
Is Point-free Pointless?

Alcino Cunha

Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal
alcino@di.uminho.pt

PURe Workshop’04, September 13



Introduction

• Algebraic programming = point-free + recursion patterns.

• For a long time, we were told that this style is better for program
calculation.

• There exists practical evidence that recursion patterns are useful for
program transformation (HYLO, MAG, . . . ). But what about point-
free?

• Which of this components do we really treasure?

• What is the future of our research in algebraic programming?

Is Point-free Pointless? 1



Status of the Point-free Research at UMinho

• Theory

– Reasoning with higher-order functions.
– Converting point-wise to point-free.
– Generalizing hylo-shift, inwards fusion, . . .

• Practice

– Pointless: a library to program in the point-free style with recursion
patterns.

– DrHylo: a tool to derive hylomorphisms from recursive equations.
Soon it will also be able to derive point-free definitions.

– A tool to rewrite point-free definitions should also be on the way.

Is Point-free Pointless? 2



The Point-free Style

• How easy is to program with point-free?

• Consider Tree A = µ(1! +̂ A! ×̂ (Id ×̂ Id)). Lets write some traversals!
Preorder is easy

preorder : Tree A → List A
preorder = (|nil O cons ◦ (id× cat)|)Tree A

but inorder . . .

inorder : Tree A → List A
inorder = (|nil O cat ◦ (id× cons) ◦ assocr ◦ (swap + id) ◦ assocl|)Tree A

• Rearranging parameters is sometimes a nightmare . . .

Is Point-free Pointless? 3



The Point-free Style

• Another example: writing the inverse of (A×C)+(B×C) → (A+B)×C.

distl = ap ◦ ((inl O inr)× id)

• Proving that distl ◦ undistl = id is not difficult, but the point-wise proof
is trivial - substitution is very powerful.

2666666666666666664

ap ◦ ((inl O inr)× id) ◦ ((inl ◦ fst M snd) O (inr ◦ fst M snd))
= { abides, product-absor }

ap ◦ ((inl O inr) ◦ (inl ◦ fst O inr ◦ fst) M (snd O snd))
= { sum-fusion, sum-strict, sum-cancel }

ap ◦ ((inl ◦ fst O inr ◦ fst) M (snd O snd))
= { abides, product-def }

ap ◦ ((inl × id) O (inr × id))
= { sum-fusion, ap strict, exponentiation-cancel }

inl O inr
= { product-reflex }

id

Is Point-free Pointless? 4



The Point-free Style

• Could point-free be a good framework to implement mechanical reasoning
and program transformation?

• Rewriting is very easy to implement, but even without recursion, neither
laziness, there is no decidable rewriting system for equality in point-free.

• However, there are decision procedures for traditional lambda-calculus
with unit, products, and sums.

• Given this, what is the point of converting from point-wise into point-
free? Program understanding? distl is not that easy to understand. We
have lots of “bad” examples with higher-order functions.

Is Point-free Pointless? 5



Reasoning About Haskell

• Is it correct to reason about Haskell using this framework?

• Consider cata uniqueness. What does it says about non-strict solutions?

f = (|g|)µF ∧ g strict ⇔ f ◦ inµF = g ◦ Ff ∧ f strict

• Every data type in Haskell is lifted:

(⊥,⊥) 6= ⊥
λx.⊥ 6= ⊥

• Should we use a different theory? One without categorical products,
sums, and functions. Does it pays to continue in the categorical
framework?

Is Point-free Pointless? 6



The Future

• Continue to ignore these problems or develop/move to a new theoretical
framework? Something like P-logic? Or forget Haskell?

• Visual programming language for point-free - is it useful? It could help
with some of the problems, like rearranging parameters.

• Should we move into a mixed style - point-wise and point-free?

• What about integrating some of our tools into the Haskell Refactorer?
HaRe tools are also built on top of Programatica.

• Montevideo is also developing some tools (monadic fusion). How can we
cooperate?

Is Point-free Pointless? 7


