
Grammatical Approach to Problem Solving

Pedro Rangel Henriques1,Tomaž Kosar2, Marjan Mernik2,

Maria João Varanda Pereira3, Viljem Žumer2

1 University of Minho, Department of Computer Science, Portugal

prh@di.uminho.pt
2 University of Maribor, Faculty of Electrical Engineering and Computer Science, Slovenia

{tomaz.kosar, marjan.mernik, zumer}@uni-mb.si
3 Polytechnic Institute of Bragança, Portugal

mjoao@ipb.pt

Abstract. The paper presents a grammatical
approach to problem solving. It supports formal
software specification using attribute grammars,
from which a rapid prototype can be generated
as well the incremental software development.
Domain concepts and relationships among them
have to be identified from a problem statement
and represented as a context-free grammar. The
obtained context-free grammar describes the syntax
of a domain-specific language whose semantics is
the same as the functionality of the system under
implementation. The semantics of this language
is then described using attribute grammars from
which a compiler is automatically generated.
The execution of a particular program written
in a domain-specific language corresponds to
the execution of a prototype of a system on a
particular use-case.

Keywords. software design and modelling,
software development, context-free grammars, at-
tribute grammars, rapid prototyping.

1 Introduction

One of the well known properties of soft-
ware systems is that they are subject to frequent
changes. A software developer needs to build a
software system in such a manner that he can eas-
ily adapt it to the user’s changeable requirements.
Current object-oriented design techniques [5] [6]
are well suited for a such design for a change. How-
ever, any changes during the software life cycle are
costly. Therefore, it is very important that the
user is involved in the software development pro-
cess from the very beginning and that the software
system is delivered to the user before his require-
ments have the opportunity to change.

Rapid prototyping enables the software devel-
oper to build executable prototypes and to involve

the user in an iterative build-execute-modify loop
until his requirements are validated. The proto-
type is then used to build the final version of the
software system through the use of the architecture
included in the prototype or it is simply thrown
away [16]. In the latter case the prototype is used
to clarify the user’s needs. In both cases, the rapid
prototyping approach is used when the user’s re-
quirements are not well defined. The proposed
approach, i.e. the grammatical approach to prob-
lem solving, rests on the success reached by at-
tribute grammars in the specification of language
semantics [9] [4] and in the systematic implemen-
tation of language processing tools [7] [8]. In the
paper the grammatical approach to problem solv-
ing supported by an attribute grammar developed
and written in an object-oriented style (OOAG)
is proposed. One of the benefits of the proposed
approach is that it enables rapid prototyping and
the validation of the user’s requirements in a prag-
matic way. The idea is to translate the OOAG ob-
tained in the specification phase into the concrete
syntax of a compiler generator in order to create
a simulator for that problem. We can then write
scenarios (in the domain-specific language [17] de-
fined by that OOAG) describing different uses of
the system, and use the generated simulator to pro-
cess those scenarios computing the desired results.

The organization of the paper is as follows. In
Section 2 related works are described. The gram-
matical approach to problem solving is presented
in detail in Section 3 followed by an example in the
Section 4. A synthesis and concluding remarks are
presented in Section 5.

2 Related Work

The grammatical approach to software develop-
ment can be seen as an extension of object-oriented
design methods [15] [5] [6] where a problem do-

main model is developed from use-cases and class
diagram. However, their main goal is to develop
good software models (e.g. as in [11]). Our goal
is to develop rapid prototypes and early validation
of user’s requirements.

Our work is closely related to the Grammar-
Oriented Object Design (GOOD) [1] [10], where
all valid object interaction sequences of the clus-
ter of objects are identified. Then a meta-model
is constructed and represented as a context-free
grammar. However, our approach differs from [1]
[10] since they are using a context-free grammar to
describe behavior of the objects (methods), while
in our case the structure of a class (attributes) is
described. Our approach has also different goals
and advantages. However, it can be seen as com-
plementary to the GOOD approach. Combining
both approaches to describe the behavior and the
structure with a domain-specific language, is under
investigation.

The grammatical approach to software devel-
opment is also related to the rapid prototyping
research (e.g. [3]). In [3] Two-Level Grammars
(TLG) were proposed as an object-oriented re-
quirement specification language. Successive re-
finement steps starting with natural language lead
to more detailed specifications that can be trans-
lated to VDM++, which in turn is translated to
Java, yielding a rapid prototype of a system. With
this approach it is possible to obtain the rapid pro-
totype of a system from natural language specifi-
cations. In more complex cases rapid prototype is
not completely automatically derived since a suffi-
cient degree of interaction with a user is required
to ensure a correct interpretation.

Resolving the semantical gap between use-case
diagram and class diagram is also presented in [14].
From the use-case diagram agents state machines
and values added invariants are derived. The term
agent is used to represent an actor collaborating
with the system through specific use-case. Both
techniques are collectively used in iterative con-
verting algorithm, which builds the OCL specifi-
cation and class diagram. The OCL specification
(define a set of preconditions, postconditions and
actor invariants) are further used to check the cor-
rectness of the model.

3 The Grammatical Approach

To achieve a good understanding of the user’s
world, we need to understand the application do-
main. In other words, we need to identify concepts
and their relationships in the problem domain.
For this purpose object-oriented design (OOD)
uses use-case diagrams and conceptual class di-
agrams [5]. The use-case diagram describes the
functionality of the system. Use-cases are narra-

tive descriptions of specific tasks, while the con-
ceptual class diagram captures concepts and rela-
tionships between them. Guidelines for develop-
ing the conceptual class diagram can be found in
[15]. From the use-case diagram and from the con-
ceptual class diagram a skeleton design model is
obtained which should be robust with respect to
changes of the user’s requirements. For identify-
ing concepts and their relationships in the problem
domain our grammatical approach is not limited
to object-oriented design. Also other approaches,
such as data-flow diagrams and entity-relation di-
agrams which show the flow of work and the re-
lationship between activities and deliverables, can
be applied. However, object-oriented design [2] [6]
is now almost the-facto standard for software sys-
tem design and it is also used in our approach.
Therefore, the starting point of our grammatical
approach is a conceptual class diagram. To enable
rapid prototyping the following steps are used in
our approach (Fig. 1):

• deriving the context-free grammar from the
conceptual class diagram,

• describing the semantics of every concept,

• generating the rapid prototype of a system.

Domain concepts and relationships among
them are identified in the conceptual class diagram
and are further represented as a context-free gram-
mar. The obtained context-free grammar describes
the syntax of a domain-specific language whose
semantics is the same as the functionality of the
system under implementation. The semantics of
the domain specific language is described with at-
tribute grammars (derived from domain concepts)
from which a compiler is automatically generated.
The execution of a particular program written in
a domain-specific language corresponds to the ex-
ecution of a prototype of a system on a particular
use-case. The brief description of the above steps
is described in the following subsections.

3.1 Deriving a context-free gram-

mar from a conceptual class di-

agram

The role of non-terminals in a context-free
grammar is two fold. First, at higher abstraction
level non-terminals are used to describe different
concepts in the programming language (e.g. ex-
pression or declaration in the general-purpose pro-
gramming language). On the other hand, at more
concrete level non-terminals and terminals are used
to describe the structure of a concept (e.g. variable
declarations consist of variable type and variable
name followed by semicolon). Therefore, both the
concepts and relationships between them are cap-
tured in a context-free grammar. But, this is also

Conceptual Class
Diagram

Context-free Grammar

Attribute Grammar

Compiler = Rapid Prototype

Result = Behaviour
of the System

D
o

m
a

in
-S

p
e
c

if
ic

L
a
n

g
u

a
g

e

DSL Program =
Use Case

Figure 1: High-level view of the grammatical ap-
proach

true for the conceptual class diagram which de-
scribes concepts in a problem domain and their
relationships. It is clear that both formalisms can
be used for the same purpose and that some rough
transformation from a conceptual class diagram to
a context-free grammar and vice versa should exist.

In general, classes are mapped to non-terminal
symbols and attributes are mapped to terminal
symbols. The result of this step is a context-free
grammar. A class diagram consists also of oper-
ations, which will be identified when the seman-
tics of context-free grammar is going to be de-
fined. Associations represent the interaction be-
tween classes and have to be included in a context-
free grammar. The navigability association can be
described with the production A → B, where the
non-terminal A gets information about attributes
of the non-terminal B. Association has multiplicity.
Describing multiplicity with grammar productions
is straightforward as shown on an example for mul-
tiplicity 0..m:

A -> MoreB

MoreB -> MoreB B | epsilon

For generalization we propose the production A
→ B | C. The non-terminal A can be implemented
either with the non-terminal B or non-terminal C.
The composition and aggregation are described as
the navigability association. In the composition
the non-terminal B can appear in other produc-
tions. On the other hand, in the aggregation the
non-terminal B is reachable only from the non-
terminal A.

3.2 Describing the semantics of each

concept

To describe the semantics or the meaning of a
concept an attribute grammar is used. Attribute
grammars [9] are natural extensions of context-free
grammars and as such very well support our ap-
proach which is based on context-free grammars.
The syntax and semantics of each symbol is spec-
ified in a module (modularity is the implicit fea-
ture of a grammar and is based on the locality as-
sociated with symbols and productions). The first
part of a module is the declaration of its attributes,
divided in two subsets, the inherited (context de-
pendent) and the synthesized (computed locally).
The functions to be used to evaluate each attribute
are then defined in the context of each production.
Also the contextual conditions, if any, that express
the data constraints are defined in the context of
each production. The activities involved in the sec-
ond step are intellectually demanding and may re-
quire significant creativity of the designer. The
result of this step is a complete attribute grammar
specification for a given problem.

3.3 Generating the rapid prototype

of a system

To generate the rapid prototype of a system
our compiler-generator LISA [12] has been used.
The LISA system automatically generates a com-
piler or interpreter and other language-based tools,
such as language-knowledgeable editor, inspectors,
and animators [8] from attribute grammar specifi-
cation. One of LISA’s most important feature is
that it supports incremental development of speci-
fications, which is especially important in particu-
lar tasks of the software development described in
this paper.

4 An Example: Chocolate Vending

Machine

Our approach is illustrated on a simple exam-
ple. More examples can be found in the technical
report [13].

The problem: We want a program for the
daily management of a Chocolate Vending Ma-
chine. Given the stock (name, price and quantity
of each choco available) and the data for each sale
(name of chosen choco, and amount of money in-
troduced) the goal is to compute the income and
the final stock. No choco should be provided if:

• the name does not exist in the stock list, or

• the quantity is 0, or

Figure 2: The Conceptual Class Diagram for Vend-
ing Machine

• the amount of money is different from the
price.

The Conceptual Class Diagram: After
the analysis of the problem stated above, we iden-
tified the vending machine (VM) as the main con-
cept. The two other important concepts in the
management of the vending machine are: Stock,
and Sale. Stock is a set of items, and each Item
has a name, a price, and a quantity. The data to
be kept for each Sale operation is the item name
and the amount of money given. The structure
of the problem domain can be defined in terms of
classes and relationships as depicted in the concep-
tual class diagram in Fig. 2.

The Structure: Remember that, in our ap-
proach, a problem concept is denoted by a gram-
mar symbol. The context-free grammar below for-
malizes the problem syntax in the sense that it
specifies the structure of the problem domain, re-
lating the concepts among them. The following
context-free grammar is obtained using transfor-
mations described in Section 3:

VM -> Stock Sales

Stock -> Stock Item

| &

Item -> name price quantity

Sales -> Sales Sale

| Sale

Sale -> name money

The Semantics: The next step is to define the
semantics for each non-terminal symbol. Due to
limited page length only a part of the whole at-
tribute grammar specification is given below. The
complete example is given in [13]. According to the
problem description, the vending machine should
have two attributes: FStkTab (the final stock ta-
ble) and Income (the final income). These at-

tributes denote the two required value computa-
tions (the problem goals). The inherent modular-
ity of attribute grammars enables us to write sepa-
rate attribute grammar modules for each attribute
associated to a grammar symbol. The complete
specification is the attribute grammar obtained by
composition of all modules. Only attribute gram-
mar for VM module are shown below.

We will start with stock table evaluation. No-
tice that its value is not computed locally to the VM
symbol definition; it depends on the sales process-
ing. To perform such computation, it is necessary
to know the stock table before to start selling (ini-
tially the stock table is empty). From these state-
ments it is clear that symbols Stock and Sales

will be characterized by a stock table that holds
two distinct values along the processing time: the
initial one (depends on the environment); and the
final one (computed during the sales processing).
So both will be associated with two attributes —
StkTab, FStkTab— the first one inherited from
the context, and the second one synthesized from
the previous and the attributes associated to each
item. The type, TAB, of those two attributes is a
finite function (a mapping) that associates a name
with a pair (price, quantity).

TAB = FF(string, (real,int))

NonTerm VM:

Inh: {}

Syn: { FStkTab: TAB }

vm-manager(VM -> Stock Sales):

// associated semantics

VM.FStkTab = Sales.FStkTab

Stock.StkTab = {}

Sales.StkTab = Stock.FStkTab

The next module is used to describe the com-
putation of the attribute Income. The final result
depends on the amount accumulated on each sale,
as stated in the following module for the vending
machine.

NonTerm VM:

Inh: {}

Syn: { Income: int }

vm-manager(VM -> Stock Sales):

VM.Income = Sales.Sum

Notice that the stock declaration part plays no
role in the Income evaluation. The partially pre-
sented attribute grammar represents the formal
specification for the given problem.

The rapid prototype: The attribute gram-
mar specified in the previous step is then written

using our compiler generator system LISA. The in-
herent modularity of attribute grammars enables
iterative design of prototype. Therefore, more
functionalities of a system can be implemented. An
example of the mentioned inherited modularity is
shown below: in the first language (VM 1) only
stock description is introduced and sales descrip-
tion is added to the next language (VM 2).

A part of these specifications are shown below.
Note the straightforward translation from above
specifications to LISA.

language VM_1 {

...

attributes Hashtable *.StkTab, *.FStkTab;

...

rule VM {

VM ::= STOCK compute {

VM.FStkTab = STOCK.FStkTab;

STOCK.StkTab = new Hashtable();

};

}

rule Stock {

STOCK ::= STOCK ITEM compute {

STOCK[0].FStkTab = ITEM.FStkTab;

STOCK[1].StkTab = STOCK[0].StkTab;

ITEM.StkTab = STOCK[1].FStkTab;

}

| epsilon compute {

STOCK.FStkTab = STOCK.StkTab;

};

}

...

} // language VM_1

language VM_2 extends VM_1 {

...

rule overrides VM {

VM ::= stock_description STOCK

sales_description SALES

compute {

VM.FStkTab = SALES.FStkTab;

STOCK.StkTab = new Hashtable();

SALES.StkTab = STOCK.FStkTab;

};

}

...

} // language VM_2

language VM_3 extends VM_2 {

attributes double *.income,

*.sum, *.amount;

rule extends VM {

compute {

VM.income = SALES.sum;

}

}

rule extends Sales {

SALES ::= SALE compute {

SALES.sum = SALE.amount;

}

| SALES SALE compute {

SALES[0].sum = SALES[1].sum

+ SALE.amount;

};

}

...

} // language VM_3

}

From above specifications the VM 3 compiler
is automatically generated by LISA system. Key-
words ”stock description” and ”sales description”
have been introduced to explicitly show the differ-
ence between stock and sales descriptions. With-
out these keywords the grammar is not LR(1). One
of the possible scenarios is now described with the
following program written in our DSL.

stock_description

mars 0.50 10

kitkat 0.60 15

twix 0.60 5

sales_description

twix 0.60

twix 0.60

mars 0.50

twix 0.60

The meaning of the above program is the following
stock and money income:

FStkTab: {twix=(0.60 Euro, 2),

kitkat=(0.60 Euro, 15),

mars=(0.50 Euro, 9)}

Income: 2.3 Euro

5 Conclusion

In the paper our approach to developing a
formal specification for a given problem using a
complementary syntax/semantics approach is de-
scribed. Not least, our approach can be also seen
as a formal approach to program construction with
all benefits of formal approaches. The proposed ap-
proach can be also used if the user’s requirements
are not well defined. The essence of our approach
is the development of a domain-specific language
that describes the user interaction with a system
or the functionality of a system. While execut-
ing programs written in a specified domain-specific
language the functionality of a system and user’s
requirements can be validated. The starting point
of our approach is the identification of concepts
in the problem domain. Here, well known tech-
niques from object-oriented design, such as use-
case diagrams and conceptual class diagrams, are
used. However, our approach can be used also with

data-flow diagrams and entity-relation diagrams.
In that case just new transformation rules have to
be defined, similar to those explained in Section 3.

In our future work we would like to investi-
gate the possibility to obtain a domain-specific
language only from a use-case diagram which de-
scribes the functionality of a system. It is well
known that use-case diagrams and class diagrams
represent different views on a given problem and
that there is no direct transformation between
those two techniques. Has such context-free gram-
mar some valuable information for constructing
a conceptual class diagram? Is it possible that
a context-free grammar of a domain-specific lan-
guage, derived from use-case diagram, describes
the class diagram for a given problem? Such find-
ings might have some impact on current object-
oriented design. Hence, our future work is to ex-
plore this connection.

References

[1] Ali Arsanjani. Grammar-oriented object de-
sign: Creating adaptive collaborations and
dynamic configurations with self-describing
components and services. In Proceedings of
TOOLS 2001, volume 65. IEEE Computer So-
ciety Press, 2001.

[2] G. Booch. Object-Oriented Analysis and De-
sign with Applications. Benjamin/Cummings,
1994.

[3] Barrett Bryant and Beum-Seuk Lee. Two-
level grammar as an object-oriented require-
ments specification language. In IEEE CD
ROM Proceedings of 35th Hawaii Interna-
tional Conference on System Sciences, 2002.

[4] P. Deransart, M. Jourdan, and B. Lorho. At-
tribute grammars: Definitions, systems and
bibliography. volume 323. Lecture Notes in
Computer Science, Springer-Verlag, 1988.

[5] M. Fowler. UML Distilled. Applying the Stan-
dard Object Modeling Language. Addison-
Wesley Longman, 1997.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley,
1995.

[7] Jan Heering and Paul Klint. Semantics of
programming languages: A tool-oriented ap-
proach. ACM Sigplan Notices, 35(3):39–48,
March 2000.

[8] Pedro Henriques, Maria Varanda Pereira,
Marjan Mernik, Mitja Lenič, Enis
Avdičaušević, and Viljem Žumer. Auto-
matic generation of language-based tools.

In Mark van den Brand and Ralf Laemmel,
editors, Electronic Notes in Theoretical Com-
puter Science, volume 65. Elsevier Science
Publishers, 2002.

[9] D. Knuth. Semantics of context-free lan-
guages. Math. Syst. Theory, 2(2):127–145,
1968.

[10] Keith Levi and Ali Arsanjani. A goal-driven
approach to enterprise component identifica-
tion and specification. Communications of the
ACM, 45(10):45–52, October 2002.

[11] Karl J. Lieberherr. Adaptive Object-Oriented
Software: The Demeter Method with Propa-
gation Patterns. PWS Publishing Company,
Boston, 1996.

[12] Marjan Mernik, Mitja Lenič, Enis
Avdičaušević, and Viljem Žumer. LISA:
An Interactive Environment for Program-
ming Language Development. In Nigel
Horspool, editor, 11th International Con-
ference on Compiler Construction, volume
2304, pages 1–4. Lecture Notes in Computer
Science, Springer-Verlag, 2002.

[13] Maria Varanda Pereira, Marjan Mernik, Pe-
dro Henriques, Tomaž Kosar, and Viljem
Žumer. Object-oriented attribute grammar
based grammatical approach to problem spec-
ification. Technical report, University of
Minho, Department of Computer Science,
Braga, 2002.

[14] Boris Roussev. Generating ocl specifications
and class diagrams from use cases: A newto-
nian approach. In IEEE CD ROM Proceed-
ings of 36th Hawaii International Conference
on System Sciences, 2003.

[15] J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, 1991.

[16] I. Sommerville. Software Engineering.
Addison-Wesley, 5th edition, 1996.

[17] A. van Deursen, P. Klint, and J. Visser.
Domain-Specific Languages: An Anno-
tated Bibliography. ACM Sigplan Notices,
35(6):26–36, 2000.

