
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting.
Both can be found at the ENTCS Macro Home Page.

A Local Graph-rewriting System for Deciding
Equality in Sum-product Theories

José Bacelar Almeida, Jorge Sousa Pinto, and Miguel Vilaça 1,2,3

Departamento de Informática
Universidade do Minho

4710-057 Braga, Portugal

Abstract

In this paper we outline how a graph-based decision procedure can be given for
the functional calculus with sums and products. We show in turn how the system
covers reflexivity equational laws, fusion laws, and cancelation laws. The decision
procedure has interest independently of our initial motivation. The term language
(and its theory) can be seen as the internal language of a category with binary
products and coproducts. A standard approach based on term rewriting would
work modulo a set of equations; the present work proposes a simpler approach,
based on graph-rewriting.

1 Introduction

The point-free style of programming [1] has been defended as a good choice
for reasoning about functional programs. However, when one actually tries to
construct a decision procedure for the associated equational theory, one faces
problems, even when small fragments of the theory are considered.

In this paper we outline how a graph-based decision procedure can be given
for the functional calculus with sums and products (but no exponentials – the
expressions we use here can not really be seen as a programming language).
We show in turn how the system covers reflexivity equational laws, fusion
laws, and cancelation laws.

The decision procedure has interest independently of our initial motivation.
The term language (and its theory) can be seen as the internal language of a
category with binary products and coproducts. A standard approach based

1 Email:jba@di.uminho.pt
2 Email:jsp@di.uminho.pt
3 Email:jmvilaca@di.uminho.pt

c©2006 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Bacelar Almeida and Sousa Pinto and Vilaça

on term rewriting would work modulo a set of equations; the present work
proposes a simpler approach, based on graph-rewriting.

2 The Term Language and Theory

Consider the following language TPF for types and terms:

Type ::= A | Type× Type | Type + Type

Term ::= CType,Type | idType | Term · Term | 〈Term, Term〉 | π1
Type,Type |

π2
Type,Type | [Term, Term] | i1Type,Type | i2Type,Type

where A is a set of base types and CType,Type is a set of constant functions
(we assume that the sets in this indexed family are pairwise disjunct – thus a
constant symbol uniquely determines its indexing types).

To each term we associate a domain and a codomain type – we denote
A : f : B the assertion that term f has domain A and codomain B. The
typing rules associated to the language are the following

cA,B ∈ CA,B

A : cA,B : B A : idA : A

A : f : B B : g : C

A : g · f : C

A : f : C B : g : C

(A + B) : [f, g] : C (A×B) : π1
A,B : A (A×B) : π2

A,B : B

A : f : B A : g : C

A : 〈f, g〉 : (B × C) A : i1A,B : (A + B) B : i2A,B : (A + B)

In the following, when referring to a term we assume its well-typedness.
We will ommit the type superscripts, which can be inferred from the context.

The type constructors × and + are characterized through their universal
properties. These, in turn, may be captured by the following set of equations:

Composition id · f = f · id = f (f · g) · h = f · (g · h)

Reflexivity laws 〈π1, π2〉 = id [i1, i2] = id

Fusion laws 〈f, g〉 · h = 〈f · h, g · h〉 f · [g, h] = [f · g, f · h]

Cancelation laws π1 ·〈f, g〉 = f [f, g] · i1 = f

π2 ·〈f, g〉 = g [f, g] · i2 = g

Deciding equality under the theory defined by these equations requires
producing a decision procedure. The simplest way to accomplish this is to
orient the equations to obtain a confluent, terminating rewriting system (pos-
sibly by means of a completion process). Unfortunately, in this case it is not
possible to conduct this program. Even considering the multiplicative frag-

2

Bacelar Almeida and Sousa Pinto and Vilaça

ment alone (i.e. ignoring the terms that involve sums), we face problems when
constructing a rewriting system from the corresponding laws.

Difficulties

In the multiplicative sub-system, the orientation left to right seems sensible
for the equations given above, but creates unsolvable critical pairs induced by
the reflection laws. To illustrate this problem consider the following derived
law (surjective pairing)

f = id · f = 〈π1, π2〉 · f = 〈π1 ·f, π2 ·f〉

Both extremes of the equality chain are in normal form with respect to the
rewrite system obtained, thus it fails to be complete.

A closer look at the reflection law gives us a hint of what the problem
is – it drops from the term structural information that is essential for the
confluence of the system. An approach to overcoming this problem consists
in imposing that all the rewrites preserve the structural information (allowing
for the reconstruction of types), together with the proviso that the starting
term contains all the structural information to reconstruct its type structure.
In practice, we can drop identities from the language, except at base types,
and the reflexivity law can be dropped from the rewriting system – it becomes
a rule for defining identities of structured types. As an example, the identity
of type (A×B)× C is defined as 〈〈π1, π2〉 . π1, π2〉.

Constant functions should also carry their structural information. To avoid
restricting constant functions to base types, we may instead exhibit that in-
formation by composing the functions with appropriate identities (defined as
above). This means that a normal form of a constant function f with codomain
A × B is the normal form of 〈π1, π2〉 · f , that is 〈π1 ·f, π2 ·f〉. Equations like
surjective pairing are then satisfied by construction.

Obviously, restricting our attention to the additive fragment will lead to
dual arguments. However, when both products and sums are considered, a
simple rewriting approach faces irremediable problems: not only does asso-
ciativity of composition become a concern (there no longer exists a sensible
orientation for it), but products and sums interact in such a symmetrical way
that the rewriting system cannot “choose” a certain form to the detriment of
its dual. To exhibit an example that illustrates this last observation, consider
the following equality derivation (known as the exchange law):

〈[f, g], [h, k]〉= 〈[f, g], [h, k]〉 · [i1, i2]
= [〈[f, g], [h, k]〉 · i1, 〈[f, g], [h, k]〉 · i2]
= [〈[f, g] · i1, [h, k] · i1〉, 〈[f, g] · i2, [h, k] · i2〉]
= [〈f, h〉, 〈g, k〉]

In fact, to decide equality of the sum-product theory through a rewriting
system, we must work modulo an appropriate equational theory that handles

3

Bacelar Almeida and Sousa Pinto and Vilaça

these equalities (see for instance [4]).

In this paper we follow a totally different approach: the graph-rewriting
system introduced in the next sections captures associativity of composition
for free, and moreover the interaction between the multiplicative and the addi-
tive fragments is adequately treated (for instance the two sides of the exchange
law have the same normal form). The system includes however the treatment
of reflexivity outlined above.

3 Sum-product Nets

Sum-product Nets will be built from instances of symbols ; each symbol has
an associated number of input ports (or arity) and number of output ports
(or co-arity). We organize these symbols in dual pairs where the arity and
co-arity are exchanged. These symbols are:

• a duplicator symbol with arity 1 and co-arity 2, depicted ∧; its dual is the
co-duplicator, depicted ∨;

• a makepair symbol with arity 2 and co-arity 1, depicted (,); its dual is
choice and depicted ?;

• two pair projection symbols with arity 1 and co-arity 1, depicted π1 and π2;
their duals are the choice injections depicted i1 and i2;

• an eraser symbol with arity 1 and co-arity 0, depicted ε; the dual co-eraser
is depicted ε.

• a cancel symbol with arity and co-arity 1, depicted �; its dual co-cancel is
depicted �.

A Net is a tuple (S, E, I, O) where S is a set of occurrences of symbols,
E is a set of edges, and I, O are two sets of input ports and output ports
of the net. Input and output ports of the net do not belong to any symbol
occurrence. Let SI , SO denote respectively the sets of input and output ports
of the symbol occurrences in S. Then each edge in E connects a port in SO∪I
(the output port of some symbol occurrence or an input of the net) to a port
in SI ∪O (the input port of some symbol occurrence or an output of the net).
Every port in SI ∪ SO ∪ I ∪O belongs to exactly one edge. In the rest of the
paper we refer to occurrences of symbols as nodes.

In what follows, ∧, ∨, � and � nodes in a net will be labelled indexes
(pair of integers for ∧ and ∨ nodes, integers for cancel and � nodes). These
will be used to control the duplication and mutual annihilation of nodes in
the reduction system presented in section 6.

A net is well-typed is there exists a labelling of the input and output ports
of each of its nodes with a type, such that every edge connects equally labelled
ports, and the constraints shown in Figure 1 hold for every node (type variables
are depicted as capital letters).

4

Bacelar Almeida and Sousa Pinto and Vilaça

A position is a pair of non-negative integers (a, b), depicted as a·b. A net
is well-formed if there exists a labelling of the input and output ports of each
of its nodes with a position, such that every edge connects equally labelled
ports, and the constraints also shown in Figure 1 hold for every node (S n
denotes the successor of n). Well-formedness imposes a structural invariant
on nets.

(,) π1 π2 ∧
(k,n)

ε

A B

A×B

A×B

A

A×B

B

A

A A

A

ε

A

? ι1 ι2 ∨
(n,k)

A B

A+B

A

AABA

A+B A+B

a·ba·b

a·b

a·Sb

a·b

Sa·bSa·b
a·b

a·b

a·Sba·Sb

a·b

Sa·bSa·b

a·b a·b

a·ba·b

a·b a·b

a·ba·b

n

n

A

A

A

A

a·Sb

a·b

a·b

Sa·b

Fig. 1. Typing and Positioning Constraints

Definition 3.1 A sum-product net is an acyclic, well-typed and well-formed
net with a single input and output, both labelled with empty positions.

(,)

∧
·

∧
·

(,)

(,)
∧
·

(,)

∧
·

∧
·

π1 π2 ι1 ι2

?

(,) ∨
·

π1

(,)

∧
·

Fig. 2. Examples of Nets

Figure 2 contains examples of nets that are not sum-product nets: the first
net is not well-typed; the second is not well-formed; the third net has a cycle.

4 Term nets

We now give a type-directed translation T(·) from terms of TPF into sum-
product nets. When a smaller net is used to construct some other net, we
assume that the input and output in the initial net are removed. We also
assume that a new pair of input/output ports and corresponding edges are
introduced in the new net. The indexes of new nodes are initially set to zero.

The translation expands identities as explained before, so that only iden-
tities of atomic types are represented as edges. Moreover, we remark that the

5

Bacelar Almeida and Sousa Pinto and Vilaça

translation of 〈, 〉 and [,] may also expand identities to allow for the correct
treatment of terms to which the exchange law may be applied.

Identity
• T(idA→A), where A is a base type, is defined as the sum-product net

consisting of a single edge connecting the input to the output;
• T(idA×B→A×B) is the sum-product net I obtained by introducing 4 new

nodes, ∧, π1, π2, and (,), and new edges connecting the first (resp. second)
output of ∧ to the input of π1 (resp. π2), the output of π1 (resp. π2) to
the input of IA (resp. IB), and the output of IA (resp. IB) to the first
(resp. second) input of (,), where IA = T(idA→A) and IB = T(idB→B);
and finally setting the input of I to be the input of ∧ and the output of
I to be the output of (,).

• T(idA + B→A + B) is the sum-product net I obtained by introducing 4 new
nodes, ?, i1, i2, and ∨, and new edges connecting the first (resp. second)
output of ? to the input of IA (resp. IB), the output of IA (resp. IB) to
the input of i1 (resp. i2), and the output of i1 (resp. i2) to the first (resp.
second) input of ∨, where IA = T(idA→A) and IB = T(idB→B); and finally
setting the input of I to be the input of ? and the output of I to be the
output of ∨.

Composition
• T(u . tA→C) is the sum-product net V obtained by connecting an edge from

the output of T to the input of U , where T = T(tA→B) and U = T(uB→C).
Naturally, the input of T becomes the input of V , and the output of U
becomes the output of V .

Constant Function
• T(π1

A×B→A) is the net P1 obtained by introducing a new node π1 and a
new edge connecting its output to the input of IA, where IA = T(idA→A),
and setting the input of P1 to be the input of π1 and the output of P1 to
be the output of IA.

• T(π2
A×B→B) is the net P2 obtained by introducing a new node π2 and a

new edge connecting its output to the input of IB, where IB = T(idB→B),
and setting the input of P2 to be the input of π2 and the output of P2 to
be the output of IB.

• T(i1
A→A + B) is the net I1 obtained by introducing a new node i1 and a new

edge connecting the output of IA to the input of i1, where IA = T(idA→A),
and setting the input of I1 to be the input of IA and the output of I1 to
be the output of i1.

• T(i1
B→A + B) is the net I2 obtained by introducing a new node i2 and a new

edge connecting the output of IB to the input of i2, where IB = T(idB→B),
and setting the input of I2 to be the input of IB and the output of I2 to
be the output of i2.

Split
Let G be the sum-product net obtained by introducing two new ∧ and (,)

6

Bacelar Almeida and Sousa Pinto and Vilaça

nodes, and 4 new edges connecting the outputs of ∧ to the inputs of T and
U , and the outputs of T and U to the inputs of (,), where T = T(tE→A)
and U = T(uE→B); the input of ∧ becomes the input of G and the output
of (,) becomes the output of G. Then:
• T(〈t, u〉E→A×B), with E = C + D, is the sum-product net G′ obtained

by constructing the net I = T(idC + D→C + D), and an edge connecting its
output to the input of G, setting the input of G′ to be the input of I, and
the output of G′ to be the output of G.

• T(〈t, u〉E→A×B), where E is not of the form C + D, is just G.

Either
Let G be the sum-product net obtained by introducing two new ? and ∨
nodes, and 4 new edges connecting the outputs of ? to the inputs of T and
U , and the outputs of T and U to the inputs of ∨, where T = T(tA→E) and
U = T(uB→E); then the input of ? becomes the input of G and the output
of ∨ becomes the output of G. We have: cancela
• T([t, u]A + B→E), where E = C ×D, is the sum-product net G′ obtained

by constructing the net I = T(idC ×D→C ×D), and an edge connecting the
output of G to the input of I; the input of G′ is the input of G, and the
output of G′ is the output of I.

• T([t, u]A + B→E), where E is not of the form C ×D, is just G.

Definition 4.1 The class of sum-product nets constructed by the translation
T(·) are designated term nets.

The term nets T(id(A×B)×(C ×D)→(A×B)×(C ×D)) and T(π1
(A + B)×C→A + B)

are shown below as examples.

A+B

π1

A B

(A+B)×C∧

π1
A×B

π2

(,)

(A×B) ×(C×D)

∧ ∧

π1
A

π2

(,)

π1 π2

(,)
CB D

 C×D

A×B C×D

(A×B) ×(C×D)

?

∨

ι1 ι2

A+B

It is straightforward to see that T(tA→B) is indeed a term net with input
of type A and output of type B. A distinctive feature of the translation
is that two differently-typed, syntactically equal terms may be translated as
different term nets. The translation introduces in the nets sufficient structural
information to allow for the typing information to be discarded. The principal
type of the term represented by a net can always be uniquely determined.

7

Bacelar Almeida and Sousa Pinto and Vilaça

5 Deciding Equality by Local Graph Rewriting

Fusion

∧

f
f f

∧

g h
g h

(,) (,)

Fig. 3. Fusion as Net Duplication

Fusion is accomplished by the interaction with (co-)duplicators. Intu-
itively, a duplicator interacting with a net should perform a copy of that net
(see Figure 3). However, this “duplication” should take into account that we
intend it to be performed locally, i.e. the (co-)duplicators interact only with
individual nodes. Moreover, both kinds of fusion (additive and multiplicative)
can occur simultaneously and thus some care must be taken in order to avoid
interferences in the process.

∧

(,)

f g

∧

∧

∧ ∧

f f gg

(,) (,)

∧

f g

∧ ∧

(,) (,)

∧

∧ ∧

f f gg

(,) (,)

Fig. 4. Duplication of a Structured Net

For the sake of clarity, we start our presentation considering the multi-
plicative fragment of our language. Later, we elaborate on the adjustments
required for dealing with the full language. When a duplicator meets a struc-
tured net (e.g. a split of two terms), it must split itself in order to duplicate
each component of the net. Moreover, once concluded the duplication of each
sub-net, it is still necessary to reorganize the duplicators on the top of the
net to get the correct outcome for the duplication of the structured net (see
Figure 4). The need to control this reorganization of duplicators justifies the
presence of indexes in the nodes. We are led to the following rules governing
the interaction with duplicators.

∧
n

(,) ∧
Sn

(,)

∧
Sn

(,)

dupM-pair

∧
n

f

f f

∧
ndupM-f

f = π1, π2, ι1, ι2 ∧
Sn

∧
0

∧
Sn

∧
0

∧
n

∧
0

dupM-dupM

The first rule is fairly obvious — the interaction with single input/single
output nodes simply duplicates them. When a duplicator interacts with a pair

8

Bacelar Almeida and Sousa Pinto and Vilaça

constructor node, not only does it duplicate the node, but it also splits itself
in two in order to duplicate each subnet. The last rule is the commutation
rule between duplicators and is actually the counterpart of the spliting of
duplicators referred in the previous rule, allowing for the split duplicator to
be ‘rejoined’, while at the same time duplicating the top duplicator. Note the
difference between splitting and duplication of duplicators.

For now, we let the indexes attached to duplicators to be integers (later,
we will elaborate these to be pair of integers). They record “how deep” the
corresponding duplicator is in the transversal of a structured net. When a
duplicator has its index set to zero, we call it a ground duplicator and often
omit its index. Notice that the commutation rule actually restricts the top
duplicator to be ground. We show an example of the duplication process:

(,)

∧

∧

(,)

∧
1

∧
1

(,) (,)

∧

∧

(,)

∧
1

∧
1

(,) (,)

(,)

∧
1

∧
1

∧

∧
2

∧
2

∧
2

∧
2

(,) (,) (,) (,)

(,) (,)

(,)

∧ ∧

∧

∧
2

∧
2

∧
2

∧
2

(,) (,) (,) (,)

(,) (,)

(,)

∧

∧ ∧ ∧ ∧

(,) (,) (,) (,)

(,) (,)

(,)

∧
1

∧
1

∧

∧ ∧ ∧ ∧

(,) (,) (,) (,)

(,) (,)

(,)

∧ ∧

We now turn to the interaction between sums and products. Structurally, it
is fairly obvious that when a duplicator and a co-duplicator meet, they should
pass through each other. The question is whether the nodes get duplicated or
split during this process (i.e. what the impact on their indexes is).

A first solution would be to state that only duplications take place. This
corresponds to keeping both indexes unaltered, and leads to a rule that allows
duplicators to freely pass through choice nodes (i.e. without index regulation).
The following additional interaction rules (and their duals) are required:

∨
k

∧
n

∧
n

∧
n

∨
k

∨
k

dupM-dupS

∧
n

?

∧
n

∧
n

? ?

dupM-choice

We show an example of this. Note that, as expected from the discussion
in Section 2, the above normal form is not a direct translation of any term
(split or either).

∨

?

∧

(,)

∧
1

∧
1

∨
 1

∨
 1

?

(,)

∧

? ?

∧

? ?

(,) (,)

∨

∨
 1

∨
 1

(,)

Unfortunately, with these rules the indexes no longer constrain appropri-

9

Bacelar Almeida and Sousa Pinto and Vilaça

ately the commutations that might take place in a reduction sequence. To see
this, consider the following reduction sequence:

?

∧ ∧

∧ ∧

(,) (,)

(,)

(,)

∧

(,)

∨

?

∧

∧ ∧

(,) (,)

(,)

(,)

∧

(,)

∨

? ?

∧

∧ ∧

(,) (,)

(,)

(,)

(,)

∨

?

(,)

∧
1

∧
1

Note that the application of rule dupM-choice removes the ground du-
plicator needed to close the fusion started on the left hand-side sub-net. In
fact, this is exactly the pattern of divergence that rule dupM-dupM avoids by
restricting the top duplicator to be ground. This shows that indexes should
also restrict the application of rule dupM-choice.

A second approach would be to let both nodes be split (i.e. both nodes
increment their indexes). These are the corresponding rules:

∨
k

∧
n

∧
Sn

∧
Sn

∨
Sk

∨
Sk

dupM-dupS

∧
Sn

?

∧
Sn

∧
n

? ?

dupM-choice

Here the problem becomes subtler. Consider the following reduction sequence:

?

∧ ∧

∧

(,)

(,)(,)

∨

∧

(,)

∧ ∧

∧

(,)

(,)(,)

∧

(,)

∨

∨

? ?

? ?

∨ ∨
1 1 ∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

?

? ?

1 111

1 1 1 1

∨ ∨
1 1

∨

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

?

? ?

1 111

1 1 1 1

∨ ∨

∨

Notice that the traversal of the net by the coduplicator on the top actually
lifts the indexes for all the duplicators in the lower sub-nets. This is not in
accordance with the informal description given above, but can actually appear
as an interesting feature that can be exploited by the system. In fact, if we
continue the reduction process, we get:

10

Bacelar Almeida and Sousa Pinto and Vilaça

∧
(k,n)

(,) ∧
(k,Sn)

(,)

∧
(k,Sn)

(,)

dupM-pair

∧
(Sk,n)

?

∧
(Sk,n)

∧
(k,n)

? ?

dupM-choice

∧
(k,n)

f

f f

∧
(k,n)

dupM-f

f = π1, π2, ι1, ι2
∧

(k,Sn)

∧
(0,0)

∧
(k,Sn)

∧
(0,0)

∧
(k,n)

∧
(0,0)

dupM-dupM

∨
(i,j)

∧
(k,n)

∧
X

∧
X

∨
 Y

∨
 Y

dupM-dupS Where:
X = (k,n), if i > k
X = (Sk,n), if i ≤ k
Y = (i,j), if n > j
Y = (i,Sj), if n ≤ j

Fig. 5. Fusion Rules

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

?

? ?

1 111

1 1 1 1

∨ ∨

∨

(,)

∧

(,)

(,)

∧

(,)

(,)

∧

(,)

(,)

∧

(,)

∨ ∨

∨

∧

? ???

∧

?

1 1 1 1

(,)

(,)

(,)

(,)

∨ ∨

∨

∧

?

?

?

∧ ∧

(,)

(,)

(,)

(,)

∧

? ?

∧ ∧

This example suggests that, in order to reach full normal forms, it is suf-
ficient to promote enough fusions (something that might be accomplished by
pre or post-composition with identities). The problem is that we do the addi-
tional reductions relying strongly on the symmetry of the net (more precisely,
on the number and the tree shape of duplicators in both sides of the choice
node). Even though term nets do exhibit a high degree of symmetry, we are
not able to assure that all nets, under all reductions strategies, do possess the
symmetry required by this set of rules

A final approach is to have a mixed version of the previous solutions: infor-
mally, we take one of the nodes to be the ‘dominator’ of the interaction. This
node splits itself (its index is increased), and the other is simply duplicated
(its index remains unaltered).

The problem become how to define the domination relation. In fact, the
most obvious solutions fail to define a confluent system. Our solution is given
by the following characterization (for the sake of clarity, we present it in terms
of the (co-)duplicator initial positions): “a ∨ dominates a ∧ when there is no
? node between them”. In order to express this with indexes, we need to
distinguish an additive and a multiplicative component. Figure 5 sum up our
discussion (we omit those rules that can be obtained by duality).

The following two examples show the distinct treatment given for duplica-

11

Bacelar Almeida and Sousa Pinto and Vilaça

tors when traversed by the top co-duplicator.

?

∧

(,)

∨

∨

?

?

∧

(,)

∨

?

?

∧

(,)

∨

∧

(,)

∨

?

(,)

?

(,)

∧
(1,0)

∧

(,)

∧
(1,0)

∧
(1,0)

∧
(1,0)

∨

∨

(,) (,)

(,) (,)

∨

(,) (,)

∧

? ?

∧ ∧

Note that we only allow ∧s to commute with the ? node that is associated
with the co-duplicator that is performing the fusion (even when this ? only
become available after commutation with other ∧s). Commutations with ?
nodes duplicated during the fusion process are inhibited.

Cancelation

Cancelation is by nature related with erasing. Consider the structure of a
cancelation rule:

∧

(,)

f g

π1

*
f

The interaction of the bottom nodes should trigger the removal of the net g
and the top duplicator.

We follow the standard approach of introducing special erasing nodes ε
and εthat annihilate any other node that interacts with them. The main
difficulty is the removal of the top node, that also acts as delimiter for the
erasing process. For that, we use � and � nodes, whose function is to traverse
the net f and remove the top duplicator as soon as the erasure of the net g
takes place. Once again, it must be ensured that this process does not interfere
with other cancelations and fusions that may be taking place.

In a sense, � nodes behave like duplicators as they move upwards in the
net. Like duplicators, an index is attached to � nodes. However, these are
simplified indexes as they are not affected by the additive constructs – this
simplification is possible due to the simpler commutation rule for � nodes.

During the traversal, � nodes perform a correction on the indexes of co-

12

Bacelar Almeida and Sousa Pinto and Vilaça

(,)

π1

εcancelM-1

0

(,)

n

Sn Sn

(,)
cancelM-pair

?
 j j

j

?
cancelM-choice

f
n f

cancelM-f
n

f = π1, π2, ι1, ι2

ε

ε

eraser-coeraser

n

k

cancelM-cancelS

n

k

j

∨
 (n,k)

j j

cancelM-dupS-1
∨

 X

∧
(0,0)

Sn Sn ∧
(0,0)

n
cancelM-dupM

ε

epsilon-dupM-2∧
(0,0)

0

Where:
X = (n,k-1), if k > j
X = (n,k), if k ≤ j

Fig. 6. Cancelation Rules

duplicators. This is because co-duplicators might have crossed the top dupli-
cator and updated their indexes.

A representative subset of the rules for cancelation is given in figure 6.
We omit the rules that can be obtained by duality and the garbage-collection
rules for ε and ε. The full set of rules is given in Appendix A.

In these rules, cancelation is triggered by the interaction of the pair-
constructor and a projection node (rule cancelM-1). After that, the ε node
will discard the portion of the net that corresponds to the canceled sub-term;
the � node will traverse the preserved sub-term and synchronize with the ε
node on the top duplicator.

The reduction shown below illustrate the interaction between the additive
and multiplicative fragment and with cancelations.

∧

(,)

π1

∨

?

ι2 0

ε

∧

∨

0
ε

∧
(1,0)

∧
(1,0)

∨
(0,1)

∨
(0,1)

ε

ε

0

0

∧
(0,0)

 0 0

∨
(0,0)

0 0

ε

ε

∧
(0,0)

0

∨
(0,0)

0

ε

ε

To conclude this informal presentation, we present in Figure 7 an example
of an asymmetrical net. It constitutes a counterexample for the second ap-
proach outlined above to the interaction of multiplicative and additive fusion.
The reader is invited to perform its fusion with [id, id] to verify the problems
of such an approach.

6 Sum-product Net Rewriting

A local graph-rewriting system will now be given for sum-product nets, based
on the ideas discussed infromally in the previous section. We first need to
establish an appropriate notion of graph-rewriting rule: both the left-hand

13

Bacelar Almeida and Sousa Pinto and Vilaça

?

∧ ∧

∧

(,)

(,)(,)

∨

∧

(,)

∧

(,)

π1π2

Fig. 7. Example of an asymmetrical net

side (LHS) and the right-hand side (RHS) of the rule are finite nets, such
that the sets of input and output ports are the same in both nets (in other
words the rule preserves the interface of the net). Moreover both the LHS and
RHS nets are well-typed and well-formed, the rule preserves type and position
labellings of the inputs and outputs, and does not introduce cycles.

The application of a rule in a typed net replaces any subnet matching its
LHS by its RHS; the conditions above guarantee that there will be no edges
left dangling. The system introduced below enjoys additionally the following:

• There are no two rules in the system with the same LHS, or such that the
LHS of a rule is a subnet of the LHS of the other;

• The RHS of each rule does not contain as a subnet the LHS of another rule;

• The set of rules is dual-complete: the dual of each rule is also in the system.

This has some of the defining properties of an interaction net system [3];
further requirements of such a system are that each node should have a distin-
guished principal port, and the LHS of every rule should consist of two nodes
with an edge connecting both principal ports. This requirement is sufficient
to guarantee strong local confluence, which is not a property of our system.

Definition 6.1 The Sum-Product Rewriting System is defined by the rules
given in Appendix A. An admissible net is any reduct of a term net.

It is straightforward to see that the system is strongly normalizing (in
general ∧ and � nodes go up; ∨ and � nodes go down; commutations between
three ∧ or ∨ nodes impose unique configurations).

Duality allow a considerable economy of effort during the study of the
rewriting system: in practice, one need to check (roughly) half of node types
and rules. In what follows, we will always implicitly invoke it.

When we restrict attention to admissible nets, the system has a controlled
behaviour that we will explore later when proving main results of this paper.
Let us now state one of these results for future reference (proved in appendix).

Lemma 6.2 In admissible nets, indexes can be reset by reduction.

14

Bacelar Almeida and Sousa Pinto and Vilaça

Confluence

It is not difficult to realize that the rewriting system presented above is not
confluent for general sum-product nets. However, we are interested in a par-
ticular class of nets, namely admissible nets, and for these we will be able to
exploit their regularity properties to show that the reduction paths actually
converge.

As usual, the confluence of the system will be established by resolution
of the critical pairs induced by the rules. Most of these pairs are resolved in
a purely local fashion, applying the rules of the system. For some, however,
that will be not enough since the convergence of both reduction paths do rely
on the global properties of admissible nets. In order to regain the local flavor
in the analysis of critical-pairs, we will introduce a notion of equivalence that
will capture this dependency.

Definition 6.3 Let N be single input, n-output net and A a two-input,
single-output node. We define JOIN(A,N) as a net composed of two copies
of N and n copies of A (say Ai) where the inputs of the net are the inputs
of each copy of N , the ith output of the first (resp. second) copy of N is
connected to the first (resp. second) input of Ai, and the ith-output of the
net is the output of Ai.

Definition 6.4 Let N1 and N2 be two single-input, n-output nets. They are
said twin equivalent with respect to a node A when, for every net N containing
an occurrence of JOIN(A,N1), N has a common reduct with the net resulting
from substituting N JOIN(A,N1) by JOIN(A,N2) in N .

Let us illustrate a concrete example of a twin equivalence.

Lemma 6.5 The following nets are twin-equivalents with respect to ∨(i, j).

∧
(Sk,Sn)

∧
(1,0)

∧
(Sk,Sn)

∧
(1,0)

∧
(Sk,n)

∧
(1,0)

Proof. Let us denote by N
(a,b)
1 and N

(a,b)
2 the following nets:

∧
(a+k,b+Sn)

∧
(a,b)

∧
(a+k,b+Sn)

∧
(a,b)

∧
(a+k,b+n)

∧
(a,b)

Note that N
(0,0)
1 reduces to N

(0,0)
2 . The idea is that we can treat each

of these parametrized nets as (indexed) nodes — for that, we compute the
derived rules of interaction between these nets and each kind of node defined
in sum-product nets. Doing that we realize that, for every node type, they are
exactly the same for N

(a,b)
1 and N

(a,b)
2 . On the other side, we know by Lemma

6.2 that the top duplicator in N
(a,b)
1 do have a reduction sequence that reset its

15

Bacelar Almeida and Sousa Pinto and Vilaça

index. Consider that reduction sequence performed by N
(a,b)
1 as a block and

finally applying rule dupM-dupM. The above discussion tell us that the impact

on N is precisely the same if performed by N
(a,b)
2 . 2

This example actually shows what will be the primary purpose of twin-
equivalences in the proof of confluence: they allow to overcome the restrictions
on the application of the commutation rules. Curiously, these restriction were
imposed precisely to achieve confluence, as they avoid critical pairs between
commutations.

Proposition 6.6 The rewriting system is confluent for admissible nets.

Proof. We consider the critical pairs induced by the rules given in appendix
A. Let us illustrate with the most interesting one: the critical pair formed by
rules dupM-dupM and dupM-dupS.

We need to consider several cases depending on the indexes of the agents.
Let us first assume that the additive index of the ∨ is zero. We are lead to
the following pair of reduction sequences:

∧
(0,0)

∧
(1,0)

∧
(1,0)

∧
(0,0)

∧
(k,n)

∧
(0,0)

∧
(k,Sn)

∧
(k,Sn)

∧
(k,Sn)

∧
(k,Sn)

∧
(Sk,Sn)

∧
(1,0)

∧
(Sk,Sn)

∧
(Sk,Sn)

∧
(1,0)

∧
(Sk,Sn)

∧
(Sk,n)

∧
(Sk,n)

∧
(0,0)

∧
(0,0)

∧
(1,0)

∧
(Sk,n)

∧
(1,0)

∧
(1,0)

∧
(Sk,n)

∧
(1,0)

∧
(1,0)

∧
(Sk,n)

∧
(1,0)

∧
(1,0)

∧
(Sk,n)

∧
(1,0)

∨
(0,j)

∨
(0,Sj)

∨
(0,Sj)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,j)

∨
(0,J)

∨
(0,J)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

∨
(0,SJ)

where J =

{
j , if n > j;

Sj , otherwise.

The symbol ≡ denotes structural equality in nets and ∼= is an application of
the twin-equivalence presented in Lemma 6.5.

When ∨ has a strictly positive additive index, the top-duplicator does not
alter its index, and the invocation of the twin-equivalence can be replaced by
the execution of rule dupM-dupM. 2

7 Soundness and Completeness

The reduction system given in Appendix A induces the following definition of
equivalence of sum-product nets. Let ≡ denote structural equality of nets.

16

Bacelar Almeida and Sousa Pinto and Vilaça

Definition 7.1 Two term nets G1, G2 are equivalent, written G1 = G2, if
there exist G′

1, G′
2 such that G1 −→∗ G′

1 and G2 −→∗ G′
2, and G′

1 ≡ G′
2.

We may now establish the main results relating the equational theory and
the graphical system.

Proposition 7.2 (Soundness) Let t, u be TPF terms. Then

t = u =⇒ T(t) = T(u)

Since reduction of a term net does not necessarily produce another term
net, in the following completeness result the common reduct of T(t) and T(u)
may be a sum-product net that is not a term net.

Proposition 7.3 (Completeness) Let t, u be TPF terms. Then

T(t) = T(u) =⇒ t = u

Proofs of both results can be found in Appendix B.

8 Conclusions and Future Work

Together, the translation T(·) and the graph-rewriting system solve three
problems:

• The translation directly captures the reflexivity laws, because it expands
identities according to their types.

• To ensure that the fusion laws are effectively captured, commutations be-
tween configurations involving 3 nodes must be allowed (rules dupM-dupM,
dupM-choice, dupS-dupS and pair-dupS), regulated by an indexing scheme.

• Finally, this indexing scheme must be capable of handling fusions in terms
such as 〈a, b〉 .[c, d], which may happen in two directions. In our system,
such a fusion results in a (unique) graph which is no longer a term net.

An adequate treatment of the exponential fragment of the calculus is the
next obvious step. This introduces new problems, related to the work on en-
codings of the λ-calculus into interaction nets. The initial and terminal objects
and their associated morphisms can easily be incorporated in our system.

We also intend to use this graph-rewriting system in the context of a visual
language for functional programming.

References

[1] Bird, R., de Moor, O.: Algebra of Programming, Prentice Hall, 1997.

[2] J.-Y. Girard: Towards a Geometry of Interaction, In Categories in Computer
Science and Logic: Proc. of the Joint Summer Research Conference, pages 69–
108. 1989.

17

Bacelar Almeida and Sousa Pinto and Vilaça

[3] Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on
Principles of Programming Languages (POPL’90), pages 95–108. ACM Press,
Jan. 1990.

[4] J. R. B. Cockett and R. A. G. Seely Finite sum - product logic. In Theory and
Applications of Categories, Vol. 8, 2001, No. 5, pp 63-99.

18

Bacelar Almeida and Sousa Pinto and Vilaça

A Full Set of Rewrite Rules

ε

ε

dupS-coepsilon-1

dupS-coepsilon-2

ε

ε

epsilon-dupM-1

epsilon-dupM-2

∨
(0,0)

∧
(0,0)

∧
(0,0)

∨
(0,0)

0

0

0

0

∧
(0,0)

Sn Sn ∧
(0,0)

n
cancelM-dupM

∨
(0,0)

Sn Sn

n

∨
(0,0)dupS-cancelS

∧
(k,Sn)

∧
(0,0)

∧
(k,Sn)

∧
0

∧
(k,n)

∧
0

dupM-dupM

∨
 (0,0)

∨
 (Sn,k)

∨
 (Sn,k)

dupS-dupS

∨
 (n,k)

∨
 (0,0)

∨
 (0,0)

ε

∧
(k,n)

∨
(n,k)

ε

ε ε

ε ε

eraser-dupS
dupM-coeraser

∧
(k,n)

f

f f

∧
(k,n)

dupM-f

f = π1, π2, ι1, ι2

∨
 (n,k)

f

ff

∨
 (n,k)

f = π1, π2, ι1, ι2

f-dupS

j

∧
(k,n)

∧
X

 j j

dupM-cancelS

∧
(k,n)

εε
ε ε

εε

∨
(n,k)

eraser-dupM dupS-coeraser

j

∨
 (n,k)

j j

cancelM-dupS

∨ X
Where:

X = (n,k-1), if k > j
X = (n,k), if k ≤ j

Where:
X = (k-1,n), if k > j
X = (k,n), if k ≤ j

∨
(i,j)

∧
(k,n)

∧
X

∧
X

∨
 Y

∨
 Y

dupM-dupS Where:
X = (k,n), if i > k
X = (Sk,n), if i ≤ k
Y = (i,j), if n > j
Y = (i,Sj), if n ≤ j

19

Bacelar Almeida and Sousa Pinto and Vilaça

ε

(,)

ε ε

ε

?

ε ε

eraser-pair
choice-coeraser

∧
(k,n)

(,) ∧
(k,Sn)

(,)

∧
(k,Sn)

(,)

dupM-pair ∨
(n,k)

?

choice-dupS ? ?

∨
(Sn,k)

∨
(Sn,k)

(,)

π1

(,)

π2

ε

ε

cancelM-1

cancelM-2

0

0

ι1

?

ε

ι2

?

ε

cancelS-1

cancelS-2

0

0

(,)

n

Sn Sn

(,)

cancelM-pair n

?
?

 Sn Sn

choice-cancelS

(,)
ε ε ε ?

ε ε ε
pair-coepsilon

epsilon-choice

?
 n n

n

?

cancelM-choice

(,)
(,)pair-cancelS

n n

n

∧
(Sn,k)

?

∧
(Sn,k)

∨
(k,Sn)

∨
(k,Sn)

(,)

∧
(n,k)

? ?∨
(k,Sn)

(,) (,) dupM-choice

pair-dupS

f

ε
ε

f = π1, π2, ι1, ι2

eraser-f

f

n f

cancelM-f

n

f = π1, π2, ι1, ι2
f

ff-cancelS

n

n

f

ε ε

f = π1, π2, ι1, ι2

f-coepsilon

f = π1, π2, ι1, ι2

20

Bacelar Almeida and Sousa Pinto and Vilaça

n

ε

ε

nε

εeraser-cancelS cancelM-coeraser

n ε

ε

n

ε

ε

eraser-cancelM
cancelS-coeraser

ε

ε

eraser-coeraser

n

k

cancelM-cancelS

n

k

B Proofs

Admissible Nets

Rules dupM-dupM and dupM-choice are called commutation rules as they pro-
mote a swap of nodes. For convenience, let us say that a net admits “half a
commutation” if that net contains a subnet matching the top and one of the
bottom nodes of the LHS of a commutation rule (a partial match).

Lemma B.1 Let N be an admissible net that admits half a commutation.
Then, there exists a net N ′ such that N ⇒? N ′ and N ′ admits to extend the
partial match to the full match of the commutation rule LHS.

Proof. In an admissible net, and for every ? and ∧ node with index (0, 0),
we are able to identify what is the agent “scheduled” for commutation with
it (if any). This can be computed by a recursive procedure that follows the
definition of the net starting from one output of the agent. The absence of
commutation rules with non-ground duplicators guaranty that this node does
not change until commutation actually occurs. Moreover, the fact that rules
dupM-pair and dupM-dupS inject duplicators in both inputs of the interacting
agents guaranty that, in admissible nets, the result is the same when computed
on any of the output ports of the given node. 2

Corollary B.2 (Lemma 6.2) In admissible nets, indexes can be reset by re-
duction.

Proof. Indexes are adjusted during reduction in accordance with the well-
formedness criteria. On the other hand, rules for indexed nodes are such
that do not constrain interaction when the indexes are non-zero. This mean
that an indexed node can only survive in a normal form if: (i) it reaches the
top of the net; (ii) it get stuck in a commutation that is not possible. The
well-formedness criteria guaranties that (i) is not possible for admissible nets.
Lemma B.1 shows that (ii) could never occur in a normal form. 2

21

Bacelar Almeida and Sousa Pinto and Vilaça

Soundness

Lemma B.3 Let t be a TPF term, and G∧(t) the net obtained by connecting
a ∧ node indexed with a, m where m > 0, to the output of the term net
T(t). Then G∧(t) −→∗ G∧(t), where G∧(t) consists of a ∧ node indexed with
a, m, whose outputs are connected to the inputs of two nets Gl, Gr such that
Gl = Gr = T(t).

Proof. By induction on the structure of t. Note that the lemma is not valid
for m = 0, in the particular case that t is of the form (or a composition of
terms ending with) [f, g], in which case the duplicator node does not dominate
the ∨. 2

Lemma B.4 Let t be a TPF term, and Gε(t) the net obtained by connecting
an ε node to the output of the term net T(t). Then Gε(t) −→∗ Gε, where Gε

consists of a single ε node.

Proof. By induction on the structure of t, using the rules where ε appears in
the left-hand side. 2

Lemma B.5 Let t be a TPF term, G�(t) the net obtained by connecting the
input of a � node indexed with n to the output of the term net T(t), and
G�(t) obtained connecting the output of a � node (again indexed with n) to
the input of T(t). Then G�(t) −→∗ G�(t).

Proof. By induction on the structure of t, using rules where � appears in the
left-hand side. 2

Dual lemmas to the above can be proved. We will refer to these as Lem-
mas B.3’, B.4’ and B.5’.

Lemma B.6 Let N be a sum-product net with a single input and output,
and let N∨ denote the net obtained by incrementing the second component of
the indexes of top coduplicators in N (i.e. a, m becomes a, m + 1 for every
coduplicator that is not located under another coduplicator).

Let also N ′ be the net obtained by plugging a net T(id) (where the identitity
has the appropriate type) on top of N . Then N = N ′.

Proof. Straight forward induction on the type of the identity. 2

Proposition B.7 (Soundness) Let t, u be TPF terms with t = u. Then
T(t) = T(u).

Proof. By cases of the definition of equality of terms.

• T(id · f) ≡ T(f · id) ≡ T(f)
(straightforward)

• T((f · g) · h) ≡ T(f · (g · h))
(straightforward)

22

Bacelar Almeida and Sousa Pinto and Vilaça

• T(〈π1, π2〉) ≡ T(id)
Guaranteed by construction. Observe that the term 〈π1, π2〉 necessarily

has type A×B → A×B for some types A, B, and

T(〈π1, π2〉A×B→A×B) ≡ T(idA×B→A×B)

• T([i1, i2]) ≡ T(id)
Dual to the previous case.

• T(〈f, g〉 · h) = T(〈f · h, g · h〉)
We reason by inductively on the structure of h

(i) h = h1 · h2 – we use T((f · g) · h) ≡ T(f · (g · h)) and then the inductive
hypothesis applies.

(ii) h is a constant – straightforward.
(iii) h = 〈a, b〉 – straightforward using Lemma B.3, which can be used since

the duplicator has index 0,1 after duplicating the (,) node.
(iv) h = [a, b] – this is the hard case since Lemma B.3 does not apply.

In the net T(〈f, g〉 · [a, b]) after one step of rule dupM-dupS the split
duplicators have indexes 1,0; they will duplicate the nets T(a) and T(b) in-
crementing the (second component of the) indexes of the top co-duplicators.
Finally, the split duplicator will commute with the top ? node.

In the net T(〈f · [a, b], g · [a, b]〉) on the other hand, the translation
introduces the encoding of an identity of sum type on top. Proceeding
with reduction one obtains a net that is similar to the previously obtained
except that the nets T(a) and T(a) appear intact, with identities of sum
type on top of each such net. Lemma B.6 then yields T(〈f, g〉 · [a, b]) =
T(〈f · [a, b], g · [a, b]〉).

• T(h · [f, g]) = T([h · f, h · g])
Dual to the previous case using Lemmas B.3’ and B.6’.

• T(π1 ·〈f, g〉) = T(f) and symmetrically T(π2 ·〈f, g〉) = T(g)
If the domain of 〈f, g〉 is not a sum type and the codomain of π1 is a

ground type, then T(π1 ·〈f, g〉) −→∗ T(f) by rule cancelM-1, Lemmas B.4
and B.5, and finally rule epsilon-dupM-2.

Otherwise ,
(i) If the domain of 〈f, g〉 is of the form C + D, the translation introduces

an additional net on top, corresponding to the encoding af an identity of
type C + D. We have T(π1 ·〈f, g〉) −→∗ T(f · id) = T(f).

(ii) If the codomain of π1 is not a ground type, the translation introduces
an additional net at the bottom, corresponding to the encoding of the
identity at that type. We have T(π1 ·〈f, g〉) −→∗ T(id ·f) = T(f).

• T([f, g] · i1) = T(f) and symmetrically T([f, g] · i1) = T(g)
Dual to the previous case using Lemmas B.4’ and B.5’.

2

23

Bacelar Almeida and Sousa Pinto and Vilaça

Completeness

The proof of completeness uses a path-based interpretation of terms, in the
style of the Geometry of Interaction [2].

Definition B.8 We define a labelling of sum-product nets from top to bottom
as follows, where the labels are TPF terms extended with the constants L, R,
and ε.

• If the input of a ∧ node is labelled α then both its outputs are labelled α.

• For ∨ nodes there are two cases:
· If its inputs are labelled β ·α ·L ·γ and β ·α′ ·R ·γ (where β is the longest

common prefix and γ is necessarily a common suffix) then its output is
labelled β ·[α, α′]·γ. Note that if β extends until L and R then α = α′ = id.

· If its inputs are labelled α and β · ε(in any order) then its output is
labelled α.

• If the inputs of a (,) node are labelled α ·β and α′ ·β (where β is the longest
common suffix) then its output is labelled 〈α, α′〉 ·β. Note that if the labels
are equal then α = α′ = id.

• If the input of a pair projection node π1 (resp. π2) is labelled α then its
output is labelled π1 ·α (resp. π2 ·α).

• If the input of a choice injection node i1 (resp. i2) is labelled α then its
output is labelled i1 ·α (resp. i2 ·α).

• The output of a εnode is labelled ε.

• If the input of a � node is labelled α then its output is also labelled α.

• If the input of a � node is labelled α then its output is also labelled α.

Given a sum-product net G with a single input and a single output, we define
its read-back Rx(G) as the label of its output, given uniquely from the above
rules after labelling the input of G with x. We remark that this is necessarily
a term of TPF if x is. We will write simply R(G) for Rid(G).

For nets in general the read-back can be generalized as taking a vector of n
inputs and producing a vector of m outputs (both indexed from left to right),
Rx(G) = l1, . . . , lm where x = x1, . . . , xn.

Finally, we extend the equational theory of terms with the following equa-
tions relating the new constants introduced in the labels (ranged over by l):

L · i1 = id L · i2 = ε

R · i1 = ε R · i2 = id

l · ε= ε

Lemma B.9 Let G1, G2 be sum-product nets; if G1 −→ G2 then Rx(G1) =
Rx(G2).

24

Bacelar Almeida and Sousa Pinto and Vilaça

Proof. All the net reduction rules preserve the read-back. We give two exam-
ples: in rule choice-dupS the inputs must have labels respectively of the form
β ·α1 ·L · γ and β ·α2 ·R · γ, or else α and β · ε; in the first case, in both sides
of the rule the outputs will be labelled L · β · [α1, α2] · γ and R · β · [α1, α2] · γ;
in the second case the outputs are labelled L · α and R · α in both sides.

In rule cancel-S1, for input α we have output L · i1 ·α in the left-hand side
and α in the right-hand side, which are equal under the augmented equational
theory. 2

Lemma B.10 For any t ∈ TPF, R(T(t)) = t.

Proof. The stronger result Rx(T(t)) = t · x can be proved by induction on
the structure of t. 2

Proposition B.11 (Completeness) Let t, u be TPF terms such that T(t) =
T(u). Then t = u.

Proof. For T(t) = T(u) to hold there must exist sum-product nets Gt, Gu

such that T(t) −→∗ Gt, T(u) −→∗ Gu, and Gt ≡ Gu. By lemma B.9 we
have that R(T(t)) = R(Gt) and R(T(u)) = R(Gu). Now by lemma B.10 and
because structurally equal nets have the same read-back, we have t = u. 2

25

	Introduction
	The Term Language and Theory
	Sum-product Nets
	Term nets
	Deciding Equality by Local Graph Rewriting
	Sum-product Net Rewriting
	Soundness and Completeness
	Conclusions and Future Work
	References
	Full Set of Rewrite Rules
	Proofs

