNTS.outAS;

ACCOUNTS.inAS = new Hashtable();
};

}

rule Accounts {
ACCOUNTS ::= ACCOUNTS ACCOUNT compute {

ACCOUNTS[0].outAS = ACCOUNT.outAS;
ACCOUNTS[1].inAS = ACCOUNTS[0].inAS;
ACCOUNT.inAS = ACCOUNTS[1].outAS;

}
| ACCOUNT compute {

ACCOUNTS.outAS = ACCOUNT.outAS;
ACCOUNT.inAS = ACCOUNTS.inAS;

};
}

rule Account {
ACCOUNT ::= account ID PIN BALANCE compute {

ACCOUNT.outAS = insert(ACCOUNT.inAS, new
Account(ID.id, PIN.pin, BALANCE.balance));

};
}

rule Withdraw {
WITHDRAW ::= withdraw ID PIN MONEY compute {

WITHDRAW.outAS = update (WITHDRAW.inAS,
setAccount(get(WITHDRAW.inAS, ID.id, PIN.pin),
MONEY.amount));

};
}

70

rule Id {
ID ::= #id compute {

ID.id = #id.value();
};

}

rule Pin {
PIN ::= #pin compute {

PIN.pin = Integer.valueOf(#pin.value()).intValue();
};

}

rule Balance {
BALANCE ::= #real compute {

BALANCE.balance = Double.valueOf(#real.value()).
doubleValue();

};
}

rule Money {
MONEY ::= #real compute {

MONEY.amount = Double.valueOf(#real.value()).
doubleValue();

};
}

method A_Item {
class Account {

String id;
int pin;
double balance;
Account(String id, int pin, double balance) {
this.id = id;
this.pin = pin;
this.balance = balance;

}

public String toString() {
return "(" + this.id + ", " + this.pin + "," +
this.balance + ")";

71

}

public String getId() {
return this.id;

}

public int getPin() {
return this.pin;

}

public double getBalance() {
return this.balance;

}

public void setBalance(double amount) {
this.balance-=amount;

}

}
}

method A_Insert {
import java.util.*;
Hashtable insert (Hashtable aAccounts, Account aAccount) {

Account hAccount=(Account)aAccounts.get(aAccount.getId());
if (hAccount==null)
aAccounts.put(aAccount.getId(), aAccount);

else
System.out.println("Account" + aAccount.getId() +
"is already in bank");

return aAccounts;
} // java method

}// Lisa method

method A_update {
import java.util.*;
Hashtable update (Hashtable aAccounts, Account aAccount) {

if (aAccount!=null){
aAccounts.remove(aAccount.getId());
aAccounts.put(aAccount.getId(), aAccount);

72

}
else
System.out.println("Account empty");

return aAccounts;
} // java method

}// Lisa method

method A_get {
import java.util.*;
Account get (Hashtable aAccounts, String id, int pin) {

Account aAccount = (Account)aAccounts.get(id);
if (aAccount == null) {
System.out.println("No such account " + id + " " + pin);
return null;

}
else {
if (aAccount.getPin()==pin)

return aAccount;
else {

System.out.println("Not valid PIN");
return null;

}
}

} // java method
} // Lisa method

method A_set {
import java.util.*;
Account setAccount (Account aAccount, double amount) {

if (aAccount != null){
double balance =aAccount.getBalance();
if (balance - amount >= 0)

aAccount.setBalance(amount);
}
else
System.out.println("Service rejected - to big amount");

return aAccount;
} // java method

}
}

73

The LISA from above specifications automatically generate a compiler. To
show functionality of this specification following program is introduced.

account A1032 123 234.32
account B1002 213 34343.34
account D2134 344 35345.80

withdraw A1032 123 20.50

The above program produces following result:

OutAs {A1032={A1032, 123, 213,82},
B1002={B1002, 213, 34343,34},
D2134={A2134, 344, 35345,80}}

6.2.3 CS3: Video Store

The transformation of attribute grammar specifications (see Subsection 5.3)
to LISA specifications are very straightforward. They following principles
described in previous examples.

language VIDEO_STORE_EXAMPLE {
lexicon {

daysRented [0-9]+
reserved new | reg | child
name [A-Z][A-Za-z0-9_]*
title [a-z][a-z0-9_]*
ignore [\ \0x0A\0x0D\0x09]+

}

attributes
Hashtable *.outMS,*.inMS;
Hashtable *.outCS,*.inCS;
Price *.type;
String *.name;
String *.title;
int *.daysRented;
double *.income;

rule Store {
VIDEO_STORE ::= MOVIES CUSTOMERS compute {

74

VIDEO_STORE.outMS = MOVIES.outMS;
VIDEO_STORE.outCS = CUSTOMERS.outCS;
VIDEO_STORE.income = CUSTOMERS.income;

MOVIES.inMS = new Hashtable();

CUSTOMERS.inMS = MOVIES.outMS;
CUSTOMERS.inCS = new Hashtable();

};
}

rule Movies {
MOVIES ::= MOVIES MOVIE compute {

MOVIES[0].outMS = insert(MOVIES[1].outMS,
new Movie(MOVIE.title, MOVIE.type));

MOVIES[1].inMS = MOVIES[0].inMS;
}
| epsilon compute {

MOVIES.outMS = MOVIES.inMS;
};

}

rule Movie {
MOVIE ::= #title PRICE compute {

MOVIE.title = #title.value();
MOVIE.type = PRICE.type;

};
}

rule Customers {
CUSTOMERS ::= CUSTOMERS CUSTOMER compute {

CUSTOMERS[0].outCS = CUSTOMER.outCS;
CUSTOMERS[0].income = CUSTOMERS[1].income +

CUSTOMER.income;

CUSTOMERS[1].inMS = CUSTOMERS[0].inMS;
CUSTOMERS[1].inCS = CUSTOMERS[0].inCS;

CUSTOMER.inMS = CUSTOMERS[0].inMS;

75

CUSTOMER.inCS = CUSTOMERS[1].outCS;
}
| epsilon compute {

CUSTOMERS.outCS = CUSTOMERS.inCS;
CUSTOMERS.income = 0.0;

};
}

rule Customer {
CUSTOMER ::= #name RENTALS compute {

CUSTOMER.outCS = RENTALS.outCS;
CUSTOMER.income = RENTALS.income;
CUSTOMER.name = #name.value();

RENTALS.inMS = CUSTOMER.inMS;
RENTALS.inCS = insert(CUSTOMER.outCS,

new Customer(CUSTOMER.name));
RENTALS.name = CUSTOMER.name;

};
}

rule Rentals {
RENTALS ::= RENTALS RENTAL compute {

RENTALS[0].outCS = addRental(
RENTALS[1].outCS, getCustomer(
RENTALS[1].outCS, RENTALS[0].name),
new Rental(getMovie(RENTALS[0].inMS,
RENTAL.title), RENTAL.daysRented));

RENTALS[0].income = RENTALS[1].income +
getCharge(getMovie(
RENTALS[0].inMS, RENTAL.title),
RENTAL.daysRented);

RENTALS[1].inMS = RENTALS[0].inMS;
RENTALS[1].inCS = RENTALS[0].inCS;
RENTALS[1].name = RENTALS[0].name;

}
| epsilon compute {

RENTALS.outCS = RENTALS.inCS;
RENTALS.income = 0.0;

76

};
}

rule Rental {
RENTAL ::= #daysRented MOVIE compute {

RENTAL.title = MOVIE.title;
RENTAL.daysRented = Integer.

valueOf(#daysRented.value()).intValue();
};

}

rule Price {
PRICE ::= new compute {

PRICE.type = new New();
}
| reg compute {

PRICE.type = new Reg();
}
| child compute {

PRICE.type = new Child();
};

}

method M_Movie {
class Movie {

String name;
Price type;
Movie (String name, Price type) {
this. name = name;
this. type = type;

}

public String toString(){
return "(" + this.name + ", " + this.type + ")";

}

public String getTitle(){
return this.name;

}

77

public Price getType(){
return this.type;

}
}

}

method M_Insert {
import java.util.*;
Hashtable insert (Hashtable aMovies, Movie aMovie) {

Movie hMovie=(Movie)aMovies.get(aMovie.getTitle());
if (hMovie==null)
aMovies.put(aMovie.getTitle(), aMovie);

else
System.out.println("Item" + aMovie.getTitle() +

"is already in video store");
return aMovies;

} // java method
}// Lisa method

method C_Item {
class Customer {

String name;
Hashtable rentals;
Customer (String name) {
this.name = name;
this.rentals = new Hashtable();

}

public String toString(){
return "(" + this.name + ", " +
rentals.toString() + ")";

}

public String getName(){
return this.name;

}

public Rental getRental(String aTitle){
return (Rental)this.rentals.get(aTitle);

}

78

public Hashtable getRentals(){
return this.rentals;

}

public void putRental(Rental aRental){
this.rentals.put(aRental.getMovie().getTitle(),

aRental);
}

}
}

method C_Insert {
import java.util.*;
Hashtable insert (Hashtable aCustomers,

Customer aCustomer) {
Customer hCustomer=(Customer)aCustomers.get(

aCustomer.getName());
if (hCustomer==null){
aCustomers.put(aCustomer.getName(), aCustomer);

}
else
System.out.println("Item" + aCustomer.getName() +

"is already in video store");
return aCustomers;

} // java method
} // Lisa method

method R_Item {
class Rental {

Movie movie;
int days;
Rental (Movie movie, int days) {
this.movie = movie;
this.days = days;

}

public String toString() {
return "(" + this.movie.toString() + ", " +

this.days + ")";

79

}

public Movie getMovie() {
return this.movie;

}

public int getDays() {
return this.days;

}
}

}

method R_Insert {
import java.util.*;
Hashtable addRental (Hashtable aCustomers,
Customer aCustomer, Rental aRental) {

aCustomer.putRental(aRental);
aCustomers.remove(aCustomer.getName());
aCustomers.put(aCustomer.getName(),aCustomer);
return aCustomers;

} // java method
} // Lisa method

method R_getCustomer {
import java.util.*;
Customer getCustomer(Hashtable aCustomers, String aName) {

Customer aCustomer=(Customer)aCustomers.get(aName);
System.out.println("Customer " +

aCustomer.toString());
return aCustomer;

} // java method
}// Lisa method

method R_getMovie {
import java.util.*;
Movie getMovie (Hashtable aMovies, String aTitle) {

Movie aMovie=(Movie)aMovies.get(aTitle);
if (aMovie==null){
System.out.println("Item " + aTitle +

"doesn’t exist!");

80

return null;
}
else
return aMovie;

} // java method
} // Lisa method

method R_getPrice {
import java.util.*;
double getNewPric (int daysRented) {

double result =2;
if (daysRented > 2)
result += (daysRented -2) * 1.5;

return result;
} // java method

double getRegularPrice (int daysRented) {
return daysRented * 1.5;

} // java method

double getChildrenPrice (int daysRented) {
double result =1.5;
if (daysRented > 3)
result += (daysRented - 3) * 1.5;

return result;
} // java method

} // Lisa method

method M_Price {
import java.util.*;
abstract class Price {

abstract double getPrice(int daysRented);
}

class New extends Price{
New() {}
double getPrice (int daysRented) {
double result =2;
if (daysRented > 2)

result += (daysRented -2) * 1.5;

81

return result;
}

public String toString(){
return "new";

}
}

class Reg extends Price{
Reg(){}

double getPrice (int daysRented) {
return daysRented * 1.5;

} // java method

public String toString(){
return "reg";

}
}

class Child extends Price{
Child(){}
double getPrice (int daysRented) {
double result =1.5;
if (daysRented > 3)

result += (daysRented - 3) * 1.5;
return result;

} // java method

public String toString(){
return "child";

}
} // java method

} // Lisa method

method R_charge {
double getCharge(Movie aMovie, int daysRented){

return aMovie.getType().getPrice(daysRented);
}

} // Lisa method

82

} // Language

To represent the functionality of LISA specifications, the following program
is shown below.

jurassic_park child
road_trip reg
the_ring new
Andy 3 jurassic_park child 2 road_trip reg
Mary 3 the_ring new

The meaning of the above program is the following movie table (attribute
outMS), customer table (attribute outCS) and money income (attribute
income).

outMS:{
jurassic_park={Jurassic_park, child},
road_trip={road_trip, reg},
the_ring={the_ring, new}}

outCS:{Mary=(Mary,{the_ring=(
(the_ring,new),3)}),
Andy=(Andy,{road_trip=(
(road_trip,reg),3)},
jurassic_park=(
(jurassic_park,child),2)})}

income:8.0

Note that for the same scenario the following Java program has to be exe-
cuted, which is much more verbose and less intuitive for the end-user:

public static void main(String[] args){
double income = 0.0;
Movie m1 = new Movie(

"jurassic_park", Movie.CHILDRENS);
Movie m2 = new Movie(

"road_trip", Movie.REGULAR);
Movie m3 = new Movie(

"the_ring", Movie.NEW_RELEASE);
Customer c1 = new Customer("Andy");
Customer c2 = new Customer("Mary");

83

Rental r1 = new Rental(m1, 3);
Rental r2 = new Rental(m2, 2);
Rental r3 = new Rental(m3, 3);
c1.addRental(r1);
c1.addRental(r2);
c2.addRental(r3);

income += c1.evaluateCharge();
income += c2.evaluateCharge();

}

6.2.4 CS4: Cleaning Robot

As shown in previous case studies, the translation from attribute gram-
mar specifications of cleaning robot case study to LISA specifications are
straightforward.

language CleaningRobot {
lexicon {

Int [0-9]+
switch on | off
keywords left | right | up | down | stop
ignore [\0x0D\0x0A\]

}

attributes
Room *.inCleanPts, *.outCleanPts;
Point *.inPos, *.outPos,

*.inBounds, *.outBounds;
boolean CLEANSYS.clean;
int DIRECTIONS.direct, STEPS.steps,

DIMENSIONS.x, DIMENSIONS.y;

rule start {
CLEANTASK ::= DIMENSIONS MOVES compute {

CLEANTASK.outCleanPts = MOVES.outCleanPts;
CLEANTASK.outPos = MOVES.outPos;
CLEANTASK.outBounds = DIMENSIONS.outBounds;

MOVES.inCleanPts = new Room(DIMENSIONS.outBounds.x,

84

DIMENSIONS.outBounds.y);
MOVES.inPos = new Point(0, 0);
MOVES.inBounds = DIMENSIONS.outBounds;

};
}

rule dimensions {
DIMENSIONS ::= #Int #Int compute {
DIMENSIONS.x = Integer.valueOf(#Int.value()).

intValue();
DIMENSIONS.y = Integer.valueOf(#Int.value()).

intValue();
DIMENSIONS.outBounds = new Point(DIMENSIONS.x,

DIMENSIONS.y);
};

}

rule moves {
MOVES ::= MOVES MOVE compute {
MOVES[0].outCleanPts = MOVE.outCleanPts;
MOVES[0].outPos = MOVE.outPos;

MOVES[1].inCleanPts = MOVES[0].inCleanPts;
MOVES[1].inPos = MOVES[0].inPos;
MOVES[1].inBounds = MOVES[0].inBounds;

MOVE.inCleanPts = MOVES[1].outCleanPts;
MOVE.inPos = MOVES[1].outPos;
MOVE.inBounds = MOVES[0].inBounds;

}
| MOVE compute {
MOVES.outCleanPts = MOVE.outCleanPts;
MOVES.outPos = MOVE.outPos;

MOVE.inCleanPts = MOVES.inCleanPts;
MOVE.inPos = MOVES.inPos;
MOVE.inBounds = MOVES.inBounds;

};
}

85

rule move {
MOVE ::= DIRECTIONS STEPS CLEANSYSTEM compute {
MOVE.outCleanPts = updateTab(MOVE.inCleanPts, MOVE.inPos,

MOVE.inBounds, DIRECTIONS.direct, STEPS.steps,
CLEANSYSEM.clean);

MOVE.outPos = updatePos(MOVE.inPos, MOVE.inBounds,
DIRECTIONS.direct, STEPS.steps);

}
| stop compute {
MOVE.outCleanPts = MOVE.inCleanPts;
MOVE.outPos = MOVE.inPos;

};
}

rule directions {
DIRECTIONS ::= left compute {
DIRECTIONS.direct = LEFT;

}
| right compute {
DIRECTIONS.direct = RIGHT;

}
| up compute {
DIRECTIONS.direct = UP;

}
| down compute {
DIRECTIONS.direct = DOWN;

};
}

rule steps {
STEPS ::= #Int compute {
STEPS.steps = Integer.valueOf(#Int.value()).

intValue();
}
| epsilon compute {
STEPS.steps = 1; // default step

};
}

rule clean {

86

CLEANSYSTEM ::= on compute {
CLEANSYSTEM.clean = true;

}
| off compute {
CLEANSYSTEM.clean = false;

}
| epsilon compute {
CLEANSYSTEM.clean = true; // default cleaning mode

};
}

method M_Types {
public static final int UP = 0, DOWN = 1, LEFT = 2,

RIGHT = 3;
class Point {

int x;
int y;

Point(int x, int y) {
this.x = x;
this.y = y;

}

Point(Point p) {
this.x = p.x;
this.y = p.y;

}

public String toString() {
return "(" + x + "," + y + ")";

}
} // class

class Room {
int[][] room;
Room(int x, int y) {

room = new int[x][y];
// robot start on (0, 0) with clean switch ON
room[0][0]=1;

}

87

public void clean(int x, int y) {
room[x][y]=1;

}

public String toString() {
String text="|";
int x,y;
for (y=0; y < room.length; y++) {

for (x=0; x < room[y].length; x++)
text+=room[x][y]+" ";

text+=" | ";
}
return text;

}
} // class

} // Lisa method

method M_Calc {
Point updatePos(Point in, Point bounds,

int dir, int steps) {
Point out = new Point(in);
int i;
for (i=0; i < steps; i++) {

switch (dir) {
case UP: if (out.y < bounds.y - 1) {

out.y = out.y + 1;
}
break;

case DOWN: if (out.y > 0) {
out.y = out.y - 1;

}
break;

case RIGHT: if (out.x < bounds.x - 1) {
out.x = out.x + 1;

}
break;

case LEFT: if (out.x > 0) {
out.x = out.x - 1;

}

88

break;
}

}
return out;

} // java method

Room updateTab(Room tab, Point in, Point bounds,
int dir, int steps, boolean clean) {

Point out = new Point(in);
int i;
for (i=0; i < steps; i++) {

switch (dir) {
case UP: if (out.y < bounds.y - 1) {

out.y = out.y + 1;
}
break;

case DOWN: if (out.y > 0) {
out.y = out.y - 1;

}
break;

case RIGHT: if (out.x < bounds.x - 1) {
out.x = out.x + 1;

}
break;

case LEFT: if (out.x > 0) {
out.x = out.x - 1;

}
break;

}
if (clean) tab.clean(out.x, out.y);

}
return tab;

} // java methom
} // Lisa method

} // language CleaningRobot

To show functionalities of above specifications, following programs are in-
troduced.
Example No. 1:

89

3 3 right 2 on up 2 on left 2 off down 1 on

The meaning is:

outCleanPts: | 1 1 1 | 1 0 1 | 0 0 1 |

The table is read as:

0 0 1
1 0 1
1 1 1

and position (0, 1).
Example No. 2:

3 3 right up left down

The meaning is:

outCleanPts: | 1 1 0 | 1 1 0 | 0 0 0 |
outPos: (,)

and position (3, 3).
The table is read as:

0 0 0
1 1 0
1 1 0

Example No. 3:

3 3 right 2 up 2 off left 1 on stop up 1

The meaning is:

outCleanPts: | 1 1 1 | 0 0 0 | 0 1 0 |

The table is read as:

0 1 0
0 0 0
1 1 1

with the final position of robot (1, 2).

90

7 Conclusion

The main contribution of this document is the proposal of a new method to
specify complex tasks in the context of computer problem solving.
The proposed method is based on a grammatical specification (attribute
grammar) written in an object-oriented style (OOAG). UML diagrams are
also used in the analysis phase to help in the design of the context free gram-
mar (the first step of this method), as well as in the design of the attribute
grammar (the second step of the method). In this last phase, the UML di-
agrams can be helpful in the choice of the attributes, their evaluation rules
and the necessary contextual conditions. This grammatical specification so
far obtained allows us to use a rapid prototype technique (the automatic
generation of a language processor, a compiler, to interpret sentences of the
new language) to obtain a simulator for the problem under study. Then, we
can test the system and validate its behavior.
The main idea of the proposed method is to follow the well-known syntac-
tic/semantic approach6 based on context-free grammars (that defines the
structure, or syntax) and attribute grammars (that specifies the semantics).
This is a secure way to get a formal specification from which we produce a
rapid prototype using compiler generators.
It is also possible to split the semantic specification into several grammars,
where each one will be used to describe a different task. The grammars all
together will represent the semantics for the problem solving.
As told above, this oo-grammatical approach can be improved adding a pre-
vious phase to map the concepts described in UML diagrams into grammars
(structure and attributes).
Since our approach is object-oriented, LISA System is an adequate tool to
get the desired prototype. LISA System is modular, uses object-oriented
grammars and implements multiple attribute grammar inheritance. To
prove the usability of our approach, four complete different examples were
shown in this report; for each one, we state the problem, design the UML
use-cases, class and operational diagrams, derive the context free grammar,
and write the attribute grammar. Then, using LISA, we generate a proces-
sor, and check the specification verifying the system behavior when faced
with different input sequences.

6That typically supports the development of grammars and influences the language
processing strategy.

91

References

[Ado02] S. Adolph. Patterns for Effective Use Cases. Addison-Wesley,
2002.

[Ars01] Ali Arsanjani. Grammar-oriented object design: Creating
adaptive collaborations and dynamic configurations with self-
describing components and services. In Proceedings of TOOLS
2001, volume 65. IEEE Computer Society Press, 2001.

[BL02] Barrett Bryant and Beum-Seuk Lee. Two-level grammar as an
object-oriented requirements specification language. In IEEE
CD ROM Proceedings of 35th Hawaii International Conference
on System Sciences, 2002.

[Boo94] G. Booch. Object-Oriented Analysis and Design with Applica-
tions. Benjamin/Cummings, 1994.

[Coc01] A. Cockburn. Writing Effective Use Cases. Addison-Wesley,
2001.

[Fow97] M. Fowler. UML Distilled. Applying the Standard Object Mod-
eling Language. Addison-Wesley Longman, 1997.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[HPM+02] P. Henriques, M. V. Pereira, M. Mernik, M. Lenič,
E. Avdičaušević, and V. Žumer. Automatic generation of
language-based tools. In Mark van den Brand and Ralf Laem-
mel, editors, Electronic Notes in Theoretical Computer Science,
volume 65. Elsevier Science Publishers, 2002.

[Knu68] D. Knuth. Semantics of contex-free languages. Math. Syst. The-
ory, 2(2):127–145, 1968.

[LA02] Keith Levi and Ali Arsanjani. A goal-driven approach to enter-
prise component identification and specification. Communica-
tions of the ACM, 45(10):45–52, October 2002.

[LBNE00] Luqi, V. Berzins, N. Nada, and C. Eagle. Computer aided proto-
typing system (CAPS) for heterogeneous systems development

92

and integration. In Proceedings of the 2000 Command and Con-
trol Research and Technology Symposium, Naval Postgraduate
School, Monterey, CA, June 26-28, 2000.

[ME00] M. Mernik and D. Parigot (Eds.). Attribute grammars and their
applications. Informatica, 24(3), September 2000.

[MLAŽ99] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem
Žumer. Multiple Attribute Grammar Inheritance. In D. Parigot
and M. Mernik, editors, Second Workshop on Attribute Gram-
mars and their Applications, WAGA’99, pages 57–76, Amster-
dam, The Netherlands, March 1999. INRIA Rocquencourt.

[MLAŽ00] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem
Žumer. Compiler/interpreter generator system LISA. In IEEE
CD ROM Proceedings of 33rd Hawaii International Conference
on System Sciences, 2000.

[MLAŽ02] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer. LISA:
An Interactive Environment for Programming Language Devel-
opment. In Nigel Horspool, editor, 11th International Confer-
ence on Compiler Construction, volume 2304, pages 1–4. Lecture
Notes in Computer Science, Springer-Verlag, 2002.

[MLEŽ00] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem
Žumer. Multiple Attribute Grammar Inheritance. Informatica,
24(3):319–328, September 2000.

[Paa95] J. Paakki. Attribute grammar paradigms - a high-level method-
ology in language implementation. ACM Computing Surveys,
27(2):196–255, 1995.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Prentice-
Hall, 1991.

[vDM02] A. van Deursen and Leon Moonen. The video store revis-
ited thoughts on refactoring and testing. In Proceedings of the
3d International Conference on Extreme Programming and Ag-
ile Processes in Software Engineering (XP 2002), University of
Cagliary, 2002, pages 71–76, 2002.

93

[Wai90] W.M. Waite. Use of attribute grammars in compiler construc-
tion. In M. Jourdan P. Deransart, editor, Proceedings of 1st
WAGA, Lecture Notes in Computer Science Vol. 461, Springer
- Verlag, pages 255–265, 1990.

94

A Meta-Grammar for OOAG Descriptions

OOAGSpecf -> OOAGComposition OOAGDescription
OOAGComposition -> agId ’=’ AgLst
AgLst -> agId

| AgLst ’+’ agId
OOAGDescription -> SimpleOOAG

| OOAGDescription SimpleOOAG
SimpleOOAG -> ‘‘OOAG:’’ agId SymbDescriptions
SymbDescriptions -> SymbDesc SymbDescriptions

| SymbDesc
SymbDesc -> NonTermDesc

| TermDesc
TermDesc -> ‘‘Term’’ simbId ’:’

‘‘Syn’’ ’:’ ’{’ SyntesizedATT ’}’
RegExpDescs

NonTermDesc -> ‘‘NonTerm’’ simbId ’:’
‘‘Inh’’ ’:’ ’{’ InheritATT ’}’
‘‘Syn’’ ’:’ ’{’ SyntesizedATT ’}’
ProductionDescs

RegExpDescs -> RegExpDesc
| RegExpDescs RegExpDesc

RegExpDesc -> regId ’(’ regExp ’)’
InheritATT -> Decls
SyntesizedATT -> Decls
Decls -> &

| Decls Decl
Decl -> attId ’:’ typeId
ProductionDescs -> ProdDesc

| ProductionDescs ProdDesc
ProdDesc -> prodId ’(’ Prod ’)’ ’:’

EvalRules ContextConds
Prod -> simbId ’->’ Simbs
Simbs -> &

| Simbs simbId
EvalRules -> &

| EvalRules EvalRule
EvalRule -> Att ’=’ Exp
Att -> simbId ’.’ attId

| simbId ’/’ num ’.’ attId

95

ContextConds -> &
| ‘‘CC:’’ boolexp

Exp -> SimpleExp
| Exp op SimpleExp

SimpleExp -> Function
| Att
| constant

Function -> funId ’(’ AttLst ’)’
AttLst -> &

| AttLst Att

96

