
Point-free Simplification

José M. P. Proença

jproenca@di.uminho.pt

Techn. Report DI-PURe-05.08.01

2005, August

PURe
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)

Departamento de Informática da Universidade do Minho
Campus de Gualtar — Braga — Portugal

DI-PURe-05.08.01
Point-free Simplification by José M. P. Proença

Abstract

A collection of libraries and tools that support the automatic conversion
of programs to point-free and some manipulation, were recently developed
as part of the UMinho Haskell Libraries. The process used in the calcu-
lation of point-free terms produce complex terms that, in most cases, can
be simplified.

In this work rule-driven simplification and transformation of point-
free terms are studied in more detail. For this purpose a tool called
SimpliFree was developed. The main idea is to automate the construc-
tion of a Haskell file that applies some given strategies to point-free terms,
by the use of generic traversals.

Some default strategies were included in the tool, that can simplify
most terms and can be easily updated by the user, to minimise the needed
intervention.

1 Introduction

In functional programming two distinguished styles of programming
can be found: the pointwise and the point-free styles. The first one is char-
acterised by the use of variables and the application of functions to other
pointwise expressions, while in the second programs are written without
variables, and the composition of functions is used instead of application.
In this work point-free terms consist only of categorically-inspired combi-
nators and algebraic data types defined as fixed points of functors. The
recursion is made with type-parameterised recursion patterns (implicit
recursion).

Both styles have advantages and disadvantages. The pointwise style is
usually easier to write and to understand, while the point-free allows for
algebraic and equational reasoning, studied for a long time in the domains
of mathematics and computer science.

To join the advantages of both styles, the translation of pointwise to
pure point-free was previously studied in [Cun05,Pro05]. For this matter,
a tool called drhylo [Cun05] was created, that can not only translate
pointwise Haskell definitions to point-free expressions, but it can also
remove explicit recursion and convert it to the hylomorphism recursion
pattern. One of the main problems with this conversion to point-free code
is the fact that the resulting terms are much more complex than the
expected terms. This is due to the automated process that applies the
several transformations. The SimpliFree tool was developed to simplify
the resulting point-free terms as much as possible, and in an automated
way. The approach taken is based on the notion of active source, where the
code is annotated with special commented blocks containing information
on how to apply transformations to the code.

A more complete introduction to the SimpliFree tool is made after
some background introduction, in section 4.

Report structure

In the first sections some theoretical background is presented. In sec-
tion 2 the point-free language is introduced and defined, and some work
around this style is also referred. In the next section two generic ap-
proaches to traverse terms are presented: using the Scrap your boilerplate
approach (subsection 3.1) and using the generic libraries in Strafunski
software bundle (subsection 3.2).

In the rest of the report the SimpliFree tool is explored. A more
descriptive introduction is made in section 4. The explanation of the tool
is made in two main sections: in section 5 the problem of defining generic
traversals for this particular case is explored; and in section 6 the con-
struction of monadic functions capable of applying rules, based on the rule
description, is explained in detail. Finally, in section 7, several strategies
are tested and explained, starting by very simple simplification strategies
and finishing by strategies that applied the cata-fusion law.

In the last section a global vision of the SimpliFree tool is performed,
together with some ideas for future work.

2 Programming in point-free

The point-free style of programming was first introduced in 1977, by
John Backus, in an ACM Turing Award talk [Bac78]. He introduced sev-
eral combinators used in the point-free Haskell library.

In the UMinho Haskell Libraries several libraries related to the point-
free programming are defined:

– Language/Pointfree – to allow for the manipulation of typed and
untyped point-free terms;

– Language/Pointwise – to allow for the manipulation of pointwise
terms, to be later converted to point-free;

– Pointless – to allow for the type-checking and execution of point-
free code with recursion patterns, parameterised by data types, using
a similar syntax to the theoretical notation, to be introduced below.

A tool called drhylo, that is able to perform the pointwise/point-free
translation (in most cases), is also available from the same repository.

Point-free. In the point-free language, types are defined according to the
syntax in figure 1.

For example, booleans can be expressed as Bool = 1+1, and lists with
elements of type A as ListA = µ(1⊕A⊗ Id).

A point-free term can be defined by using a set of combinators enu-
merated in figure 2. These combinators come from universal constructors
in categories with products, non-empty sums, exponentials, and terminal
object.

The subscripts of in and out are omitted when clear from context. The
swap function, for example, can be defined in point-free as snd M fst.

A, B ::= 1 − single element type
| A → B − continuous functions from A to B
| A×B − cartesian product
| A + B − separated sum
| µF − recusrive (regular) type, defined as the fixed point of a functor

F, G ::= Id − identity functor
| A − constant functor that always returns A
| F ⊗G − lifted product bifunctor
| F ⊕G − lifted sum bifunctor
| F } G − composition of functors

Fig. 1. Point-free type syntax (A and B)

fst : A×B → A − projection of the first element of a pair
snd : A×B → B − projection of the second element of a pair
inl : A → A + B − injection on the left
inr : B → A + B − injection on the right

inµF : F (µF) → µF − construct values of a given type
outµF : µF → F (µF) − inspect values of a given type

id : A → A − identity function
bang : A → 1 − constant function that returns the least element

ap : (A → B)×A → B − application of a function to an element
(· ◦ ·) : (B → C) → (A → C) → A → C − composition of functions
(· M ·) : (A → B) → (A → C) → A → (B × C) − split combinator
(·O ·) : (A → C) → (B → C) → (A + B) → C − either combinator

· : (A×B → C) → A → B → C) − curry combinator

Fig. 2. Combinators that define the point-free language

Recursion is expressed by a special combinator: the hylomorphism.
This recursion pattern was proved to be powerful enough for the definition
of any fixed point [MH95], and it can be defined as:

hyloµF : (F B → B) → (A → F A) → A → B

hyloµF g h = g ◦ F (hyloµF g h) ◦ h

where h computes the values passed to the recursive calls and g computes
the results from the recursive call, and returns the final result. µF models
the recursion tree of a function defined as a hylomorphism. For example,
the disjunction of a list of booleans can be defined as the following hylo-
morphism:

or : List Bool → Bool

or = hyloList Bool (inrO or bin) outList Bool

The or bin function is the binary or for the boolean type mentioned
above, equivalent to the Haskell operator &&.

3 Generic traversals

The main goal of this work is the simplification of point-free terms,
by the application of several rules in a certain order. The application of
these rules is usually not applied to the full point-free term, but rather
to a sub-term. So a term traversal is needed for each rule that is applied.

Term traversals could be done without the use of any generic traversal
mechanism, but the reuse of code that already does this can reduce the
amount of produced code and make it easier to understand. Two different
libraries were studied in the development of this tool:

– Data.Generics libraries, already in default GHC libraries, using the
Scrap your Boilerplate approach (SyB);

– StrategyLib libraries, part of Strafunski software bundle.

3.1 The SyB approach

Scrap your Boilerplate is a generic programming approach for Haskell,
developed by Ralph Lämmel and Peyton Jones [LJ03]. It is supported in
the GHC (≥ 6.0) implementation of Haskell , and can be used by import-
ing the module Data.Generics. This approach defines not only traversal
schemes, but other generic operations, like read, show and equality.

In this section this approach will not be studied in deep detail. We
cover only the necessary material to understand how can it be used to
apply rules using traversal schemes defined in SyB.

To apply generic operations to a user defined data type, the instances
of some classes need to be defined. This classes will allow for a manipu-
lation of the type and the use of generic folds over the data type:

– Typeable - Allows type information relative to a value.
– Data - Defines a generic function gfoldl for folding over instances of

this class.

These classes can be derived automatically using the deriving option
when defining the data type, in the supported version of GHC.

Note that this approach requires two Haskell extensions: rank2-poly-
morphism, that is used to implement generic traversals (since they receive
polymorphic functions as arguments), and a type-safe cast with signature

cast :: (Typeable a, Typeable b) => a -> Maybe b

that returns Nothing if types are not equal, or the same value otherwise.
With the cast function it is possible to define ways of transforming a

monomorphic function into a full polymorphic one (with functions like mkT
and mkQ, which create a transformation or a query, respectively). With
these functions, together with generic folds defined for the Data class,
some generic traversals can now be defined, as in the following examples:

everywhere :: (forall a. Data a => a -> a)

-> (forall a. Data a => a -> a)

everywhere f = f . gmapT (everywhere f)

everything :: (r -> r -> r)

-> (forall b . Data b => b -> r)

-> a -> r

everything k f x = foldl k (f x) (gmapQ (everything k f) x)

The first example performs a transformation to a data type, and the
second performs a query. When using the strategies it is important to
apply the conversion from a monomorphic type into a full polymorphic
one, before passing as an argument, using the correct function.

To better understand this idea a small example will be presented. Lets
consider the Haskell syntax in the package Language.Haskell.Syntax of
GHC, and assume that the instances of Typeable and Data are already
defined. The root of a Haskell module is

data HsModule = HsModule ...

Now lets suppose that we want to do two different operations:

1. change the names (of functions, variables, . . .) that began with nor-
malize to normalise;

2. collect all integer literals.

The syntax tree of the Haskell code is not very small, so it would
require to check for several cases to perform these operations. The first
operator can be easily encoded using the everywhere strategy.

british_norm :: HsModule -> HsModule

british_norm = everywhere (mkT change_string)

where change_string :: String -> String

change_string x | "normalize" ‘isPrefixOf‘ x

= "normalise" ++ drop 9 x

change_string x = x

The second operation requires the use of a query, that can be encoded
using the everything strategy.

collect_ints :: HsModule -> [Int]

collect_ints = everything (++) (mkQ [] getInt)

where getInt :: HsLiteral -> [Int]

getInt (HsInt i) = [fromInteger i]

getInt _ = []

So using this approach several lines of boilerplate code can avoided
and replaced by very small and easy to read functions. Other common
strategies like somewhere and something can also be found in these li-
braries.

3.2 The Strafunski approach

Strafunski is a software bundle for implementing language processing
documents [LV03]. In this work we will focus on the support provided for
generic traversals over typed representations of parse trees, although it
also provides means of integrating external components (such as parsers,
pretty printers, and graph visualisation tools).

In a similar way to SyB, most functions require the instantiation of
the following classes:

– Typeable - as in SyB;
– Term - where the conversion between a term representation is defined

(using the Dynamic library).

Although instances for the Term class cannot be automatically derived
by most compilers (unlike the Data class), it is possible to derive the code
defining the correct instance (for both Typeable and Term classes) by
using a tool called DrIFT, which is part of the Strafunski bundle.

The way the Dynamic library works will not be explained here, but
the mechanisms are also associated with the same Haskell extension
needed for the definition of the cast function, and the rank2-polymor-
phism extension.

In Strafunski a number of functional strategies are defined, that are
composed via function combinators, as described in [LV02a]. Each strat-
egy combinator is associated to a type preserving or to a type unifying
strategy (using the postfixes TP and TU, respectively).

A strategy has type TP m or TU u m, where m is a monad (or a Mon-
adPlus), and u is the type being calculated in the type unifying traversal.
Some combinators will now be explored in more detail.

After the definition of a strategy, to apply it to a given term it is
necessary to use one of the following functions:

applyTP :: (Monad m, Term t) ⇒ TP m → t → m t
applyTU :: (Monad m, Term t) ⇒ TU u m → t → m u

The strategy is usually defined as a scheme applied to steps, where:

– the scheme defines the type of traversal (responsable for the applica-
tion of the steps for different places of the term);

– the steps are a default strategy (like id or fail) updated by the func-
tions

adhocTP :: (Monad m, Term t) ⇒ TP m → (t → m t) → TP m
adhocTU :: (Monad m, Term t) ⇒ TU a m → (t → m u) → TU u m

The most common traversals are: full td, full bu, once td, stop td, etc,
that also receive the postfix TU or TP.

Some of the basic combinators can be found in figure 3.
For example, to traverse any data type and collect all strings inside

that data type, directly or indirectly (a type unifying traversal), it is only
necessary to write:

collectStr :: (Monad m, Term t) => t -> m [String]

collectStr = applyTU (scheme steps)

where scheme = full_tdTU

steps = (constTU []) ‘adhocTU‘ getStr

getStr :: String -> m [a]

getStr s = return [s]

idTP :: Monad m ⇒ TP m constTU :: Monad m ⇒ u → TU u m
failTP :: MonadPlus m ⇒ TP m failTU :: MonadPlus m ⇒ TU u m
seqTP :: Monad m ⇒ TP m →TP m → TP m seqTU :: Monad m ⇒ TP m → TU u m → TU u m

passTP :: Monad m ⇒ TU u m
→ (u → TP m) → TP m

passTU :: Monad m ⇒ TU u m
→ (u → TU u′ m) → TU u’ m

choiceTP:: MonadPlus m ⇒ TP m
→TP m → TP m

choiceTU:: MonadPlus m ⇒ TU u m
→ TU u m → TU u m

Fig. 3. Some basic strategy combinators

The collected type must be an instance of Monoid (in this case it is a
list), which means the functions mempty and mappend must be defined.

In [LV02b] more details can be found on how to combine strategies
and how to define new strategy themes.

4 The SimpliFree tool

One of the main problems with the conversion to point-free code de-
scribed in section 2 is the fact that the resulting terms are much more
complex than the expected terms. This is due to the automated process
that applies the several transformations.

The SimpliFree tool was developed to simplify the resulting point-
free terms as much as possible, and in an automated way. The approach
taken is based on the notion of active source, in the same way as MAG [dMS99]:
the code to be analysed is annotated with special commentated blocks
with rules to be used in the transformation of the code.

Unlike MAG, the SimpliFree tool uses the Haskell compiler’s pattern
matching mechanism, and instead of having a fixed strategy, it allows the
user to produce new strategies or to adapt existing ones using several
strategy combinators, to suit particular cases.

In order to simplify most point-free terms, the possibility of importing
some strategies from a rules repository (built for the tool) was introduced.
This import can be mentioned by a special commentated block or by the
use of arguments. In this way the concept of active source can be avoided
in some cases, if the user desires so.

To apply the strategies in a more efficient way, the pattern matching
of Haskell compilers is used. This means that the tool does not translate
the original point-free terms directly to simpler point-free terms. The Sim-
pliFree tool produces a new Haskell file with functions that apply the

transformations to the point-free terms found in the original file. The pro-
duced file imports a SimpliFree library which defines the core functions
for the traversals on point-free terms, taking the maximum advantage
possible of the Haskell compiler pattern matching.

When the produced file is interpreted, it is possible to follow the inter-
mediate results and the rules applied at each step to every simplification
made. The main function prints a new Haskell program, similar to the
original one, where the simplified terms replace the old ones. Diagram 4
illustrates the way files are organised when using the tool.

foo.hs strat_foo.hs
SimpliFree

SimpliFreeLib

simpl_foo.hs
Compilation

Interpretation
Calculation steps

Fig. 4. Diagram with SimpliFree architecture

5 Term traversal

A very important issue is how to traverse a term to apply a trans-
formation. In this work more than one way of traversing the terms were
tested, all using generic schemes:

1. Calculation of a simplified term with Data.Generics libraries (SyB
approach);

2. Calculation of a simplified term with Strafunski ;
3. Calculation of intermediate steps and the simplified term with Stra-

funski ;
4. Calculation of intermediate steps that can contain computations (to

be presented bellow).

The application of a strategy returns a Computation, which is defined
as a final point-free term and a list of intermediate results (pairs of term×

rule). But only on the last two generic schemes the list of intermediate
results is not empty.

Module SimpliFreeLib contains, among others, functions that use the
generic libraries to define the traversals. This is the only file that needs to
be altered when changing the way traversals are made. In the final version
of the SimpliFree tool was used the Strafunski library, calculating the
intermediate results (scheme 4). The strategy combinators defined in the
library are: rule, many, or, and, oneOrMore, optional and fail. Other
auxiliary functions were also defined inside the library.

5.1 Traversal with the Generics library

This approach has several advantages:

– It is not very difficult to implement;
– The needed instances can be automatically derived by GHC;
– The needed libraries are already in the default libraries of the current

versions of GHC.

The main problem is that the resulting code is not so efficient as the
one using the Strafunski libraries, and the fact that the instances for
the needed class cannot be derived automatically into an external file
(without using the deriving option).

In this approach rules and strategies have the same type:

type Strat m = Pointfree.Term -> m Pointfree.Term

And the definition of the strategy that normalises the composition,
the function that builds a rule, and the strategy combinator and are as
follows:

once :: (MonadPlus m, Data a) => (forall b . Data b => b -> m b) -> a -> m a

once f x = f x ‘mplus‘ (gmapMo (once f) x)

normalise :: MonadPlus m => Strat m

normalise = iteratePF (once (mkMp flat))

where flat ((x :.: y) :.: z) = return (x :.: (y :.: z))

flat _ = fail "no need to flat"

iteratePF :: MonadPlus m => Strat m -> Strat m

iteratePF strat = (strat ‘andPF‘ (iteratePF strat)) ‘orPF‘ return

rulePF :: MonadPlus m => String -> Strat m -> Strat m

rulePF _ r = once (mkMp r)

andPF :: MonadPlus m => Strat m -> Strat m -> Strat m

andPF r g e = r e >>= g

The function that applies a strategy to a term only needs to use an
Haskell application, without the use of other combinators. No further
work was performed using the SyB approach, since the resulting code
was not so efficient as the code produced with Strafunski ’s libraries.

5.2 Simple traversal with Strafunski

The main advantage of the Strafunski approach is that the resulting
code is much more efficient (apparently twice as fast). And since this tool
was specially developed to make traversals on any data type (while the
Generics library deals with other concerns involving generic program-
ming as well as traversals), it already has more specialised combinators
to facilitate the traversal definitions.

Strafunski has type preserving and type unifying strategy combina-
tors. In the present case only the simplified term is calculated, so only
type preserving strategy combinators need to be used. The same example
functions as before are now:

normaliseStrat :: MonadPlus m => TP m

normaliseStrat = iterateTP strat

where strat = once_tdTP (adhocTP failTP flat)

flat ((x :.: y) :.: z) = return (x :.: (y :.: z))

flat _ = fail "no need to flat"

iterateTP :: MonadPlus m => TP m -> TP m

iterateTP strat = (strat ‘seqTP‘ (iterateTP strat)) ‘choiceTP‘ idTP

rulePF :: (MonadPlus m) => String -> (Term -> m Term) -> TP m

rulePF _ r = (once_tdTP (adhocTP failTP r)) ‘seqTP‘ normaliseStrat

andPF :: MonadPlus m => TP m -> TP m -> TP m

andPF s1 s2 = s1 ‘seqTP‘ s2

Note that a rule is still a monadic function that changes a point-free
term, but a strategy is now of type TP m (type preserving), and to apply
a strategy to a term the combinator applyTP has to be used.

5.3 Advanced traversal with Strafunski

In this approach the intermediate calculation steps are calculated. To
accomplish this it is necessary to combine both strategies of Strafunski

mentioned in section 5.2, in order to change a term (type preservation)
and to collect all changed terms and rules applied (type unification).

The equivalent functions to the previous examples are more compli-
cated in this approach, except for the normalise strategy that remains
unaltered. This is due to the need of combining type preserving and type
unifying strategy combinators.

rulePF :: (MonadPlus m) => String ->

(Pointfree.Term -> m Pointfree.Term) -> TU Computation m

rulePF name r =

idComp ‘passTU‘ \(_,t1) ->

(((once_tdTP (adhocTP failTP r)) ‘seqTP‘ normaliseStrat) ‘seqTU‘ idComp)

‘passTU‘ \(_,t2) ->

constTU ([(t1,name)],t2)

idComp :: MonadPlus m => TU Computation m

idComp = adhocTU (constTU (mempty::Computation)) (\x->return ([],x))

andPF :: MonadPlus m => TU Computation m -> TU Computation m -> TU Computation m

andPF s1 s2 = s1 ‘passTU‘ \(lst1,t1) ->

(constTP t1) ‘seqTU‘ s2 ‘passTU‘ \(lst2,t2) ->

(constTU (lst1++lst2,t2))

where constTP t = adhocTP idTP (_->return t)

5.4 More complex justifications

In the definition of rules it is possible to apply strategies to the re-
sulting expression. This means that the rule is only succesfully applied if
the strategies do not fail. It also means that, in case of success, the inter-
mediate steps associated to the strategies applied inside the rule cannot
be visualised.

In order to access the intermediate steps, the rule functions are changed
so that they return not only the resulting expression, but also a list of
the computations associated to the strategies applied inside the rule. So
a rule will have the following signature:

rule :: MonadP lus m ⇒ Term → m (Term, [Computation])

This implies changing the definition of a Computation, to add the
possibility of having other computations inside a main computation:

type CalcTerm = (Pf.Term,[Computation])

data Computation = Comp { csteps :: [(CalcTerm,String)],

cresult :: Pf.Term}

It is also necessary to change the strategy combinator that applies a rule,
which becomes much more complicated, since the intermediate computa-
tions are extracted using a state monad:

rulePF :: (MonadPlus m) => String ->

(Pf.Term -> m CalcTerm) -> TU Computation m

rulePF name r =

let tu_state =

idComp ‘passTU‘ \(Comp _ t1) ->

(((once_tdTP (adhocTP failTP (aux r))) ‘seqTP‘ normaliseStrat)

‘seqTU‘ (insSteps t1))

tu_nostate =

-- conversion of "StateT [Computation] m (a,b,c)" to "m (a,b,c)"

msubstTU (flip evalStateT []) tu_state

in tu_nostate ‘passTU‘ \(t1,t2,comps) -> constTU (Comp [((t1,comps),name)] t2)

where aux :: MonadPlus m => (Pf.Term -> m CalcTerm) -> Pf.Term

-> StateT [Computation] m Pf.Term

aux r term = do (t,comp) <- lift (r term)

put comp

return t

-- convertion of "m a" to "StateT s m a"

lift m = StateT (\s -> m >>= \a -> return (a,s))

insSteps :: MonadPlus m => Pf.Term

-> TU (Pf.Term,Pf.Term,[Computation]) (StateT [Computation] m)

insSteps t1 = adhocTU (constTU (ID,ID,[]))

(\t2 -> get >>= \comps -> return (t1,t2,comps))

After defining a Show instance for Computations, it is possible to visu-
alise the calculations associated to strategies called from rule definitions.

The main problem with this approach is that the application of any
rule involves more calculations, so the produced code is slower than the
one obtained with the previous approaches.

5.5 Builtin strategies

To facilitate the user task, a few default strategies were included in
the SimpliFree tool. The possibility of redefining strategies made the
process of adding new rules to existing strategies easier.

The strategies present in the tool can be found in appendix A. There
is a base strategy (appendix A.1) that is used in the creation of other
strategies, like the advanced strategy (appendix A.2). The base strategy
not only simplification rules but also rules to fold and unfold several
known macros, like swap (= sndO fst) and exp (= f ◦ ap). The main idea
of this strategy is:

1. Apply the simplification rules as many times as possible;
2. Unfold known macros if possible, and return to previous step until no

more known macros exist.
3. Fold known macros, to make the result easier to read.

During the simplification, the rules follow the idea that the composi-
tion should be the inner operator. For example, (f M g) ◦ h is converted
to (f ◦ h) M (g ◦ h), and not the other way (unless followed by certain
strategies), since it can trigger more cancelation rules.

The advanced strategy uses the base strategy, but some more simplifi-
cation rules are added. The reason why a new strategy pack was created is
because there are several rules that can give type error, like the convertion
of id× id to id.

6 Rule construction

6.1 Basic principles

A rule is converted to a Haskell function of type Term -> m Term,
where m is a MonadPlus, such that:

– it applies a transformation to a term or to the prefix of a composition,
not to other subterms;

– it fails (fail "...") when it is not possible to apply the transforma-
tion;

– it assumes that the composition is normalised (associated to the right).

Example 1. natId1 : id ◦ f → f

natId1 (ID :.: f) = return f

natId1 _ = fail "..."

In example 1 a very simple example is shown, but the definition of
these functions can get very complicated, as described in the next sub-
sections.

6.2 Adition of the ending

The first problem comes from the fact that the rules can be applied
not only to terms, but also to prefix of terms, relatively to compositions.
Remember that the composition is assumed to be always associated to

the right (this way the composition operator behaves similarly to the
constructor of lists in Haskell).

The best way to solve this problem is to add a new match to each rule
definition when necessary, to pattern match the ending (when the last
element is also a composition), and to place it in the resulting expression,
as can be seen in example 2.

Example 2. sumCancel1 : (f O g) ◦ inl → f

sumCancel1 ((f :\/: g) :.: INL) = return (f)

sumCancel1 ((f :\/: g) :.: (INL :.: x)) = return (f :.: x)

sumCancel1 _ = fail "..."

The ending case needs to be added when the outermost operator is
the composition, and the last element is not a variable.

6.3 Left variables (l.v.)

Variables on the right of compositions match with the biggest compo-
sition possible, as expected when looking at example 1, since the compo-
sition is associated to the right. The main problem is when variables are
found on the left of a composition (including the case of variables in the
middle of compositions, since it is on the left of a subterm).

Each composition with a left variable (l.v.) is substituted by another
variable that is analysed by a new auxiliary function (top down substitu-
tion).

Example 3. exp fold : f ◦ ap → f◦

exp_fold (Curry f’) | ... = ... aux_f f’ ...

where aux_f (f :.: AP) = ...

...

...

Inside the guards it is verified if the variable(s) representing the com-
position with a l.v. match with the term being evaluated, also by the use
of the auxiliary function.

The empty spaces in example 3 will be explored in full detail in the
next subsections.

Auxiliary functions
Each new auxiliary function is responsible by the association of el-

ements of a composition to match with a l.v., through recursion and
pattern matching. It calculates:

a) if the pattern matching succeeded;
b) a list of terms corresponding to each of the variables inside the ex-

pression;
c) if the the auxiliary function is associated with a l.v. that precedes the

last element of a composition, where this composition is the outermost
operator, and if the last element of this composition is not a variable,
then it also calculates the possible ending, similarly to what has been
done in subsection 6.2.

In the auxiliary functions an intermediate structure was used – Maybe
([Term], Maybe Term), and several new functions were added to the
library TravGenLib.hs:

success - Verifies if the pattern matching was successful.
success = isJust

noVar - When the pattern matching fails
noVar = Nothing

emptyVar - When the pattern matching succeeds, but no variable was
found yet.
emptyVar = Just ([],Nothing)

addTerm - Adds a new term to the list of expressions associated to
variables.
addTerm t (Just (l,e)) = Just (t:l,e)

addComp - Composes a term (through the constructor :.:) with the
last term added to the list with addTerm.
addComp t (Just (x:xs, e)) = Just ((t:.:x):xs, e)

joinVars - Joins the results of more than one auxiliary functions.
joinVars = fmap mconcat . sequence1

getTerm - Return the nth term.
getTerm n (Just (l,e)) = l !! n

getEnd - Add the end to a given term.
getEnd (Just (_,Just t1)) t2 = t2 :.: t1

getEnd _ t = t

Each auxiliary function consists of 3 or 4 cases:

i) The pattern matching succeeds.

In example 3:
aux_f (f:.:AP) = addTerm f emptyVar

1 where Maybe belongs to the classes Functor and Monad, and an instance to the class
Monoid where added; in GHC ≤ 6.4 an instance of Monoid for pair were added.

ii) Only in some cases – The pattern matching succeeds, but the ending
case needs to be considered (as described in section 6.2).

In example 3 this case is not needed since the
composition where f appears is not the outtermost
operation. If it were, then it would be written as:
aux_f (f:.:(AP:.:x)) = addEnd x (addTerm f emptyVar)

iii) The pattern matching is not well succeeded, but it is a composition
case, so the auxiliary function is recursively called to the tail of the
composition.

In example 3:
aux_f (f0:.:f1) | success (aux_f f1)

= addComp f0 (aux_f f1)

iv) The pattern matching fails.

In example 3:
aux_f _ = noVar

If a composition with a l.v. is found inside the expression that is
matched (e.g., g:.:ID), then it is substituted by another variable (g’),
and the condition success (aux g g’) is added to the guards of the
cases i) and ii), where aux g is the auxiliary function associated to g
(built in a similar way to aux f). The body of the i) and ii) cases are
also changed, by substituting emptyVar by aux g g’, and if more l.v. are
found it is replaced by joinVars [aux g g’,...].

It is important to note that the order in which the terms are added
to the intermediate structure is always the same, regardless of the terms
that are instantiated with the auxiliary functions, making the controlled
extraction of elements from the list possible.

Main function
For each l.v. f, the condition success (aux f f’) is added to the

guard. In the main body two transformations are applied to the returned
term:

– The variables inside the compositions with a l.v., calculated by the
auxiliary functions, are collected by the function getTerm, that is
applied to the union of the result of the auxiliary functions. They are
then “put inside” the resulting term through a lambda abstraction.
The order is very important here.

In example 3:
exp_fold (Curry f’) | success (aux_f f’)

= (\f -> Macro "exp" [f]) (getTerm 0 (aux_f f’))

– The possible ending is added to the term, by the function getEnd.

In example 3:
... (\f -> getEnd (aux_f f’) (Macro "exp" [f])) (getTerm 0 (aux_f f’))

The addition of the ending in normal expressions, as described in
subsection 6.2, may also be needed when no l.v. are found in the end of
the outer composition. In this case a duplication of the function and all of
the auxiliary functions is made, with the small difference that the ending
is contemplated (in a similar way to example 2).

Extras
An important feature that was added was the use of conditions. But

the correct verification of conditions required important changes to the
code, as will be seen in the next section (6.4). The main problem with the
way conditions are handled is when l.v.’s occur. So far the auxiliary func-
tions only return a single possible pattern match, and do not backtrack
if the condition fails.

With the verification of conditions working correctly, new features
were added to the tool. One example is when equal variables are found
in the left hand side of a rule. In this case they are substituted by fresh
variables, and the tests for their equality are added to the list of condi-
tions.

Another improvement is the possibility of applying strategies to
the result of a rule. The test to check if the strategies are successfully
applied is added to the list of conditions. This allows the definition of
much more complex rules, as the fusion for catamorphism on lists, that
will be presented in section 7.

6.4 Conditions

So far a condition is interpreted as a string containing a Haskell ex-
pression that returns a boolean. When equal names for variables are used
in the left-hand side of an expression, then one of it is replaced by a fresh
variable, and the condition that verifies their equality is automatically
added.

A way of verifying conditions correctly was introduced by applying
some changes to the produced code. The changes described in subsec-
tion 6.3 were not sufficient for the verification of conditions. In this sub-
section the changes to the previous algorithm are explained in detail.

Simplest case
In the cases of a rule where the left hand side is a composition, where

the last element is a variable (not a l.v.), and conditions are supplied
by the user, two new matches are added before the usual matches. For
example, consider the case of a rule called rule, that matches with a
composition ending with variable f, returning the expression exp with
conditions cond. In this case the main match will be replaced by the 3
following matches:

rule (... :.:f:.:x) | cond = return (exp:.:x)
rule (... :.:f:.:(x1:.:x2)) = rule (... :.:(f:.:x1):.:x2)
rule (... :.:f) | cond = return exp

where the third one remains equal (appart from the presence of the con-
dition inside the guard).

Even if there are left variables (as long as f is not a l.v.), the validation
of the auxiliary functions will still be evaluated in the first and third match
without undesirable side conditions. But still some is attention needed in
the presence of left variables, as it will be shown in the next subsection.
Then, so far, the conditions are correctly evaluated when:

– The outermost operator is not the composition;
– The outermost operator is the composition and the last element is not

a variable;
– The outermost operator is the composition and the last element is

a variable – not a left variable (only here the proposed changes are
needed).

In the presence of left variables
In subsection 6.3 the auxiliary functions return an intermediate struc-

ture with a possible definition for each of the variables in a sub-expression
and a possible ending, in the data type – Maybe ([Term], Maybe term).
Instead of just returning the first possible solution for each variable, the
intermediate structure was changed to [([Term], Maybe Term)], and
the auxiliary functions now return the list of all possible solutions for each

variable. The new functions added to TravGenLib.hs in subsection 6.3
were now changed, as described in table 1.

Maybe ([Term], Maybe term) [([Term], Maybe Term)]

success = isJust success = not.null

noVar = Nothing noVar = []

emptyVar = Just ([],Nothing) emptyVar = [([],Nothing)]

addTerm t (Just (l,e)) = Just (t:l,e) addTerm t lst = [(t:l,nt) | (l,nt) <- lst]

addComp t (Just (x:xs,e))

= Just ((t:.:x):xs, e)

addComp t lst

= [((t:.:x):xs,nt) | (x:xs,nt) <-

lst]
addEnd t (Just (x,)) = Just (x,Just t) addEnd t lst = [(l,Just t) | (l,) <- lst]

joinVars = fmap mconcat . sequence joinVars = fmap mconcat . sequence

getTerm n (Just (l,)) = l !! n getTerm n ((l,):) = l !! n
getEnd (Just (,Just t1)) t2 =

t2:.:t1

getEnd t = t

getEnd ((,Just t1):) t2 = t2:.:t1

getEnd t = t

– verifyCond = isJust

– testCond f = findIndex (f.fst)

– getIndex i = drop (fromJust i)

Table 1. Changes to the functions that operate on the intermediate struc-
ture

Specific changes to the auxiliary functions and to the main functions
will be explored in more detail in the next subsections.

Auxiliary functions
Recall the 4 possible matches added for each auxiliary function de-

scribed in subsection 6.3. The cases i) and ii) need to be changed, in
order to gather all the possible results (without regarding the condition),
instead of just returning the first possible pattern match. The new two
cases are:

i) If the left hand side is a composition that ends in a variable, then the
result of a recursive call to the tail of the composition is added to the
possible results.

In example 3 the result does not end in a variable,
so the match remains unchanged. If it did, the new
match would be:

aux_f (f:.:AP:.:g) = addTerm f (addTerm g emptyVar)

++ addComp f (aux_f (AP:.:g)

ii) Only in some cases, as before – The pattern matching succeeds, but
the ending case needs to be considered. In this case the recursive call
to the tail of the composition is always added to the possible results.

In example 3 this case is not needed since the
composition where f appears is not the outermost
operation. If it were, then it would be written as:

aux_f (f:.:(AP:.:x)) = addEnd x (addTerm f emptyVar)

++ addComp f (aux_f (AP:.:x)

Note that the guards, when present, do not suffer any change.

Main function
To facilitate the reading and the writing of the rule function, three new

pattern binds (aliases) were added to declarations of the main function,
together with the auxiliary functions:

all pattern = joinVars [auxiliary functions calls] – gathers all
the possible results for each variable inside compositions in the scope
of l.v.. Will be used only in the evaluation of the conditions;

index = testCond (\[name of variables] -> conditions) all pattern
– looks for the first variable attribution that satisfies the conditions
(index :: Maybe Int). The abstraction only captures the names of
the variables defined inside the compositions with l.v. because the oth-
ers are already captured by the pattern matching in the main function;

all expression = = getIndex index all pattern – puts a solution
that satisfies the conditions at the head of the list with all the terms
that pattern matched, by dropping possibilities. It will be used inside
the main expression, when evaluating the final result.

When there are no conditions to be evaluated, then the alias all expression
is enough, defined in the same way as all pattern, since all possible re-
sults returned by the auxiliary functions are correct.

In the end it is only necessary to add the predicate verifyIndex
index to the guard of the main function, when there are user defined
conditions.

6.5 Syntactic sugar

The use of syntactic sugar enables the possibility of using simpler
instructions that will be converted to more complex set of instructions.

Some important additions to the language are:

– The possibility of using equal variables, that are replaced by fresh
variables and compared inside the conditions (already mentioned be-
fore in subsection 6.4);

– A special rule that constructs a new rule expressing the associativity
property, as shown in the following example:
Assoc assoc_cat : ’cat’ =⇒ catAssoc : (curry ’cat’) . ’cat’ ->

’comp’ . ((curry ’cat’) >< (curry ’cat’))

– Another special rule, given a set of macros definitions, expands each
macro to the corresponding fold and unfold rule, and also creates
strategies that gather the folding rules (named macros fold) and the
unfolding rules (named macros unfold), as shown in the following
example:

Macro swap :

snd /\ fst

Macro coswap :

Right \/ Left

=⇒

macros_fold : swap_fold orOF coswap_fold

macros_unfold : swap_unfold orOF coswap_unfold

swap_unfold : ’swap’ -> snd /\ fst

coswap_unfold: ’coswap’ -> Right \/ Left

swap_fold : snd /\ fst -> ’swap’

coswap_fold: Right \/ Left -> ’coswap’

– The introduction of lists of terms, that allows the use of rules with
more than one argument (as will be seen when the strategy for the
fusion of catamorphisms is introduced in section 7.3). This is internally
represented as a macro with a special name that is ignored when
printing.

7 Testing Strategies

7.1 Simple example

In this section a very small example will be shown, without importing
any set of rules from the rules repository. It will simply be shown how to
iterate the product cancellation rule:

Prod-Cancel1 : fst ◦ (f M g) = f
Prod-Cancel2 : snd ◦ (f M g) = g

The original file is:

f = curry ((snd.(snd /\ fst)).(fst /\ fst))

{- Rules:

simplify: many (prodCancel1 or prodCancel2)

prodCancel1: fst.(f/\g) -> f

prodCancel2: snd.(f/\g) -> g

-}

{- Optimizations: f -> simplify -}

And the resulting file after the application of the SimpliFree tool is
(using SimpliFreeLib described in section 5.3):

module Main where

import SimpliFreeLib

import Language.Haskell.Syntax

import Language.Haskell.Pretty

import Language.Pointfree.Pretty

prodCancel1 (FST :.: (f :/\: g)) = return (f)

prodCancel1 (FST :.: ((f :/\: g) :.: x)) = return (f :.: x)

prodCancel1 _ = fail "rule prodCancel1 not applied"

prodCancel2 (SND :.: (f :/\: g)) = return (g)

prodCancel2 (SND :.: ((f :/\: g) :.: x)) = return (g :.: x)

prodCancel2 _ = fail "rule prodCancel2 not applied"

simplify

= manyPF

((rulePF "prodCancel1" prodCancel1) ‘orPF‘

(rulePF "prodCancel2" prodCancel2))

f = Curry (SND :.: ((SND :/\: FST) :.: (FST :/\: FST)))

f_simplify = unOk (applyPF simplify f)

what = putStrLn "Avaiable results:\n - f_simplify\n"

main

= putStrLn

(prettyPrint

(HsModule f_simplify)

where f_simplify_ = pf2hs (snd f_simplify)

When interpreting the resulting file it is possible to list all existing op-
timizations by the function what (in this case there is only one). The func-
tion f simplify returns the computation with the intermediate steps,
which in this case yields:

*Main> f_simplify

curry (snd.(snd /\ fst).(fst /\ fst))

= { prodCancel2 }

curry (fst.(fst /\ fst))

= { prodCancel1 }

curry fst

The main function return the original Haskell file, but with the trans-
formed terms instead of the original expressions. The comments and the
original indentation are lost during this process. To make life easier for
those who just want the simplified terms, not the intermediate calcula-
tions, a shell script that receives the original file and produces the simpli-
fied one was created. In this script SimpliFree program is applied, and
then the resulting code is compiled and executed.

7.2 DrHylo results

The drhylo tool is part of the Uminho Haskell Libraries, developed in
the University of Minho. As described in the introduction, it can translate
normal recursive Haskell functions to point-free terms, where recursion is
only expressed by the hylomorphism recursion patter. The main problem
with this translation is that the resulting point-free expressions are usually
more complex than the expected ones. In this section some functions
obtained by the drhylo tool are analysed, and simplified automatically
by the SimpliFree tool. The advanced strategy, introduced in section 5.5,
will be used to simplify the expressions.

The code bellow was produced by drhylo.

module Sample where

import Pointless.Functors

import Pointless.Combinators

import Pointless.Combinators.Uncurried

import Pointless.RecursionPatterns

comp :: (b -> c, a -> b) -> a -> c

comp

= app .

(((curry

(curry

(app .

((fst . (fst . ((snd . fst) /\ snd))) /\

(app .

((snd . (fst . ((snd . fst) /\ snd))) /\

(snd . ((snd . fst) /\ snd))))))))

. bang)

/\ id)

swap :: (a, b) -> (b, a)

swap = app . (((curry ((snd . snd) /\ (fst . snd))) . bang) /\ id)

assocr :: ((a, b), c) -> (a, (b, c))

assocr

= app .

(((curry

((fst . (fst . snd)) /\ ((snd . (fst . snd)) /\ (snd . snd))))

. bang)

/\ id)

coswap :: Either a b -> Either b a

coswap

= app .

(((curry

(app .

((eithr . ((curry (inr . snd)) /\ (curry (inl . snd)))) /\ snd)))

. bang)

/\ id)

undistr :: Either (a, b) (a, c) -> (a, Either b c)

undistr

= app .

(((curry

(app .

((eithr .

((curry ((fst . snd) /\ (inl . (snd . snd)))) /\

(curry ((fst . snd) /\ (inr . (snd . snd))))))

/\ snd)))

. bang)

/\ id)

data Nat = Zero

| Succ Nat

deriving Show

plus :: (Nat, Nat) -> Nat

plus

= hylo (_L :: Mu ((:+:) (Const a0) Id))

(app .

(((curry

(app .

((eithr . ((curry (snd . snd)) /\ (curry (inn . (inr . snd))))) /\

snd)))

. bang)

/\ id))

(app .

(((curry

(app .

((eithr .

((curry (inl . (snd . fst))) /\

(curry (inr . (snd /\ (snd . (snd . fst)))))))

/\ (out . (fst . snd)))))

. bang)

/\ id))

instance FunctorOf ((:+:) (Const One) Id) Nat where

inn’ (Inl (Const _)) = Zero

inn’ (Inr (Id v1)) = Succ v1

out’ (Zero) = Inl (Const _L)

out’ (Succ v1) = Inr (Id v1)

To use the advanced strategy described in appendix A.2 it is enough
to use an extra argument when calling the SimpliFree program:

SimpliFree -i adv strat < Samples drHylo.hs > out drHylo.hs

The simplified code is:

module Sample where

import Pointless.Functors

import Pointless.Combinators

import Pointless.Combinators.Uncurried

import Pointless.RecursionPatterns

comp :: (b -> c, a -> b) -> a -> c

comp = curry (app . ((fst . fst) /\ (app . (snd >< id))))

swap :: (a, b) -> (b, a)

swap = swap

assocr :: ((a, b), c) -> (a, (b, c))

assocr = (fst . fst) /\ (snd >< id)

coswap :: Either a b -> Either b a

coswap = coswap

undistr :: Either (a, b) (a, c) -> (a, Either b c)

undistr = (id >< inl) \/ (id >< inr)

data Nat = Zero

| Succ Nat

deriving Show

plus :: (Nat, Nat) -> Nat

plus

= hylo (_L :: Mu ((:+:) (Const a0) Id)) (snd \/ (inn . inr))

(app .

((eithr .

((curry (inl . fst)) /\ (curry (inr . (snd /\ (snd . fst))))))

/\ (out . fst)))

instance FunctorOf ((:+:) (Const One) Id) Nat where

inn’ (Inl (Const _)) = Zero

inn’ (Inr (Id v1)) = Succ v1

out’ (Zero) = Inl (Const _L)

out’ (Succ v1) = Inr (Id v1)

Note that in the case of the swap and coswap functions the simplifica-
tion derived the corresponding name, because both are known macros in
the used strategy. When looking at the derived computation of coswap,
for example, it is possible to follow all the steps taken in the process.

*Main> coswap_adv_strat

app.((curry (app.((’eithr’.(curry (inr.snd) /\ curry (inl.snd))) /\ snd)).bang) /\ id)

= { eitherConst }

app.((curry (app.(curry ((inr \/ inl).snd) /\ snd)).bang) /\ id)

= { expCancAdv3 }

app.(curry ((inr \/ inl).snd) /\ snd).(bang /\ id)

= { prodFus }

app.((curry ((inr \/ inl).snd).(bang /\ id)) /\ (snd.(bang /\ id)))

= { prodCancel2 }

app.((curry ((inr \/ inl).snd).(bang /\ id)) /\ id)

= { expCancAdv3 }

(inr \/ inl).snd.(bang /\ id /\ id)

= { prodCancel2 }

(inr \/ inl).id

= { natId2 }

inr \/ inl

= { coswap_fold }

’coswap’

7.3 Cata-Fusion for Lists

The rule cata-fusion for lists is a good example to illustrate the ad-
vantages of allowing the application of strategies in the result of a rule.

Example 4. cataList fusion : f.(|g|)List = (|h|)List ⇐ f ◦ g = h ◦ (List f)

cataList_fusion (f :.: (Macro "cata" [g]))

= Macro "cata" [‘apply deriveGene (f:.:g)‘]

The cata-fusion rule is not so straightforward as the previous rules,
and there are many ways of calculating the h value using strategies.

Since FList A = 1 ⊕ A ⊗ Id, it is reasonable to assume that the gene
of the catamorphism is an either (g = g1 O g2). So the difficult task is to
find h such that

f ◦ (g1 O g2) = h ◦ (id + id× f)

It is still possible to do some calculations to facilitate the definition
of a strategy for calculating h.

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2

= { † }
f ◦ g1 O i ◦ (j × k ◦ f)

= { Natural Id, Prod-Functor }
f ◦ g1 O i ◦ (j × k) ◦ (id× f)

= { Sum-Absortion }
(f ◦ g1 O i ◦ (j × k)) ◦ (id + id× f)

So, if the difficult step † is possible, then it is possible to match h with
f ◦ g1 O i ◦ (j × k). In other words, h = h1 O h2 where:

– h1 = f ◦ g1

– h2 = i ◦ (j × k), if f ◦ g2 = i ◦ (j × k ◦ f)

At this stage it is possible to note that:

– h1 can be easily calculated, since f and g1 are already known;
– h2 is not so easy to calculate, since the values if i, j and k are not

known yet. They can be calculated by equational reasoning on the
equality f ◦ g2 = i ◦ (j× k ◦ f). This can be achieved by the definition
of a strategy that begins by transforming f ◦g2 into i◦ (j×k ◦f), and
then extracts the values of i, j and k to produce the h2 = i ◦ (j × k);

– After having the h1 and h2 value, the new catamorphism can be easily
defined as (|h1 O h2|)

The strategy can be written in the SimpliFree language as:

cataList : cataList_rule

cataList_rule : f . (’cataList’ [g1\/g2]) ->

’cataList’ [(f.g1) \/ (apply getH2 [f,f.g2])]

getH2 : extractH2 or (cataList_step and getH2)

extractH2 : extractH2A or extractH2B or extractH2C or extractH2D

extractH2A : [g,a.(b >< (c.g))] -> a.(b><c)

extractH2B : [g,a.(b >< g)] -> a.(b><id)

extractH2C : [g,b >< (c.g)] -> b><c

extractH2D : [g,b >< g] -> b><id

cataList_step : user_cataL_rules or swapLeft or base_rule or base_unfMacros

swapLeft : (f >< g) . ’swap’ -> ’swap’ . (g >< f)

cataList_rules : catAssoc

catAssoc : (curry ’cat’) . ’cat’ -> ’comp’ . ((curry ’cat’) >< (curry ’cat’))

where the only user defined rule is

cata-assoc : cat ◦ cat → comp ◦ (cat× cat)

that describes the cat associativity property. Note that, with the syntatic
sugar added in section 6.5, the catAssoc rule could be defined as:

Assoc catAssoc: ’cat’

The strategy called base rules is imported from a rules repository,
and its main task is to simplify terms and to put composition inside splits
and eithers.

For example, this strategy, using the associative property of concate-
nation described above, allows the simplification of

cat ◦ (|nil O(cat ◦ swap ◦ (wrap× id))|)

to
(|(cat ◦ nil) O(comp ◦ swap ◦ ((cat ◦ wrap)× id))|)

which computes the reverse of a list using an accumulator.
The corresponding pointwise functions to these two point-free defini-

tions can be defined in Haskell , respectively, as:

reverse [] = []

reverse (x:xs) = cat (reverse xs, wrap x)

reverse_t [] y = y

reverse_t (x:xs) y = reverse_t xs (x:y)

The computation steps produced by the strategy defined before are:

*Main> test_cataList

curry ’cat’.(’cataList’ [’nil’ \/ (’cat’.’swap’.(’wrap’ >< id))])

= { cataList_rule

--- and ---

[curry ’cat’,curry ’cat’.’cat’.’swap’.(’wrap’ >< id)]

= { catAssoc }

[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’).’swap’.(’wrap’ >< id)]

= { swapLeft }

[curry ’cat’,’comp’.’swap’.(curry ’cat’ >< curry ’cat’).(’wrap’ >< id)]

= { prodFun }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) >< (curry ’cat’.id))]

= { natId2 }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) >< curry ’cat’)]

= { extractI2B }

’comp’.’swap’.((curry ’cat’.’wrap’) >< id)

}

’cataList’ [(curry ’cat’.’nil’) \/ (’comp’.’swap’.((curry ’cat’.’wrap’) >< id))]

But there are still some important issues that can be relevant, like
the fact that the cata-fusion would not be possible after an application
of the exp-fusion rule (g ◦ f → g ◦ (f × id)). This is because the strategy
would try to fuse the function cat (instead of cat) with the catamorphism,
which fails. This indicates that some manipulation and backtracking may
be necessary before the strategy can be applied.

This strategy for fusing catamorphisms for lists was added to the
rules repository (as can be seen in appendix A.3), so it can be reused for
other cases as well. This and the fact that the associativity property can
be automatically written as a special rule (as described in section 6.5)
makes this strategy very easy to use. In the case presented in this section
it would be enough to import the strategy pack with the cata-fusion law
for lists, and to define the associativity property using the special rule.

7.4 Cata-Fusion for Rose Trees

In a very similar way to the strategy defined in the previous section
(7.3), a more complex strategy can be defined for Rose Trees.

A rose tree can be defined in Haskell as:

data Rose a = Node a [Rose a]

The fixed point associated to this type can be easily defined as Rose A =
µ(A × List). So in this case, the functor on functions can be defined as
F f = id×mapList f .

In the definition of this strategy, the extract function needs to recog-
nise a more concrete expression. Besides that, the strategy is very similar
to the previous case:

cataRoseTree_strat : opt cataRoseTree

cataRoseTree : f . (’cataRoseTree’ [g]) -> ’cataRoseTree’ [apply

getRoseTreeH2 [f,f.g]]

getRoseTreeH2 : extractRoseTreeH2 or (cataRoseTree_step and

getRoseTreeH2)

extractRoseTreeH2 : extractRoseTreeH2A or extractRoseTreeH2B or

extractRoseTreeH2C or extractRoseTreeH2D

extractRoseTreeH2A : [f, a . (b >< (c . (’mapList’ [f])))] -> a . (b >< c)

extractRoseTreeH2B : [f, b >< (c . (’mapList’ [f]))] -> b >< c

extractRoseTreeH2C : [f, a . (b >< (’mapList’ [f]))] -> a . (b >< id)

extractRoseTreeH2D : [f, b >< (’mapList’ [f])] -> b >< id

cataRoseTree_step : cataRoseTree_rules or swapLeft or adv_rules or

base_unfMacro

The testing function will be a function that performs a postorder
traversal in a rose tree, and returns the corresponding list. In the point-
free style, this function can be defined as follows.

post : Rose A → List A
post = (|cat ◦ swap ◦ (wrap× (|nil O cat|)List)|)Rose

The specification for the optimization can be written as:

postt = cat ◦ post

It is now possible to apply the cata-fusion law for rose trees, using
the associativity property of the cat operator (mentioned in the previous
section), the cata-fusion for lists, and the following property:

(|f O g ◦ (h× id)|)List = (|f O g|)List ◦mapList h)

The output produced by the SimpliFree tool is:

*Main> post_t_cataRoseTree_strat

curry ’cat’.(’cataRoseTree’ [’cat’.’swap’.(’wrap’ ><

(’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))])

= { cataRoseTree

--- and ---

[curry ’cat’,curry ’cat’.’cat’.’swap’.(’wrap’ ><

(’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))]

= { catAssoc }

[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’).’swap’.

(’wrap’ >< (’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))]

= { swapLeft }

[curry ’cat’,’comp’.’swap’.(curry ’cat’ >< curry ’cat’).

(’wrap’ >< (’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))]

= { prodFun }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><

(curry ’cat’.(’cataList’ [(’pnt’ [’nil’]) \/ ’cat’])))]

= { cataList

--- and ---

[curry ’cat’,curry ’cat’.’cat’]

= { catAssoc }

[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’)]

= { extractH2B }

’comp’.(curry ’cat’ >< id)

}

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><

(’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/

(’comp’.(curry ’cat’ >< id))]))]

= { foldMapFusAdv }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><

((’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/ ’comp’]).

(’mapList’ [curry ’cat’])))]

= { extractRoseTreeH2A }

’comp’.’swap’.((curry ’cat’.’wrap’) ><

(’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/ ’comp’]))

}

’cataRoseTree’ [’comp’.’swap’.((curry ’cat’.’wrap’) ><

(’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/ ’comp’]))]

As it can be seen, the fusion is successfully applied when using this
strategy. The final catamorphism represents the more efficient version of
the postorder traversal, that uses an accumulator.

8 Implementation details and Efficiency

There are three main steps involved in the simplification of an Haskell
file:

1) Application of the SimpliFree tool to obtain the intermediate Haskell
file, where the traversals and rules are encoded in Haskell ;

2) Compilation (or interpretation) of the intermediate Haskell file;
3) Application of the traversals in the process of transforming the point-

free terms.

The efficiency of each step will be analysed separately in this section.
For that,

The testing will be done with a sample file resulting from drhylo,
that includes the functions tested in section 7.2, together with the ad-
vanced strategy pack described in appendix A.2, which has 68 rules (in-
cluding the folding and unfolding of macros). The computer involved in
the process is a Pentium M at 1.3 GHz, with GHC 6.2.2.

Application of SimpliFree

In the first step – the application of the SimpliFree tool – most of
the time is consumed during the parsing. So in this subsection the only
concern will be the parser, since we are looking at the efficiency problems.

In the first versions of this tool the parsing was done in two ways:

– the point-free functions were parsed using the parser included in GHC
(Language.Haskell.Parser), that are later traversed to collect the ex-
isting point-free expressions.

– the special code inside the blocks, containing rules, strategies, opti-
misations and program options, is parsed with a library using parsing
combinators.

Later a tool called Happy2 was used to build the parser for the syntax
inside the special blocks. Happy is a parser generator for Haskell , similar
to the yacc tool for the C language, that takes an annotated BNF specifi-
cation of a grammar and produces a Haskell module with a parser for the
grammar. The main advantages of using this tool are the fact that the
grammar is now much easier to understand and change, and the produced
code is much more efficient than when using the parsing combinators. Us-
ing the testing file, the user CPU time is around 0.33 seconds, versus
the 2.1 seconds that the parsing combinators took in several tests. This
means that, in this case, the code produced by Happy is around 6 times
faster than with the parsing combinators.

Compilation and interpretation

Recall the several different approaches made in this tool:

1) Calculation of the final result with Data.Generics libraries (SyB
approach);

2) Calculation of the final result with Strafunski ;
3) Calculation of intermediate steps with Strafunski ;
4) Calculation of all intermediate steps also with Strafunski .

Later, a 5th version with no generic traversals was developed. In this
version only a single function to traverse the point-free abstract syntax
tree was defined, producing identical results to the last approach, where
all the intermediate results were computed.
2 http://www.haskell.org/happy

http://www.haskell.org/happy

This boilerplate code involved in this approach is not too extensive,
since the definition of the point-free language is very succinct. The main
disadvantage is the fact that the solution is not so general, since instead
of using a generic monad, it uses a particular monad (all results have
a specific type, and are not parameterised), and the fact that all the
combinators to traverse terms needed to be defined (but so far only a few
were used).

The 5th version is, as expected, much more efficient, not only in the
traversal of terms, but also at the compilation or interpretation of the
intermediate result. This is just because the generic libraries are no longer
compiled, making the compilation process faster. The user CPU time
obtained with the time command is, in the 4th approach, around 10.5
seconds, while in the 5th approach is around 6.0 seconds. The difference
is not so big in the second compilation, because the generic libraries are
already compiled. In this case the 4th approach took about 5.2 seconds,
while the 5th one took 4.5 seconds.

Application of transformations

The last step consists on the application of the rules and strategies to
the expressions. It can be considered to be the most important stage in
this process. The five different approaches were measured using the unix
time command (including the 5th version, that is expected to be much
more efficient, since it is not generic).

The approximate user CPU time of each approach can be seen in
figure 5. The worse result is definitely the traversal using the SyB ap-
proach, which took more than 10 seconds to apply the traversals, and
only computes the final result (as the 2nd approach that took around
0.76 seconds). This was the main reason why only the libraries using
Strafunski were developed. In the 4th approach, the application of each
rule involves collecting the computations that the rule may return, and
for this a state monad was introduced in the application of each rule.
This lifting of monads was the main responsable for the duplication of
the time involved. In the last approach, the removal of generic traversals
generated a much more efficient code, that took around 0.11 seconds to
execute.

So, using the 5th approach, the total time to obtain a simplified
Haskell file is:

0.33(SimpliFree) + 6.0(compilation) + 0.11(transformations) = 6.44s

1 2 3 4 5
10.8############

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

Fig. 5. User CPU time in second of the traversal of terms for each ap-
proach

9 Conclusion and future work

The proposed goals were to simplify complex point-free terms in an
automated way and with the minimum intervention possible. For that a
special syntax was created to be used within the code (this concept is
known as active source). With this tool it is possible to give some hints
(not always needed), to guide the simplification process of the terms. It
is also possible to define strategies powerful enough to apply program
transformations like the cata-fusion (in some cases).

The visualisation of the intermediate steps was considered important,
so the user can have some feedback when choosing the right hints to give.
A number of powerful strategy combinators are also available, so the user
can describe transformations using a much richer syntax than would be
possible using only rules.

The fact that an intermediate file had to be produced may be seen as
a disadvantage, but it allows for more efficient pattern matching with the
terms, which was considered more relevant in this project.

Future Work

An important issue that was not approached here was the formal
validation of the implemented algorithm for pattern matching. When
a left variable is found in a rule definition, auxiliary functions that take
advantage of Haskell pattern matching are used, to check for conditions
and to produce the resulting expression. It would be important to prove
the the soundness of the expressions produced, as well as the way the
expressions are produced. This is specially important in this project since
every other step in the conversion from pointwise is based on a strong
theoretical basis.

Another important issue is the type information. It is possible to infer
types using the Haskell pattern matching mechanism in a similar way to
what was done in SimpliFree to apply rules, as shown in [Cun05]. Using
types, some rules that could not be applied in this system may be possible
to apply. But this would require big changes not only in the syntax tree
(that is not very hard to do), but also on all tools previously defined
for untyped point-free expressions. The untyped approach in this tool
was necessary before moving to the typed expressions, and the results
obtained without types were already very satisfactory.

There are also other issues that can be improved, namely:

– The cata-fusion for lists may still require some previous manipulation,
as mentioned in section 7.3, and a more general solution for cata-fusion
that looks at the associated base functor may be possible;

– A more direct and hidden interaction with the DrHylo tool may be
a good idea, so that in a final stage the user only asks to convert
to point-free and obtains the simplified expression (although in some
proofs human interaction may still be necessary);

– The strategies defined in the rules repository created for this tool
could still be improved, and new strategies could also be defined. A
friendly way of inserting new strategies to the repository may also be
a good idea, but at the moment the rules are all compiled with the
program, not imported at run time;

– It is very easy to define strategies that enter in infinite loops. A loop
detection mechanism to detect circularities would be a way of pre-
venting these cases, that was not implemented;

– When simplifying an expression it is possible to obtain a Computation
with the intermediate steps. A textual view was defined for these

computations, but there could be a way to convert the result to other
formats, like LATEX expressions.

References

Bac78. John Backus. Can programming be liberated from the von neumann style? a
functional style and its algebra of programs. Communications of the ACM,
21(8):613–641, 1978.

Cun05. Alcino Cunha. Point-free Program Calculation. PhD thesis, University of
Minho, 2005.

dMS99. Oege de Moor and Ganesh Sittampalam. Generic program transformation.
In D. Swierstra, P. Henriques, and J. Oliveira, editors, Proceedings of the 3rd
International Summer School on Advanced Functional Programming, volume
1608 of LNCS, pages 116–149. Springer-Verlag, 1999.

LJ03. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical de-
sign pattern for generic programming. In Proceedings of the ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI’03),
pages 26–37. ACM Press, 2003.

LV02a. R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In Proc.
Practical Aspects of Declarative Programming PADL 2002, volume 2257 of
LNCS, pages 137–154. Springer-Verlag, January 2002.

LV02b. Ralf Lämmel and Joost Visser. Design Patterns for Functional Strategic Pro-
gramming. In Proc. of Third ACM SIGPLAN Workshop on Rule-Based Pro-
gramming RULE’02, Pittsburgh, USA, October5 2002. ACM Press. 14 pages.

LV03. R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl and
P. Wadler, editors, Proc. of Practical Aspects of Declarative Programming
(PADL’03), volume 2562 of LNCS, pages 357–375. Springer-Verlag, January
2003.

MH95. Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold
to exponential types. In Proceedings of the 7th ACM Conference on Functional
Programming Languages and Computer Architecture (FPCA’95). ACM Press,
1995.

Pro05. José Proença. Transformações pointfree - pointwise. Technical report, Uni-
versity of Minho, Department of Informatics, 2005.

A Rules repository

To facilitate the simplification of terms when using the SimpliFree tool,
several rules and strategies were defined. This rules can be imported by
activating the corresponding option, as an argument on the command line,
or as a special annotated block. In most cases these rules and strategies
are enough to simplify the point-free terms.

A.1 Base strategy

Several strategies were here created with the purpose of being rede-
fined later, if the user wants to reuse the strategy and add something
more:

– base pre

– base pos
– macros fold
– macros unfold

The strategy consists on applying a set of rules as much as possible,
then unfold the known macros, and loop this process until no rules can
be applied. In the end the known macros are folded again to make the
reading easier.

The main strategy is called base strat, and its definition is as follows.

{- Strategies:

base_strat : base_tmp1 and (many base_fMacro)

base_tmp1 : base_tmp2 and (opt ((oneOrMore base_unfMacro) and base_tmp1))

base_tmp2 : many base_rules

base_pre : fail

base_pos : fail

macros_fold : fail

macros_unfold : fail

base_rules : base_pre or base_simpl or base_comp_ins or base_pos

base_simpl : ((many prodFusInv) and eitherConst)

or natId1 or natId2 or prodCancel1 or prodCancel1’

or prodCancel2 or prodCancel2’ or prodRefl or sumCancel1

or sumCancel1’ or sumCancel2 or sumCancel2’ or sumRefl

or expCancel or constFus

base_comp_ins : prodAbs or prodFun or prodFus or sumAbs or sumFun or sumFus

or expCancAdv1 or expCancAdv2 or expCancAdv3 or expCancAdv4

or expFus

base_unfMacro : exp_unfold or pxe_unfold or unpnt_unfold or pnt_unfold

or swap_unfold or coswap_unfold or distl_unfold

or distr_unfold or split_unfold or macros_unfold

base_fMacro : exp_fold or pxe_fold or unpnt_fold or swap_fold or coswap_fold

or distl_fold or distr_fold or split_fold or either_fold

or expFus_fold or macros_fold

-}

-- simplification

{- Rules:

natId1 : id . f -> f

natId2 : f . id -> f

prodCancel1 : fst . (f /\ g) -> f

prodCancel1’: fst . (f >< g) -> f.fst

prodCancel2 : snd . (f /\ g) -> g

prodCancel2’: snd . (f >< g) -> g.snd

prodRefl : fst /\ snd -> id >< id

sumCancel1 : (f \/ g) . Left -> f

sumCancel1’ : (f -|- g) . Left -> Left . f

sumCancel2 : (f \/ g) . Right -> g

sumCancel2’ : (f -|- g) . Right -> Right . g

sumRefl : Left \/ Right -> id -|- id

expCancel : app . ((curry f) >< id) -> f

constFus : (’pnt’ [f]) . g -> ’pnt’ [f]

eitherConst : ’eithr’.((curry (f.snd)) /\ (curry (g.snd))) -> curry ((f \/ g).snd)

prodFusInv : (f.h) /\ (g.h) -> (f/\g) . h

-}

-- composition to sub terms

{- Rules:

prodAbs : (i><j) . (g/\h) -> (i.g) /\ (j.h)

prodFun : (f><g) . (h><i) -> (f.h) >< (g.i)

prodFus : (f/\g) . h -> (f.h) /\ (g.h)

sumAbs : (g\/h) . (i-|-j) -> (g.i) \/ (h.j)

sumFun : (f-|-g) . (h-|-i) -> (f.h) -|- (g.i)

sumFus : f . (g\/h) -> (f.g) \/ (f.h)

expFus : (curry g) . f -> curry (g . (f >< id))

expCancAdv1: app . (((curry f) . g)><h) -> f . (g><h)

expCancAdv2: app . ((curry f)><h) -> f . (id><h)

expCancAdv3: app . (((curry f) . g)/\h) -> f . (g/\h)

expCancAdv4: app . ((curry f)/\h) -> f . (id/\h)

-}

-- fold and unfold of macros

{- Rules:

exp_unfold : ’exp’ [f] -> curry (f . app)

pxe_unfold : ’pxe’ [f] -> curry (app . (id >< f))

unpnt_unfold : ’unpnt’ [f] -> app . ((f.bang) /\ id)

pnt_unfold : ’pnt’ [f]-> curry (f.snd)

swap_unfold : ’swap’ -> snd /\ fst

coswap_unfold: ’coswap’ -> Right \/ Left

distl_unfold : ’distl’ -> app . (((curry Left)\/(curry Right)) >< id)

distr_unfold : ’distr’ -> (’swap’-|-’swap’) . (’distl’ . ’swap’)

split_unfold : ’split’ -> curry ((app.(fst >< id)) /\ (app.(snd >< id)))

either_unfold: ’eithr’ -> curry ((app \/ app) . (((fst >< id) -|- (snd >< id)) . ’distr’))

exp_fold : curry (f . app) -> ’exp’ [f]

pxe_fold : curry (app . (id >< f)) -> ’pxe’ [f]

unpnt_fold : app . ((f.bang) /\ id) -> ’unpnt’ [f]

pnt_fold : curry (f.snd) -> ’pnt’ [f]

swap_fold : snd /\ fst -> ’swap’

coswap_fold: Right \/ Left -> ’coswap’

distl_fold : app . (((curry Left)\/(curry Right)) >< id) -> ’distl’

distr_fold : (’swap’-|-’swap’) . (’distl’ . ’swap’) -> ’distr’

split_fold : curry ((app.(fst >< id)) /\ (app.(snd >< id))) -> ’split’

either_fold: curry ((app \/ app) . (((fst >< id) -|- (snd >< id)) . ’distr’)) -> ’eithr’

expFus_fold: curry (g . (f >< id)) -> (curry g) . f

-}

A.2 Advanced Strategy

Reuses the base strategy and adds some more rules. The reason this
is a separated strategy is that some of the rules might not type check.

As in the definition of the base strategy, there are some rules that are
meant to be redefined by the user, if needed:

– adv pre
– adv pos
– macros fold
– macros unfold

The main strategy is called adv strat, and its definition is as follows.

{- import base_strat }

{- Strategies:

adv_strat : base_strat

adv_rules : adv_pre or base_rules or adv_pos

adv_pre : fail

adv_pos : fail

base_pre : adv_pre or toProd1 or toProd2 or toProd3

base_pos : idTUn1 or idTUn2 or apTUn or bangTUn or prodReflAdv or

sumReflAdv or unfix1 or unfix2 or expCancAdv5 or

toSum or toSum2 or

toSum3 or fixProdCancel1 or fixProdCancel2 or

fixProdCancel3 or fixProdCancel4 or fixProdCancel5

or adv_pos

-}

{- Rules:

idTUn1: id >< id -> id

idTUn2: id -|- id -> id

apTUn: curry app -> id

bangTUn: bang.f -> bang

prodReflAdv: (fst.f) /\ (snd.f) -> f

sumReflAdv: (f.Left) \/ (f.Right) -> f

expCancAdv5: curry (app . (f><id)) -> f

toProd1: (f.fst) /\ (g.snd) -> f >< g

toProd2: (f.fst) /\ snd -> f >< id

toProd3: fst /\ (g.snd) -> id >< g

toSum: (Left . f) \/ (Right . g) -> f -|- g

toSum2: (Left . f) \/ Right -> f -|- id

toSum3: Left \/ (Right . g) -> id -|- g

unfix1: ’fix’ . (curry fst) -> id

unfix2: ’fix’ . (curry (curry snd)) -> (curry snd) . bang

fixProdCancel1: ’fix’ . (curry (curry snd)) -> curry snd

fixProdCancel2: ’fix’ . (curry (curry (f.snd))) -> curry (f.snd)

fixProdCancel3: ’fix’ . (curry (curry ((f.snd) /\ (g.snd)))) -> curry ((f/\g).snd)

fixProdCancel4: ’fix’ . (curry (curry ((f.snd) /\ snd))) -> curry ((f/\id).snd)

fixProdCancel5: ’fix’ . (curry (curry (snd /\ (g.snd)))) -> curry ((id/\g).snd)

-}

{-

expCancAdv5:

curry (app . (f><id)) = {exp fusion}

curry app . f = { exp Refl (not in base rules) }

id . f = f

Without types I think it can be dangerous to use

- id >< id -> id

- id -|- id -> id

- curry app -> id

So they are not in base rules

-}

A.3 Fusion of catamorphisms for lists

This strategy was created to show that the main idea underneath the
fusion of catamorphisms for lists could also be generalised in a strategy.
But in some cases the user still have to add several hints before the fusion
is possible.

The advanced strategy is used, so some of the strategies to be redefined
are still exported:

– adv pos
– macros fold
– macros unfold

The main strategy is called cataList strat, and its definition is as
follows.

{- import adv_strat -}

{- Strategies:

cataList_strat : adv_strat

adv_pre : cataList

cataList_rules : fail

cataList : f . (’cataList’ [g1\/g2]) ->

’cataList’ [(f.g1) \/ (apply getH2 [f,f.g2])]

getH2 : extractH2 or (cataList_step and getH2)

extractH2 : extractH2A or extractH2B or extractH2C or extractH2D

extractH2A : [f,a.(b >< (c.f))] -> a.(b><c)

extractH2B : [f,a.(b >< f)] -> a.(b><id)

extractH2C : [f,b >< (c.f)] -> b><c

extractH2D : [f,b >< f] -> b><id

cataList_step : cataList_rules or swapLeft or adv_rules or base_unfMacro

swapLeft : (f >< g) . ’swap’ -> ’swap’ . (g >< f)

-}

