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Abstract

This paper characterizes refinement of state-based software components
modelled as pointed coalgebras for some Set endofunctors. The proposed
characterization is parametric on a specification of the underlying be-
haviour model introduced as a strong monad. This provides a basis to
reason about (and transform) state-based software designs.
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1 Introduction

Component-based software development [15, 16] emerged as a promising
paradigm to deal with the ever increasing need for mastering complexity,
software evolution and reuse. From object-orientation it retains the basic
principle of encapsulation of data and code. The emphasis, however, is
shifted from (class) inheritance to (object) composition to avoid inter-
ference between the former and encapsulation and, thus, paving the way
to a development methodology based on third-party assembly of com-
ponents. In [3, 2], the authors proposed a coalgebraic characterization
of software components as specifications of state-based modules, encap-
sulating a number of services through a public interface and providing
limited access to an internal state space. Component persist and evolve
in time, being able to interact with the environment during their overall
computation. This piece of research has been driven by two key ideas:
first, the ‘black-box’ characterization of software components favors an
observational semantics; secondly, the proposed constructions should be
generic in the sense that they should not depend on a particular notion of
component behaviour. This led both to the adoption of coalgebra theory
[14] to capture observational semantics and to the abstract characteriza-
tion of possible behaviour models (e.g., partiality or (different degrees of)



non-determinism) by strong monads acting as parameters in the resulting
calculus.

Within this approach, briefly reviewed in section 2, a set of component
connectors have been identified and their properties established as bisim-
ilarity equations with respect to a generic behaviour model. Actually,
the corner stone of our ’components as coalgebras’ approach is the use
of coinduction to prove ∼-results, where ∼ is the appropriate bisimilar-
ity relation, as a basis for reasoning and transforming component-based
designs. This paper provides a basis to extend the approach toward the
inequational side through the discussion of suitable notions of refinement.

In broad terms refinement can be defined as a transformation of an
‘abstract’ into a more ‘concrete’ design, entailing a notion of substitution,
but not necessarily equivalence. There is, however, a diversity of ways
of understanding both what substitution means, and what such a trans-
formation should seek for. In data refinement, for example, after Hoare’s
landmark paper [8], the ‘concrete’ model is required to have enough redun-
dancy to represent all the elements of the ‘abstract’ one. This is captured
by the definition of a surjection from the former into the latter (the re-
trieve map). Also substitution is regarded as ‘complete’ in the sense that
the (concrete) operations accept all the input values accepted by the cor-
responding abstract ones, and, for the same inputs, the results produced
are also the same, up to the retrieve map. This means that, if models
are specified, as they usually are in model-oriented design methods like
Vdm[10], in terms of pre and post-conditions, the former are weakened
and the latter strengthened, under refinement. In object-orientation, on
the other hand, substitution is expressed in terms of behaviour subtyping
[11] capturing the idea that ‘concrete’ objects behave similarly to objects
in the ‘abstract’ class. Finally, refinement in process algebras is usually
discussed in terms of several ‘observation’ preorders (see, for example,
[7]), most of them justifying transformations entailing reduction of non-
determinism.

In general, refinement correctness means that the usage of a system
according to its ‘abstract’ description is still valid if it is actually built
according to the ‘concrete’ one. What is commonly understood by being
a valid usage is that the corresponding observable consequences are still
the same, or, in a less strict sense, a subset thereof. The exact defini-
tion, however, depends on the underlying behaviour model, which, in our
approach to component modelling, is taken as a specification parameter.
Therefore, the main contribution of this paper is a semantic characteri-



zation of refinement for state-based components, parametric on a strong
monad intended to capture components’ behavioural models.

After a brief review of the component calculus, in section 2, the paper
discusses two levels of component refinement: the interface level, con-
cerned with what one may call plugging compatibility, in section 3, and
the behavioural one in section 4, which introduces forward and backward
morphisms as refinement ‘witnesses’, and section 5 which builds on them
to propose a family of refinement preorders. Section 6 proves soundness
of simulations to establish behavioural refinement. A few examples, along
with some prospects for future work, are presented in section 7.

2 Components as Coalgebras

In [3, 2] software components and connectors have been characterised as
dynamic systems with a public interface and a private, encapsulated state.
A typical example is LBuff: a connector modelling a buffered channel
which occasionally looses messages, as represented below:

{
put : M −→ 1
pick : 1 −→ M •

��	�
��
LBuff

O = 1 + M

I = M + 1

The put and pick operations are regarded as ‘buttons’ or ‘ports’, whose
signatures are grouped together in the diagram (M stands for a message
parameter type, 1 for the nullary datatype and + for ‘datatype sum’). One
might capture LBuff dynamics by a function aLBuff : U × I −→ P(U ×O)
where U denotes the space state. This describes how LBuff reacts to input
stimuli, produces output data (if any) and changes state. It can also
be written in a curried form as aLBuff : U −→ P(U ×O)I that is, as
a coalgebra [14] of signature U −→ T U where functor T captures the
transition ‘shape’:

T = P(Id×O)I (1)

Built in this ‘shape’ is the possibility of non deterministic evolution cap-
tured by the use of P , the finite powerset monad. Concretely, LBuff is



defined over U = M∗, with nil as the initial state, and dynamics given by

aLBuff〈u, put m〉 = {〈u, ι1 ∗〉, 〈m : u, ι1 ∗〉}
aLBuff〈u, pick〉 = {〈tail u, ι2 (head u)〉}

where put m and pick abbreviates ι1 m and ι2 ∗, respectively.
Non determinism, capturing the occasional loss of messages, is a pos-

sible behavioural pattern for this buffer, but, by no means, the only one.
Other components will exhibit different behaviour models: actually gener-
icity is achieved by replacing the powerset monad above, by an arbitrary
strong monad3 B. In the general case, a component p : I −→ O is specified
as a (pointed) coalgebra in Set

〈up ∈ Up, ap : Up −→ B(Up ×O)I〉 (2)

where point up is taken as the ‘initial’ or ‘seed’ state. Therefore, the
computation of an action will not simply produce an output and a con-
tinuation state, but a B-structure of such pairs. The monadic structure
provides tools to handle such computations. Unit (η) and multiplication
(µ), provide, respectively, a value embedding and a ‘flatten’ operation to
reduce nested behavioural annotations. Strength, either in its right (τr)
or left (τl) version, will cater for context information.

In such a framework, components become arrows in a (bicategorical)
universe Cp whose objects are sets, which provide types to input/output
parameters (the components’ interfaces), and component morphisms h :
p −→ q are functions relating the state spaces of p and q and satisfying
the following seed preservation and coalgebra conditions:

h up = uq and aq · h = B (h×O)I · ap (3)

For each triple of objects 〈I,K,O〉, a composition law is given by functor
;I,K,O : Cp(I, K)× Cp(K, O) −→ Cp(I,O) whose action on objects p and
q is

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉 with

3 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η and µ
strong natural transformations. B being strong means there exist natural transfor-
mations τT

r : T×− =⇒ T(Id×−) and τT
l : −×T =⇒ T(−× Id) called the right and

left strength, respectively, subject to certain conditions. Their effect is to distribute
the free variable values in the context “−” along functor B.



ap;q = Up × Uq × I
∼=−−−−→ Up × I × Uq

ap×id−−−−→ B(Up ×K)× Uq

τr−−−−→ B(Up ×K × Uq)
∼=−−−−→ B(Up × (Uq ×K))

B(id×aq)−−−−−→ B(Up × B(Uq ×O)) Bτl−−−−→ BB(Up × (Uq ×O))
∼=−−−−→ BB(Up × Uq ×O)

µ−−−−→ B(Up × Uq ×O)

Similarly, for each object K, an identity law is given by a functor copyK :
1 −→ Cp(K, K) whose action is the constant component 〈∗ ∈ 1, η1×K〉.
Note that the definitions above rely solely on the monadic structure of B.

In [3, 2] a set of component combinators have been defined upon Cp
in a similar parametric way and their properties studied. In particular
it was shown that any function f : A −→ B can be lifted to Cp as
pfq = 〈∗ ∈ 1, η(1×B) · (id× f)〉. Also defined were both a wrapping mech-
anism p[f, g] which encodes the pre- and post-composition of a component
with Cp-lifted functions, and three tensors, capturing, respectively, exter-
nal choice (� : I + J −→ O + R), parallel (� : I × J −→ O × R)
and concurrent (� : I + J + I × J −→ O + R + O × R) composition,
given components p : I −→ O and q : J −→ R. When interacting with
p � q : I + J −→ O + R, the environment chooses either to input a value
of type I or one of type J , which triggers the corresponding component
(p or q, respectively), producing the relevant output. In its turn, parallel
composition corresponds to a synchronous product: both components are
executed simultaneously when triggered by a pair of legal input values.
Note, however, that the behaviour effect, captured by monad B, propa-
gates. For example, if B can express component failure and one of the
arguments fails, the product will fail as well. Finally, concurrent com-
position combines choice and parallel, in the sense that p and q can be
executed independently or jointly, depending on input. Generalized in-
teraction is catered through a ‘feedback’ mechanism on a subset of the
inputs.

3 Interface Refinement

Component interface refinement is concerned with type compatibility.
The question is whether a component can be transformed, by suitable
wiring, to replace another component with a different interface. As the
structure of components interface types encodes the available operations,
this may capture situations of extension of functionality, in the sense that
the ‘concrete’ component may introduce new operations. In the context of
object-orientation, this is often called design sophistication (rather than



refinement) and it is known not to be a congruence with respect to typical
process combinators (see e.g., [17]). If we structure component input and
output parameters as an operations’ signature, interface refinement can
also be seen as induced by a signature morphism, as in e.g., [13].

To motivate our own approach, consider, from [3], the following law
expressing commutativity of choice:

p � q ∼ (q � p)[s+, s+] (4)

where s+ : I +J −→ J + I is a natural isomorphism capturing + commu-
tativity. The law states that p�q and q�p are bisimilar up to isomorphic
wiring. This means that the observational effect of component p � q can
be achieved by q � p, providing the interface of the latter is converted to
the interface of the former. Such a conversion is achieved by composition
with the appropriate wires, leading to a notion of replaceability.

Definition 1 Let p and q be components. We say that p : I −→ O is
replaceable by q : I ′ −→ O′, or q is a replacement of p, and write p l q
if there exist functions w1 : I −→ I ′ and w2 : O′ −→ O, to be referred to
as the replacement witnesses, such that

p ∼ q[w1, w2] (5)

Furthermore, components p and q are interchangeable if each of them is
a replacement of the other. Formally,

p + q iff p l q ∧ q l p (6)

Clearly, p � q + q � p, using isomorphism s+ as a wire in both cases.
In general, p + q whenever w1 and w2 in (5) are isomorphisms.

Lemma 1. Replaceability (l) is a preorder on components

Proof. Clearly, l is reflexive because p l p is witnessed by p ∼ p[id, id].
On the other hand, if p l q and q l r hold, there exist w1, w2, w3 and w4

such that p ∼ q[w1, w2] and q ∼ r[w3, w4]. Thus, a composition result on
wrapping [2] and transitivity of ∼, entails p∼r[w1 ·w3, w4 ·w2], i.e., plr.

2

Using l and +, some component laws in [2], as (4) above, can be
presented in a ‘wiring free’ form. As another example consider the law
relating concurrent composition with choice,

pι1q ; (p � q) ∼ (p � q) ; pι1q



which gives rise to two replacement inequations:

pι1q ; (p � q) l p � q and (p � q) ; pι1q l p � q

Finally, the statement that every component p can replace an inert com-
ponent can be expressed as an interface refinement situation: inert l p.

Relation l, however, fails to be a pre-congruence with respect to the
component operators introduced in [3]. It is easy to check that �, � and
�, as well as wrapping are preserved, i.e., if plp′ then, for any q, f and g,
p[f, g]lp′[f, g], p�qlp′�q and, similarly, for the other two tensors. But
things are different with respect to sequential composition and feedback.
In these cases, the replaced expression may even become wrongly typed.

What plp′ means is that component p can be replaced in any context
by p′[w1, w2], for any functions w1, w2 witnessing the fact. The explicit
reference to them is actually required, something which is not completely
satisfactory in a refinement situation, although common in similar settings
(cf. [17]).

4 Forward and Backward Morphisms

Interface refinement is essentially concerned with plugging adjustment.
Behaviour refinement, on the other hand, affects the internal dynamics of
a component while leaving unchanged its external interface: it takes place
inside each hom-category of Cp. Intuitively component p is a behavioural
refinement of q if the behaviour patterns observed from p are a structural
restriction, with respect to the behavioural model captured by monad B,
of those of q. To make precise such a ‘definition’ we shall first describe
behaviour patterns concretely as generalized transitions.

Actually, just as transition systems can be coded back as coalgebras,
any coalgebra 〈U, p : U −→ TU〉 specifies a (T-shaped) transition struc-
ture over its carrier U . For extended polynomial Set endofunctors4 such
a structure may be expressed as a binary relation −→p⊆ U × U , defined
in terms of the structural membership relation ∈T⊆ U × T U , i.e.,

u −→p u′ iff u′ ∈T p u

4 The class inductively defined as the least collection of functors containing the identity
Id and constant functors K for all objects K in the category, closed by functor
composition and finite application of product, coproduct, covariant exponential and
finite powerset functors.



where ∈T is defined by induction of the structure of T:

x ∈Id y iff x = y

x ∈K y iff false

x ∈T1×T2 y iff x ∈T1 π1 y ∨ x ∈T2 π2 y

x ∈T1+T2 y iff

{
y = ι1 y′ ⇒ x ∈T1 y′

y = ι2 y′ ⇒ x ∈T2 y′

x ∈TK y iff ∃k∈K . x ∈T y k

x ∈PT y iff ∃y′∈y. x ∈T y′

Notice that, given x ∈ U , X ∈ TU and a function h : U −→ V , if x ∈T X
then h x ∈T Th X, as it may be shown by induction on the polynomial
structure, resorting to the definition of ∈T and functoriality. Similarly, the
dynamics of p : I −→ O, based on functor B(Id × O)I , can be expressed
in terms of the following transition relation:

u
〈i,o〉−→p u′ iff 〈u′, o〉 ∈B (pu) i

In this setting, a possible (and intuitive) way of regarding component
p as a behavioural refinement of q is to consider that p transitions are sim-
ply preserved in q. For non deterministic components this is understood
simply as set inclusion. But one may also want to consider additional
restrictions. For example, to stipulate that if p has no transitions from
a given state, q should also have no transitions from the corresponding
state(s). Or one may adopt the dual point of view requiring transition
reflection instead of preservation. In any case the same basic question
arises: how can such a refinement stituation be identified?

In data refinement, as mentioned above, there is a ‘recipe’ to identify
a refinement situation: look for a retrieve function to witness it. I.e., a
morphism in the relevant category, from the ‘concrete’ to the ‘abstract’
model such that the latter can be recovered from the former up to a
suitable notion of equivalence, though, typically, not in a unique way.

In our components’ framework, however, things do not work this way.
The reason is obvious: component morphisms are (seed preserving) coal-
gebra morphisms which are known (e.g., [14]) to entail bisimilarity. There-
fore we have to look for a somewhat weaker notion of a morphism between
coalgebras.

First of all recall that a component morphism from p to q is a seed
preserving function h : Up −→ Uq such that

B(h× id) · ap = aq · (h× id) (7)



In terms of transitions, equation (7) is translated into the following two
requirements (by a straightforward generalization of an argument in [14]):

u
〈i,o〉−→p u′ ⇒ h u

〈i,o〉−→q h u′ (8)

h u
〈i,o〉−→q v′ ⇒ ∃u′∈U . u

〈i,o〉−→p u′ ∧ v′ = h u′ (9)

which jointly state that, not only p dynamics, as represented by the in-
duced transition relation, is preserved by h (8), but also q dynamics is
reflected back over the same h (9). Is it possible to weaken the morphism
definition to capture only one of these aspects? The answer is given as
follows:

An order ≤ on a Set endofunctor T is defined in [9] as a functor ≤
which makes the following diagram to commute:

PreOrd

��

(TU,≤TU )

��
Set

T
//

≤ 77ooooooo
Set concretely U //

66mmmmmmmm
TU

This means that for any function h : X −→ Y , Th preserves the order,
i.e.

x1 ≤TX x2 ⇒ (Th) x1 ≤TY (Th) x2 (10)

In the sequel ≤ will be referred to as a refinement preorder. Then,

Definition 2 Let T be an extended polynomial functor on Set and con-
sider two T-coalgebras α : U −→ TU and β : V −→ TV . A forward
morphism h : α −→ β with respect to a refinement preorder ≤, is a func-
tion from U to V such that

T h · α ≤ β · h

Dually, h is called a backwards morphism if

β · h ≤ T h · α

The following lemma shows that such morphisms compose and can be
taken as witnesses of refinement situations:

Lemma 2. For T an endofunctor in Set, T-coalgebras and forward (re-
spectively, backward) morphisms define a category.



Proof. In both cases, identities are the identities on the carrier and com-
position is inherited from Set. What remains to be shown is that the
composition of forward (respectively, backward) morphisms yields again
a forward (respectively, backward) morphism. So, let h : α −→ β and
k : β −→ γ be two forward (respectively, backward) morphisms. Then

(forward case)

T(k · h) · α

= { T functor }
Tk · (Th · α)

≤ { h forward and (10) }
Tk · (β · h)

= { · associative }
(Tk · β) · h

≤ { k forward }
(γ · k) · h

= { · associative }
γ · (k · h)

(backward case)

γ · (k · h)
= { · associative }

(γ · k) · h

≤ { k backward }
(Tk · β) · h

= { · associative }
Tk · (β · h)

≤ { h backward and (10) }
Tk · Th · α

= { T functor }
T(k · h) · α

2

Such a split of a coalgebra morphism, witnessing a bisimulation equation,
into two conditions, makes it possible to capture separately transition
preservation and reflection. To prove the next result, however, it is neces-
sary to impose an extra condition on the refinement preorder ≤ expressing
its compatibility with ∈T: for all x ∈ X and x1, x2 ∈ TX,

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2 (11)

Lemma 3. Let T be an extended polynomial functor in Set, and α and
β two T-coalgebras as above. Let −→α and −→β denote the correspond-
ing transition relations. A forward (respectively, backward) morphism h :
α −→ β preserves (respectively, reflects) such transition relations.



Proof. Preservation follows from

u −→α u′

≡ { −→ definition }

u′ ∈T α u

⇒ { ∈T definition }

h u′ ∈T (Th · α) u

≡ { h forward and (11) }

h u′ ∈T (β · h) u

≡ { · associative and −→ definition }

h u −→β h u′

To establish reflection suppose that h u −→β v′, i.e., v′ ∈T (β · h) u. As
h is a backward morphism we have β · h ≤ T h · α, which, together with
requirement (11), entails v′ ∈T (T h · α) u. This implies the existence of
a state u′ ∈ U such that v′ = h u′ and u′ ∈T α u, i.e., u −→α u′.

2

5 Behaviour Refinement

The existence of a forward (backward) morphism connecting two compo-
nents p and q witnesses a refinement situation whose symmetric closure
coincides, as expected, with bisimulation. In the sequel we will restrict
ourselves to forward refinement5 and define behaviour refinement as the
existence of a forward morphism up to bisimulation. Formally,

Definition 3 Component p is a behaviour refinement of q, written q Ep,
if there exist components r and s such that p ∼ r, q ∼ s and a (seed
preserving) forward morphism from r to s.

The exact meaning of a refinement assertion q E p depends, of course,
on the concrete refinement preorder ≤ adopted. Let us consider a few
possibilities.

5 A similar study can be made about backward refinement, although the underlying
intuition seems less familiar.



– T-structural inclusion, defined by x ≤ y iff ∀e∈Tx
. e ∈T y, seems

inadequate because the transition relation preserved by a forward mor-

phism is not
〈i,o〉−→p, but simply −→p, and, therefore, blind to the out-

puts produced. This suggests an additional requirement on refinement
preorders for Cp components: their definition on a constant functor
K is equality on set K, i.e., x ≤K y iff x =K y so that transitions
with different O-labels could not be related.

– Building on this idea, we arrive to a first (good) example:

x⊆Id y iff x = y

x⊆K y iff x =K y

x⊆T1×T2 y iff π1 x⊆T1 π1 y ∧ π2 x⊆T2 π2 y

x⊆T1+T2 y iff

{
x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ⊆T1 y′

x = ι2 x′ ∧ y = ι2 y′ ⇒ x′ ⊆T2 y′

x⊆TK y iff ∀k∈K . x k ⊆T y k

x⊆PT y iff ∀e∈x∃e′∈y. e⊆T e′

A forward refinement of non deterministic components based on ⊆T

captures the classical notion of nondeterminism reduction.
– However, this preorder can be tuned to more specific cases. For exam-

ple, the following ‘failure forcing’ variant — ⊆E
T , where E stands for

‘emptyset’ —- guarantees that the concrete component fails no more
than the abstract one. It is defined as ⊆T by replacing the clause for
the powerset functor by

x ⊆E
PT y iff (x = ∅⇒ y = ∅) ∧ ∀e∈x∃e′∈y. e⊆T e′

– Relation ⊆T is inadequate for partial components: refinement would
collapse into bisimilarity, instead of entailing increasing definition in
the implementation. An alternative is relation ⊆F

T (F standing for
‘failure’) which replaces the sum clause in ⊆T by

x ⊆F
T1+T2

y iff


x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ⊆T y′

x = ι2 ∗ ⇒ y = ι2 ∗
y = ι2 ∗ ⇒ true

To illustrate behaviour refinement, consider the lossy buffer LBuff
introduced in section 2, and a deterministic buffered channel Buff specified



as a coalgebra M∗ −→ (M∗× (1 + M))M+1 with nil as the initial state,
and dynamics given by

aBuff〈u, put m〉 = 〈m : u, ι1 ∗〉
aBuff〈u, pick〉 = 〈tail u, ι2 (head u)〉

To establish LBuff E Buff it is required first to embed the latter into the
space of non-deterministic systems. This is achieved by a (natural) trans-
formation from (Id × O)I to P(Id×O)I canonically extending function
sing x = {x} which is a monad morphism from the identity to the powerset
monads — the behaviour models underlying Buff and LBuff, respectively.
Then, it is immediate to verify that the identity function on state space
M∗ is a forward morphism, with respect to the first preorder given above,
i.e.,

(id×O) · aBuff ⊆ aLBuff

Another behaviour refinements of LBuff would arise by choosing dif-
ferent strategies for delivering elements from the buffer. Here are some
possibilities, each of them is witnessed by a forward morphism:

– the queuing strategy, leading to the specification Buff as above;
– the stack strategy (LIFO deliver);
– the priority strategy (in which elements carry some probability infor-

mation);
– the lift strategy (a linear order on the elements is served in alternating

increasing and decreasing order).

In the priority strategy, for example, elements are labelled with a
‘show-up’ probability, introducing an elementary form of probabilistic
nondeterminism. As detailed in [3], the corresponding behaviour monad
is generated by a monoid M = 〈[0, 1],min,×〉 with the additional require-
ment that for each m ∈ M ,

∑
(Pπ2)m = 1. ‘Probabilistic’ components

can be embedded into the space of ‘plain nondeterministic’ ones where
behaviour refinement, wrt ⊆T, is discussed.

6 Simulations

In this section we prove that behaviour refinement, as characterized above,
can be established by a simulation relation R ⊆ Up × Uq on the state
spaces of the ‘concrete’ (p) and the ‘abstract’ (q) components. Again, the
notion of a simulation depends on the adopted refinement preorder ≤.
To proceed in a generic way, we adopt an equally generic definition of
simulation due to Jacobs and Hughes in [9]:



Definition 4 Given a Set endofunctor T and a refinement preorder ≤,
a lax relation lifting is an operation Rel≤(T) mapping relation R to ≤
◦Rel(T)(R) ◦ ≤, where Rel(T)(R) is the lifting of R to T (defined, as
usual, as the T-image of inclusion 〈r1, r2〉 : R −→ U×V , i.e., 〈Tr1,Tr2〉 :
TR −→ TU × TV ).

Given T-coalgebras α and β, a simulation is a Rel≤(T)-coalgebra over
α and β, i.e., a relation R such that, for all u ∈ U, v ∈ V , 〈u, v〉 ∈
R ⇒ 〈α u, β v〉 ∈ Rel≤(T)(R).

In order to prove that simulations are a sound proof technique to
establish behaviour refinement we consider separately functional and non
functional simulations. In any case, however, simulations are assumed to
be left total relations 6 as we do not consider partial refinements.

Lemma 4. Let p and q be T-components over state spaces U and V ,
respectively. For a given refinement preorder ≤, if there exists a simulation
R ⊆ U × V which is both functional and left total, then p is a (forward)
refinement of q.

Proof. By assumption, simulation R is the graph of a function. Now,
define a forward morphism h : U → V as h u = v iff 〈u, v〉 ∈ R. Because
R is a simulation, for every pair 〈u, v〉 ∈ R, there should exist x ∈ TU ,
y ∈ TV , such that α u ≤TU x, y ≤TV β v, and 〈x, y〉 ∈ Rel(T)(R), i.e.,
y = Th(x). By (10) and α u ≤TU x we get Th(α u) ≤TV Th(x), and thus
Th(α u) ≤TV β v. Since R is left total, h is defined for all u ∈ U , making
the following diagram to commute:

u
h - h u = v

α u (≤TU α u)

α
?

Th- Th(α u)≤TV β v

β

?

2

Consider, now, the non-functional case (e.g. whenever two bisimilar but
not equal abstract states are represented by a single concrete state). To
prove soundness in this case, the state space of the ‘concrete’ component
p is artificially inflated with an auxiliary state space such that a forward
morphism can be found.
6 A relation R ⊆ U × V is functional if every u ∈ U is related to at most one v ∈ V

and left total if for all u ∈ U , there exists some v ∈ V such that 〈u, v〉 ∈ R.



Definition 5 Given a coalgebra (U,α : U → TU) and a set W , define
the extension of α to W as any coalgebra α̂ over Û = U × W such that
Tπ1 ◦ α̂ = α ◦ π1.

Clearly this auxiliary state space does not interfere with the behaviour of
α: π1 being a coalgebra morphism, the two coalgebras are bisimilar.

Given components p and q and a non-functional simulation R an aux-
iliary coalgebra p̂ can be defined taking R as the state space (which,
because R is left total, is just an extension of p in the sense of the defi-
nition above) and the rule (u′, v′) ∈T α̂(u, v) iff u′ ∈T apu ∧ v′ ∈T aqv as
its dynamics. With this construction we prove that

Lemma 5. (Soundness) To prove q E p it is sufficient to exhibit a left
total simulation R relating components p and q.

Proof. If R is functional the result follows from lemma 4. Otherwise con-
struct p̂ as above: clearly p is bisimilar to p̂ and the graph of projection
π2 from its state space to V defines a simulation between p̂ and q. By def-
inition, p ∼ p̂ and the existence of a (seed-preserving) forward morphism
from p̂ to q entails q E p.

2

Finally notice that, although E is transitive, it is not always the case
that simulations are closed under (relational) composition. This would be
a consequence of Rel≤(T) preserving composition, but, in general, only
the following weaker result holds:

Lemma 6. Any refinement preorder ≤ verifies

Rel≤(T)(R◦S) ⊆ Rel≤(T)(R)◦Rel≤(T)(S) and =TU ⊆ Rel≤ (T)(=U )



Proof. For the first statement note that 〈u, w〉 ∈ Rel≤(T)(R◦S) equivales

∃u′, w′.(u ≤ u′ ∧ 〈u′, w′〉 ∈ Rel(T)(R ◦ S) ∧ w′ ≤ w)
{because Rel(T)(R ◦ S) = Rel(T)(R) ◦Rel(T)(S)}

⇔∃u′, w′.(u ≤ u′ ∧ (∃v′.(〈u′, v′〉 ∈ Rel(T)(R) ∧ 〈v′, w′〉 ∈ Rel(T)(S))) ∧ w′ ≤ w)
⇔∃u′, w′, v′.(u ≤ u′ ∧ 〈u′, v′〉 ∈ Rel(T)(R) ∧ 〈v′, w′〉 ∈ Rel(T)(S) ∧ w′ ≤ w)
{introducing v = v′}

⇒∃u′, w′, v, v′.(u ≤ u′ ∧ 〈u′, v′〉 ∈ Rel(T)(R) ∧ v′ ≤ v)∧
(v ≤ v′ ∧ 〈v′, w′〉 ∈ Rel(T)(S) ∧ w′ ≤ w)

⇒∃v.〈u, v〉 ∈ Rel≤(T)(R) ∧ (v, w) ∈ Rel≤(T)(S)
⇔〈u, w〉 ∈ Rel≤(T)(R) ◦Rel≤(T)(S)

Then consider

=TU ⊆ ≤TU

= ≤TU ◦ =TU ◦ ≤TU = ≤TU ◦Rel(T)(=U )◦ ≤TU = Rel≤(T)(=U )

2

7 Discussion and Future Work

In this paper, two levels of refinement for (state-based) components have
been introduced. In particular, the notion of behavioural refinement para-
metric on a model of behaviour captured by a strong monad B is, to the
best of our knowledge, new. It is generic enough to capture a number
of situations, depending on both B and the refinement preorder adopted.
Nondeterminism reduction is just one possibility among many others.
Also note that Poll’s notion of behavioural subtyping in [13], at the model
level, emerges as a particular instantiation.

As mentioned in the introduction, the main motivation underlying
this work is the development of inequational laws in the context of the
component calculus proposed in [3]. Even though there is not enough
space in this paper to introduce the derived laws, let us take a brief
glimpse. As a first example consider equation

p!Iq ∼ p ; p!Oq (12)

which does not hold for non trivial behaviour models. In fact the Cp
lifting of the final arrow (as the lifting of any other function) cannot fail,



whereas the the right hand side may fail (whenever p does). Function
! : Up × 1 −→ 1 is, however, a forward morphism, with respect to ⊆F

T for
partial components, or to both ⊆T and ⊆E

T for non deterministic ones.
For this last case, note that ap!Oq·! = λ i ∈ I. {∗}, whereas B(! × id)I ·
ap;p!Oq 〈u, ∗〉 equals

λ i ∈ I .

{
{∗} iff (ap u) (i) 6= ∅
∅ iff (ap u) (i) = ∅

Therefore, p!Iq E p ;p!Oq. Similarly, the cancellation law for parallel com-
position �, which involves a split-like construction for components (which,
differently from the split of functions [4], is not an universal arrow), is, in
general, a refinement result:

p E 〈p, q〉 ; pπ1q (13)

witnessed by projection π1 : Up × Uq × 1 → Up as a forward morphism.
Yet another example is given by the (pseudo) naturality of pMq, where M
is the diagonal function, which could be written as

pMq ; (p � p) E p ; pMq (14)

Finally, monotonicity of E with respect to both pipeline composition and
the tensor products can be proved by defining a simulation in terms of
the argument simulations: if q E p and t E r are witnessed by R1 and
R2, respectively, refinement q � t E p � r, with � standing for ;,�,� or
� is witnessed by simulation R = {((up, ur), (uq, ut)) | (up, uq) ∈ R1 ∧
(ur, ut) ∈ R2}.

Currently we are working on the full development of the refinement
calculus and, in particular, in its application to the proof of consistency
between static and dynamic diagrams in Uml in the context of [12].
Whether this approach scales up to be useful in the classification and
transformation of software architectures [1] remains a research question.
Further comparison with refinement theories in both process algebra (as
in, e.g., [5]) and state-based systems (for example in [6]) is also in order.
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