
Calculating fault propagation in functional

programs

Daniel R. Murta & José N. Oliveira
HASLab — High Assurance Software Laboratory,

INESC TEC and University of Minho,
4700 Braga, Portugal

pg23205@alunos.uminho.pt & jno@di.uminho.pt

March 2013

Abstract

This file is a Haskell executable. It contains the experimental part of the
homonym paper (submitted). Please unzip website.zip first and then move
to the just created directory website. For the Haskell part run

ghci -XNPlusKPatterns paper_haskell_matlab

and follow the examples in part I below. For the MATLAB part, open MAT-
LAB in the website/matlab directory, where all the executables can be found
and run the scripts of part II.

Both parts follow the structure of the homonym paper.

Part I

Haskell

1 Introduction

2 Motivation

3 Mutual recursion

Fibonacci:

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib n + fib (n + 1)

Mutually-recursive equivalent:

fib′ 0 = 0
fib′ (n + 1) = f n

f 0 = 1
f (n + 1) = fib′ n + f n

For-loop combinator:

1

for b i 0 = i
for b i (n + 1) = b (for b i n)

Linear Fibonacci:

fibl n =
let (x , y) = for loop (0, 1) n

loop (x , y) = (y , x + y)
in x

Linear square:

sql n =
let (s, o) = for loop (0, 1) n

loop (s, o) = (s + o, o + 2)
in s

4 Going probabilistic

Start with:

mfib 0 = return 0
mfib 1 = return 1
mfib (n + 2) =
do {x ← mfib n; y ← mfib (n + 1); return (x + y)}

Define:

loop (x , y) = do {z ← fadd 0.1 x y ; return (y , z)}

Re-define:

mfib 0 = return 0
mfib 1 = return 1
mfib (n + 2) = do {x ← mfib n; y ← mfib (n + 1); fadd 0.1 x y }

Run mfib 4:

3 81.0%

2 18.0%

1 1.0%

Define

mfibl n =
do {(x , y)← mfor loop (0, 1) n; return x }
where loop (x , y) = return (y , x + y)

where

mfor b i 0 = return i
mfor b i (n + 1) = do {x ← mfor b i n; b x }

Run mfib 5 and mfibl 5 and then mfib 6 and mfibl ′ 6, to obtain the table in the
paper — table 1 below.

Then define

2

msq 0 = return 0
msq (n + 1) = do {m ← msq n; fadd 0.1 m (2 ∗ n + 1)}

and

msql n =
do {(s, o)← mfor loop (0, 1) n; return s }
where loop (s, o) =
do {z ← fadd 0.1 s o; return (z , o + 2)}

Run msq n and msql n for n = 1 . . to check their probabilistic equality, as in the
table (table 4 below).

5 Probabilistic for-loops in the LAoP

Define

ftwice = mfor (fadd 0.1 2) 0

Run ftwice 4:

*Main> ftwice 4

8 65.6%

6 29.2%

4 4.9%

2 0.4%

0 0.0%

Define

mfibl ′ n =
do {(x , y)← mfor loop (0, 1) n; return x }

Run mfibl ′ 5:

*Main> mfibl’ 5

5 72.9%

3 16.2%

4 8.1%

2 2.7%

1 0.1%

6 Probabilistic mutual recursion in the LAoP

Function f :

f 1 = uniform [1 . . 2]
f 2 = D [(1, 0.3), (2, 0.7)]
f 3 = return 2
f 4 = D [(1, 0.75), (2, 0.25)]

Function g:

g 1 = D [(1, 0.3), (2, 0.7)]
g 2 = D [(1, 0.4), (2, 0.2), (3, 0.4)]
g 3 = D [(1, 0.1), (2, 0.2), (3, 0.7)]
g 4 = return 2

3

Function k :

k 1 = D ([((1, 1), 0.24), ((1, 2), 0.08), ((1, 3), 0.08)] ++ [((2, 1), 0.36), ((2, 2), 0.12), ((2, 3), 0.12)])

Checking column 1:

k1 = k 1 ≡ ((mfst · k) M (msnd · k)) 1

(2,1) 36.0%

(1,1) 24.0%

(2,2) 12.0%

(2,3) 12.0%

(1,2) 8.0%

(1,3) 8.0%

7 Asymmetric Khatri-Rao product

8 Probabilistic mutual recursion resumed

msqlo n =
do {(s, o)← mfor loop (0, 1) n; return o}
where loop (s, o) =
do {z ← fadd 0.1 s o; return (z , o + 2)}

odd ′ 0 = return 1
odd ′ (n + 1) = do {x ← odd ′ n; fadd 0.1 2 x }

msq ′ 0 = return 0
msq ′ (n + 1) = do {m ← msq ′ n; x ← odd ′ n; fadd 0.1 m x }

msql ′ n =
do {(s, o)← mfor loop (0, 1) n; return s } where

loop (s, o) = do {
z ← fadd 0.1 s o; x ← fadd 0.1 2 o;
return (z , x)}

9 Generalizing to other fault propagation patterns

Define

fcat = mfold (snd 0.1� cons) (return [])

where

mfold :: Monad m ⇒ ((a, b)→ m b)→ m b → [a]→ m b
mfold f d [] = d
mfold f d (h : t) = do {x ← mfold f d t ; f (h, x)}

Run fcat "abc" to obtain:

4

*Main> fcat "abc"

"abc" 72.9%

"ab" 8.1%

"ac" 8.1%

"bc" 8.1%

"a" 0.9%

"b" 0.9%

"c" 0.9%

"" 0.1%

Define

fcount = mfold ((id 0.15� succ) · snd) (return 0)

Run fcount "abc":

*Main> fcount "abc"

3 61.4%

2 32.5%

1 5.7%

0 0.3%

Define

pipe = fcount • fcat

Run pipe "abc":

*Main> pipe "abc"

3 44.8%

2 41.3%

1 12.7%

0 1.3%

Fusion — define

ffcount = mfold (mix 0.1 0.15) (return 0)
where mix p q = (choice p return (id q� succ)) · snd

and run:

*Main> ffcount "abc"

3 44.8%

2 41.3%

1 12.7%

0 1.3%

Auxiliary

cons (h, t) = h : t
nil = []

add (x , y) = x + y
zero = 0
one = 1

5

Part II

MATLAB

1 Introduction

2 Motivation

3 Mutual recursion

To run the recursive version of fib, without injecting any faulty behaviour, run for
instance:

>> execFibr(@nfAdd,5,10,4)

ans =

1 0 0 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

The first parameter of the command is, basically, the add function the command
will use to calculate its result. In this case we are passing a non-faulty add (nfAdd),
since we want a sharp Fibonacci. The next two parameters are the numbers of
columns and rows, respectively, of the result matrix. In order to calculate (to
see) fib 4, for example, one has to force, at least, 5 columns, because the first
one corresponds to zero (fib 0). The last parameter corresponds to the actual
input number we want to pass to the Fibonacci function. If matrix(3, 4) = 1
(matrix(line,column) with indexes beginning at 1) then fib(4 − 1) = (3 − 1) or
fib3 = 2. Thus, observing the matrix, we can see that fib 0 = 0, fib 1 = 1... as it
was supposed.

To run the linear version of fib, without injecting any faulty behaviour, run for
instance:

>> execFibl(@nfAdd,6,10,5)

ans =

1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

6

n mfib n mfibl n

5

5 65.6%

4 21.9%

3 10.5%

2 1.9%

1 0.1%

5 72.9%

3 16.2%

4 8.1%

2 2.7%

1 0.1%

6

8 47.8%

7 26.6%

6 11.8%

5 9.8%

4 2.7%

3 1.1%

2 0.2%

1 0.0%

8 65.6%

5 14.6%

6 14.6%

3 2.4%

4 2.4%

2 0.4%

1 0.0%

Table 1: Faulty Fibonacci (recursive and linear)

0 0 0 0 0 0

0 0 0 0 0 0

Please note that, in this case, we increased the number of rows to 6 so that we
could see the result of fib for 5.

To run the linear version of sq, without injecting any faulty behaviour, run for
instance:

>> execSql(@nfAdd,4,10,3)

ans =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

Please note that, in this case, we used 10 for the number of columns of the result
matrix, simply, because we know that sq 3 = 9, so we must have at least 10 rows
to visualize 9 as result.

4 Going probabilistic

In this section we intend to inject some faults in the sq and fib functions. To do this,
instead of using a non-faulty add function as the first parameter of the commands
in the previous section, we can use faulty ones.

To obtain the results displayed in table 1 presented in section 4 of the article
run:

>> mfib(7,12)

7

ans =

1.0000 0 0 0 0 0 0

0 1.0000 1.0000 0.1000 0.0100 0.0010 0.0001

0 0 0 0.9000 0.1800 0.0189 0.0019

0 0 0 0 0.8100 0.1053 0.0109

0 0 0 0 0 0.2187 0.0266

0 0 0 0 0 0.6561 0.0984

0 0 0 0 0 0 0.1181

0 0 0 0 0 0 0.2657

0 0 0 0 0 0 0.4783

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

and

>> mfibl(7,14)

ans =

1.0000 0 0 0 0 0 0

0 1.0000 1.0000 0.1000 0.0100 0.0010 0.0001

0 0 0 0.9000 0.1800 0.0270 0.0036

0 0 0 0 0.8100 0.1620 0.0243

0 0 0 0 0 0.0810 0.0243

0 0 0 0 0 0.7290 0.1458

0 0 0 0 0 0 0.1458

0 0 0 0 0 0 0

0 0 0 0 0 0 0.6561

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The last two columns of each result matrix present the results displayed in table
1.

To obtain the results displayed in table 4 also present in section 4 of the article
run:

>> msq(7,40)

ans =

1.0000 0 0 0 0 0 0

0 1.0000 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0.1000 0 0 0 0

0 0 0.9000 0 0 0 0

0 0 0 0.1000 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0.1000 0 0

0 0 0 0.0900 0 0 0

8

n msq n msql n

0 0 100.0% 0 100.0%

1 1 100.0% 1 100.0%

2
4 90.0%

3 10.0%

4 90.0%

3 10.0%

3
9 81.0%

5 10.0%

8 9.0%

9 81.0%

5 10.0%

8 9.0%
...

...
...

6

36 59.0%

11 10.0%

20 9.0%

27 8.1%

32 7.3%

35 6.6%

36 59.0%

11 10.0%

20 9.0%

27 8.1%

32 7.3%

35 6.6%
...

...
...

Table 2: Faulty square (recursive and linear)

0 0 0 0.8100 0 0.1000 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.1000

0 0 0 0 0.0900 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0.0810 0 0

0 0 0 0 0.7290 0.0900 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0900

0 0 0 0 0 0.0810 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0.0729 0

0 0 0 0 0 0.6561 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0810

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0729

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0656

0 0 0 0 0 0 0.5905

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

9

and

>> msql(7,40)

ans =

1.0000 0 0 0 0 0 0

0 1.0000 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0.1000 0 0 0 0

0 0 0.9000 0 0 0 0

0 0 0 0.1000 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0.1000 0 0

0 0 0 0.0900 0 0 0

0 0 0 0.8100 0 0.1000 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.1000

0 0 0 0 0.0900 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0.0810 0 0

0 0 0 0 0.7290 0.0900 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0900

0 0 0 0 0 0.0810 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0.0729 0

0 0 0 0 0 0.6561 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0810

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0729

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.0656

0 0 0 0 0 0 0.5905

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

5 Probabilistic for-loops in the LAoP

6 Probabilistic mutual recursion in the LAoP

To obtain the results displayed in first diagram of section 6 in the paper run:

>> f = [0.5 0.3 0 0.75;0.5 0.7 1 0.25];

10

>> g = [0.3 0.4 0.1 0;0.7 0.2 0.2 1;0 0.4 0.7 0];

>> kr(f,g)

ans =

0.1500 0.1200 0 0

0.3500 0.0600 0 0.7500

0 0.1200 0 0

0.1500 0.2800 0.1000 0

0.3500 0.1400 0.2000 0.2500

0 0.2800 0.7000 0

>> fst(2,3)

ans =

1 1 1 0 0 0

0 0 0 1 1 1

>> snd(2,3)

ans =

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

7 Asymmetric Khatri-Rao product

8 Probabilistic mutual recursion resumed

In this section we injected two faults to the square functions. They were called sq’
and sql’ in the paper. To obtain the results displayed in table 3 present in section
8 of the paper, run the following commands:

>> msq2(4,12)

ans =

1.0000 0 0 0

0 1.0000 0.0100 0.0010

0 0 0.0900 0.0001

0 0 0.0900 0.0188

0 0 0.8100 0.0024

0 0 0 0.1029

0 0 0 0.0219

0 0 0 0.1968

0 0 0 0.0656

0 0 0 0.5905

0 0 0 0

0 0 0 0

and

11

n msq ′ n msql ′ n

3

9 59.0%

7 19.7%

5 10.3%

8 6.6%

6 2.2%

3 1.9%

4 0.2%

1 0.1%

2 0.0%

9 65.6%

5 15.4%

7 7.3%

8 7.3%

3 2.6%

4 0.8%

6 0.8%

1 0.1%

2 0.1%

Table 3: Double faulty square functions

>> msql2(4,12)

ans =

1.0000 0 0 0

0 1.0000 0.0100 0.0010

0 0 0.0900 0.0009

0 0 0.0900 0.0261

0 0 0.8100 0.0081

0 0 0 0.1539

0 0 0 0.0081

0 0 0 0.0729

0 0 0 0.0729

0 0 0 0.6561

0 0 0 0

0 0 0 0

9 Generalizing to other fault propagation patterns

This section was conceived so that we could extend faulty behaviour to functions
with types other than the Naturals. In this case we opted for the Sequences type,
and to do that we presented two particular functions over sequences which are the
count and cat. The cat function is the identity of sequences and the count counts
the number of elements of a sequence. These functions were also implemented with
Matlab, however their output is bit more difficult to understand because, by the
time we start dealing with sequences, the cardinality of the types grows very much.

To obtain the results of fcat”abc” run the following command:

>> faultyCat(3,3,3)

Prompting the command, you realize that the output given is somewhat exten-
sive - a matrix 40× 40. The reason for this is very simple. faultyCat receives:

1. The number of different elements that can constitute the sequence. If you
choose 3, like in this case, you can imagine a sequence only with 1, 2 and 3 as
possible elements;

2. The maximum length of the sequences. If you choose 3, like in this case, you
can imagine sequences with 0, 1, 2 or 3 as length;

12

3. The number of iterations the function is supposed to run.

When we pass to faultyCat those parameters we’ve just passed, it generates
all the sequences possible respecting the parameters: 3 different elements and 3
as maximum length. There are 3 different lists with one element only, 9 with two
elements and 27 with three elements and, lastly, the empty list. Doing the math,
we have 1 + 3 + 9 + 27 = 40 different sequences, and that’s were the dimension of
the result matrix comes from.

In order to easily understand the result matrix, scrolling up the screen is possible
to visualize that a matrix called “columns” was calculated - this matrix indicates
the order of the result matrix. So, to see, for instance what is the result given by
faultyCat for a the sequence “abc”, like in the paper, firstly you need to count the
position of the sequence in the columns matrix, and then you need to look up, in
the result matrix, the column with the number you got first. Thus, for the sequence
“abc”, looking it up in the columns matrix, we realize it stands in the 35th line,
which is the sequence [1230]. Then, the 35th column in the result matrix is the
following:

0.0010

0.0090

0.0090

0.0090

0

0

0

0.0810

0

0

0.0810

0.0810

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.7290

0

0

13

0

0

0

This column is the result of faultyCat”abc”, just like in the paper. To interpret
this column, once again we have to rely on the columns matrix. The first row
of faultyCat”abc” is 0.0010 and the first row the columns matrix is 0000, which
corresponds to the empty sequence ([]). This means that faultyCat”abc” = [] with
0.1 per cent of probability. The same ‘line of though” is applied to the remaining
lines, which allow us to obtain the same result displayed in the paper:

"abc" 72.9%

"ab" 8.1%

"ac" 8.1%

"bc" 8.1%

"a" 0.9%

"b" 0.9%

"c" 0.9%

"" 0.1%

To execute fcount”abc” prompt the following command in matlab:

>> faultyCount(3,3,3)

This function has the same parameters faultyCat has, however, in this case,
we are calculating the length of sequences, which means that the output type is
Naturals, not Sequences as it was before. This means that the result matrix does
not have to be as large as it was with faultyCat. The 35th column of the result
displays faultyCount”abc”:

0.0034

0.0574

0.3251

0.6141

To execute fcount . fcat ”abc”:

>> count = faultyCount(3,3,3);

>> cat = faultyCat(3,3,3);

>> result = count*cat;

>> result(1:4,35)

ans =

0.0130

0.1267

0.4126

0.4477

Acknowledgements

This research was carried out in the QAIS (Quantitative analysis of interacting
systems) project funded by the ERDF through the Programme COMPETE and by
the Portuguese Government through FCT (Foundation for Science and Technology)
contract PTDC/EIA-CCO/122240/2010.

Daniel Murta holds grant BI1-2012_PTDC/EIA-CCO/122240/2010_UMINHO/ awarded
by FCT (Portuguese Foundation for Science and Technology).

14

