
An Exercise in Program Transformation Using
Factorisation

J. B. Barros

jbb@di.uminho.pt

Techn. Report DI-PURe-04.02.01

2004, February

PURe
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)

Departamento de Informática da Universidade do Minho
Campus de Gualtar — Braga — Portugal

DI-PURe-04.02.01
An Exercise in Program Transformation Using Factorisation by J. B.
Barros

Abstract

This paper uses a well known factoring algorithm as the basis of a pro-
gram transformation strategy. This algorithm transforms an explicitly
recursive definition into the sequential composition of a producer and a
consumer of an intermediate (tree-like) structure. We show how some
non-basic algorithms can be specified by characterising these intermedi-
ate data structures. This can then be used to substitute some or all of
the factors by others that produce/consume similar structures. The main
difference to other program transformation techniques lies in its non syn-
tactical basis.

1 Introduction

Back in the 70’s, one of the best known slogans in programming came
from the title of Wirth’s famous book Algorithms + Data Structures =
Programs[12]. The whole idea of separating the two worlds seemed promis-
ing and led to a considerable improvement in the quality of the produced
software.
Another consequence of this separation was the development of separate
refinement calculi for both algorithms and data.
An important thread in this area was started by the famous work by
Burstall and Darlington [3] on applying fold/unfold of functional defi-
nitions in order to obtain transformed versions of those programs. This
process, despite being syntax oriented, was not suited for automation for
it subsumed a certain amount of intuition, i.e., the understanding of what
a program does and how it does it.
Another important contribution, this one in the imperative paradigm, was
the work of Tony Hoare and others on the formalisation of what is now
commonly referred as Floyd-Hoare Logic. In that setting, the meaning
of a program is expressed based on a predicate over (some part of) the
program’s internal state. This has led the foundations of say, Carroll
Morgan’s refinement calculus [9].
More recent work on generic programming, namely the work on the char-
acterisation of different sorting algorithms by means of their internal call
tree[1], has shown the advantages of further separating the study of algo-
rithms in their factorisation as producers and/or consumers of tree like
structures.
In fact, as will be clear from the example presented in Section 3, the
specification of some non-basic algorithms can be made solely by the
characterisation of its intermediate data structure.
The term algorithm is being used here meaning a strategy to solve some
particular task. This is fundamentally different from the concept of func-
tion. The later relates only the input with the output, thus forgetting
how the output was obtained. In that respect, all sorting algorithms (if
correct!) implement the same function. But they may implement different
sorting algorithms.
The rest of the paper is divided into three sections. Section 2 introduces
the basic concepts that we will need. We have tried to be as informal as
possible, concentrating on giving intuitive definitions of such concepts.
Here, as in rest of the paper will use Haskell [8] to code the examples.
Sections 3 and 4 present two exercises on program transformation that

illustrate the proposed method. For the sake of clarity, in Section 3 we
give an informal account of the factoring algorithm. Finally, Section 5
points out some future directions of this work.

2 Basic Facts

When writing down the definition of a (functional) program one can follow
different strategies.
A large class of programs can be structured by the form of their input.
These programs are usually referred as traversals. This is the case of say,
the function that computes the length of a list or the sum of all elements
of a list of integers. These functions are also known as catamorphisms
(from Greek κατα, downwards). On lists, and in Haskell, there is even a
(higher order) function – foldr – which captures this type of definitions.
The definition of sum can be structured as:

– if the input is the empty list then the result is zero
– if it is not empty, given its building blocks (i.e., its head and tail) compute

the result using the head and the result of applying the same function to
the tail.

sum l | null l = 0

| otherwise = h + sum t

where (h:t) = l

One other way to structure the definition of a function is by using the
form of its output. This is the case of most stream producing algorithms,
such as the function that computes the list of the prime factors of a given
natural number. These functions are also known as anamorphisms (from
Greek ανα, upwards). The definition of this function can be structured as:

– check weather the result is the empty list
– if that does not happen, compute the head of the result and the input

necessary to compute the tail.

primeF n | n == 1 = []

| otherwise = first:primeF (n ‘div‘ first)

where first = head [x | x <- [2..], n ‘mod‘ x == 0]

This classification leaves out the programs that are neither guided by
the structure of their input nor of their output. These can be thought
as guided by an intermediate (and sometimes called virtual) data struc-
ture and so can be factored into the (sequential) composition of: first a

producer of such a structure, and second a traversal of that structure.
These functions are also known as hylomorphisms (from Greek vλoσ,
matter).
Take for instance the function that computes the factorial of a natural
number.

factorial n | n < 1 = 1

| otherwise = n * (factorial (n-1))

This standard definition can be thought as first computing a list of all
numbers from that one down-to one, followed by the multiplication of all
elements of the list.

factorial n = product (n ‘downTo‘ 1)

where downTo u l | l > u = []

| otherwise = u:downTo (u-1) l

product l | null l = 1

| otherwise = (head l) * (product (tail l))

The list produced to obtain the factorial of a number is called the in-
termediate data structure of this function. Note that, even though some
authors call it virtual data structure, it is quite real: it corresponds to the
(inverted) stack of return addresses stored by the interpreter.
The first two classes (catamorphims and anamorphisms) can be seen as
particular cases of this third group. In the first case we just consider the
building phase as the identity function, whereas in the second case the
identity will act as the traversal part.
The examples above are all about lists but the generalisation of these
concepts to other inductive types is quite straightforward. There are quite
a few places where this generalisation is presented in a uniform way; see,
for instance [6], and [4] for an elegant implementation.
Moreover there is a standard procedure to get the second definition of
factorial from the first one. To our knowledge, this was first presented
in [7] as part of the Hylo Project [10] and has further been implemented
in [5] . For the sake of clarity, in the next section we will exemplify this
procedure for a particular definition.
This process of factoring definitions thus expliciting the internal (tree-
like) data structures is called forestation, and has not received a great
amount of attention for it introduces the need to build these structures,
worsening the overall performance of the programs. More often one wants
to perform the opposite task – deforestation – aiming at improving the
efficiency of the code[11].

3 Merge sort

According to the Wikipedia (http://en2.wikipedia.org/, merge sort
is a particularly good example of the divide and conquer algorithmic
paradigm for rearranging lists into a specified order. Conceptually, merge
sort works as follows. If the list to be sorted is longer than one item:

1. divide the unsorted list into two sub-lists of about half the size,
2. sort each of the two sub-lists;
3. merge the two sorted sub-lists back into one sorted list.

This definition is easily converted into the following Haskell code.

mergesort l@(a:b:abs) = merge (mergesort h1) (mergesort h2)

where (h1,h2) = split l

mergesort l = l

The function split splits a list into two and merge merges two sorted
lists into one sorted list.
Note however that this definition is not precise enough to ensure that this
is indeed merge sort. take for instance the following definition of split

split (h:t) = ([h],t)

In this case the resulting sorting algorithm is no longer merge sort. The
first argument of the calls to merge will always be singleton lists and so
(as merging a singleton list with another sorted list is sorted insertion)
this sorting algorithm is equivalent to insertion sort. In order to get merge
sort, i.e., an algorithm that runs in O(n log n) time, we have to further
satisfy point 1. above – the two sub-lists should have about the same size.
One possible implementation of such behaviour is

split [] = ([],[])

split (h:t) = (h:b,a)

where (a,b) = split t

One drawback of this algorithm is that, the most favourable scenario of
the input – the case where the list is already sorted, or has big chunks of
sorted parts – is not translated into a better performance of the algorithm.
As it is, the modification of the algorithm in order to overcome this point
seems difficult, if not impossible.
The purpose of this paper is to show how factoring an explicitly recursive
definition can be used as a program understanding tool thus helping in
tasks such as program transformation. This example is particularly well-
suited to apply this transformation for even it’s informal description can
be structured into an analysis part followed by a synthesis part.

Let us then look at a factored version of the above definition of merge sort.
This version can be automatically obtained by one of the implementations
referred above. We’ll present an informal account of that.
The whole idea is to factor an explicitly recursive definition through the
construction and destruction of some intermediate (polynomial) inductive
data type. As so, this type should be a solution to the (type) equation
X ∼= FX for a functor F defined as

FX = a0 + a1 ×X + a2 ×X2 + · · ·+ an ×Xn

Diagrammatically, we want to find functions f and g so that the following
diagram commutes.

[a]

mergesort

��

anaSplit

!!B
BB

BB
BB

B
f // F[a]

F anaSplit

��
T

cataMerge}}||
||

||
||

F T

F cataMerge

��
[a] F[a]g

oo

Note that, as F is polynomial, each of its components corresponds to
one possible recursive behaviour. In the present case there are two such
behaviours: either the function (mergesort) is not called at all (if the list
is either empty or a singleton), or is called twice. This gives us the form
of the functor. It will be of the form FX = a0 + a2 × X × X, and the
above diagram is specialised by the following

[a]

mergesort

��

anaSplit

 B
BB

BB
BB

B
f // a0 + a2 × [a]× [a]

id +id×anaSplit×anaSplit
��

T

cataMerge~~||
||

||
||

a0 + a2 ×X ×X

id +id×cataMerge×cataMerge
��

[a] a0 + a2 × [a]× [a]g
oo

The function f should decide which recursive behaviour to follow and

– for the non-recursive one, should produce an element of type a0 with
which g can compute the desired result;

– for the recursive one, should produce two lists (which will be the actual
parameters of the recursive calls) and (possibly) some other element of
type a2 necessary to compute the desired result together with the results
of the recursive calls.

With these considerations one can conclude that the intermediate data
structure produced by anaSplit and traversed by cataMerge is a binary
leaf tree (where each leaf has a singleton or empty list). These functions
can then be defined as

data LT a = L [a] | T (LT a) (LT a)

anaSplit l | null l || singleton l = L l

| otherwise = T (anaSplit h1) (anaSplit h2)

where (h1,h2) = split l

cataMerge (L l) = l

cataMerge (T h1 h2) = merge h1 h2

The factored version of the merge sort function is just the (sequential)
composition of these two.

mergesort = cataMerge . anaSplit

This transformation has two clear drawbacks:

– the three line Haskell definition of merge sort has been expanded into
seven lines of code.

– the factorisation will (at least in an eager language) imply the con-
struction of an intermediate tree, thus worsening its performance.

As pointed out above, this factorisation can be used as a program under-
standing tool. Some of the points in the informal description given above
can now be formalised by characterising the leaf tree which is produced in
the first part of the algorithm. The fact that the function split produces
two sub-lists of about the same size mean that each sub-tree will have
about the same size, meaning that the tree is balanced.
The algorithm can now be described as, for a given list of size n, first
produce a balanced leaf-tree with the elements of the list (implying that
the depth of the tree is O(log n)). The second part consists of (bottom-up)
merging the leafs up-to a unique sorted list. An example of the intermediate
steps of this factored version, when applied to the list [2,4,8,3,1,6,7,5]
can be seen in Figure 1.
If one sees both the construction and the destruction of the tree by levels,
one can understand clearly why this is indeed a O(n log n) sorting algo-
rithm. Each of these steps consists in traversing all n elements of the list.

[2] [1][8] [7] [4] [6] [3] [5]

[2,4,8,3,1,6,7,5]

[1,2,3,4,5,6,7,8]

anaSplit

cataMerge

Fig. 1. Original Merge Sort

As there are log n levels, both the construction and destruction of the
tree will be O(n log n). The sequential composition of two such functions
still yields a O(n log n) function.

One other consequence of this factorisation is that we can now substitute
one or both of the factors by other functions that will produce/traverse
the same or an equivalent intermediate data structure. We thus transform
a program by transforming one of its factors.

We mentioned above that merge sort does not improve its efficiency when
the initial list is already sorted or has large chunks of sorted parts. A
possible workaround of this problem is to start by pre-processing the list
in order to find the already sorted parts of the list. The following function
will do exactly that.

ascSequences [] = []

ascSequences [x] = [x]

ascSequences (h:t) | h <= hh = ((h:hh:ht):tt

| otherwise = [h]:(hh:th):tt

where ((hh:th):tt) = ascSequences t

This function could be written using the standard Haskell function groupBy.
We have included this piece of code to show that it is a linear function
(in our classification into ana, cata, or hylomorphism, this is clearly a
list catamorphism). Note that this function transforms a list into a list of
lists and if we are going to use it as a pre-processor to merge sort we will
have to slightly change the anamorphism part of the later. This change
happens only in the leaf creation part.
anaSplit’ l | null l = L []

| singleton l = L h

| otherwise = T (anaSplit’ h1) (anaSplit’ h2)

where (h1,h2) = split l

[h] = l

Adding up the pieces we can define a new version of merge sort as
mergeSort = cataMerge . anaSplit’ . ascSequences

Figure 2 displays the intermediate structures generated by these factors.
As expected, the transformed version will produce a smaller tree, but will
have an additional step of grouping the original list.
The question rose by this transformation is how much better (or worse)
behaves the resulting function.
Without the explicit factoring of the definition one could be tempted
to analyse the performance of this transformed version by expanding the
non-singleton leaves into trees. This does not correspond to what happens
in practice but could lead us into the misconception that we no longer
have a O(n log n) algorithm. Note that such tree is no longer balanced
and therefore we could not reason with that assumption.
However, the same reasoning that was made to the original version of
merge sort can still be made about this transformed version.

– The sum of the lengths of all leaves is n (the length of the original
list), and this is so for each step of increasing/decreasing one level of
the tree.

– The tree has at most log n levels because it is balanced. As there are
fewer nodes in the tree, its depth can be lower than this limit.

There is however an increase in the pre-processing part but, asymptot-
ically, as this pre-processing is linear, it is not relevant. The (sequen-
tial) composition of a linear function with a O(n log n) function yields a
O(n log n) function. This argument can be used to rule out one further
transformation – to group the original sequence into (non-consecutive)
ascending sub-sequences. Such function is non-linear (quadratic at least
on the worst case) thus worsening the overall asymptotic behaviour of
merge sort to quadratic.

[2,4,8] [1,6,7][3] [5]

[2,4,8,3,1,6,7,5]

[1,2,3,4,5,6,7,8]

anaSplit'

cataMerge

[[2,4,8],[3],[1,6,7],[5]]

ascSequences

Fig. 2. Transformed Merge Sort

4 Heap sort

Heap sort is another divide and conquer sorting algorithm. Its behaviour
on a list with more than one element can be described as:

1. find the minimum of the list and divide the rest into two halves
2. construct the desired result having the minimum as its head, and building

the tail by merging the lists corresponding to applying the same method
to both halves.

One possible implementation of this algorithm is

heapSort l@(f:s:others) = m:(merge (heapSort ll) (heapSort rl))

where (m,ll,rl) = splitH l

heapSort l = l

splitH [x] = (x,[],[])

splitH (h:t) | h <= m = (h,m:rl,ll)

| m < h = (m,h:rl,ll)

where (m,ll,rl) = splitH t

Applying the factoring algorithm to this definition, the intermediate data
structure is a binary tree whose nodes are elements of the original list
and the leaves are lists (either empty or singleton).

data FT a b = Leaf a | Fork b (FT a b) (FT a b)

heapSort = cataMergeH . anaSplitH

anaSplitH l@(f:s:t) = let (m,l1,l2) = splitH l

in Fork m (anaSplitH l1) (anaSplitH l2)

anaSplitH l = Leaf l

cataMergeH (Leaf x) = x

cataMergeH (Fork m e d) = m:(merge (cataMergeH e) (cataMergeH d))

Note now that when applied to a (non-empty) list, splitH produces a
triple (m,l,r) where m:l++r is a permutation of the original list and

– m is the minimum of the list, and
– the lengths of l and r are equal (up to one).

This means that the function anaSplitH produces a binary tree whose
root is the minimum element, both its left and right sub-trees have the
same number of elements and satisfy these same properties. In other
words, the tree produced by this function is a balanced heap whose ele-
ments are the elements of the original list.
The first advantage of applying the mentioned factoring algorithm to
this definition is that one can easily understand why this is in fact an
implementation of heap sort.
An example of the intermediate steps of this factored version, when ap-
plied to the list [2,4,8,3,1,6,7,5] can be seen in Figure 3.

Both merge sort and heap sort share a common feature: their performance
is independent from the initial state of the list. In the previous section
we saw how we could easily improve the efficiency of merge sort in the
best case without ruining the average performance of the algorithm. This
was done by just pre-processing the original list, grouping the contiguous
ascending sub-sequences.
This technique could as well be applied to heap sort. We will however
present a different method, again based on this factorisation. In this case
we will slightly change the intermediate data structure.

[7] []

[6][4][8]5

1

32

[2,4,8,3,1,6,7,5]

[1,2,3,4,5,6,7,8]

anaSplitH

cataMergeH

Fig. 3. Original Heap Sort

A heap, as produced by the algorithm above, is a binary tree such that,
for every trace n1,. . . ,nk,l we have that the list

n1:...:nk:l

is an ordered list.
The transformation that we will present uses a tree whose nodes are lists,
and, for every trace n1,. . . ,nk,l we have that the list

n1++...++nk++l

is an ordered list.
The catamorphism part of this algorithm is then quite similar to the
previous one: we just have to change the (:) by concatenation.

cataMergeH’ (Leaf x) = x

cataMergeH’ (Fork m l r) = m ++ (merge (cataMergeH’ l) (cataMergeH’ r))

The split function in the original function computed a triple (m,l,r)
being m the minimum of the list Now will also have to compute a triple,
but its first element should be a (sorted) list of elements less or equal to
all other elements. A possible definition is then

anaSplitH’ l@(f:s:t) = let (m,e,d) = splitH’ l

in Fork m (anaSplitH’ e) (anaSplitH’ d)

anaSplitH’ l = Leaf l

splitH’ [x] = ([x],[],[])

splitH’ (h:t) | h <= m = (h:m:mm,l1,l2)

| m < h = ([m],l3,l4)

where ((m:mm),l1,l2) = splitH’ t

(l3,l4) = add mm (h:l2,l1)

add [] p = p

add (x:xx) p = let (a,b) = add xx p

in (x:b,a)

Figure 4 displays the intermediate structures generated by these factors.
As expected, the transformed version will produce a smaller tree. Note
that the modifications that we have made, both on the catamorphism and
on the anamorphism, guarantee that we keep the asymptotic behaviour
of this algorithm unchanged. The function splitH’ is still linear on the
size of its input, although its worst case is worse that splitH.
In the best case, as happened in the transformation of merge sort, we
obtain a linear function.
We are now able to perform one last step in transforming the original
heap sort algorithm – to put together both the improvements that we
made in merge sort (pre-processing the original list) and in heap sort
(storing lists of elements in the nodes of the heap). We will only need to
redefine the anamorphism of heap sort.

splitHH :: (Ord a) => [[a]] -> ([a],[[a]],[[a]])

splitHH [x] = (x,[],[])

splitHH (h:t) = (m’,m’’:r,l)

where (m,l,r) = splitHH t

(m’,m’’) = combine m h

combine (m:mm) (h:hh) | h <= m = let (a,b) = combine (m:mm) hh

in (h:a,b)

| otherwise = let (a,b) = combine mm (h:hh)

in (m:a,b)

combine a b = (a,b)

anaSplitHH l@(f:s:t) = let (m,e,d) = splitHH l

in Fork m (anaSplitHH e) (anaSplitHH d)

anaSplitHH [l] = Leaf l

anaSplitHH [] = Leaf []

Note again that as splitHH is linear on the size of its argument, and
both sublists have aproximate lengths, anaSplitHH is still a O(n log n)
function.

[][][8][7]

1

[4,5,6][2,3]

[2,4,8,3,1,6,7,5]

[1,2,3,4,5,6,7,8]

anaSplitH'

cataMergeH'

Fig. 4. Transformed Heap Sort

The definition of heap sort becomes:

heapsort :: (Ord a) => [a] -> [a]

heapsort = cataMergeH’ . anaSplitHH . groupasc

Figure 5 displays the intermediate structures generated by these factors
when applied to the list [2,4,8,3,1,6,7,5] .
Note that some of the work that was previously performed by the cata-
morphism, namely the merging of the ascending sequences is now per-
formed by the anamorphism.

5 Discussion

We have shown through two small examples how forestation can be used
as a program understanding tool, providing insights into the algorithm
underlying a particular function definition. This has helped us transform

the definitions of two well known sorting algorithms into similar ones
that take advantage of the portions of the original list which are already
sorted. We have also shown how performance aspects of these definitions
can be taken into account under this perspective.
We have also tried to exemplify how an algorithm (when seen as a strategy
to solve a particular task) can be described by the characterisation of the
internal data structures. Another such example is quicksort, where the
internal data structure is a search tree. Expliciting the construction of
this tree one can easily understand why this algorithm has a worst case
asymptotic performance of O(n2) in the case where the original list is
sorted in reverse order.
The ideas presented here came, as often happens, from an educational
experience. When trying to teach topics in the area of generic program-
ming, namely recursion patterns such as ana, cata and hylomorphisms,
one usually tries to express as such, some previously studied functions.
This has led to the formalisation of a very simple algorithm to factor
explicitly recursive definitions into an hylomorphism, i.e., the composi-
tion of a producer followed by a consumer of some tree-like structure. We
have found out that this is a successful strategy to teach programming
issues and have been using it in different settings, namely in our Logic
classes where different procedures (like tableaux, or the Davis-Putnam)
are taught (see [2] for a case study in this area).
The method proposed here is not syntax driven and therefore is not in-
tended for automatisation. We feel however that even such syntax oriented
methods, like Burstall and Darlington’s fold/unfold can be coded in this
setting. Going back to the diagrams of page 6, the left-to-right arrow cor-
responds to the unfold part, whereas the right-to left corresponds to the
folding part.

References

1. Lex Augusteijn. Sorting morphisms. In D. Swierstra, P. Henriques, and J. Oliveira,
editors, 3rd International Summer School on Advanced Functional Programming,
volume 1608 of LNCS, pages 1–27. Springer-Verlag, 1999.

2. L. S. Barbosa, J. B. Barros, and J. J. Almeida. Polytypic recursion patterns.
In ENTCS. Elsevier, 2000. Proceedings, Simpósio Brasileiro de Linguagens de
Programação, UFEP, Recife, May 2000.

3. R. M. Burstall and John Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44–76, January 1977.

4. Alcino Cunha. Automatic visualization of recursion trees: a case study on generic
programming. Electronic Notes in Theoretical Computer Science, 86(3), 2003.
Selected papers of the 12th International Workshop on Functional and (Constraint)
Logic Programming.

5. Alcino Cunha, José Barros, and João Saraiva. Deriving animations from recur-
sive definitions. In Draft Proceedings of the 14th International Workshop on the
Implementation of Functional Languages (IFL’02), 2002.

6. Maarten Fokkinga. Law and Order in Algorithms. PhD thesis, University of
Twente, 1992.

7. Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomor-
phisms from recursive definitions. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’96), pages 73–82. ACM
Press, 1996.

8. Simon Peyton Jones and John Hughes, editors. Haskell 98: A Non-strict, Purely
Functional Language. February 1999.

9. Carroll Morgan. Programming from Specifications. Prentice-Hall, 1990.
10. Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. A calcula-

tional fusion system HYLO. In Proceedings of the IFIP TC 2 Working Conference
on Algorithmic Languages and Calculi, pages 76–106. Chapman & Hall, 1997.

11. Philip Wadler. Deforestation: Transforming programs to eliminate trees. In Pro-
ceedings of the European Symposium on Programming, number 300 in LNCS, pages
344–358. Springer-Verlag, 1988.

12. Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

[][8]

[1,2,3,4,5]

[][6,7]

[2,4,8,3,1,6,7,5]

[1,2,3,4,5,6,7,8]

anaSplit'

cataMerge

[[2,4,8],[3],[1,6,7],[5]]

ascSequences

Fig. 5. Transformed Heap Sort

