
ProveIt - An interactive point-free proof editor

José Pedro Correia

zepedro.correia@gmail.com

Techn. Report DI-PURe-05.08.02

August 2005

PURe
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)

Departamento de Informática da Universidade do Minho
Campus de Gualtar — Braga — Portugal

DI-PURe-05.08.02
ProveIt - An interactive point-free proof editor by José Pedro Correia

Abstract

The growing use of the point-free notation as a way of representing func-
tional programs has a purpose: to allow reasoning to be made about those
programs.
There is nowadays a well-sustained point-free algebric theory that allows us
to use and deduct certain laws over expressions that may represent com-
puter programs. Those laws allow us, with assurance, to “transform” an
expression into an equivalent one or to prove that same equivalence.
It is common tu use this mechanism to build proofs over point-free expres-
sions in order to testify equivalences between functions or programs.
The goal of this task was to develop a tool that would allow the user to
manage this type of proofs interactively.

1 Introduction

1.1 The point-free notation and its combinators

In point-free notation one represents functions without referring to variables.
As so, in order to associate behaviours or results one needs special function
combinators that sustain our notation. I will now resume the most common
combinators’ syntax (theoretical and in ASCII for the text boxes of the
tool) and general behaviour (I’m assuming some basic knowledge of formal
methods. For more detailed information on algebra of programming or the
combinators please refer to [2] or [3]).

1.1.1 Composition

The composition of two functions f : B → C and g : A → B is a function
f · g : A → C defined as following:

(f · g) x = f(g(x))

In ASCII we represent it simply as f . g. In Haskell exists predefined.

1.1.2 Split and product

These definitions use the definition of a product of two types A and B:

A×B = {(a, b)|a ∈ A, b ∈ B}

wich is the Haskell predefined pair (a,b). There are two projection func-
tions associated with this constructor:

π1(a, b) = a

wich is Haskell predefined fst and

π2(a, b) = b

wich is Haskell predefined snd. So, the split of two functions f : A → B
and g : A → C agregates the result of both functions, yielding a function
f 4 g : A → B × C defined as following:

(f 4 g) x = (f(x), g(x))

In ASCII we choose to represent it as f /\ g.

One can also define the product of two functions f : A → C and g : B →
D as a function f × g : A×B → C ×D:

f × g = f · π1 4 g · π2

In ASCII is f >< g.

0

1.1.3 Either and sum

These definitions are built around the sum of two types A and B defined as:

A + B = ({0} ×A) ∪ ({1} ×B)

This is Haskell predefined combinator Either. We associate with this com-
binator two injection functions:

i1 x = (0, x)

wich is the Haskell Either constructor Left (in ASCII inl) and

i2 x = (1, x)

wich is the Haskell Either constructor Right (in ASCII inr). The either
between two functions f : A → C and g : B → C acts similar as a “choice”
and is a function f ∇ g : A + B → C defined as following:

(f ∇ g) (i1 x) = f(x)

(f ∇ g) (i2 x) = g(x)

In Haskell exists as prefix either. In ASCII format it was chosen to repre-
sent it as infix f \/ g.

From this definition one can consider (as with the product) the sum of
two functions f : A → C and g : B → D as a function f+g : A+B → C+D:

f + g = i1 · f ∇ i2 · g

In ASCII is f + g.

1.2 The wxHaskell library

“wxHaskell is a portable and native GUI library for Haskell. The goal of
the project is to provide an industrial strength GUI library for Haskell, but
without the burden of developing (and maintaining) one ourselves.

wxHaskell is therefore built on top of wxWidgets - a comprehensive C++
library that is portable across all major GUI platforms; including GTK,
Windows, X11, and MacOS X. Furthermore, it is a mature library (in de-
velopment since 1992) that supports a wide range of widgets with the native
look-and-feel, and it has a very active community (ranked among the top 25
most active projects on sourceforge).” [4]

1

2 Initial considerations

The above point-free theoretical introduction is intended only as a motiva-
tion for the objectives of the task. If we take in consideration that ProveIt
will manage point-free expressions only by applying certain calculation laws
(wich associate two point-free expressions), we can see that the tool will only
act in a syntax level, leaving the semantic interpretation for the user.
Let’s now reflect on what’s intended for the tool.

2.1 Behaviour of the tool

2.1.1 Proof style

In order to represent our point-free proof one can generally choose between
two fashions:

f1

= {by laws . . . }
f2

= {by laws . . . }
f3

QED

f1 = f3

≡ {by laws . . . }
f1 = f2

≡ {by laws . . . }
f1 = f1

≡
True
QED

and one should expect that the tool supports them both unambiguously.

2.1.2 Information representation

The information regarding the current proof should be concise and clear.
The relevant information, when building a proof is, I believe, the current
state of the expression one is manipulating and the steps already taken (laws
applied so far).

2.1.3 User interaction

The fundamental action that this tool provides is the application of point-
free laws. Therefore, the mechanism should be simple and intuitive to use.
One can devise two ways of application of laws:

• selecting a specific part of the expression and the law to apply

• choosing a law and selecting from the possible points of application

Moreover, as the creation of a proof could be somewhat by attempt and
error, it is fundamental that actions of undo and redo are allowed.

2

2.1.4 External actions

It is expected that actions like saving to a file and loading from a file are
supported, in order to have persistancy in our proofs. Also it is useful to be
able to export into a format like a text or a latex file. These are the simpler
features the tool should support.

3 The tool - ProveIt

The tool has some haddock documentation that can be consulted in order
to clear the behaviour of some functions. Nevertheless, this section intends
to describe the internal structure of the tool as well a reference to data-
structures used and algorithms.

3.1 Back-end

3.1.1 Data structures

The information represented to implement our proof environment consists
of

• Point-free expression (represents a function, or part of it. Example:
f4 (g + h ∇ i)). This structure is represented using a generic tree
according to these definitions:

data RTree a = Node a [RTree a]

data PFComb =
FuncVar String

| Id
| Fst
| Snd
| InL
| InR
| FuncRef String
| MutVar Int String
| Comp
| Split
| Either
| Prod
| Sum

deriving Eq

type PFExp = RTree PFComb

• Point-free equation (an equivalence between expressions. Can also be
the value True)

3

These two datatypes are agregated into one that I describe as a Point-free
term and is defined as:

data PFTerm =
Exp PFExp

| Eq PFEq

• Point-free law (a valid equivalence between two terms)

• Point-free proof (consists of an initial expression and the sequence of
steps (law applied and application point) that make the proof)

3.1.2 Law application algorithm

The algorithm of applying a law to an expression runs briefly in three steps:

matching - one tries to match the current expression to the first expression
of the law, building a list of correspondences between variable names
and sub-expressions

checking - because the list generated above might not yield a valid substitu-
tion, one must check if the repeated references to a variable correspond
to the same sub-expression, and eliminate those repetitions

substituting - after having a valid substitution, one can apply it to the
second expression of the law, obtaining the “conversion” of the given
expression, according to the law

It is important to mention that the first two steps can fail, case where the
law is not applicable to the expression.

3.2 Front-end

3.2.1 Visual representation and interaction

The visualization of the current term is done using a tree representation of
the term and a textual representation in a textbox. One can select part of
the term by clicking in a node of the tree (that represents a sub-expression)
or by placing the cursor in a position above a combinator in the text and
right-clicking, wich selects the respective sub-expression. A right-click pops
up a menu with the laws from the repository applicable at that point.
There is also three buttons to allow operations of undo, redo and commit.
This last one allows the user to commit the last changes to a log, shown in
a textbox.

4

3.2.2 Menus

There are three menus, being:

File For operations of creating a new proof, opening a proof from a file (not
working), saving to file, saving the log to a text file, finishing the proof
and quitting.

Laws Menu containing the repository of laws. Futurely will support the
adittion of laws.

Help For now, this menu only has minimal information about the tool.
Futurely should allow the access to a user’s guide among other possible
features.

3.2.3 Data structures

For the manipulation of a point-free term it was necessary to maintain in-
formation, for a given sub-expression, about the position in the text, as well
as the corresponding wxHaskell object that pointed to the tree node. For
this purpose there is a data structure built “parallel” to the point-free term
wich is named the meta-term. This datatype is built as an instance of a
generic tree, and as the same shape as the expression, only with information
about text ranges and TreeItem’s that corresponds to the same node in the
expression.
All the front-end functions return the type IOState x. This is not a real
state monad, as it should be. The datatype is defined as:

type IOState a = IOStateVars -> IO a

where IOStateVars is the tuple of variables that one needs to keep track
along the program, like the main frame, the menus, the current expression,
etc.

3.3 Modules

The modules organization is described in this section.

3.3.1 Back-end

Mpi This module is distributed with the course of “Métodos de Programação
I” and has the basic point-free combinators, here used in some func-
tions.

RTree A generic tree definition and som useful functions on it.

PFExp Datatype definition of a single point-free expression.

PFEq Datatype definition of a point-free equation.

5

PFTerm Datatype definition of a point-free term that agregates both point-
free expression and point-free equation.

PFLaw Datatype definition of a point-free law and some functions to ma-
nipulate it.

PFProof Datatype definition of a point-free proof and some functions to
manipulate it.

FunctionsExp Functions to manipulate a point-free expression, being the
most important the law application algorithm for this datatype.

FunctionsEq Functions to manipulate a point-free equation, being the
most important the law application algorithm for this datatype.

FunctionsTerm Functions to manipulate a point-free term, being the most
important the law application algorithm for this datatype.

3.3.2 Front-end

MetaTerm Datatype definiton of a meta-tem and some functions.

IOState Dataype definiton and selector functions.

AuxMain This module contains all the auxiliary functions that manipulate
the wxHaskell objects within the program.

Main This module is the Main module, and contains the main loop as also
the functions that process actions over wxHaskell objects.

6

References

[1] Tranformações pointwise - point-free, José Proença, DI-PURe-05.02.01,
February 2005.

[2] Program Design by Calculation (draft of textbook in preparation), J.N.
Oliveira, Departamento de Informática, Universidade do Minho, 2005.

[3] Algebra of Programming, Richard Bird and Oege De Moor, Prentice
Hall 1996.

[4] wxHaskell website: http://wxhaskell.sourceforge.net

7

http://wxhaskell.sourceforge.net

