
Informatica 25 page xxx–yyy 1

Grammar-Based Systems: Definition and Examples

Marjan Mernik, Matej Črepinšek, Tomaž Kosar, Damijan Rebernak and Viljem Žumer
University of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova ulica 17, 2000 Maribor, Slovenia
{marjan.mernik, matej.crepinsek, tomaz.kosar, damijan.rebernak, zumer}@uni-mb.si

Keywords: context-free grammars, attribute grammars, grammar-based systems

Received: January 30, 2004

Formal language theory is an important part of theoretical computer science and has also been
applied in many practical applications. The importance of context-free grammars and attribute
grammars for compiler construction and automatic generation for compilers/interpreters is
already well known. However, grammars can be found in many other applications which are not
as clearly related to their original application - language description and implementation. We
call such systems grammar-based systems. No general comparison and classification has been
done until now despite these systems having existed for a long time. The aim of this paper is to
introduce and popularize grammar-based systems.

1 Introduction

This paper emphasizes grammars, especially context-
free grammars and attribute grammars. Their im-
portance for compiler construction is already well
known. However, from formal language definitions
(e.g. attribute grammars) many other language-based
tools can be automatically generated [8, 10], such as:
pretty printers, syntax-directed editors, type checkers,
dataflow analyzers, partial evaluators, debuggers, pro-
filers, test case generators, visualizers, animators, and
documentation generators. In most of these cases, the
core language definitions have to be augmented with
tool-specific information. In other cases, only a part
of the formal language definition is sufficient for auto-
matic tool generation, or implicit information must be
extracted from the formal language definition in order
to automatically generate a tool.

Moreover, grammars can be found in many other
applications which are not as clearly related to their
original application - language description and im-
plementation. We call such systems grammar-based
systems (GBSs). Some papers describing particular
approaches even contain this word in their titles (e.g.
[5], [33], [36]). However, there is no exact definition
nor comparison and classification for such systems.
Since grammar-based systems are mainly unnoticed,
there is also a lack of identifying benefits of such sys-
tems. The aim of this paper is to remedy this situation

by defining, introducing and popularizing grammar-
based systems. The benefits of GBSs are identified
and clearly stated.

The organization of the paper is as follows. Sec-
tion 2 presents the original application of gram-
mars, namely automatic generation of compil-
ers/interpreters, and other language-based tools using
our compiler generator LISA [23]. In section 3, we in-
troduce GBSs, define them and their application areas,
followed by presentation of practical examples in sec-
tion 4. Concluding remarks and future research work
are given in section 5.

2 Original Application of
Grammars

The original application of grammars is a notation
for language description and its implementation [2].
What do we gain by formalizing the syntax and se-
mantics of a programming language? The following
benefits are identified:

– The language definition standardizes the lan-
guage. This is important to programmers, who
need to write syntactically and semantically cor-
rect programs and understand them without any
doubt about their meaning. It is also important
to language implementors, who need to write
a correct compiler/interpreter of the specified

2 Informatica 25 page xxx–yyy M. Mernik

language.

– The language definition allows a formal analysis
of its properties, such as whether the definition is
LL(k) grammar and L-attributed grammar. This
contributes to better syntax and semantics of the
programming language. The programming lan-
guage that has been formally designed is more
regular, has less exceptions and is easier to learn.

– The language definition enables us to systemat-
ically derive the implementation of a language,
such as a LR(k) parser and attribute evaluator.
Moreover, such an implementation can be au-
tomatically obtained. In this case, the language
definition is used as an input to a compiler gen-
erator system. Researchers have recognized the
possibility that many other language-based tools
could be generated from a formal language def-
inition. Therefore, many tools not only au-
tomatically generate a compiler/interpreter, but
also complete language-based environments [8].
Such automatically generated language-based
environments include editors, type checkers, de-
buggers, various analyzers, and animators.

Automatic generation of compilers/interpreters and
other language-based tools using our LISA compiler
generator are presented in the rest of this section.
To support incremental language development [22]
and educational activities in teaching “Compiler con-
struction” course [24] the LISA (Language Imple-
mentation System based on Attribute grammars) tool
was developed [23]. LISA is a compiler-compiler,
or a system that automatically generates a com-
piler/interpreter from attribute grammar-based lan-
guage specifications. The specification of a toy lan-
guage SELA (Simple Expression Language with As-
signments) is given below, in order to illustrate the
LISA style.

language SELA {
lexicon {

Number [0-9]+
Identifier [a-z]+
Operator \+ | :=
ignore [\0x09\0x0A\0x0D\]+

}

attributes Hashtable *.inEnv, *.outEnv;
int *.val;

rule Start {
START ::= STMTS compute {
STMTS.inEnv = new Hashtable();
START.outEnv = STMTS.outEnv;

};

}
rule Statements {

STMTS ::= STMT STMTS compute {
STMT.inEnv = STMTS[0].inEnv;
STMTS[1].inEnv = STMT.outEnv;
STMTS[0].outEnv = STMTS[1].outEnv;

}
| STMT compute {

STMT.inEnv = STMTS[0].inEnv;
STMTS[0].outEnv = STMT.outEnv;

};
}
rule Statement {

STMT ::= #Identifier \:= EXPR compute {
EXPR.inEnv = STMT.inEnv;
STMT.outEnv = put(STMT.inEnv,

#Identifier.value(), EXPR.val);
};

}
rule Expression {

EXPR ::= EXPR + EXPR compute {
EXPR[2].inEnv = EXPR[0].inEnv;
EXPR[1].inEnv = EXPR[0].inEnv;
EXPR[0].val = EXPR[1].val+

EXPR[2].val;
};

}
rule Term1 {

EXPR ::= #Number compute {
EXPR.val = Integer.valueOf(

#Number.value()).intValue();
};

}
rule Term2 {
EXPR ::= #Identifier compute {

EXPR.val = ((Integer)EXPR.inEnv.get(
#Identifier.value())).intValue();

};
}

}

LISA automatically generates a SELA com-
piler/interpreter from this specification An example of
a program written in the SELA language is shown in
Figure 1.

Figure 1: Language knowledgeable editor

LISA also automatically generates other tools, such
as language knowledgeable editors and various in-
spectors (e.g. finite state automata visualizator (Fig-
ure 2), syntax and semantic tree animators (Figure 3))
that are useful for understanding the behavior of the

GRAMMAR-BASED SYSTEMS: DEFINITION ... Informatica 25 page xxx–yyy 3

Figure 2: FSA visualizator

Figure 3: The snapshot of semantic tree animator

generated language compiler/interpreter. A LISA-
generated language knowledgeable editor is aware of
the regular definitions of the language lexicon. There-
fore, it can color the different parts of a program (com-
ments, operators, reserved words) to enhance the un-
derstandability and readability of programs. In Figure
1 the operators in the SELA program are recognized
while editing and displaying in a different color.

3 Grammar-Based Systems:
Definition

As already mentioned, grammars can be found in
many other systems than those described in section
2. These systems do not focus on language defini-

tion and implementation, but on solving various other
problems. We call such systems grammar-based. The
essential characteristics of GBSs is comprised in the
following definition:

A grammar-based system is any system that uses a
grammar and/or sentences produced by this gram-
mar to solve various problems outside the domain of
programming language definition and its implemen-
tation. The vital component of such a system is well
structured and expressed with a grammar or with sen-
tences produced by this grammar in an explicit or im-
plicit manners.

The key characteristic of GBSs according to our
definition is a grammar which presents a kernel for
the problem solving part of the system (application).
Without this grammar part, the system becomes less
general, and by lacking an important generic func-
tionality, it can become usable only in a very re-
stricted manner. In many GBSs the transformation of
the representation to a context-free grammar makes
the various analyses of properties feasible. In others
the ability of context-free grammars to represent in-
finite languages with a finite set of production rules
is exploited. Sometimes, a problem can be solved
simply by converting the representation to a context-
free grammar since the appropriate tools already ex-
ist. Why is the study of GBSs so important? The
theory of grammars is well-defined and described in
many books, where different examples and solutions
are presented [2, 1]. In our research we discovered
that grammars can be, and already are, used as a ker-
nel part of many different practical systems. The fact
that grammars are so well-defined is an advantage for
developers, because they can use that knowledge, and
the already well tested solutions, to build their own.
The main problem of using grammars as part of a so-
lution is to identify those problems that have gram-
matical nature (can be solved with grammars) and to
convert their presentation in the form of grammars.

One may ask why traditional programming applica-
tions such as compilers are excluded from the above
definition since it is clear that these applications heav-
ily depend on grammars. Actually, their whole con-
struction is based on grammars. Grammars have been
used in this area since their invention and other ad-
hoc approaches were mainly superseded by grammars
a long time ago. In this case we simply do not have
other options. Therefore, talking about grammar-
based compiler would be awkward. On the other

4 Informatica 25 page xxx–yyy M. Mernik

hand, using grammars in other application areas can
be regarded as an alternative and novel approach with
clearly defined benefits. In this case the noun qualifier
“grammar-based” is really appropriate.

Our longstanding interest in grammars inspired us
to start collecting information about their different
practical application areas, such as:

– Software engineering, where syntax definition
occurs in various software development pro-
cesses – in the form of rapid prototyping [29, 9],
the modeling flow and constrains of collaborat-
ing software components [18], and many others
[4, 16].

– Evolutionary computation is the study of compu-
tational systems that uses ideas from natural evo-
lution and adoption to search the solution space.
One of the research fields of evolutionary com-
putations is grammatical evolution [27].

– Information theory comprises a vast range of di-
verse scopes. So far, our observations noticed
grammars involved in encoding methods [3, 26],
programming compaction [5] and grammatical
inference [20]. Other grammar-dependent soft-
ware in information theory are under investiga-
tion.

– Neural networks bring grammars into use with
grammatical description of neural networks
topology [15, 7, 11].

– Data representation architecture uses special
kinds of grammars for communicating business
data among very diverse systems. The particular
technology considered is XML [30].

– Other areas of Computer Science (speech recog-
nition, data mining, syntactical pattern recogni-
tion, etc).

Applications of grammars are found even in areas
outside computer science, such as organizational
science [28] and mechanical engineering [33].

Until now GBSs have been studied only for partic-
ular problems (e.g. compression) without any general
comparison and classification. The only attempt, to
the best of our knowledge, is a recent work described
in [16] where authors coined the word grammar-
ware. To quote their definition “Grammarware com-
prises grammars and all grammar-dependent soft-

ware, i.e. software artifacts that directly involve gram-
mar knowledge.” Their definition classified compilers,
program analysis tools, program transformation tools,
application generators, weaving tools, CASE tools as
grammarware. Their definition, is in some, sense
more restricted than ours and includes just GBSs from
those areas of software engineering where grammars
appear in an explicit form. Sentences produced by
this grammar are always computer programs. Our
definition is much broader since we are interested in
GBSs for application areas that are even outside com-
puter science (e.g. organizational science). On the
other hand, in our definition grammars and sentences
produced by this grammar can be expressed implic-
itly (e.g. in GOOD [18] a sentence is a sequence of
method calls during the execution of an application
program).

4 Grammar-Based Systems:
Examples

GBSs can be found in different application areas such
as: software engineering, evolutionary computations,
information theory, neural networks, data mining,
syntactical pattern recognition, and data representa-
tion. In this section some of our own applications, as
well as other representative applications of grammars,
are presented and their benefits are stressed in more
detail. Examples clearly show how grammars and
sentences generated by a grammar can be used to de-
scribe various structured artifacts. Moreover, various
possibilities exist for using GBSs. Examples include
descriptions of GBSs where sentences generated by
grammar appear in explicit or implicit manner.

4.1 Software Engineering

4.1.1 Grammatical Approach to Problem
Solving

In [9, 29] the grammatical approach to problem solv-
ing (GAPS) is presented. It is based on the following
steps:

– describe the syntax of the problem (the structure
of the classes that characterize problem domain),
deriving the context-free grammar from the con-
ceptual class diagram,

– describe the semantics of the problem (the mean-
ing of the classes in the problem domain), asso-

GRAMMAR-BASED SYSTEMS: DEFINITION ... Informatica 25 page xxx–yyy 5

ciating attributes to every concept derived from
the use cases and operational diagrams,

– generate a rapid prototype of the system, using
a compiler generator and the attribute grammar
obtained in the two previous steps.

Only the first step is explained for the purpose of this
paper. A detailed explanation of the above steps can
be found in [9].

The role of non-terminal symbols in a context-free
grammar is two fold. First, at a higher abstraction
level non-terminal symbols are used to describe dif-
ferent concepts in the programming language (e.g. an
expression or a declaration in a general-purpose pro-
gramming language). On the other hand, at a more
concrete level, non-terminal and terminal symbols are
used to describe the structure of a concept (e.g. an
expression consists on two operands separated by an
operator symbol, or a variable declaration consists of
a variable type and a variable name). Therefore, both
the concepts and the relations between them, belong-
ing to the specific problem domain, are captured in
a context-free grammar. But, this is also true for the
conceptual class diagram [31] which describes con-
cepts in a problem domain and their relations. It is
clear that both formalisms can be used for the same
purpose and that some rough transformation from a
conceptual class diagram to a context-free grammar
and vice versa should exist. The transformation from
a conceptual class diagram to a context-free grammar
is depicted in Tables 1 and 2.

Classes can collaborate with more than just one
class. For example, class A associates with classes
B, C and D. In our approach, this collaboration is de-
scribed with context-free grammar production A → B
C D. The sequence of non-terminal symbols on the
right side of the production should be in natural order
and depends on the collaboration of entities in a given
problem domain.

As an example let’s transform the conceptual class
diagram in Fig. 4 to a context-free grammar. From
this conceptual class diagram the following context-
free grammar is obtained using transformation Tables
1 and 2.

VIDEO_STORE ::= MOVIES CUSTOMERS
MOVIES ::= MOVIES MOVIE | MOVIE
MOVIE ::= title PRICE
CUSTOMERS ::= CUSTOMERS CUSTOMER | epsilon
CUSTOMER ::= name RENTALS
RENTALS ::= RENTALS RENTAL | RENTAL
RENTAL ::= daysRented MOVIE
PRICE ::= new | child | reg

Association Class diagram element Grammar

 attribute

Class
 Class (non-terminal)

attribute (terminal)
Class

Class A
 Class B
Association A ::= B

Class A
 Class B
Navigability A ::= B

Class A

Class B
 Class C

Generalization A ::= B | C

Class A
 Class B

A ::= B

(¬∃X ∈ N, X ⇒ B)
∧X 6= A

Aggregation

Class A
 Class B
Composition A ::= B

Table 1: From a conceptual class diagram to a context-
free grammar

Figure 4: Conceptual Class Diagram for Video Store

The next step of the grammatical approach is to
write a detailed semantic description of the problem
domain deriving the attribute grammar. The prototype
of the system is obtained after a straightforward trans-
formation of attribute grammar specification to LISA
specification. The following program describes a par-
ticular use of the system.

//entering movies into database
lion_king child
gone_with_the_wind reg
the_ring new
//customers and their rentals description
Andy 3 lion_king child

2 gone_with_the_wind reg
Mary 3 the_ring new

What are the advantages of using grammars in this
case? By transforming the conceptual class diagram

6 Informatica 25 page xxx–yyy M. Mernik

Cardinality Class diagram element Grammar

Multiplicity

exactly one

Class A
 Class B

1
 A ::= B

Optional

multiplicity

Class A
 Class B

0..1
 A ::= B | ε

Multiplicity

[0..m]

Class A
 Class B

0..*

A ::= MoreB

MoreB ::= MoreB B| ε

Multiplicity

many

Class A
 Class B

1..*

A ::= MoreB

MoreB ::= MoreB B | B

Table 2: Association multiplicity

to a context-free grammar a domain-specific language
is obtained that describes the user interaction with the
system. In this manner a rapid prototype is obtained
and can be used whenever the user’s requirements are
not well defined. Another benefit is that a conforma-
bility check of the conceptual class diagram is also
possible.

4.1.2 Adaptive programming

Adaptive programming (AP) [19] is a subclass of
aspect-oriented programming [14]. The stress is put
on code tangling – for example, the required function-
ality is not always trivial to implement in existing ap-
plications when crosscutting concerns exist. Adaptive
programming offers a solution in the form of traversal
specifications, in order to provide that additional func-
tionality without modification of the existing code.
These specify connections between objects as loosely
as possible (called “structure-shy” programming).

The structure of the application class dictionary can
be seen as a context-free grammar (Figure 5) from
which an object graph may be derived, express all pos-
sible navigations through the code.

Figure 5: Class dictionary (CFG) and its object graph

The idea of adaptive programming is very gen-
eral. The Demeter [19] language has been integrated
with various object-oriented programming languages

(the Demeter tool was successfully applied to Java).
Demeter allows programmers to write the following
specifications (see Fig. 5):

starting from object A, go to object C
via all objects with an attribute named "x".

to add arbitrary execution paths.
The problem of adaptive programming can also be

solved using other techniques (visitor pattern). In
comparison, the presented solution avoids code tan-
gling, increases the programmer’s productivity and
consequently, it reduces error prone coding.

4.1.3 Other Approaches

In Grammar-Oriented Object Design (GOOD) [18]
a context-free grammar is used to represent a set of all
possible interactions (collaborations) for objects in a
particular cluster, in order to fulfill the domain goals.
When a grammar is interpreted at run-time, a clus-
ter will dynamically bind the collaborators to the col-
laborations. Hence, GOOD facilitates the creation of
dynamically configurable components, which encap-
sulates volatile business rules. The rationale behind
this is that creating and representing a model of so-
lutions is more extensible, simpler and more scalable
than just creating the single solution. Possible solu-
tions are modeled with a meta-model and represented
as a context-free grammar. If this grammar is avail-
able to the “users” at run-time, then they are able to
customize the system’s behavior. An example of a
production rule in [18] using EBNF is:

ShoppingCartOperation ::=
{AddItem | DeleteItem |
SaveShoppingCart} CheckOut

Since the interaction of objects is obtained from use
case diagrams that describe the functionality of a sys-
tem, the author [18] called such a grammar a use case
grammar. The author [18] in his work distinguishes
two types of meta-models: the static (class diagram)
and the dynamic (valid object interaction sequences)
meta-model. The latter is described with a context-
free grammar.

In [4] the correspondence between the feature dia-
gram and the context-free grammar has been identi-
fied, where atomic features map to terminal symbols,
composite features map to nonterminal symbols, and
feature operators map to syntax operators. In domain
analysis, feature diagrams are used to describe com-
monalities, variabilities and dependencies between

GRAMMAR-BASED SYSTEMS: DEFINITION ... Informatica 25 page xxx–yyy 7

variable properties in the application domain. By con-
verting a feature diagram to a context-free grammar
(FD2CFG), syntax tools can be applied to feature de-
scriptions for free (e.g. validity of configuration cor-
responds to successful parsing).

The Free University of Amsterdam recently
launched a project on Grammar Engineering - soft-
ware engineering for grammars [16]. Topics included
are grammar recovery, grammar implementation, and
the application of grammars in software renovation.
The more technical issues include concepts and tech-
nology for grammar-based software renovation fac-
tories, grammar adaptation, grammar documentation,
grammar testing and many others.

4.2 Evolutionary Computations

Genetic programming (GP) is an evolutionary ap-
proach in which an evolving population consists of
computer programs [17]. Each member of the pop-
ulation, a chromosome, represents a possible solution
in the search space of all possible programs written
in a pre-selected programming language (e.g. Lisp).
Since the search space is too large it is restricted by
the user-defined function set F and the terminal set T.
The set T contains variables and constants and the set
F functions that are a priori believed to be useful for
the problem domain. For example, in the Santa Fe ant
trail problem [17] from sets T = {(MOVE), (LEFT),
(RIGHT)} and F = {IF-FOOD-AHEAD, PROGN2,
PROGN3} the following solution (lisp program) can
be evolved:

(IF-FOOD-AHEAD (MOVE)(PROGN3 (LEFT)(PROGN2
(IF-FOOD-AHEAD (MOVE)(RIGHT))(PROGN2 (RIGHT)
(PROGN2 (LEFT)(RIGHT))))(PROGN2
(IF-FOOD-AHEAD (MOVE)(LEFT))(MOVE))))

In [27] the concept of grammatical evolution (GE)
has been introduced. GE is an evolutionary algorithm
that can evolve programs in an arbitrary language
[32]. The input to the GE is a BNF definition for the
genotype-to-phenotype mapping process. For exam-
ple, the following grammar can be used as input to
Santa Fe ant trail problem:

0. CODE ::= LINE
1. CODE ::= CODE LINE
0. LINE ::= EXPR
0. EXPR ::= IF-STAT
1. EXPR ::= OP
0. IF-STAT ::= if (food-ahead()) EXPR else EXPR
0. OP ::= left()
1. OP ::= right()
2. OP ::= move()

The population consists of variable-length binary
strings that determine which production rules from
the grammar definition are used in a genotype-
to-phenotype mapping process. The appropriate
production rule is selected by using the following
mapping function:

rule = (Integer value stored in a chromosome)MOD
(numberof production rules for the left most nonterminal)

For example, the following chromosome (203 245
110 55 29 200 241 11 151 162 227 74) encodes the
following left-most derivation

CODE ⇒203MOD2 CODE LINE ⇒245MOD2

CODE LINE LINE ⇒110MOD2 LINE LINE LINE ⇒

EXPR LINE LINE ⇒55MOD2 OP LINE LINE ⇒29MOD3

move() LINE LINE ⇒ . . . ⇒

move() if (food-ahead()) move() else left() move()

What are the benefits of using grammars in GE?
Obviously, GE is much more flexible than GP because
it can produce a code in any language. Furthermore,
in the GE closure problem, the generation and preser-
vation of valid programs, does not exist. Other bene-
fits come with the separation of the search and solu-
tion spaces because grammar enables the genotype-
to-phenotype mapping process. This allows an un-
constrained evolutionary search to be performed on
simple variable-length binary strings. Moreover, new
advances in genetic algorithms can be easily incorpo-
rated into GE or any new search algorithm operating
on binary strings can be used.

4.3 Information Theory

The ability of a grammar to represent an infinite
language with a finite set of production rules also
makes grammars useful in compression algorithms.
Grammar-based encoding (GBEnc) methods, such as
derivation encoding [34], which represents a program
by a sequence of grammar rules to derive it from
the start symbol, have been proven useful for com-
pressing programs. For example, the program us-
ing the grammar from subsection 4.2 can be encoded
as 1 1 0 1 2 0 1 2 1 0 1 2 by derivation encoding. The
derivation tree is shown in Figure 6. It was shown in
[3] that programs can be compressed to almost 10% of
their original size. Another grammar-based compres-
sion algorithm is SEQUITUR [26] which constructs
a context-free grammar for its input. The result-
ing grammar is capable of generating just one string,
namely the original sequence. For example, the se-

8 Informatica 25 page xxx–yyy M. Mernik

quence abcdbcabcd is represented by the following
grammar

S ::= CAC
A ::= bc
C ::= aAd

CODE1

CODE1 LINE

EXPR1

OP2

move()

CODE0 LINE

LINE

EXPR1

OP2

move()

EXPR0

IF-STAT

if(food-ahead()) else EXPR
1

EXPR
1

OP2

move()

OP0

left()

Figure 6: Derivation tree

The algorithm identifies the hierarchical structure
(Figure 7) in sequences of symbols and uses that in-
formation for compression. By detection and elimina-
tion of redundancy it outperforms the standard com-
pression techniques on very large or highly structured
sequences. SEQUITUR preforms well on many prac-
tical problems such as DNA sequences and genealog-
ical databases. It is also possible to use the system
as a basis for generalization in grammatical inference
[20]. Grammar-based techniques (e.g. [5]) have also
been used in program compaction, which is a com-
pression technique with an additional constraint - the
compressed program has to be executable.

abcdbcabcd

Figure 7: Hierarchical structure for grammar

4.4 Neural Networks

The selection of a suitable neural network topology is
an important step in finding a good solution for the
problem under investigation. Therefore, the search
for suitable neural network architecture is a common
task. Here we can use direct encoding, or the so-
called grammatical encoding [15], where the architec-

ture of the neural network is generated from its gram-
mar description. The advantages of grammatical en-
coding are better scalability and the possibility of find-
ing building blocks. This work is further elaborated
in [7] where cellular encoding using graph grammars
was proposed. The architecture, the weights, and the
kind of sigmoids used by each neuron are encoded.
Cellular encoding can be seen as a machine language
for neural networks and can be used as a tool for de-
signing neural networks.

In [11] an attribute grammar is used to specify
classes of neural network structures with explicit
representation of their functional organization. The
approach is termed Network Generating Attribute
Grammar Encoding (NGAGE). The specification of
a neural network structure is extracted from the at-
tributes of the root symbol and interpreted to produce
a functional neural network. This neural network can
be randomly initialized and trained afterwards. The
NGAGE is specially usable in genetic programming,
in the form of neural network representation, where
each production rule (derivation subtree) corresponds
to a meaningful structural component of the neural
network. These characteristics of NGAGE can be
used for genetic operators implementation, crossover
and mutation. The other benefit of NGAGE is iden-
tical representation of different neural networks. The
similarities and differences between them can be em-
phasized within a common framework.

4.5 Data Representation

The use of mark-up languages on the Web is indis-
pensable. The hypertext mark-up language (HTML)
is the best known example. In the last few years the
eXtensible Markup Language (XML) has been intro-
duced, as a mark-up language for uniform representa-
tion of data. It was originally meant as a format for
transferring data over the Internet. Separation of data
from its representation increased the standard applica-
bility to other computing areas.

Although our perception is that compiler notation
and mark-up language have little in common, the real-
ity is quite different. The syntax of XML documents
is conceptually similar to the meta-language (defined
by BNF) of compilers. The analogy between compil-
ers and mark-ups is shown in table 3.

The syntax of an XML document is defined by
Document Type Definition (DTD). DTD defines doc-
ument structure, elements, their attributes and types
(see example below). It uses the syntax of EBNF (’*’,

GRAMMAR-BASED SYSTEMS: DEFINITION ... Informatica 25 page xxx–yyy 9

Notation Compiler Mark-up

meta-notation LISA, ASF+SDF XML

syntax context-free grammar DTD, XML Schema

Table 3: Analogy between compiler and mark-up

’+’, ’?’, ’—’) to describe the syntactical structure of
XML documents. Therefore, a DTD can be seen as
an extended BNF (EBNF).

<!ELEMENT paper_collection (paper)*>
<!ELEMENT paper (title, author+, year,

published?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT published EMPTY>

An example of an XML document, for the given
DTD above, is written below. The XML elements
from the DTD can be seen as non-terminal symbols in
EBNF. Empty elements are without contents (element
’<published>’) - their meaning is in the position and
attributes. Non-empty elements can contain other el-
ements and textual content (element ’<title>’). Tex-
tual content can be parallelized with terminal symbols
in EBNF.

<paper_collection>
<paper>

<title>Grammatical Approach to
Problem Solving</title>

<author>Pedro Henriques</author>
...
<year>2003</year>
<published/>

</paper>
...

</paper_collection>

Another similarity of mark-up languages and com-
pilers is the building of a parser. The XML parser
generator analyzes the source DTD and automatically
generates a parser for XML documents which comply
with the source DTD, which is also the case in com-
piler building tools (e.g. LISA [21]).

The disadvantage of XML against context-free
grammar is in its lexical part. The textual content of
XML elements can be either a generic string (denoted
with ’#PCDATA’ in DTD) or enumeration of allowed
values. This limitation is reduced with XML Schema,
which offers richer notation for describing the textual
content of the XML elements.

4.6 Other Applications

Due to page limitation, all GBSs can not be described
in detail. The aim of the paper is to show a plethora of

different research areas where grammars are proven
to be useful. A short description of such systems in
other areas follows.

A number of researchers have proposed ways to use
grammar-based notation for expressing knowledge
in the speech recognition process. In most cases
CFG was used to generate or filter word transitions
[25]. To improve semantic sentence recognition,
the probabilistic LR parser has been used as well as
stohastic CFG (SCFG) [13].

Data mining is an automated process of discover-
ing knowledge from databases. Various data mining
methods exist, among them are inductive logic
programming and genetic programming. In [36] both
approaches were integrated using logic grammars
aiming to exploit the benefits of both approaches.
Special rule learning has been developed where a
grammar represents rules. Moreover, the grammar
can be modified in order to learn rules.

Formal language theory has been successfully
applied to pattern recognition problems [6] in which
the patterns contain most of their information in
their structure rather than in their numeric values. In
order to make grammars more suitable for pattern
recognition the concept of context-free grammars
have been extended to stochastic grammars [35] and
fuzzy grammars [12].

The design of organizational and work processes is
well defined. However, there is a lack of formal ap-
proaches in discovering new organizational processes.
By using grammars, one may systematically search
for solutions in process redesign, as well as for new
solutions in process organization. Therefore, the pro-
cess grammar [28] offers complementary solutions to
the existing ones.

4.7 Concluding remarks on GBSs examples

It is important that GBSs are not studied in an iso-
lated manner. In order to be able to make a general
comparison of different GBSs and to classify them,
we need to find their common and variable properties.
The main reason for classification of GBSs is to iden-
tify differences among GBSs and to identify the rep-
resentative examples of it. These classifications can
be used by future developers to identify whether their
system is solvable using a grammar-based approach.

10 Informatica 25 page xxx–yyy M. Mernik

Q1 Q2 Q3 Q4 Q5

GAPS conceptual class dia-
gram (CCD)

user interaction with the system yes G → P to obtain rapid prototype of
the system

GOOD interaction between
objects

sequence of method calls exe-
cuted by an application program

no G → P to extend generality of the
system

FD2CFG feature diagram (FD) an instance of a system de-
scribed by FD

yes G → P to check if an instance is a
valid system by FD

GE grammar of the target
language used in GP

program written in a target lan-
guage

no G → P to extend generality of the
system

GBEnc grammar of the target
language

program written in a target lan-
guage to be compressed

yes P → G for compression

SEQUITUR grammar of the target
sequence of symbols

sequence of symbols yes P → G for compression

AP connections between
objects

structure of application class
dictionary

no G → P to extend functionality of
applications

NGAGE neural network (NN)
structure

a fully functional NN no G → P to simplify NN representa-
tion for GP

Table 4: A comparison among different GBSs

Developers can further use the classification to build
their own system faster and more efficiently.

The following questions help to identify different
dimensions of GBSs:

Q1 What is described with grammar G?

Q2 What is described with program P generated by
language L(G)?

Q3 Is the representation of program P generated by
language L(G) explicit?

Q4 Is the control flow from G → P or P → G? (Is the
input to GBS defined by grammar or program?)

Q5 Why was GBS invented?

In table 4, the answers to some examples are given.

It is important for future application developers to
notice that with a grammar-based approach their sys-
tems can benefit in several directions:

– system can become more general (e.g. GOOD
[18]),

– system can be easier to develop (e.g. [4]),

– system’s underlying representation can be more
efficient (e.g. [11]).

This paper describes some of the representative ex-
amples of the above mentioned benefits. The main
contribution of this paper therefore is:

– definition of grammar-based systems,

– identifying problems that can be solved with
grammar-based approach,

– identifying benefits of grammar-based system,
and

– popularizing grammar-based systems.

5 Conclusions and future work

Formal language theory has been applied to many
practical applications. In addition to language de-
scription and implementation (original applications
of grammars), grammars have been proven useful in
many other areas. However, there is no particular
research of systems (applications) in which grammar
plays a vital role. In this paper such systems are
introduced and defined as GBSs. The paper contains
representative examples of GBSs in various areas
of computer science, such as: software engineering,
evolutionary computations, information theory,
neural networks, and data representation.

Although the formal theory of grammar is well de-
fined, there are still many research possibilities in the
field of GBSs. We have noticed several unexplored
areas in GBSs such as:

– Classification of GBSs. There is no classification
of GBSs. We believe that this can be attained by
questions similar to the ones proposed in section
4.7. However, further case studies of GBSs are
required.

GRAMMAR-BASED SYSTEMS: DEFINITION ... Informatica 25 page xxx–yyy 11

– When to develop GBS? No guidelines exist to
show whether a particular problem should be
solved with grammar knowledge.

– GBSs patterns. The remaining question is how
to develop GBSs. Identifying patterns would im-
prove and speed up the interest in developing
GBSs.

In the future we plan to extend our research on
GBSs. Our research will be focused on solving those
problems presented in this paper and on finding other
areas or problems that can be efficiently solved with
the grammar-based approach. We want to show that
problem definition using the formal approach (gram-
mar) can increase the efficiency, reliability and gener-
ality of the solution.

6 Acknowledgements

We would like to thank Jeff Gray and anonymous ref-
erees for useful comments.

References

[1] A. Salomaa. Theory of Automata. Pergamon
Press, 1969.

[2] A. V. Aho and J. D. Ullman. The theory of lan-
guages. Mathematical Systems Theory, 2(2):97–
125, 1968.

[3] R. Cameron. Source encoding using syntactic
information models. IEEE Transactions on In-
formation Theory, 34(4):843–850, 1988.

[4] M. de Jonge and J. Visser. Grammars as feature
diagrams. draft, Apr. 2002.

[5] W. S. Evans and C. W. Fraser. Grammar-based
compression of interpreted code. ACM Commu-
nications, 46(8):61–66, 2003.

[6] K. Fu. Syntactic Pattern Recognition and Appli-
cations. Prentice-Hall, 1982.

[7] F. Gruau. Neural Network Synthesis using Cel-
lular Encoding and the Genetic Algorithm. PhD
thesis, Laboratoire de l’Informatique du Par-
allilisme, Ecole Normale Supirieure de Lyon,
France, 1994.

[8] J. Heering and P. Klint. Semantics of pro-
gramming languages: A tool-oriented approach.
ACM Sigplan Notices, 35(3):39–48, Mar. 2000.

[9] P. Henriques, T. Kosar, M. Mernik, M. J. V.
Pereira, and V. Žumer. Grammatical approach
to problem solving. In ITI 2003 : Proceedings
of the 25th International Conference on Infor-
mation Technology Interfaces, pages 645–650.
SRCE University Computing Centre, University
of Zagreb, 2003.

[10] P. Henriques, M. J. V. Pereira, M. Mernik,
M. Lenič, E. Avdičaušević, and V. Žumer. Au-
tomatic generation of language-based tools. In
M. van den Brand and R. Laemmel, editors,
Electronic Notes in Theoretical Computer Sci-
ence, volume 65. Elsevier Science Publishers,
2002.

[11] T. Hussain and R. Browse. Attribute gram-
mars for genetic representations of neural net-
works and syntactic constraints of genetic pro-
gramming. In AIVIGI’98: Workshop on Evolu-
tionary Computation, 1998.

[12] Y. Inagaki and T. Fukumura. On the description
of fuzzy meaning of context-free languages. In
L. Zadeh, K. Fu, K. Tanaka, and M. Shimura, ed-
itors, Fuzzy Sets and Their Applications to Cog-
nitive and Decission Processes, pages 301–328.
Academic Press, 1975.

[13] D. Jurafsky, C. Wooters, J. Segal, A. Stolcke,
E. Fosler, G. Tajchman, and N. Morgan. Using
a stochastic context-free grammar as a language
model for speech recognition. In Proc. ICASSP
’95, pages 189–192, Detroit, MI, 1995.

[14] G. Kiczales, J. Lamping, A. Menhdhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-
win. Aspect-oriented programming. In Proceed-
ings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, 1997.

[15] H. Kitano. Designing neural networks by ge-
netic algorithms using graph generation systems.
Complex Systems, (4):461–476, 1990.

[16] P. Klint, R. Lämmel, and C. Verhoef. Towards an
engineering discipline for grammarware. Draft,
Aug. 2003.

12 Informatica 25 page xxx–yyy M. Mernik

[17] J. R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Natural Selection.
MIT Press, 1992.

[18] K. Levi and A. Arsanjani. A goal-driven ap-
proach to enterprise component identification
and specification. Communications of the ACM,
45(10):45–52, October 2002.

[19] K. J. Lieberherr. Adaptive Object-Oriented Soft-
ware: The Demeter Method with Propagation
Patterns. PWS Publishing Company, 1996.

[20] M. Mernik, M. Črepinšek, G. Gerlič, V. Žumer,
B. R. Bryant, and A. Sprague. Learning context-
free grammars using an evolutionary approach.
Technical report, University of Maribor and The
University of Alabama at Birmingham, 2003.

[21] M. Mernik, N. Korbar, and V. Žumer. LISA:
A tool for automatic language implementa-
tion. ACM SIGPLAN Notices, 30(4):71–79, Apr.
1995.

[22] M. Mernik, M. Lenič, E. Avdičaušević, and
V. Žumer. Multiple Attribute Grammar Inheri-
tance. Informatica, 24(3):319–328, Sept. 2000.

[23] M. Mernik, M. Lenič, E. Avdičaušević, and
V. Žumer. LISA: An Interactive Environment
for Programming Language Development. In
N. Horspool, editor, 11th International Confer-
ence on Compiler Construction, volume 2304,
pages 1–4. Lecture Notes in Computer Science,
Springer-Verlag, 2002.

[24] M. Mernik and V. Žumer. An educational tool
for teaching compiler construction. IEEE Trans-
actions on Education, 46(1):61–68, February
2003.

[25] R. Moore, F. Pereira, and H. Murveit. In-
tegrating speech and natural-language process-
ing. In Proc. of the Speech and Natural Lan-
guage Workshop, pages 243–247, Philadelphia,
PA, 1989.

[26] C. G. Nevill-Manning and I. H. Witten. Com-
pression and explanation using hierarchical
grammars. The Computer Journal, 40:103–116,
1997.

[27] M. O’Neill and C. Ryan. Grammatical evolu-
tion. IEEE Transaction on Evolutionary Com-
putations, 5(4):349–358, August 2001.

[28] B. T. Pentland. Grammatical models of or-
ganizational processes. Organization Science,
6(5):541–56, 1995.

[29] M. J. V. Pereira, M. Mernik, T. Kosar, P. Hen-
riques, and V. Žumer. Object-oriented attribute
grammar based grammatical approach to prob-
lem specification. Technical report, Univer-
sity of Braga, Department of Computer Science,
2002.

[30] E. T. Ray. Learning XML: Creating Self-
Describing Data. O’Reilly & Associates, Inc.,
2001.

[31] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling
and Design. Prentice-Hall, 1991.

[32] C. Ryan, J. J. Collins, and M. O Neill. Gram-
matical evolution: Evolving programs for an ar-
bitrary language. In Proceedings of the First Eu-
ropean Workshop on Genetic Programming, vol-
ume 1391 of LNCS, pages 83–95, Paris, 14-15
Apr. 1998.

[33] L. C. Schmidt and J. Cagan. Ggreada: A graph
grammar-based machine design algorithm. Re-
search in Engineering Design, 9:195–213, 1997.

[34] R. G. Stone. On the choice of grammar and
parser for the compact analytical encoding of
programs. The Computer Journal, 29(5):307–
314, 1986.

[35] P. Swain and K. Fu. Stochastic programmed
grammars for syntactic pattern recognition. Pat-
tern Recognition, (4):83–100, 1972.

[36] M. L. Wong and K. S. Leung. Data mining using
grammar based genetic programming and appli-
cations. Kluwer Academic Publishers, 2000.

