
NAND Flash Interface Specification

Bruno Simões Dias (35194)
<brsimoes@gmail.com>

Miguel Alexandre Ferreira (33194)
<a33194@alunos.uminho.pt>

Informatics and Systems Engineering
Dep. Informatics, University of Minho∗

July 2007

Abstract. The present project was born to answer the ”mini challenge” proposed by
Rajeev Joshi and Gerard J. Holzmann, for building a filesystem that can be automat-
ically verified. We believe that, in order to reach a reliablesolution, one first needs
to abstract the hardware layer where the filesystem will reside in and then gradually
introduce hardware details in the model. So, the purpose of this paper is to present a
specification of a NAND type flash memory device.

∗Campus de Gualtar, 4700 Braga, Portugal.

Preamble. Sections 2 and 3 of this report where verbatim extracted fromthe Open
NAND Flash Interface Specification [ONFIS06]. Along with the text the reader will
find annotations in gray boxes containingVDM++ code and yellow boxes containing
informal descriptions and notes on the code.

Contents

1 Introduction 4

2 Memory Organization 5

2.1 Addressing . 7

2.2 Factory Defect Mapping . 9

2.2.1 Device Requirements . 10

2.2.2 Host Requirements . 10

2.3 Discovery and Initialization .. 12

2.3.1 CE# Discovery . 12

2.3.2 Target Initialization . 13

3 Command Definition 14

3.1 Command Set . 14

3.1.1 Read Definition . 16

3.1.2 Block Erase Definition . 20

3.1.3 Page Program Definition . 23

4 Behavior Simulation 27

4.1 Buffer Model . 27

4.2 Simulation Environment . 29

4.2.1 Type Definitions . 29

4.2.2 Host Device Communication 29

4.2.3 Functionality Definition . 30

4.2.4 Get Arguments Operations 32

5 Final considerations 34

Function/Method Cross-Reference Index

Bit, 7
Block, 6
BlockErase,20
Buffer, 27
BufferModDef, 27
BufferType,27
Byte,7, 27

ceDiscovery,12
checkBlock,12
checkColAddress,19
checkInterLeavedOp,19
checkPage,12
checkRowAddress,19
Clear,27
ColAddress, 7
ColAddressType,7
Column,7
CreateBadBlocksTable,11, 12

Data,27
Device, 10–13, 16, 19, 20, 23
DeviceAlg, 5
DeviceInit,13
DeviceType,5
Drop,28
DropN,29

ElementAt,28
ErrorMessage,29

Flash,6

Get,28
GetAll, 33
GetCode,32
GetColAddr,32
GetN,28
GetRowAddr,32

Input,29
is00,12
isDefective,10

LUN, 6
Lun, 6, 12, 16, 20, 24

Output,29

Page,7
PageProgram,23, 24
PageRegister,6
Put,28
PutN,28

Read,16
readPartialPage,19
Result,29
RowAddress, 8
RowAddressType,8, 9

Signal,5
Simulate,30
SimulateBlockErase,31
SimulateError,32
SimulatePageProgram,31
SimulateRead,30
Size,27

Target,5

Word,7

4

Section 1. Introduction 5

1 Introduction

After some research on flash types, we decided to work on NAND type flash, because
they present a better life span and major similarities with common block devices (e.g.
Hard Drives) than the NOR type flash memories. The developed model is based on the
Open NAND Flash Interface Specification revision 1.0[ONFIS06] by theOpen NAND
Flash Workgroup(ONFI) which aims to define a standardized NAND Flash device
interface.

The goal of the project would be to specify all aspects of the device behavior and
host device communications, but that would require more time than some hours per
week during a college semester. So, the focus here is on developing a working model
that would offer the basic functionalities for deploying a file system. To achieve this,
the model includes memory organization, addressing, initialization routines and some
commands of such a device.

Sections 2 and 3 where extracted from [ONFIS06], and some keyaspects where
coloured. It will be easy to notice thatred corresponds to key nouns,greenfor key
verbs andorangefor key properties. There will be also,grayboxes with theVDM++
code corresponding to the colored text andyellow boxes adding comments and infor-
mal descriptions of the code.

In Section 4 we define a first approach to model the communication between the
host and the device and to a simulation environment.

Rather than adding a ”never ending” appendix to the end of this report with all the
classes of the model, the code will be supplied has a stand alone reference.

6 NAND Flash Interface Specification

2 Memory Organization

Figure 1 describes the basic memory and device organization. In some implementa-
tions, additional page registers may be present within eachlogical unit.

Figure 1: Target memory organization

A devicecontainsone or moretargets. A target is controlled by oneCE# signal.
A target is organized into one or morelogical units (LUNs).

class DeviceAlg

DeviceType = Signal
m

→ Target

inv D △ dom D 6= {};

Target : : LUNs : Lun+

DBT : N1

m

→ (N1-set)
parameters : ParameterPage

inv t △ ∀ i ∈ inds t .LUNs ·
∀ j ∈ inds t .LUNs ·

t .LUNs (i).flashSameSize

(
t .LUNs (i).GetFlash (),
t .LUNs (j).GetFlash ());

Signal = N1

inv s △ s ≤ 4;
...
end DeviceAlg

Section 2. Memory Organization 7

A logical unit (LUN) is the minimum unit that can independentlyexecutecom-
mandsandreport status. For example, it is permissible to start a Page Program oper-
ation on LUN 0 and then prior to the operations completion to start a Read command
on LUN 1. See multiple LUN operation restrictions in section3.1.3. ALUN contains
at least onepage registerand aFlash array. Thenumber of page registersis de-
pendent on the number ofinterleaved operationssupported for that LUN. TheFlash
array containsa number ofblocks.

class Lun

LUN : : pr : PageRegister+

flash : Flash

inv l △ ∀ i ∈ inds l .pr ·
∀ j ∈ inds l .pr ·

pageSameSize (l .pr (i), l .pr (j));

PageRegister = Page;

Flash = Block+

inv f △ ∀ i ∈ inds f ·
∀ j ∈ inds f ·

blockSameSize (f (i), f (j));

A block is the smallest erasable unit of data within the Flash array of a LUN .
There is no restriction on the number of blocks within the LUN. A block containsa
number ofpages.

Block = Page+

inv b △ isMultiple (len b, 32) ∧
∀ i ∈ inds b ·

∀ j ∈ inds b ·
pageSameSize (b (i), b (j));

Although there is no reference in the text to the homogeneitythe Lun’s
components that is enforced by Figure 1. So there are invariants stating
that all pages in a block have the same size, all blocks in a flash have the
same size and all page registers in a Lun have the same size.

8 NAND Flash Interface Specification

A pageis the smallest addressable unit for read and program operations. For
targets that support partial page programming with constraints, the smallest address-
able unit for program operations is a partial page. Apageconsistsof a number of
bytes or words. The number of user data bytes per page, not including the spare
data area, shall be a power of two. The number of pages per block shall be a
multiple of 32.

Page : : data : Column+

defect : Column+

inv p △ isP (len p.data, 2);

EachLUN shall have at least one page register. A page registeris used for the
temporary storage of databefore it ismoved to a pagewithin the Flash array or
after it ismoved from apagewithin theFlash array.

Thebyte or word location within thepage registeris referred to as thecolumn.

Column = Byte;

Byte = Bit+

inv b △ len b = 8;

Word = Byte+

inv w △ len w = 2;

Bit = B

...
end Lun

2.1 Addressing

There are twoaddresstypesused: the column addressand therow address. The
column addressis used to accessbytes or words within a page, i.e. the column
address is the byte/word offset into the page. Therow address is used to address
pages, blocks, andLUNs.

class ColAddress

private ColAddressType = N1

instance variables
private address : ColAddressType;

...
end ColAddress

Section 2. Memory Organization 9

When both the column and row addresses are required to be issued, the column
address is always issued first in one or more 8-bit address cycles. The row addresses
follow in one or more 8-bit address cycles. There are some functions that may require
only row addresses, like Block Erase. In this case the columnaddresses are not issued.

For both column and row addresses the first address cycle always contains the least
significant address bits and the last address cycle always contains the most significant
address bits. If there are bits in the most significant cyclesof the column and row
addresses that are not used then they are required to be cleared to zero.

The row address structure is shown in Figure 2 with theleast significant row
address bitto the right and themost significantrow address bitto the left.

Figure 2: Row Address Layout

The number of blocks and number of pages per block is not required to be a power
of two. In the case where one of these values is not a power of two, thecorrespond-
ing addressshall berounded to an integral number of bitssuch that it addresses a
range up to the subsequent power of two value. Thehost shall not accessupper
addressesin that range that are shown as not supported.

class RowAddress

private
RowAddressType : : Laddr : Bit∗

Baddr : Bit∗

Paddr : Bit∗

n-blocks : N1

n-pages : N1

inv rw △

2 ↑ (len rw .Baddr) ≥ rw .n-blocks ∧
2 ↑ (len rw .Paddr) ≥ rw .n-pages ∧
bin-to-nat (rw .Baddr) ≤ rw .n-blocks ∧
bin-to-nat (rw .Paddr) ≤ rw .n-pages

...
end RowAddress

For example, if the number of pages per block is 96, then the page address shall
be rounded to 7 bits such that it can address pages in the rangeof 0 to 127. In this
case, the host shall not access pages in the range from 96 to 127 as these pages are not
supported.

The first 3 examples are valid values of RowAddressType.

10 NAND Flash Interface Specification

values
rw1 : RowAddressType = mk-RowAddressType

(
[false, false],
[false, false, false, false, false, false, false, false],
[false, false, false, false, false, false, false],
256, 96);

rw2 : RowAddressType = mk-RowAddressType

(
[false, false],
[false, false, false, false, false, false, false, false],
[false, false, true, false, false, true, false],
256, 96);

rw3 : RowAddressType = mk-RowAddressType

(
[false, false],
[false, false, false, false, false, false, false, false],
[true, true, false, false, false, false, false],
256, 96);

This last example is an invalid value of RowAddressType, where the host
tries to address a page that is out of the established range.

rw4 : RowAddressType = mk-RowAddressType

(
[false, false],
[false, false, false, false, false, false, false, false],
[true, true, false, false, false, false, true],
256, 96)

The page address always uses the least significant row address bits. The block
address uses the middle row address bits and the LUN address uses the most significant
row address bit(s).

2.2 Factory Defect Mapping

The Flash array is not presumed to be pristine, and a number ofdefects may be present
that renders some blocks unusable. Block granularity is used for mapping factory
defects since those defects may compromise the block erase capability.

Section 2. Memory Organization 11

2.2.1 Device Requirements

If a block is defective and 8-bit data access is used, themanufacturer shall mark
the blockas defectiveby setting at leastone byte in the defect area, as shown in
Figure 3,of the first or last page of the defective blockto a value of 00h. If a block
is defective and 16-bit data access is used, the manufacturer shall mark the block as
defective by setting at least one word in the defect area of the first or last page of the
defective block to a value of 0000h.

Figure 3: Area marked in factory defect mapping

2.2.2 Host Requirements

Thehostshall noteraseor program blocksmarked as defectiveby the manufacturer,
and any attempt to do so yields indeterminate results.

class Device is subclass of DeviceAlg

...

isDefective : Target ×RowAddress → B

isDefective (t , r) △

let lindex = r .GetLun (),
bindex = r .GetBlock () in

bindex ∈ t .DBT (lindex);
...
end Device

Figure 4 outlines the algorithm to scan for factory mapped defects. This algorithm
should be performed by the host to create the initial bad block table prior to performing
any erase or programming operations on the target. The initial state of all pages in non-
defective blocks is FFh (or FFFFh for 16-bit access) for all page addresses, although
some bit errors may be present if they are correctable via therequired ECC reported to
the host. An defective block is indicated by abyte value equal to 00h for 8-bit access
or a word value equal to 0000h for 16-bit access being presentat any page byte/word
location in the defect area of either the first page or last page of the block. The host
shall check the defect area of both the first and last past pageof each block to verify
the block is valid prior to any erase or program operations onthat block.

12 NAND Flash Interface Specification

Note: Over the lifetime use of a NAND device, the defect area of defective blocks
may encounter read disturbs that cause values to change. Themanufacturer defect
markings may change value over the lifetime of the device, and are expected to be
read by the host and used to create a bad block table during initial use of the part.

Figure 4: Factory defect scanning algorithm

class Device ...
private

CreateBadBlocksTable : Signal
o

→ ()
CreateBadBlocksTable (signal) △

for all i ∈ inds device (signal).LUNs

do device(signal).DBT := device (signal).DBT m
⋃

{i 7→ device (signal).LUNs (i).CreateBadBlocksTable ()}
...
end Device

Section 2. Memory Organization 13

class Lun

...

CreateBadBlocksTable : ()
o

→ N1-set
CreateBadBlocksTable () △

return {block | block ∈ inds lun.flash ·
checkBlock (block , lun)}

checkBlock : N1 × LUN → B

checkBlock (b, lun) △

let fstpage = lun.flash (b) (1),
lstpage = lun.flash (b) (len lun.flash) in

checkPage (fstpage) ∨ checkPage (lstpage);
checkPage : Page → B

checkPage (p) △

let S = {is00 (p.defect (i)) | i ∈ inds p.defect} in
true ∈ S ;

is00 : Byte → B

is00 (b) △

Converter ‘byte-to-hex (b) = "00";
end Lun

2.3 Discovery and Initialization

2.3.1 CE# Discovery

There maybe up to four chip enable (CE#) signals on a package,one for each
separately addressabletarget. To determine the targets that are connected, the
procedure outlined in this sectionshall be followed for each distinct CE# signal.
CE# signals shall be used sequentially on the device;CE1# is alwaysconnectedand
CE# signals shall beconnectedin a numerically increasing order. The host shall
attempt to enumerate targets connected to all host CE# signals.

class Device ...
ceDiscovery : DeviceType → Signal+

ceDiscovery (d) △

let s = [i | i ∈ dom d] in
insertionSort [Signal] (λ a : Signal · λ b : Signal · a < b) (s);

...
end Device

The discovery process for a package that supports independent dual data buses
includes additional steps to determine which data bus the target is connected to. The
LGA package with 8- bit data access is the only defined packagewithin ONFI that has
a dual data bus option.

14 NAND Flash Interface Specification

2.3.2 Target Initialization

To initialize a discovered target, the following steps shall be taken. The initializa-
tion processshall be followed for eachconnectedCE# signal,including performing
theRead Parameter Page (ECh)commandfor eachtarget. Eachchip enablecor-
responds to aunique target with its own independent propertiesthat the host shall
observe and subsequently use.

Thehostshall issuetheRead Parameter Page (ECh) command. This command
returns information that includes the capabilities, features, and operating parameters
of the device.

After successfully retrieving the parameter page, the hosthas all information nec-
essary to successfully communicate with that target. If thehost has not previously
mapped defective blockinformation for this target, thehost shall next map out all
defective blocksin the target. The host may then proceed to utilize the target, includ-
ing erase and program operations.

class Device ...

DeviceInit : ()
o

→ ()
DeviceInit () △

let dis = ceDiscovery (device) in
for all i ∈ inds dis

do CreateBadBlocksTable(dis (i)) ;
...
end Device

Section 3. Command Definition 15

3 Command Definition

3.1 Command Set

Table 14 outlines the ONFI command set.

The value specified in the first command cycle identifies the command to be per-
formed. Some commands have a second command cycle as specified in Table 14.
Typically, commands that have a second command cycle include an address.

Command O/M 1st Cycle 2nd Cycle Acceptable Acceptable Target
while while level

Accessed LUN Others LUNs commands
is Busy are Busy

Read M 00h 30h Y
Block Erase M 60h D0h Y

Page Program M 80h 10h Y

Table 14: Command Set

16 NAND Flash Interface Specification

The following definition is a representation of a device created in the
VDM++ Toolbox, with the commands (where data1 is defined in the
class Tests2):
> create device := new Device(1,1,1,1,32,4)
> p device.Input(data1)
> p device.Simulate(1,1)

The representation of the device bytes in hexadecimal can beob-
tained by doing:
> p device.Echo()

This device will be used to demonstrate each of the commands in
the implemented Command Set.

Device
Target 1

Lun 1
PageRegister 1 | AA FF AA FF |
Block 1

Page 1 :: | 00 00 00 00 |
Page 2 :: | 00 00 00 00 |
Page 3 :: | 00 00 00 00 |
Page 4 :: | 00 00 00 00 |
Page 5 :: | 00 00 00 00 |
Page 6 :: | 00 00 00 00 |
Page 7 :: | 00 00 00 00 |
Page 8 :: | 00 00 00 00 |
Page 9 :: | 00 00 00 00 |
Page 10 :: | 00 00 00 00 |
Page 11 :: | 00 00 00 00 |
Page 12 :: | 00 00 00 00 |
Page 13 :: | 00 00 00 00 |
Page 14 :: | 00 00 00 00 |
Page 15 :: | 00 00 00 00 |
Page 16 :: | 00 00 00 00 |
Page 17 :: | 00 00 00 00 |
Page 18 :: | 00 00 00 00 |
Page 19 :: | 00 00 00 00 |
Page 20 :: | 00 00 00 00 |
Page 21 :: | 00 00 00 00 |
Page 22 :: | 00 00 00 00 |
Page 23 :: | 00 00 00 00 |
Page 24 :: | 00 00 00 00 |
Page 25 :: | 00 00 00 00 |
Page 26 :: | 00 00 00 00 |
Page 27 :: | 00 00 00 00 |
Page 28 :: | 00 00 00 00 |
Page 29 :: | 00 00 00 00 |
Page 30 :: | 00 00 00 00 |
Page 31 :: | 00 00 00 00 |
Page 32 :: | AA FF AA FF |

BadBlocks
1 | - > {}

Section 3. Command Definition 17

3.1.1 Read Definition

The Readfunction reads a pageof data identified by a row address for the LUN
specified. Thepage of data ismade available to be read from thepage register
starting at the column address specified. Figure 30 defines the Read behavior and
timings. Reading beyond the end of a page results in indeterminate values being
returned to the host.

class Device is subclass of DeviceAlg

...
private

Read : N1 × Signal × ColAddress × RowAddress
o

→ Column∗

Read (i , s, c, r) △

let lindex = r .GetLun (),
bindex = r .GetBlock (),
pindex = r .GetPage (),
t = device (s),
lun = t .LUNs (lindex) in

(lun.Read(i , bindex , pindex) ;
return readPartialPage (lun.GetPageRegister (i), c)

)
pre checkRowAddress (device (s), r) ∧

checkColAddress (device (s), c, r) ∧
checkInterLeavedOp (i , device (s), r)

;
...
end Device

class Lun

...

Read : N1 × N1 × N1

o

→ ()
Read (i , b, p) △

let block = lun.flash (b),
page = block (p) in

lun.pr := lun.pr † {i 7→ page}
pre b ∈ inds lun.flash ∧

p ∈ inds lun.flash (b) ∧
i ∈ inds lun.pr

;
...
end Lun

While monitoring the read status to determine when the tR (transfer from Flash
array to page register) is complete, the host shall re-issuea command value of 00h

18 NAND Flash Interface Specification

to start reading data. Issuing a command value of 00h will cause data to be returned
starting at the selected column address.

Figure 30: Read timing

C1 - C2 Column address of the page to retrieve. C1 is the least significant byte.
R1 - R3 Row address of the page to retrieve. R1 is the least significant byte.
Dn Data bytes read from the addressed page.

Section 3. Command Definition 19

Example of a Read execution (where data3 is defined in class Tests2):
> p device.Input(data3)
> p device.Simulate(1,1)

Device
Target 1

Lun 1
PageRegister 1 | 00 00 00 00 |
Block 1

Page 1 :: | 00 00 00 00 |
Page 2 :: | 00 00 00 00 |
Page 3 :: | 00 00 00 00 |
Page 4 :: | 00 00 00 00 |
Page 5 :: | 00 00 00 00 |
Page 6 :: | 00 00 00 00 |
Page 7 :: | 00 00 00 00 |
Page 8 :: | 00 00 00 00 |
Page 9 :: | 00 00 00 00 |
Page 10 :: | 00 00 00 00 |
Page 11 :: | 00 00 00 00 |
Page 12 :: | 00 00 00 00 |
Page 13 :: | 00 00 00 00 |
Page 14 :: | 00 00 00 00 |
Page 15 :: | 00 00 00 00 |
Page 16 :: | 00 00 00 00 |
Page 17 :: | 00 00 00 00 |
Page 18 :: | 00 00 00 00 |
Page 19 :: | 00 00 00 00 |
Page 20 :: | 00 00 00 00 |
Page 21 :: | 00 00 00 00 |
Page 22 :: | 00 00 00 00 |
Page 23 :: | 00 00 00 00 |
Page 24 :: | 00 00 00 00 |
Page 25 :: | 00 00 00 00 |
Page 26 :: | 00 00 00 00 |
Page 27 :: | 00 00 00 00 |
Page 28 :: | 00 00 00 00 |
Page 29 :: | 00 00 00 00 |
Page 30 :: | 00 00 00 00 |
Page 31 :: | 00 00 00 00 |
Page 32 :: | AA FF AA FF |

BadBlocks
1 | - > {}

The value is read in to the page register and dumped in the buffer.

20 NAND Flash Interface Specification

private
readPartialPage : Page × N1 → Column∗

readPartialPage (p, c) △

[newColumn (false) | i ∈ inds p.data · i < c] y

[p.data (i) | i ∈ inds p.data · i ≥ c]
post isP (len RESULT , 2) ;

...
end Lun

class Device is subclass of DeviceAlg

...

checkRowAddress : Target × RowAddress → B

checkRowAddress (t , r) △

let lindex = r .GetLun (),
bindex = r .GetBlock (),
pindex = r .GetPage () in

¬ isDefective (t , r) ∧
lindex ∈ inds t .LUNs ∧
let flash = t .LUNs (lindex).GetFlash () in
bindex ∈ inds flash ∧
pindex ∈ inds flash (bindex);

checkColAddress : Target × ColAddress × RowAddress → B

checkColAddress (t , c, r) △

let lindex = r .GetLun (),
bindex = r .GetBlock (),
pindex = r .GetPage (),
flash = t .LUNs (lindex).GetFlash (),
page = flash (bindex) (pindex) in

c.GetColumn () ∈ inds page.data;

checkInterLeavedOp : N ×Target × RowAddress → B

checkInterLeavedOp (i , t , r) △

let lindex = r .GetLun (),
pr = t .LUNs (lindex).GetAllPageRegisters () in

i ∈ inds pr ;
...
end Device

Section 3. Command Definition 21

3.1.2 Block Erase Definition

The Block Erasefunction erasesthe block of dataidentified by the blockaddress
parameter on the LUN specified.After a successful Block Erase, all bits shall be set
to one in the block. SR[0] is valid for this command after SR[6] transitions from zero
to one until the next transition of SR[6] to zero. Figure 31 defines the Block Erase
behavior and timings.

class Device is subclass of DeviceAlg

...
private

BlockErase : Signal × RowAddress
o

→ ()
BlockErase (s, r) △

let lindex = r .GetLun (),
bindex = r .GetBlock (),
t = device (s),
lun = t .LUNs (lindex) in

lun.BlockErase(bindex)
pre checkRowAddress (device (s), r)

;
...
end Device

class Lun

...

BlockErase : N1

o

→ ()
BlockErase (b) △

let block = lun.flash (b),
block ′ = [emptyPage (block (i)) | i ∈ inds block] in

lun.flash := lun.flash † {b 7→ block ′}
pre b ∈ inds lun.flash

;
...
end Lun

22 NAND Flash Interface Specification

Figure 31: Block Erase timing

R1 - R3 The row address of the block to be erased.
R1 is the least significant byte in the row address.

Section 3. Command Definition 23

Example of a Block Erase execution (where data4 is defined in class
Tests2):
> p device.Output() – clean the buffer
> p device.Input(data4)
> p device.Simulate(1,1)

Device
Target 1

Lun 1
PageRegister 1 | 00 00 00 00 |
Block 1

Page 1 :: | FF FF FF FF |
Page 2 :: | FF FF FF FF |
Page 3 :: | FF FF FF FF |
Page 4 :: | FF FF FF FF |
Page 5 :: | FF FF FF FF |
Page 6 :: | FF FF FF FF |
Page 7 :: | FF FF FF FF |
Page 8 :: | FF FF FF FF |
Page 9 :: | FF FF FF FF |
Page 10 :: | FF FF FF FF |
Page 11 :: | FF FF FF FF |
Page 12 :: | FF FF FF FF |
Page 13 :: | FF FF FF FF |
Page 14 :: | FF FF FF FF |
Page 15 :: | FF FF FF FF |
Page 16 :: | FF FF FF FF |
Page 17 :: | FF FF FF FF |
Page 18 :: | FF FF FF FF |
Page 19 :: | FF FF FF FF |
Page 20 :: | FF FF FF FF |
Page 21 :: | FF FF FF FF |
Page 22 :: | FF FF FF FF |
Page 23 :: | FF FF FF FF |
Page 24 :: | FF FF FF FF |
Page 25 :: | FF FF FF FF |
Page 26 :: | FF FF FF FF |
Page 27 :: | FF FF FF FF |
Page 28 :: | FF FF FF FF |
Page 29 :: | FF FF FF FF |
Page 30 :: | FF FF FF FF |
Page 31 :: | FF FF FF FF |
Page 32 :: | FF FF FF FF |

BadBlocks
1 | - > {}

24 NAND Flash Interface Specification

3.1.3 Page Program Definition

The Page Programcommandtransfers apageor portion of a page of dataidentified
by acolumn addressto thepage register. Thecontentsof the page register are then
programmed into theFlash array at therow address indicated. SR[0] is valid for
this command after SR[6] transitions from zero to one until the next transition of SR[6]
to zero. Figure 32 defines the Page Program behavior and timings. Writing beyond
the end of the page register is undefined.

class Device is subclass of DeviceAlg

...
private

PageProgram : N1×Signal×ColAddress ×RowAddress ×Column+ o

→ ()
PageProgram (i , s, c, r , data) △

let lindex = r .GetLun (),
bindex = r .GetBlock (),
pindex = r .GetPage (),
t = device (s),
lun = t .LUNs (lindex),
col = c.GetColumn () in

lun.PageProgram(i , col , bindex , pindex , data)
pre isP (len data, 2) ∧

checkRowAddress (device (s), r) ∧
checkColAddress (device (s), c, r) ∧
checkPageOverflow (device (s), c, r , data) ∧
checkInterLeavedOp (i , device (s), r)

;
...
end Device

Section 3. Command Definition 25

class Lun

...

PageProgram : N1 × N1 × N1 × N1 × Byte+ o

→ ()
PageProgram (i , c, b, p, data) △

let block = lun.flash (b),
page = block (p),
prs = lun.pr † {i 7→ page},
pager = prs (i),
pager ′ = µ (pager ,

data 7→ [pager .data (j) | j ∈ inds pager .data ·
j < c] y

[data (j) | j ∈ inds data ·
j ≥ c ∧ j < c + (len data)] y

[pager .data (j) | j ∈ inds pager .data ·
j ≥ c + (len data)]),

prs ′ = prs † {i 7→ pager ′},
block ′ = block † {p 7→ pager ′},
flash ′ = lun.flash † {b 7→ block ′} in

lun := mk-LUN (prs ′,flash ′)
pre isP (len data, 2) ∧

b ∈ inds lun.flash ∧
p ∈ inds lun.flash (b) ∧
c ∈ inds lun.flash (b) (p).data ∧
i ∈ inds lun.pr ∧
c + len data − 1 ≤ len lun.flash (b) (p).data

;
...
end Lun

26 NAND Flash Interface Specification

Figure 32: Page Program timing

C1 - C2 Column address of the starting buffer location to write data to.
C1 is the least significant byte.

R1 - R3 Row address of the page being programmed. R1 is the least significant byte.
D0 - Dn Data bytes/words to be written to the addressed page.

Section 3. Command Definition 27

Example of a Page Program execution (where data2 is defined inclass
Tests2):
> p device.Input(data2)
> p device.Simulate(1,1)

Device
Target 1

Lun 1
PageRegister 1 | 55 00 55 00 |
Block 1

Page 1 :: | FF FF FF FF |
Page 2 :: | FF FF FF FF |
Page 3 :: | FF FF FF FF |
Page 4 :: | FF FF FF FF |
Page 5 :: | FF FF FF FF |
Page 6 :: | FF FF FF FF |
Page 7 :: | FF FF FF FF |
Page 8 :: | FF FF FF FF |
Page 9 :: | FF FF FF FF |
Page 10 :: | FF FF FF FF |
Page 11 :: | FF FF FF FF |
Page 12 :: | FF FF FF FF |
Page 13 :: | FF FF FF FF |
Page 14 :: | FF FF FF FF |
Page 15 :: | FF FF FF FF |
Page 16 :: | FF FF FF FF |
Page 17 :: | FF FF FF FF |
Page 18 :: | FF FF FF FF |
Page 19 :: | FF FF FF FF |
Page 20 :: | FF FF FF FF |
Page 21 :: | FF FF FF FF |
Page 22 :: | FF FF FF FF |
Page 23 :: | FF FF FF FF |
Page 24 :: | FF FF FF FF |
Page 25 :: | FF FF FF FF |
Page 26 :: | FF FF FF FF |
Page 27 :: | FF FF FF FF |
Page 28 :: | FF FF FF FF |
Page 29 :: | FF FF FF FF |
Page 30 :: | FF FF FF FF |
Page 31 :: | 55 00 55 00 |
Page 32 :: | FF FF FF FF |

BadBlocks
1 | - > {}

28 NAND Flash Interface Specification

4 Behavior Simulation

To model the hardware behaviour when a command is issued by the host, one has to
consider mutiple aspects.

For starters, there must be a way for the two to comunicate, e.g., a data path. In
the present model this comunication is done by meen of a buffer, where both host and
device can read and write. Also, it will be necessary to take in account that commands
are issued in cycles.

Timmings are another key aspect, because hardware devices take their time to
complete some operations and have multiple delays.

At last the model shall be refined to simulate the variation ofthe main signals
involved in a command execution.

4.1 Buffer Model

class Buffer

Byte = Lun‘Byte;
BufferType = Data∗;
Data = Byte

instance variables
private buffer : BufferType := clear ();

Buffer : ()
o

→ Buffer

Buffer () △

buffer := [];

Clear : ()
o

→ ()
Clear () △

buffer := clear ();

Size : ()
o

→ N

Size () △

return size (buffer);

Section 4. Behavior Simulation 29

Put : Data
o

→ ()
Put (d) △

buffer := put (d , buffer);

Get : ()
o

→ Data

Get () △

let mk- (b ′, d) = get (buffer) in
(buffer := b ′;

return d

)
pre size (buffer) > 0

;

Drop : ()
o

→ ()
Drop () △

buffer := drop (buffer)
pre size (buffer) > 0

;

ElementAt : N1

o

→ Data

ElementAt (n) △

return elementAt (n, buffer);

PutN : Data∗ o

→ ()
PutN (d) △

buffer := putN (d , buffer)

post size (buffer) = size (d) + size (
↼−−−
buffer) ;

GetN : N
o

→ Data∗

GetN (n) △

let mk- (b ′, d) = getN (n, buffer) in
(buffer := b ′;

return d

)

post size (buffer) = size (
↼−−−
buffer) − n ∧

size (RESULT) = n ;

30 NAND Flash Interface Specification

DropN : N
o

→ ()
DropN (n) △

buffer := dropN (n, buffer)
pre size (buffer) ≥ n

post size (buffer) = size (
↼−−−
buffer) − n

end Buffer

4.2 Simulation Environment

4.2.1 Type Definitions

The output of simulating a command can be the resulting stateof the device in which
the command is executed and the resulting buffer or, in case something goes wrong,
an error message.

Result = [ErrorMessage];
ErrorMessage = char∗

To select which command to execute, the host shall send the appropriate code
to the device. The codes are identified in hexadecimal notation, so an hexadecimal
representation of a data byte is useful.

Hex = char+

inv hex △ ∀ i ∈ inds hex ·
isHexDigit (hex (i))

4.2.2 Host Device Communication

Input : Data+ o

→ ()
Input (data) △ buffer .

PutN (data) ;

Output : ()
o

→ Data∗

Output () △

let n = buffer .Size () in
return buffer .GetN (n);

Section 4. Behavior Simulation 31

4.2.3 Functionality Definition

Caring out the simulation is done by the following functions.

Simulate : N1 × Signal
o

→ Result

Simulate (i , s) △

let code = GetCode (),
size = buffer .Size (),
hex = byte-to-hex (code) in

cases hex :
"00" → if size 6= 6

then SimulateError(commandArgs ("read"))
else SimulateRead(i , s) ,

"60" → if size 6= 4
then SimulateError(commandArgs ("block erase"))
else SimulateBlockErase(s) ,

"80" → if size < 5
then SimulateError(commandArgs ("page program"))
else SimulatePageProgram(i , s) ,

others → SimulateError(unsupportedCode (hex))
end

pre buffer .Size () > 0
;

private
SimulateRead : N1 × Signal

o

→ Result

SimulateRead (i , s) △

let nblocks = GetTargetBlockNumber (device (s)),
npages = GetTargetPageNumber (device (s)),
caddr = GetColAddr (),
raddr = GetRowAddr (nblocks,npages),
code = GetCode (),
hex = byte-to-hex (code) in

if hex 6= "30"
then SimulateError(wrongCode (hex ,"30"))
else let data = Read (i , s, caddr , raddr) in

(buffer .PutN (data) ;
return nil

)
pre buffer .Size () = 6

;

32 NAND Flash Interface Specification

private
SimulateBlockErase : Signal

o

→ Result

SimulateBlockErase (s) △

let nblocks = GetTargetBlockNumber (device (s)),
npages = GetTargetPageNumber (device (s)),
raddr = GetRowAddr (nblocks,npages),
code = GetCode (),
hex = byte-to-hex (code) in

if hex 6= "D0"
then SimulateError(wrongCode (hex ,"D0"))
else (BlockErase(s, raddr) ;

return nil
)

pre buffer .Size () ≥ 4
;

private
SimulatePageProgram : N1 × Signal

o

→ Result

SimulatePageProgram (i , s) △

let nblocks = GetTargetBlockNumber (device (s)),
npages = GetTargetPageNumber (device (s)),
caddr = GetColAddr (),
raddr = GetRowAddr (nblocks,npages),
res = GetAll ("10") in

cases res:
[] → SimulateError(noData ("PageProgram")) ,
nil → SimulateError("PageProgram : Wrong OPcode") ,
data → if ¬ isP (len data, 2)

then SimulateError(dataNotP2 ("PageProgram"))
else (PageProgram(i , s, caddr , raddr , data) ;

return nil
)

end
pre buffer .Size () > 5

;

Section 4. Behavior Simulation 33

private
SimulateError : char∗

o

→ ErrorMessage

SimulateError (e) △

return "ERROR : : "y e;
private

GetColAddr : ()
o

→ ColAddress

GetColAddr () △

(dcl bytes : Data∗ := buffer .GetN (2);
return newColAddress() (bin-to-nat ((bytes (1) y bytes (2))))

)
pre buffer .Size () ≥ 2

;

4.2.4 Get Arguments Operations

private
GetRowAddr : N1 × N1

o

→ RowAddress

GetRowAddr (nblocks,npages) △

(dcl bytes : Data∗ := buffer .GetN (3);
return newRowAddress()

(
bytes (1),
bytes (2),
bytes (3),
nblocks,

npages)
)

pre buffer .Size () ≥ 3
;

private
GetCode : ()

o

→ Byte

GetCode () △

return buffer .Get ()
pre buffer .Size () ≥ 1

;

34 NAND Flash Interface Specification

private
GetAll : Hex

o

→ [Byte∗]
GetAll (hex) △

(dcl data : Data∗ := buffer .GetN (buffer .Size () − 1),
code : Hex := byte-to-hex (buffer .Get ());

if code 6= hex

then return nil
else return data

)
pre buffer .Size () > 0

;

Section 5. Final considerations 35

5 Final considerations

At this point, the developed model abstracts the behavior ofa flash memory device
in a functional way, so that it’s usable has a storage device.It simulates a data path
between the device and the host and includes bad block checking.

To reach this stage it took approximately 48 hours of work perperson involved.
That sums up to 96 hours, since the team has two elements.

For future development, we would like to point some directions. One of which
is a refinement step, that would benefit greatly (really much time!!) it’s performance,
that step would aim to introduce some counters in the target’s definition to store in-
formation on, how many LUNs, how many blocks per flash and how many pages per
block the target has. These counters would save much time in invariant verification on
Block, Flash and LUN type definitions.

There are many aspects to deal with if one wants bring the model closer to the
hardware behavior, according to the specification [ONFIS06] that guided this project.
The first aspect we would like to point out refers to the signals that control the de-
vice operations. Both, device and host, watch or stimulate signals when want to out-
put, or respectively input data from/to the other. The signals variations have well
defined timings and durations (has described in the figures included with every com-
mand definition on Section 3) which could be included in the model has is explained
in [RealTimeVDM++]. But, to realistically model this aspect, it would be necessary
to thoroughly investigate Sections 1 and 2 of [ONFIS06], which we invite the interest
reader to take a look at.

Secondly, interleaved operations could also be addressed and it would lead to con-
currency introduction in the model. Has far has theVDM++ Toolboxgoes there won’t
be any obstacles to concurrency.

36 NAND Flash Interface Specification

References

[LangManPP] CSK SYSTEMS CORPORATION,
The VDM++ Language Manual 1.1,
CSK Group.

[ONFIS06] Hynix Semiconductor, Intel Corporation, MicronTechnology, Inc., Phison
Electronics Corp., Sony Corporation, STMicroelectronics,
Open NAND Flash Interface Specification revision 1.0,
ONFI Workgroup

[ValDes] Fitzgerald, Jonh, Larsen, Peter Gorm,
Validated Designs for Object-oriented Systems,
Springer, 2005.

[RealTimeVDM++] Verhoef, Marcel, Larsen, Peter, Hooman, Jozef
Modeling and Validating Distributed Embedded Real-Time Systems with VDM++,
Springer Berlin, 2006.

