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Abstract

Functional transposition is a technique for converting relations into functions
aimed at developing the relational algebra via the algebra of functions.

This paper attempts to develop a basis for generic transposition. Two well-
known instances of this construction are considered, one applicable to any rela-
tion and the other applicable to simple relations only.

Our illustration of the usefulness of the generic transpose takes advantage
of the free theorem of a polymorphic function. We show how to derive laws of
relational combinators as free theorems of their transposes. Finally, we relate
the topic of functional transposition with the hashing technique for data repre-
sentation.
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1 Introduction

This paper is concerned with techniques for functional transposition of binary
relations. By functional transposition we mean the faithful representation of a
relation by a (total) function. But — what is the purpose of such a representa-
tion?

Functions are well-known in mathematics and computer science. The func-
tional intuition traverses mathematics from end to end because it has a solid
semantics rooted on a clear-cut mathematical structure — the category of “all”
sets and set-theoretical functions. Functions have arich theory. For instance, they
can be dualized (as happens e.g. with the projection/ injection functions), they
can be Galois connected (as happens e.g. with inverse functions) and they can be
parametrically polymorphic. In the latter case, they exhibit theorems “for free”
[22] which can be inferred solely by inspection of their type (thus providing
semantics to functional APIs in which function bodies are intentionally hidden
from the user).

However, (total) functions are not enough. In many situations, functions are
partial in the sense that they are undefined for some of their input data. Pro-
grammers have learned to deal with this situation by enriching the codomain
of such functions with a special error mark indicating that nothing is output.
In C/C++, for instance, this leads to functions which output pointers to values
rather than just values. In functional languages such as Haskell [8], this leads
to functions which output

���������
-values rather than values, where

���������
is

datatype
�	�
��������������������������! #"$�%�

. In a different context, finite partial
functions are represented by sets of pairs in which no first element (in each pair)
is repeated. In database theory, these data-sets are called functional data depen-
dencies [7] while in formal modelling notations such as VDM [9] or Z [21]
they are called finite mappings, an abstract datatype of widespread use in formal
specification.

Partial functions are still not enough because one very often wants to de-
scribe what is required of a function rather than prescribe how the function
should compute its result. A well-known example is sorting: sorting a list amounts
to finding an ordered permutation of the list independently of the particular sort-
ing algorithm eventually chosen to perform the task (eg. quicksort, mergesort,
etc.). So one is concerned not only with implementations but also with specifi-
cations, which can be vague (eg. which square root is meant when one writes
“ & ' ”?) and non-deterministic. Again, functional programmers have learned to
cope with this by structuring the codomain of such functions as sets or lists
of values, a strategy which can be animated in case such sets or lists are finite
(bounded non-determinism).
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In general, such powerset valued functions are models of binary relations:
for each such � one may define the binary relation � such that

� � � means
���

� � ��� suitably typed for all
�

and
�
. Such � is unique for the given � . Conversely,

any binary relation � is uniquely transposed into a set-valued function � . The
existence and uniqueness of such a transformation leads to the identification of
a transpose operator � [6] satisfying the following universal property:

�  ���
	 � � � � 	 ��� � ��� (1)

The power-transpose operator � establishes an isomorphism between rela-
tions and set-valued functions which is well-known in mathematics and is often
exploited in the algebra of relations. For instance, a significant part of the con-
tents of textbook [6] draws from such an isomorphism.

Less popular and usually not identified as a transpose is the conversion of
a partial function into a

���������
-valued function, for which one can identify, by

analogy with (1), isomorphism � defined by

�  ���	 � � � � 	 � � � ��! #"$� �����
(2)

where � ranges over partial functions.
Terms total and partial are avoided in relation algebra because they clash

with a different meaning in the context of partial orders and total orders, which
are other special cases of relations. Instead, one writes entire for total and simple
relation is written instead of partial function. The word function is reserved
for total, simple relations which find a central place in the taxonomy of binary
relations depicted in Fig. 1 (the other entries in the taxonomy will be explained
later on).

Paper objectives. This paper is structured around three main ideas. First, we
recall that � is not the only operator for transposing relations. It certainly is the
most general, but we will identify other such operators as we go down the hier-
archy of binary relations. Such transposes have to do with the (generic) notion
of membership. (This extends “

�
” to collective types other than the powerset

[6, 12].) In particular, one of these operators will be related with the technique
of representing finite data collections by hash-tables, which are efficient data-
structures well-known in computer science [23, 13].

Second, we want to stress on the usefulness of transposing relations by ex-
ploiting the calculation power of functions, namely free theorems. Such power-
ful reasoning devices can be applied to relations provided we represent relations
as functions (by functional transposition), reason functionally and come back to
relations where appropriate. In fact, several relational combinators studied in
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[6] arise from the definition of the power-transpose ��� �
���

oo of a relation
� . ( ��� denotes the set of all subsets of � .) However, some results could have
been produced as free-theorems, as we will show in the sequel.

Last but not least, we want to provide evidence of the practicality of the
pointfree relation calculus. The fact that pointfree notation abstracts from “points”
or variables makes the reasoning more compact and effective 1. This is apparent
in our final section on hash-tables, if compared with its pointwise counterpart
which one of the authors did several years ago [16]: notation and reasoning are
simpler and easier to follow.

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)

Fig. 1. Binary relation taxonomy

Related work. Equations (1) and (2) are well-known in the literature, although
they have been dealt with in different contexts. While (1) is adopted as “the”
standard transpose in [6], for instance, (2) is studied in [11] as an example of
an adjunction between the categories � ��� of total functions and � �
	 of partial
ones. From the literature on the related topic of generic membership we select
[6] and the chapter of [12] devoted to the subject.

Paper structure. This paper is structured as follows. In the next section we
present an overview of (pointfree) relation algebra. Section 3 presents our re-
lational study of generic transpose. In section 4 two well-known transposes are
framed in the generic view. Section 5 presents an example of reasoning based

1 The move from the pointwise level (involving operators as well as variable symbols, logical
connectives, quantifiers, etc.) to the pointfree one is compared elsewhere [18] to the Laplace
transformation. The former is more intuitive but harder to reason about, the latter is less de-
scriptive but more algebraic and compact. As in traditional mathematics, there is room for
both in program calculation.
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on the generic transpose operator and its instances. In the remainder of the paper
we relate the topic of functional transposition with the hash table technique for
data representation and draw some conclusions which lead to plans for future
work.

2 Overview of the relational calculus

Relations. Let � �
�

oo denote a binary relation on datatypes � (source) and
� (target). We write

� � � to denote that pair
� ��� ���

is in � . The underlying partial
order on relations will be written � ��� , meaning that

�
is either more defined

or less deterministic than � , that is, � ��� 	 � � ��� � � �
for all

��� �
. Equality

on relations can be established by
�

-antisymmetry: �  � 	�� ���
	
��� � .
Relations can be combined by three basic operators: composition ( �� � ),

converse ( ��� ) and meet ( ��� � ). Meet corresponds to set-theoretical intersection
and composition is defined in the usual way:

� � ��� � ��� holds wherever there
exists some

��� � such that
� � � 	 � � � . Everywhere �  �� � holds, the

replacement of � by ��� � will be referred to as a “factorization” and that of ��� �
by � as “fusion”. Every relation � �

�
oo admits two trivial factorizations,

�  ��� ����� and � ������ � � where, for every � ,
�����

is the identity relation
mapping every element of � onto itself.

Coreflexives. Some standard terminology arises from the
���

relation: a (endo)relation

� �
�

oo (often called an order) will be referred to as reflexive iff
��� � � �

holds and as coreflexive iff � � ��� �
holds. As a rule, subscripts are dropped

wherever types are implicit or easy to infer.
Coreflexive relations are fragments of the identity relation which can be

used to model predicates or sets. The meaning of a predicate  is the coreflexive! !  #" " such that
� ! !  #" " � 	 �  � 	 �  � � , that is, the relation that maps every

�
which satisfies  (and only such

�
) onto itself. The meaning of a set

�$� � is! !&% ��' � � � " " , that is,
� ! ! � " " � 	 �  � 	 � � �

. Wherever clear from the context,
we will omit the

! ! " " brackets.

Orders. Preorders are reflexive, transitive relations, where � is transitive iff
�(� � � � holds. Partial orders are anti-symmetric preorders, where � is anti-
symmetric wherever ��� � � � �)� holds, for � � the converse of � , that is, the
relation such that

� � �*� � � 	 � � � holds. A preorder � is an equivalence if it is
symmetric, that is, if �  � � . Fig. 2 depicts this taxonomy of orders, where
words partial and total have the usual meaning. A total order � is a connected
preorder, where � is connected iff �,+ �-� /.

holds. + is the join of two
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relations and
.

is the largest relation of its type. Its dual is � , the smallest such
relation.

Converse is of paramount importance in establishing a wider taxonomy of
binary relations. Let us first define two derived operators, kernel

ker �
����� � � � � (3)

and image (its dual)

img �
�����

ker
� � � � (4)

An alternative to (4) is to define img �  � � � � , since converse commutes
with composition,

� �� � � �  � � � � � and is involutive, that is,
� � � � �  � .

Kernel and image lead to the following terminology: a relation � is said to be
entire (or total) iff its kernel is reflexive; or simple (or functional) iff its image
is coreflexive. (So, simplicity is the dual of entirety.) Dually, � is surjective iff
� � is entire, and � is injective iff � � is simple. This terminology is captured by
the following summary table:

Reflexive Coreflexive

ker � entire � injective �
img � surjective � simple �

(5)

order

symmetric reflexive transitive anti-symmetric connected

preorder

equivalence partial order

total

Fig. 2. Order taxonomy

Functions. A relation is a function iff it is both simple and entire. Functions
will be denoted by lowercase letters ( � ,

�
, etc.) and are such that

� � � means
� 



6

� � . Function converses enjoy a number of properties of which the following is
singled out because of its rôle in pointwise-pointfree conversion [3] :

� � � � � � � � � � 	 � � � � � � � ��� (6)

The overall taxonomy of binary relations is pictured in Fig. 1 where, fur-
ther to the standard classification, we add representations and abstractions.
These are classes of relations useful in data-refinement [15]. Because of

�
-

antisymmetry, img �  ���
wherever � is an abstraction and ker �  ���

wherever � is an representation. This ensures that “no confusion” arises in a
representation and that all abstract data are reachable (“no junk”).

Isomorphisms (such as � and � above) are functions, abstractions and rep-
resentations at the same time. A particular isomorphism is

���
, which also is the

smallest equivalence on a particular data domain, that is,
� ��� �

is the same as�  �
. So

���
can be found in both Fig. 1 and Fig. 2.

Functions and relations. The interplay between functions and relations is a rich
part of the relation calculus. This arises when one relates the arguments and
results of pairs of functions � and

�
in, essentially, two ways:

� � � � � � � (7)

� � � �  � � � (8)

As we shall see shortly, (7) is equivalent to
� � � � � � � � which, by (6), means

that � and
�

produce � -related outputs � � and
� �

provided their inputs are�
-related (

� � �
). This situation is so frequent that one says that, everywhere �

and
�

are such that (7) holds, � is
� ��� � �

-related to
�
:

� � ��� � � � 	 � � � � � � � cf. diagram �
�

��

�
�

oo

�
��� ��oo

(9)

For instance, for partial orders � � ��� 
	 ��� , fact � � 	 � � � � means that � is
monotone. For � � �� 
	 ����� , fact � � 	 � ��� � �

means

���	 � 	 � � 	 � � (10)

that is, � and
�

are such that � ��	 � �
for all

�
(the pointwise ordering

	
is

lifted to the functional level). In general, relation ��� �
will be referred to as
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“Reynolds arrow combinator” (see section 5), which is extensively studied in
[3].

Concerning the other way to combine relations with functions, equality (8)
becomes interesting wherever � and

�
are preorders:

� � � �� 	 � � cf. diagram: �
�

,,

�
�� �

�ll

�
��

(11)

In this case functions � � � are always monotone and are said to be Galois con-
nected. Function � (resp.

�
) is referred to as the lower (resp. upper) adjoint of

the connection.
By introducing variables in both sides of (11) via (6) we obtain

� � � � ��� 	 � 	 � � ��� (12)

Note that (11) boils down to � �  �
(ie. �  � � ) wherever

	
and
�

are
���

,
in which case � and

�
are isomorphisms, that is, � � is also a function and

� �% � 	 �% � � � holds.
For further details on the rich theory of Galois connections and examples of

application see [1, 3]. Galois connections in which the two preorders are relation
inclusion (

	 ��� �  � � �
) are particularly interesting because the two adjoints

are relational combinators and the connection itself is their universal property.
The following table lists connections which are relevant for this paper:

�����	��
������
��������

Description � �
Obs.

Converse � ��� � ���

Left-division ��� � � ��� � �

Right-division � � � � � ��� �

Shunting rule ����� � ���!�"� �
NB:

�
is a function

“Converse” shunting rule ��� � � � ��� �!�
NB:

�
is a function

Difference � # � � � �$ �

(13)

From the two of these called shunting rules one infers the very useful fact that
equating functions is the same as comparing them in either way:

�  � 	 � � � 	 � � � (14)
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Membership. Equation (1) involves the set-theoretic membership relation � ���
�

oo .
Sentence

� � ' (meaning that “
�

belongs to ' ” or “
�

occurs in ' ”) can be gen-
eralized to ' other that sets. For instance, one may check whether a particular
integer occurs in one ore more leafs of a binary tree, or of any other collective
or container type

�
.

Such a generic membership relation will have type � � ��
oo , where

�
is a type parametric on � . Technically, the parametricity of

�
is captured by

regarding it as a relator [5], a concept which extends functors to relations:
� �

describes a parametric type while
� � is a relation from

� � to
� � provided � is

a relation from � to � . Relators are monotone and commute with composition,
converse and the identity:

� � � � � �  � � � � � � � � � (15)� � � � �  � � � � � (16)� ���� ���
(17)

Themost simple relators are the identity relator ��� , which is such that ��� �  �
and ��� �  � , and the constant relator � (for a particular concrete data type � )
which is such that � �  � and � �  �)���

.
Relators can also be multi-parametric. Two well-known examples of binary

relators are product and sum,

�
	 � �� � ���� � � ������ (18)

��� �  ! � � � � ��� � � � " (19)

where �� � �� denote the projection functions of a Cartesian product,
� � ��� � de-

note the injection functions of a disjoint union, and the split/either relational
combinators are defined by

� � � � �   �� � � �� �� � � (20)! � � � "  � � � � � � � + � � � � �� � (21)

By putting together these four kinds of relator (product, sum, identity and
constant) one is able to specify a large class of parametric structures — called
polynomial — such as those implementable in Haskell. For instance, the

���
����� �
datatype is an implementation of polynomial relator

�  ������� (ie.
� �  � ��� ),

where � denotes the singleton datatype, written
� �

in Haskell.

There is more than one way to generalize � ���
�

oo to relators other
than the powerset. (For a thorough presentation of the subject see chapter 4 of
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[12].) For the purpose of this paper it will be enough to say that � � �
���

oo ,
if it exists, is a lax natural transformation [6], that is,

��� � � � � � � ��� (22)

holds. Moreover, polynomial relators have membership defined inductively as
follows:

��� ����� � (23)
��� � ����� ���

(24)
���	��
 ����� � ��� �  � � + � ��
 � �� � (25)
�����
 ����� ! ��� � ��
 " (26)

3 A study of generic transposition

Thanks to rule (6), it is easy to remove variables
�

and
�

from transposition rules
(1) and (2), yielding

�  � ��	 � �  � � � � (27)

�  � ��	 � �  � � � � � � (28)

where, in the second equivalence, � ranges over simple relations and
�! �" �

is
replaced by injection

� � associated with relator ��� � � . In turn, � and � can also
be abstracted from (27,28) using the same rule, whereby we end up with

�  � � � � �
�  � � � � � � �

because “


” is the same as “
�)�

”.
The generalization of both equations starts from the observation that, in the

same way
�

is the membership relation associated with the powerset,
� � � is the

membership relation associated with ��� � � , as can be easily checked:

��� ����
 �

by (26) �! ��� � � � � " �
by (24) and (23) �! ���#� � " (29)
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 �
by (21) and properties of � �

��� � � � � �
identity �

� � �
This suggests the definitions and results which follow.

Definition. Given a relator
�

with membership relation
� �

, we will say that �
is
�
-transposable iff the following universal property holds

�  � � �
	 ��� � �  � cf. diagram � �
�

oo

�
}}{{

{{
{{

{{

� �
� � OO (30)

where function � � , if it exists, is called the
�
-transpose.

In other words, such a generic
�
-transpose operator is the converse of mem-

bership pre-composition:

� �  � ��� � � � (31)

The two instances we have seen of (30) are the power-transpose (
� �  ��� )

and the
�	�
�����

-transpose (
� �  � � � ). While the former is known to be

applicable to every relation [6], the latter is only applicable to simple relations,
a result to be justified shortly. Prior to checking it, we review the main proper-
ties of generic transposition. These extend those presented in [6] for the power-
transpose.

Properties. Cancellation and reflection

��� � � � �  � (32)

� �����  ��� (33)

arise from (30) by substitutions � �  � � � and � �  ���
, respectively. Fusion

� � � � � � �  � � � � � � � � � � � � � � � is a function (34)

arises in the same way — this time for substitution � �  � � � � � � � — as follows
(assuming the side condition ensuring that

� � � � � � � is a function):

� � � � � � �  � � �
	 � � ��� � � � � � � �  �
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	 �
associativity �

� � � � � � � � �  �
	 �

cancellation (32) �
� � �  �

The side condition of (34) requires
�

to be entire but not necessarily simple.
In fact, it suffices that img

� �
ker

� � � � � since, in general, the simplicity of
� � � equivales img � � ker � :

img � � ker �
	 �

definitions �
� � � � � � � � � � �

	 �����
is the unit of composition �

� � � � � � � � � � ��� � �
	 �

shunting rules (13) �
� � � � � � � � � � � � ���

	 �
composition is associative ; converse of composition �

� � � � � � � � � � � � � ���
	 �

definition of img �
img

� � � � � � ���
	 �

simplicity �
� � � � � is simple

In summary, the simplicity of (entire)
�

is a sufficient (but not necessary) con-
dition for the fusion law (34) to hold. In particular,

�
can be a function, and it is

under this condition that the law is presented in [6] 2.
Substitution � �  � � � and cancellation (32) lead to the injectivity law,

� � �  � � �
	 �  � (35)

Finally, the generic version of the absorption property,

� � � � � �  � � � � � � � � � � ��� � ��� � � � (36)

2 Cf. exercise 5.9 in the book. See also exercise 4.48 for a result which can be of help in reason-
ing about the side condition of (34).
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is justified as follows:

� � � � � �  � � � �(� � �
	 �

universal property (30) �
��� � � � � � � �  � � �

	 �
assume

��� � � �  � � ��� � �
� � ��� � � � �  � � �

	 �
cancellation (32) �

� � �  � � �
The side condition of (36) arises from the property assumed in the second step
of the proof. Together with (22), it establishes the required equality by anti-
symmetry, which is equivalent to writing

� �  � � � � � � � in such situations.

Unit and inclusion. Two concepts of set-theory can be made generic in the
context above. The first one has to do with singletons, that is, data structures
which contain a single datum. The function � � mapping every � to its singleton
of type

�
is obtainable by transposing

���
, � �  � � ��� , and is such that (by the

fusion law) � � ���  � � � . Another concept relevant in the sequel is generic
inclusion, defined by

� � � �
� ��� � �
oo (37)

and involving left division (13), the relational operator which is defined by the
fact that

� ��� � is the upper-adjoint of
� �(� � for every � .

4 Instances of generic transposition

In this section we discuss the power-transpose (
�  � ) and the

���
�����
-transpose

(
�  ��� � � ) as instances of the generic transpose (30). Unlike the former, the

latter is not applicable to every relation. To conclude that only simple relations
are

�	�
��� �
-transposable, we first show that, for every

�
-transposable � , its im-

age is at most the image of
� �

:

img � � img
���

(38)

The proof is easy to follow:

img �
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 �
definition �

� � � � � � is
�
-transposable ; cancellation (32) �

� ��� � � � � � � � ��� � � � � � � �
converses �

��� � � � � � � � � � � � � ��� �� � � � � is simple ; monotonicity �
��� � ��� � �

definition �
img

���
So,

���
restricts the class of relations � which are

�
-transposable. Concerning

the power-transpose, it is easy to see that img
� �  .

since, for every
� � ���

,
there exists at least the set

�$��� ��� � which both
�

and
���

belong to. Therefore,
no restriction is imposed on img � and transposition witnesses the well-known
isomorphism

��� � � ��� � � � �
(writing

� �
for ��� and identifying every relation

with its graph, a set of pairs).
By contrast, simple memberships can only be associated to the transposition

of simple relations. This is what happens with
� � ����  � � � which, as the converse

of an injection, is simple (5).
Conversely, all simple relations are

� ����� � � -transposable. (See a proof of
this fact in appendix A.) Therefore,

� ��� � � � -transposability defines the class of
simple relations and witnesses isomorphism

� � � � �
��� �	� � where �
�

� denotes the set of all simple relations from � to � 3.
Another difference between the two instances of generic transposition con-

sidered so far can be found in the application of the absorption property (36).
That its side condition holds for the

���
�����
-transpose is easy to show:

��� � � � � � � � � � � � ��� �
	 �

shunting �
� � � � � � ��� �)� � � � �

� �
anti-symmetry �

� � � �  � ��� �)� � � � �
	 � ��� � (19) is a coproduct [6] �

3 This isomorphism is central to the data refinement calculus presented in [15].
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� � � �  � � � �
Concerning the power-transpose, [6] define the absorption property for the exis-
tential image functor, � �  � � � � � � , which coincides with the powerset rela-
tor for functions. However, � is not a relator 4. So, the absorption property of the
power-transpose can only be used where � is a function: � � � � �  � � � � � � .

Finally, inclusion (37) for the power-transpose is the set-theoretic subset
ordering [6], while its

���������
instance corresponds to the expected “flat-cpo

ordering”:

' � ��� ���� � ��� ���� � � 	�� ��' '  � � � � � � �  � � � ���

So
�������������

will be included in anything and every “non-
� � ����� ���

” ' will be
included only in itself 5.

5 Applications of generic transpose

The main purpose of representing relations by functions is to take advantage of
the (sub)calculus of functions when applied to the transposed relations. In par-
ticular, transposition can be used to infer properties of relational combinators.
Suppose that ��� � is a functional combinator whose properties are known, for
instance, ��� �  ! � � � " for which we know universal property

�  ! � � � " 	
� � � � �  �� � � �  � (39)

We may inquire about the corresponding property of another, this time rela-
tional, combinator ��� � induced by transposition:

� � � ��� � �  � � � � � � � � � � � (40)

	 �
(30) �

��� �  ��� � ��� � � � � � � � � � ��� (41)

This can happen in essentially two ways, which are described next.

4 See [12] and exercise 5.15 in [6].
5 This is, in fact, the ordering <= which is derived for 	�
����� as instance of the Ord class in

the Haskell Prelude [8].
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Proof of universality by transposition. It may happen that the universal property
of functional combinator � is carried intact along the move from functions to
relations. A good example of this is relational coproduct, whose existence is
shown in [6] to stem from functional coproducts (39) by transposition 6. One
only has to instantiate (39) for

� � � � � �  � � � � � � � � � � � and reason:

� � �  ! � � � � � � � " 	 � � � � � � � �  � � � 	 � � � � � � � �  � � �
	 �

(30) and fusion (34) for
� �  � � ��� � �

�  � � ! � � � � � � � " 	 � � � ��� � � �  � � � 	 � � � � � � � �  � � �
	 �

injectivity (35) �
�  � � ! � � � � � � � " 	 ��� � �  � 	 ��� � �  �

	 �
define

! � � � "  � � ! � � � � � � � " �
�  ! � � � " 	 ��� � �  � 	 ��� � �  �

	 �
coproduct definition �! � � � " is a coproduct

Defined in this way, relational coproducts enjoy all properties of functional co-
products, eg. fusion, absorption etc.

This calculation, however, cannot be dualized to the generalization of the
split-combinator

� � � � � to relational
� � � � � . In fact, relational product is not a

categorical product, which means that some properties will not hold, namely the
fusion law,

� � � � � � � 
� � � � � � � ��� (42)

when
� � � � � are replaced by relations. According to [6], what we have is

� � � � � � � 
� � � � � � � ��� (43)

whose proof can be carried out by resorting to the explicit definition of the split
combinator (20) and some properties of simple relations grounded on the so-
called modular law 7.

In the following we present an alternative proof of (43) as an example of the
calculation power of transposes combined with Reynolds abstraction theorem in
the pointfree style [3]. The proof is more general and leads to other versions of

6 For the same outcome without resorting to transposition see � 2.5.2 of [12].
7 See Exercise 5.9 in [6].
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the law, depending upon which transposition is adopted, that is, which class of
relations is considered.

From the diagram of
� � � � �
� � 	 ����

oo
���

// �

�
�

ccFFFFFFFFF

� ��� �	� OO

�
;;wwwwwwwww

(44)

we infer the following type for split
� � � � ��� � 	 � � � � � � ��� � � � � 	 � � � � ���

Inspired by this diagram, we want to define the relational version of this combi-
nator — denote it by

� � �
for the time being — via the adaptation of (44) to

transposed relations, to be denoted by
� � �

. This will be of type
�  � � � � 	 � � � � � � ��� � � � � � 	 � � � � � ����� (45)

Reynolds abstraction theorem. Instead of defining
� � �

explicitly, we will rea-
son about its properties by applying the abstraction theorem due to J. Reynolds
[20] and advertised by P. Wadler [22] under the “theorem for free” heading. We
follow the pointfree styled presentation of this theorem in [3], which is remark-
ably elegant: � be a polymorphic function � � � , whose type

�
can be written

according to the following “grammar” of types:
� � �  � �

�
� � �

� � �  � � � � � ' ' ' ����
�� for
�

-ary relator
�

� � � �
for

�
a type variable (=polymorphism “dimension”)

Let � be the set of type variables involved in type
�
;
� ��� � � ��� be a � -indexed

family of relations ( � � in case all such � � are functions); and ��� be a relation
defined inductively as follows:

� ��� � ��� � � �
� � �
� �����  � � � � � � ' ' ' � � � � �

� ��� � �  ���
� ��� �����! ���� �  � ��� � � ��� �

where � ��� � � ��� � is defined by (9). The free theorem of type
�

reads as follows:
given any function � � � and � as above, � � � � holds for any relational instanti-
ation of type variables in � . Note that this theorem is a result about

�
and holds

for any polymorphic function of type
�

independently of its actual definition 8.
8 See [3] for comprehensive evidence on the the power of this theorem when combined with

Galois connections, which stems basically from the interplay between equations (7) and (8).
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In the remainder of this section we deduce the free theorem of type
�

(45)
and draw conclusions about the fusion and absorption properties of relational
split based on such a theorem. First we calculate � � :
� �

	 �
induction on the structure of

�
(45) �

� � � � � 	 � � � � ��� � � ��� � � � � ��� � 	 � � � � � ��� �����

	 �
substitution � � � � � � ��� �  � � � � � in order to remove subscripts �

� � � �
	 � � � � � � ��� � � � � � 	 � � � � � �����

Next we calculate the free theorem of
� � � � �

:

� � � � � � � � � �
 �

expansion of � � �
� � � � � � � 	 � � � � � � ��� � � � � � 	 � � � � � ����� � � �

 �
meaning of Reynolds arrow combinator (9) �

� � � � ��� � ��� � � 	 � � � � � ��� � � � �
	 � � � � � � � � �
 �

shunting (13) �
��� � ��� � � 	 � � � � � ��� � ��� � ��� � � � � � � 	 � � � � � � � � �

 �
by (6) �

� � � ��� ��� � � � � � 	 � � � � � ��� � � � � � � � ��� � � � � � � 	 � � � � � � � � � �
 �

product relator �
� � � � � � � � 	 � � � � � � � � � � ��� � � � � � � � �
	 � � � � � � � �

 �
Reynolds arrow combinator (9) three times �

� � � � � � � � 	 � � � � � � � � � � ��� ��� � � � � � �
	 � � � � � � � �

Should we replace functions � � � � � � � by transposed relations � ��� � � � � � � � � � � ��� ,
respectively, we obtain

��� � ����� � � � � � ��� � � � � � �
	 � � � ��� � � � � � � � ������� (46)

provided conjunction

� � ��� � � � � � � � � � � � � 	 � � � � � � � � � � � � � ����� (47)
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holds. Assuming (40), (46) can be re-written as

� � � � � � � � � � � � �
	 � � � � � � � � ���
(48)

At this point we restrict � to a function
�

and apply the fusion law (34) without
extra side conditions:

� � ��� � � � � � � � � � � �
	 � � � � � � � � ���
(49)

For � � ��  ��� �����
we will obtain —“for free” — the standard fusion law

� � � � � � �  � � � � � � � ���

presented in [6] for the split combinator (43), ie. for
� � � � �  � � � � � . In the

reasoning, all factors involving � and
�

disappear and fusion takes place in both
conjuncts of (47). Moreover, inclusion (

�
) becomes equality of transposed rela-

tions — thanks to (14) — and injectivity (35) is used to remove all occurrences
of � � .

In case � and
�

are not identities, one has different results depending on the
behaviour of the chosen transposition concerning the absorption property (36).

Power transpose. In case of arbitrary relations under the power-transpose, ab-
sorption requires � and

�
to be functions (say

	 � "
), whereby (49) re-writes to

� � ��� � � � � � � � � � � ��� 	 	 " � � � � � �����
(50)

provided � � � � � � � � � � � 	 ��� � and � � � � � ��� � � � � " � ��� hold. By combined
use of (14) — recall that transposed relations are functions — and injectivity
(35) one gets

� � � � � � �  � � 	 	 " � � � � � � �
(51)

provided
� � �  	 � � and �� �  " � � hold. For

� �  �)�
and

� � �
instantiated

to relational split, this becomes absorption law

� 	 ��� � " � � �  � 	 	 " � � � � � � � (52)

As a matter of fact, this law holds for arbitrary � and
�

, as [6] show in (ad-
mittedly) a rather tricky way. The fact that we could only arrive at a restricted
version of the law is not a problem: what we have shown is that version (52) of
the law in [6] is a “free” theorem which we were able to deduce in a parametric
way.
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�	�
�����
transpose. In case of simple relations under the

���������
-transpose, ab-

sorption has no side condition, and so we have

� � ��� � � � � � ��� � � � ��� � 	 � � � � � � � ���
(53)

for (50). Under a similar reasoning, and again instantiating
� �  ���

and
� � � 

� � � , we obtain absorption law

� � � � � � � � �  � �
	 � � � � � � � � (54)

This time, our reasoning has shown that the absorption law for simple relations
is another free theorem.

6 Other transposes

So far we have considered two instances of transposition, one applicable to any
relation and the other restricted to simple relations. That entire relations will
have their own instance of transposition is easy to guess: it will be a variant
of the power-transpose imposing non-empty power objects (see exercise 4.45 in
[6]). Dually, by (5) we will obtain a method for reasoning about surjective and
injective relations.

We conclude our study of relational transposition by relating it with a data
representation technique known in computer science as hashing. This will re-
quire further restricting the class of the transposable relations to coreflexive re-
lations. On the other hand, the transpose combinator will be enriched with an
extra parameter called the “hash function”.

7 The Hash Transpose

Hashing. Hash tables are well known data structures [23, 13] whose purpose
is to efficiently combine the advantages of both static and dynamic storage of
data. Static structures such as arrays provide random access to data but have
the disadvantage of filling too much primary storage. Dynamic, pointer-based
structures (eg. search lists, search trees etc.) are more versatile with respect to
storage requirements but access to data is not as immediate.

The idea of hashing is suggested by the informal meaning of the term itself:
a large database file is “hashed” into as many “pieces” as possible, each of which
is randomly accessed. Since each sub-database is smaller than the original, the
time spent on accessing data is shortened by some order of magnitude. Ran-

dom access is normally achieved by a so-called hash function, say � �
�

oo ,
which computes, for each data item

�
(of type � ), its location

� �
(of type � )
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in the hash table. Standard terminology regards as synonyms all data competing
for the same location. A set of synonyms is called a bucket.

There are several ways in which data collision is handled, eg. linear probing
[23] or overflow handling [13]. The former is not a totally correct representation
of a data collection. The strategy of overflow handling consists in partitioning a
given data collection

��� � into
�

-many, disjoint buckets, each one addressed
by the relevant hash index computed by

� 9.

This partition can be modelled by a function
�

of type ��� ��oo and the
so-called “hashing effect” is the following: the membership test

��� �
(which

requires an inspection of the whole dataset
�

) can be replaced by
� � � � � � �

(which only inspects the bucket addressed by location
� �

). That is, equivalence

� � � 	 � � � � � ��� (55)

must hold for
�

to be regarded as a hash table.

h
B
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3
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n

db
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Fig. 3. The “hashing effect” (where locations are natural numbers).

Hashing as a transpose. First of all, we reason about equation (55):

� � � 	 � � � � � ���
 �

introduce
�% � � �

9 In fact, such buckets (“collision segments”) are but the equivalence classes of ker � restricted
to � � (note that the kernel of a function is always an equivalence relation).



21

� � � 	 �% � � 	 � � � �
 �

introduce
�  � � �

� � � 	 �  � � 	 �% � � � 	 � � � �
 �

introduce
�

as a coreflexive ; converse of hash function �
� � � � 	 � � � � � 	 � � � �

 �
relational composition and rule (6) �

� � � � � � � � 	 � � � � � � �
 �

going pointfree �
� � � �  � � �

 �
power transpose �

�  � � � � � � �

So, for an arbitrary coreflexive relation � �
�

oo , its hash-transpose (for

a fixed hash function � �
�

oo ) is a function ��� ��oo , satisfying

� � �  � � � � � �
�

oo

���

� OO

�

� �OO

�oo

By defining
�

�
�  � � � � � � � (56)

we obtain a
�

-indexed family of hash transpose operators and associated uni-
versal properties

�  �
�
� 	 � � �  � � � � (57)

and thus the cancellation law

� � � � �
� �  � � � � (58)

etc.
In summary, the hash-transpose extends the power-transpose of coreflexive

relations in the sense that �  � ����� �
. That is, the power-transpose is the hash-

transpose using
���

as hash function. In practice, this is an extreme case, since
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some “lack of injectivity” is required of
�

for the hash effect to take place. Note,

in passing, that the other extreme case is
� �� �

, where � �
�

oo denotes the
unique function of its type: there is a maximum loss of injectivity and all data
become synonyms!

Hashing as a Galois connection. As powerset-valued functions, hash tables are

ordered by the lifting of the subset ordering ��� ���
�

oo defined by
	 

� � � , recall (37).
That the construction of hash tables is monotonic can be shown using the

relational calculus. First we expand �
	

:
�
�
	 � �

	 �
pointwise ordering lifted to functions (10) �

� � 	 � � �
	 �

definition of the subset ordering �
� � � � � � � � � �

	 �
law

� � � � � � �  ��� � � � � � [6], since
� �

is a function �
� � � � � � � � � �

	 � � � � � is lower adjoint of
� � � � �

� � � � � � � � (59)

Then we have
� �

�
� � �	 � � �

� �
	 �

by (59) �
� � � � �

� � � � � � � �
� �

	 �
cancellation (58) �

� � � � � � � � �
� � � � � � � is monotone, cf. lower-adjoints in (13) �
� � �

So, the smallest hash-table is that associated with the empty relation � , that is
� � , which is constant function

� ��
, and the largest one is

�  � � � , the hash-
transpose of

�)���
. In set-theoretic terms, this is � itself, the “largest” data-set of

data of type � .
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That the hash-transpose is not an isomorphism is intuitive: not every func-
tion

�
mapping � to ��� will be a hash-table, because it may fail to place data in

the correct bucket. Anyway, it is always possible to “filter” the wrongly placed
synonyms from

�
yielding the “largest” (correct) hash table

� �
it contains,

� �  �
�� � � � � �

where, using vector notation [4], � �� � is the lifting of � to powerset-valued
functions,

� � �� � � �  � � ��� � � � � � for all
�
. In order to recover all data from

such filtered
� �

we evaluate

rng
� � � � � �

where rng � (read “range of � ”) means img � � ��� . Altogether, we may define
a function on powerset valued functions � �

� 
rng

� � � � � �� � � � � ����� which
extracts the coreflexive relation associated with all data correctly placed in

�
. By

reconverting � �
�

into a hash-table again one will get a table smaller than
�
:

�
�
� � �

� �
�
	 �

(60)

(See proof in appendix B.) Another fact we can prove is “perfect” cancellation
on the other side:

� �
� �

�
� �  �

(61)

(See proof in appendix C.) These two cancellations, together with the mono-
tonicity of the hash transpose

�
� and that of � � (this is monotone because it

only involves monotonic combinators) are enough, by Theorem 5.24 in [1], to
establish Galois connection

�
� � �
	 � 	 � � rng

� � � � � �� � � � � �����
cf. diagram

� � � � � ��� � �
����� �

..

�
�� � ��� �

�
� �nn

��




Being a lower adjoint, the hash-transpose will distribute over union,
�

�
� � +� �  � �

� � � �+ � � �
� �

(so hash-table construction is compositional) and enjoy
other properties known of Galois connections.

Function
�

� can be regarded as a data representation and � � as the corre-
sponding abstraction function (Fig. 1), whereby typical “database” operations
such as insert, find, and remove (specified on top of the powerset algebra) can
be implemented by calculation [16, 19].
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8 Conclusions and future work

Functional transposition is a technique for converting relations into functions
aimed at developing the relational algebra indirectly via the algebra of functions.
A functional transpose of a binary relation of a particular class is an “

�
-resultric”

function where
�

is a parametric datatype with membership. This paper attempts
to develop a basis for a theory of generic transposition under the following
slogan: generic transpose is the converse of membership pre-composition.

Instances of generic transpose provide universal properties which all rela-
tions of particular classes of relations satisfy. Two well-known instances are
considered in this paper, one applicable to any relation and the other applicable
only to simple relations. In either cases, genericity consists of reasoning about
the transposed relations without using the explicit definition of the transpose
operator itself.

Our illustration of the purpose of transposition takes advantage of the free
theorem of a polymorphic function. We show how to derive laws of relational
combinators as free theorems involving their transposes. Finally, we relate the
topic of functional transposition with hashing as a foretaste of a generic treat-
ment of this well-known data representation technique [19].

Concerning future work, there are several directions for improving the con-
tents of this paper. We list some of our concerns below.

Generic membership. Our use of this device, which has received some attention
in recent years [6, 12], is still very superficial. Moreover, membership is being
used to structure a refinement calculus of software components [14]. We would
like to organize the taxonomy of relations in terms of morphisms among the
membership relations of their “characteristic” transposes.

The monadic flavour. Transposed relations are “
�
-resultric” and so can be framed

in a monadic structure if
�

is a monad. This is suggested in the study of the
power-transpose in [6] but we haven’t yet checked the genericity of the proposed
constructs. This concern is related to exploiting the adjoint situations studied in
[11, 10] and, in general, those involving the Kleisli category of a monad [2].

Generic hashing. Our approach to hashing in this paper stems from [16]. “Frac-
tal” types [17] were later introduced as an attempt to generalize the process
of hash table construction, based on characterizing datatype invariants by sub-
objects and pullbacks. In the current paper we could dispense with such ma-
chinery by using coreflexive relations instead. The extension of this technique
to other transposes based on Galois connections is currently under research [19].
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A Proof that all simple relations are �������	� -transposable

We have to prove the existence of function � � ���� which converts simple rela-
tions into

� ��� � � � -resultric functions and is such that � � ����% � � � ���� holds.
Our guess for � � ���� is quite “obvious”: � should be mapped to the “everywhere-�������������

” function
� ��� � (recall that � �

�
oo is the unique function of its

type), and any other simple relation � should “override”
� � � � with the (non-�������������

) entries in
� � � � . Altogether, we define

� � ���� � ����� � � � � � ��
 � � � � � � (62)

where we resort to the “relation override” operator 10 defined by � 
 �  � �� � � + � ,
where ��� � abbreviates � � � ����� ker

� �
. Because � 
 � preserves entirety on

any argument and simplicity on both (simultaneously), � � ���� � will be a func-
tion provided � is simple.

Next we prove the
� � � ����  � � ���� isomorphism, that is

� � �  �
	 �  ��
omitting subscripts for improved readability. The proof is adapted from [11]:

� � �  �
	 �

recall (29) �! ��� � � " � �  �
10 This extends the map override operator of VDM [9].
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	 �
injectivity (35) �

� � ! ���#� � " � � �  ��
	 �

fusion (34) �
� � ! ���#� � " � � �  ��

	 � � ! � � � "  ! � � � � � " , cf. section 5 �! � ��� � � � "#� �  � � �
definition (62) �! � � ��� � � � "�� �  ��

 �
uniqueness of � �

�
oo  ��� �! � � ��� � "#� �  �� �

coproduct reflexion �
��� � �  �� �

identity �
�  ��

B Proof of (60)

First note that

� �
� 

rng
� � � � � �� � � � � ����� �

since
� � � � �� � �  � � � � � � � � � � � �

rng
��� � � � � � � � � � � � ��� �

cancellation �
rng

� � � � � � � � (63)

Thus (60) rewrites to
����� �

 �
by (59) and (63) �

� � � �
�
rng

� � � � � � � ��� � � � �
	 �

definition of
�

� and cancellation �
�
rng

� � � � � � � ��� � � � � � � �
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	 �
shunting �

rng
� � � � � � � � � � � � � �

� �
rng � � img � and � � � ��� �

img
� � � � � � � � � � � � � �

� �
definition of img and converses �

� � � � � � � � � � � � � � � � � � � � � � � � �
� �

by ��� � � � � � � � ��� � � � � ��� � � and
� ��� � � � � � � �(� � � � � � � � � �

� � � � � � img
� � � ��� � ker

� � � � � � � � � � � � � � � �
� � � � � ��� �

T

C Proof of (61)

� �
� �

�
� �  �

	 �
definitions and (63) �

rng
� � � � � �

� � � � � �  �
	 �

definition �
rng

� � � � � � � � � � ��� � � � �  �
	 �

cancellation �
rng

� � � � � � � � �  �
	 � � � � � � � � since

�
is coreflexive and

�
is entire (see (64) below) �

rng
� � � � � �  �

	 �
range of composition �

rng
� � � rng

� � �  �
	 � �

is entire �
rng

�  �
	 � �

is coreflexive ��  �
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Auxiliar result

� � � � � � � � �
is coreflexive and

�
is entire (64)

is easily proved:

� � � � � � �
	 �

shunting �� � � � � �
� �

monotonicity �� � ��� 	 ��� �
ker

�
	 � �

is coreflexive and
�

is entire �
T


