
A Brief Introduction to Bicategories

Lúıs Soares Barbosa

lsb@di.uminho.pt

Techn. Report DI-PURe-03:12:01

2003, December

PURe
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)
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Abstract

Bicategories are an interesting conceptual tool to organize thinking and
calculation on several semantic universes for computational structures,
namely for processes and automata. This report provides a brief intro-
duction to the basic intuitions, definitions and results as a starting point
for more comprehensive accounts.



1 Definition

1. Motivation. Elements of a set are either equal or different. In a
category, however, two objects can be different but still essentially the
same, in a very precise way. Technically, they are said to be isomorphic
and the construction witnessing this fact can be made explicit and used in
calculations. For example, in Set, A×B and B×A are made isomorphic
by the (explicitly introduced) bijection s = 〈π2, π1〉. Moreover, objects
can be essentially the same in more than one way, as such ‘sameness’
may be witnessed by different isomorphisms.

In order to extend this view to the level of morphisms, the category
has to be equipped with further structure. In particular, this requires
arrows between arrows and a corresponding notion of composition. To
avoid name clashing, such arrows are usually called 2-cells (objects and
object morphisms being similarly named 0-cells and 1-cells, respectively).

In this context, the space of morphisms between any given pair of
objects, usually referred to as a (hom-)set, acquires itself the structure of
a category. Therefore the basic (1-cell) composition and unit laws become
functorial, since they transform both objects (1-cells) and arrows (2-cells)
of each (hom-)category in an uniform way. In consequence, 2-cells are
composable by two different, but intrinsically related (see §4 below) ways.

Such a structure has the ability to refine the notion of ‘sameness’
by distinguishing isomorphisms further than the equality level. A further
step, in the same spirit, consists of weakening the degree of strictness up
to which the usual associative and unit laws for 1-cell composition are
supposed to hold. If, in particular, equality is relaxed to isomorphism one
ends up with a bicategory. Of course, the witnessing isomorphisms have
to be explicitly included in the definition as particular, invertible 2-cells.
However, there is a price to be paid for this increased expressiveness: such
isomorphisms should themselves obey some (coherence) laws to be used
in calculations as if they were proper equalities.

The following paragraphs introduce some basic definitions and a few
examples of bicategories. The basic reference on bicategories is Bénabou’s
original paper [Ben67]. Comprehensive accounts can be found in, e.g.,
[Bor94] and [Str96].

2. Definition. The underlying structure of a bicategory B consists of

– a class of objects A, B, C, ...
– for each pair 〈A,B〉 of objects, a small (hom-)category B(A,B) with

arrows p, q, r, ... from A to B as objects and arrows h, k, l, ... between



them denoted as in, e.g., h : p =⇒ q, and referred to as 2-cells.
Composition in B(A,B) is denoted by · and the identity on p,
for each p : A −→ B, by 1p : p ⇒ p.

– for each triple 〈A,B, C〉 of objects, a composition law given by a
(bi)functor

;A,B,C : B(A,B)× B(B,C) −→ B(A,C)

– for each object A, an identity functor

IA : 1 −→ B(A,A)

where 1 stands for the final object in the category Cat of small cate-
gories.

3. Remark. From the definition above, 2-cells in B come equipped with
two forms of composition, called, respectively, vertical and horizontal
after the respective diagrammatic presentation. Vertical composition is
given by the composition law in each hom category. On the other hand,
horizontal composition corresponds to the action of functor ; on 2-cells.
The action of IA on the unique object of 1 is the 1-cell IA : A −→ A,
the identity on object A (wrt ; on 1-cells), whereas its action on the
unique arrow of 1 is the 2-cell 1IA

: IA ⇒ IA, the identity on the 1-cell
IA : A −→ A (wrt ; on 2-cells, i.e., horizontal 2-cell composition). This
is sketched as follows:

A

IA
))

IA
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�� 1IA A

4. Interchange Law. The two forms of composition mentioned above
are related by the equality

(k ; k′) · (h ; h′) = (k · h) ; (k′ · h′)

which gives an unambiguous meaning to the diagram

A

p

##
�� ��
�� h

;;

r

�� ��
�� k

q
// B

p′

##
�� ��
�� h′

;;

r′

�� ��
�� k′q′

// C



The equation arises simply because ;A,B,C , for each triple 〈A,B, C〉, is a
bifunctor. This is widely used in calculations involving natural transfor-
mations.

5. Associativity and Unit Laws. The motivation in §1 has hopefully
shed some light on why associativity and unit axioms for ; are supposed
to hold only up to isomorphism. Therefore, such axioms are introduced
explicitly in the definition of a bicategory as natural isomorphisms. More-
over, they are subject to some suitable coherence laws integrating the
definition as well.

6. Definition. A bicategory B is defined by the structure introduced in
§2 plus the following natural isomorphisms, for each A, B, C and D1:

aA,B,C,D : ;A,B,D ◦ (Id× ;B,C,D) =⇒ ;A,C,D ◦ (;A,B,C × Id)

rA,B : ;A,A,B ◦ (IA × Id) =⇒ Id

lA,B : ;A,B,B ◦ (Id× IB) =⇒ Id

diagrammatically,

B(A,B)× B(B,C)× B(C,D)
;A,B,C×Id

//

Id×;B,C,D

��

B(A,C)× B(C,D)

;A,C,D

��
B(A,B)× B(B,D) ;A,B,D

//

aA,B,C,Dgggggggg
gggggggg

/7gggggggg
gggggggg

B(A,D)

and

1× B(A,B)

IA×Id
��

B(A,B)
∼=oo

∼= // B(A,B)× 1

Id×IB

��
B(A,A)× B(A,B) ;A,A,B

//

rA,Bjjjjjj
jjjjjj

08jjjjjjj
jjjjjjj

B(A,B) B(A,B)× B(B,B);A,B,B

oo

lA,BTTTTTT
TTTTTT

fn TTTTTTT
TTTTTTT

The components of these isomorphisms, for p : A −→ B, q : B −→ C,
r : C −→ D and t : D −→ E, are, as expected, the invertible 2-cells

ap,q,r : p ; (q ; r)
∼==⇒ (p ; q) ; r

rp : IA ; p
∼==⇒ p

lp : p ; IB
∼==⇒ p

1 Recall that ◦ (often abbreviated by juxtaposition) denotes functor composition and
Id is the identity functor on any category.



subject to the coherence laws expressed by the commutativity of the fol-
lowing diagrams:

p ; (q ; (r ; t))

a

��

1p;a // p ; ((q ; r) ; t)

a

��
(p ; q) ; (r ; t)

a
((QQQQQQQQQQQQ

(p ; (q ; r)) ; t

a;1tvvmmmmmmmmmmmm

((p ; q) ; r) ; t

and
p ; (IB ; q)

1p;r %%KKKKKKKKKK
a // (p ; IB) ; q

l;1qyyssssssssss

p ; q

7. 2-Categories. The structure arising by taking the families of natural
isomorphisms a, l and r as mere identities, is called a 2-category. In this
stricter setting the coherence axioms hold automatically.

2 Examples

8. Examples. A typical example of a 2-category is Cat, with small
categories, functors and natural transformations as 0, 1 and 2-cells re-
spectively.

Another trivial example of a bicategory arises by duality. The dual
Bop of a bicategory B is still a bicategory, formed by reversing the 1-cells.
The 2-cells of B, however, remain unchanged (just think on Catop).

Finally, any category C can be seen as a special case of a 2-category,
and hence of a bicategory, by regarding each homset C(A,B) as a discrete
category.

9. Spans. A more interesting example of a bicategorical structure is given
by the spans of a category C with pullbacks. The construction is as follows:
take the objects of C as 0-cells and define 1-cell (f, g) from A to B as a
span 〈X, f, g〉, i.e., a pair of C-arrows, f : X −→ A and g : X −→ B, with
a common domain. Spans compose by pullbacking, i.e., (f, g) ; (f ′, g′) =



(f · x, g′ · y), where (x, y) is an arbitrarily specified pullback of (g, f ′) as
in the following diagram:
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A B C

The identity on object A is, of course, (idA, idA), where idA is the identity
on A in C. Now define a 2-cell as a morphism between spans on the same
objects, i.e., a C-arrow k : X −→ Y making the following diagram to
commute.

X
g

  A
AA

AA
AA

f

~~~~
~~

~~
~

k

��

A B

Y
g′

>>}}}}}}}f ′

``@@@@@@@

Vertical composition of such morphisms is simply inherited from C. On
the other hand, horizontal composition is less obvious. Given k : (f, g) ⇒
(f ′, g′) and l : (m,n) ⇒ (m′, n′), as below, their composite k ; l is the
2-cell h : (f · x, n · y) ⇒ (f ′ · x′, n′ · y′) defined as the unique factorisation
through the pullback 〈P ′, x′, y′〉 of k · x and l · y, as illustrated in the
following diagram.

P
y

!!B
BB

BB
BB

B
x

}}||
||

||
||

X
g

!!B
BB

BB
BB

B
f

~~}}
}}

}}
}}

k

��

Y
n

  A
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A
m

}}||
||

||
||

l

��

A B

h

��

C

X ′
g′

==||||||||f ′

``AAAAAAAA

Y ′
n′

>>}}}}}}}m′

``BBBBBBBB

P ′
y′

>>}}}}}}}}x′

``BBBBBBBB



Note that

g′ · k · x

= { k is a 2-cell }
g · x

= { P is a pullback }
m · y

= { l is a 2-cell }

m′ · l · y

and h is actually a 2-cell:

f ′ · x′ · h

= { h factorizes k · x }

f ′ · k · x

= { k is a 2-cell }
f · x

and similarly one can prove n′ · y′ · h = n · y. Spans are a useful device
to generalise relations to an arbitrary category. As pullbacks are defined
up to isomorphism and in the definition of ; they are arbitrarily chosen,
the corresponding associativity also holds only up to isomorphism. Hav-
ing chosen the A-identity span as the identity on A, the isomorphisms
corresponding to the left or right unit laws, become simply the identity
natural transformations.

10. Partial Maps. Another typical use of spans arises in the definition
of sets and partial maps. In fact a partial map from a set A to a set B
may be regarded as an isomorphism class of spans on A and B, where
the first component (dom) is a monomorphism, i.e.,

U
f

  @
@@

@@
@@O o

dom

�~~
~~

~~
~

A B

Let [〈U,dom, f〉]∼= stand for the isomorphism class of 〈U,dom, f〉. A mor-
phism between two partial maps [〈U,dom, f〉]∼= and [〈V,dom′, f ′〉]∼= from



A to B is just a 2-cell between the corresponding spans, i.e.,

U
f

  @
@@

@@
@@O o

dom

�~~
~~

~~
~

p

��

A B

V
f ′

>>~~~~~~~O/
dom′

_@@@@@@@

Wherever it exists, this arrow is unique, which makes Par, the category
of partial maps, a locally-ordered bicategory (see [Car87] for details).

3 Further Structure

11. Stepping Down. Cell-reindexing is a simple way to step down from
a bicategory to a category. One forms the new category by taking the
original 1-cells as objects and the 2-cells as arrows. This new category
still carries the ‘genetic inheritance’ of the original one, in the form of
some additional structure. Here is a particularly simple, but illustrative
example.

Think, first, in an ordinary (1-)category with an unique object A. One
may form a new category taking as objects the (auto)morphisms on A and
as arrows the morphisms between them. As we have begun with an ordi-
nary (1-)category the latter simply do not exist and, therefore, the result
is just the set (i.e., the discrete or 0-category) of automorphisms. Their
composition appears now as a binary associative operation, with identity,
on the set, which, thanks to this “inheritance”, becomes a monoid.

If the same procedure is applied to a bicategory also with just one ob-
ject, the original 2-cells become the arrows of an ordinary category, and
composition amounts to the original vertical composition. Notice that,
again, the obtained category inherits some additional structure: since its
objects are arrows of the original bicategory, it gets for free a ‘multipli-
cation’ at the object level. The result is, of course, a monoidal category.

12. Homomorphisms of Bicategories. Just as bicategories generalise
categories, a bicategory homomorphism arises as a generalisation of the
notion of a functor. The cornerstone of such an extension is compatibility
with the 2-cell structure.



Again the functoriality axioms can be required to hold at different lev-
els of strictness. Therefore, they are built into the definition as particular
natural transformations obeying some coherence laws.

In the definition below nothing but naturality is assumed about such
transformations. The kind of homomorphism defined is called a lax func-
tor and is the standard notion of bicategory homomorphism, consistent
with the weak approach to n-categories (see §17 further on).

Requiring mA,B,C and uA below to be isomorphisms amounts to the
definition of a pseudo-functor, i.e., a functor being functorial up to iso-
morphism. Hence, Tf ;′ Tg ∼= T(f ; g) and TI ∼= TI ′ . Pseudo-functors
of the form I : Cop −→ Cat are well-known in applications of category
theory to computer science to model indexing situations. In such a con-
text they are named indexed categories and shown to be equivalent to
fibrations [Gro70] a more convenient tool to achieve the same (see the
recent book by B. Jacobs [Jac99] for systematic applications to logic and
type theory or [Str99] for a tutorial).

Finally, a stricter approach will enforce mA,B,C and uA as effective
identities, making all the axioms to hold on the nose. This defines a 2-
functor, which is the usual notion of a homomorphism of 2-categories.

13. Definition. Let B and B′ be two bicategories. A homomorphism T
from B to B′, is called a lax functor and consists of

– a function T mapping objects of C into objects of C′,

– for each pair 〈A,B〉 of objects, a functor TA,B : B(A,B) −→ B′(TA,TB)

– for each triple 〈A,B, C〉 of objects, a natural transformation m : ;′ ◦
(TA,B × TB,C) =⇒ TA,C ◦ ; whose components are 2-cells mp,q : Tp ;′

Tq −→ T(p ; q), for each p : A −→ B and q : B −→ C. In a diagram:

B(A,B)× B(B,C)
;A,B,C //

TA,B×TB,C

��

B(A,C)

TA,C

��
B′(TA,TB)× B′(TB,TC)

;′TA,TB,TC

//

mA,B,Cffffffff
ffffffff

/7fffffffffff
fffffffffff

B′(TA, TC)



– for each object A, a natural transformation u : I ′TA =⇒ TA,A ◦ IA as
in diagram

1
IA // B(A,A)

TA,A

��
1

I′
TA

//

unnnnnnnnn

nnnnnnnnn

2:nnnnn
nnnnn

B′(TA, TA)

subject to the coherence laws expressed by the commutativity of the fol-
lowing diagrams:

Tp ;′ (Tq ;′ Tr)
Id;′m //

a′

��

Tp ;′ T(q ; r) m // T(p ; (q ; r))

Ta
��

(Tp ;′ Tq) ;′ Tr
m;′Id

// T(p ; q) ;′ Tr m
// T((p ; q) ; r)

and

I ′TA ;′ Tp
r′ //

u;′Id
��

Tp Tp ;′ I ′TB
l′oo

Id;′u
��

TIA ;′ Tp

m

��

Tp ;′ TIB

m

��
T(IA ; p)

Tr
// Tp T(p ; IB)

Tl
oo

14. An Cheap Example. Take the singleton set 1 as a discrete (bi)category
and let B be any bicategory. Then any lax-functor M : 1 −→ B is nothing
more than a monad in B. The good old friend of functional programmers
is around the corner, just by instantiating B with Cat.

15. Further Structure. A similar construction yields corresponding
notions of natural transformation in a bicategorical setting. Components
of a natural transformation τ between, say, (lax-)functors T and R are,
of course, 1-cells indexed by the objects. However, the naturality require-
ment is, again, introduced as the following family of natural transforma-



tions nA,B

B(A,B)
TA,B //

RA,B

��

B′(TA, TB)

B′(TA,τB)
��

B′(RA,RB)
B′(τA,RB)

//

nA,Bjjjjjj
jjjjjj

19jjjjj jjjjj

B′(TA,RB)

where B(X, p) : B(X, A) −→ B(X, B) is the functor induced by the 1-cell
p : A −→ B, for a given X, and, contravariantly, B(p, X) : B(B,X) −→
B(A,X).

One can go further and define a morphism between this kind of trans-
formations

T

τ
))

τ ′

55
�� ��
�� σ R

whose components are 2-cells connecting, for each object A, τA to τ ′A.
Such morphisms are known as modifications and, in particular, allow for
the definition of the analogue of a functor category between two bicate-
gories. Given B and B′, a functor bicategory arises taking (lax-)functors,
transformations and modifications as 0, 1 and 2-cells, respectively.

Having built all this structure, one can define what adjunctions are
and, consequently, what limits mean, in it. There is also a notion of repre-
sentable and an analogue of Yoneda lemma, which is used in the proof of
the coherence theorem [Str96] asserting the possibility of reducing any bi-
category to a (bi)equivalent 2-category. Although this will not be pursued
here, we should remark that suitable generalisations of familiar categori-
cal constructions emerge as expected, respecting the 2-cell structure and
eventually relaxing the conditions up to which axioms are verified. Co-
herence requirements, however, may become rather heavy to state and
prove.

Finally, notice that the fact that Cat is a (particular case of a) bicat-
egory allows one to borrow common categorical constructions and have
them interpreted in an arbitrary bicategory. For example, a pair of 1-
cells p : A −→ B and q : B −→ A equipped with a 2-cell isomorphism
i : IA ⇒ p ; q in the hom-category B(A,A), and another one j : IB ⇒ q ; p
in the hom-category B(B,B), define an equivalence between objects A
and B. In fact an equivalence of categories is just an instantiation of this
notion in Cat.

16. Coherence. A final remark on coherence is in order. Coherence
laws arise in the definition of a bicategory as well as in other related



structures. A particularly familiar example in computer science is the
case of monoidal categories, which, as mentioned above, can be thought
of as born out of bicategories.

In a sense, coherence axioms are a price to be paid for the increased
expressive power originated by weakening the defining structural prop-
erties. Think, for example, of the coherence diagram for associativity in
definition §6. It identifies the basic ways in which the composition of 4
arrows can be parenthesised and relates them through a. To ensure that
all such ways are unique is precisely the reason to enforce the commu-
tativity of the diagram. By such a coherence axiom one knows that, in
a bicategory, any two natural isomorphisms built out of a, r and l, by
the composition and unit operations, actually coincide. That is to say,
weakening has caused no special (calculational) damage.

The difficult question is: why is this so? Of course there are stan-
dard results asserting the fact (e.g., Mac Lane’s coherence theorem for
monoidal categories [Mac71] or Bénabou’s result for bicategories [Ben67])
but it would help to have a deeper understanding of the origins of coher-
ence axioms.

Something that may help to build up intuition, is the observation,
due to J. Dolan and J. Baez, among others, that an operation automati-
cally satisfies all the (relevant) coherence laws if defined by an universal
property. For example, Set has all finite products which are defined by an
universal property. Moreover they are unique up to isomorphism. If one
takes the product A×B for every pair of sets, making cartesian product
an operation, three natural isomorphisms, expressing associativity, left
and right units, get defined canonnically. Such isomorphisms verify the
coherence axioms for a tensor product turning, therefore, 〈Set,×〉 into
a monoidal category. One may therefore conclude that the usual defini-
tion of a monoidal category, with the explicit coherence axioms, amounts
to the fact that any monoidal structure defined by universal properties
automatically satisfies such axioms.

17. n-Categories. The whole subject of bicategories is much wider than
we have been able to glimpse in this appendix. In fact, both generalisa-
tions embodied in the notion of a bicategory (i.e., the introduction of
arrows between arrows and the weakening of the degree of strictness up
to which axioms hold) can be pursued further. Recall that the justifi-
cation for the introduction of 2-cells is the possibility of having arrows
around that are isomorphic rather than merely equal. Once all arrows
become objects, the sentence will still make sense, as a justification for



the introduction of categories themselves in the first place. One can easily
imagine this process going on: considering 3-cells as 2-cell morphisms and
so on. On the other hand, the relevant equations may be taken to hold up
to isomorphism in the immediately lower level or, even more generally,
up to an arbitrary arrow.

This is the broader context of n-categories [Bae97], whose basic claim
is that equations should hold on the nose (i.e., up to equality) only at
the top level, i.e., between n-cells. Therefore laws concerning k-cells, for
k < n, should always be expressed as (k+1)-equivalences. In this context
an equivalence between (n − 1)-cells is an invertible n-cell whereas an
equivalence between k-cells, for k < n, is just a (k + 1)-cell invertible up
to equivalence.

The framework is very expressive — in practice often things are only
true up to (a suitable notion of) isomorphism, and sometimes only up to
other things. But some care is needed to avoid getting puzzled by coher-
ence conditions. The expressive power of n-categories is well illustrated
by noting that a (n + 1)-category with only one object can always be
regarded as a special kind of a n-category. This was exactly what we have
seen, for n = 1 and n = 2, in §11.
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