Functional Implementation of
Program Understanding Algorithms

Joost Visser
Universidade do Minho, Portugal

Challenge
Pure PURe

Challenge
Develop 100% functional program understanding algorithms.
Questions

Is it possible?
Is it practical?
Is it useful?




Program Understanding Tools
Common ingredients

Extraction

From program sources, extract basic information into an initial

source model.

Engine
Combine, condense, aggregate, or otherwise process the basic
information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

Program Understanding
A categorization

Program Understanding

N\

Quantative Relational
Metrics Dependencies
- size - control-flow

- complexity - data-flow

- maintainability - structural

(non-exhaustive)




Relational PU Algorithms

Overview

Basis
Relation calculus.
Some algorithms

- Type reconstruction
- Slicing and chopping
- Formal concept analysis

Relation calculus
Representations & operations

Relation
type Rel a b = Set (a,b) set of pairs
Labeled relation

type LRel a b 1 = FM (a,b) 1 map from pairs

Note
Rel a b
== Set (a,b)
== FM (a,b) ()

== LRel a b ()




Type Reconstruction
From typeless legacy code

See

. Arie van Deursen and Leon Moonen. An empirical Study Into Cobol Type
Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)

- assign: ex.a := b
- expression: ex.a <= b
- arrayIndex: ex.Ali]

2. Compute derived relations
- typeEquiv: variables belong to the same type
- subtypeOf: variables belong to super/subtype
- extensional notion of type: set of variables

Type Reconstruction
From typeless legacy code

Pseudo code from paper

arraylndexEquiv := arraylndex™" o arraylndex
typeEquiv := arraylndexEquiv U expression
subtypeOf := assign
repeat
subtypeEquiv := equiv(subtypeOf + n (subtypeOf+)~1)
typeEquiv := equiv(typeEquiv U subtypeEquiv)
subtypeOf := subtypeOf \, typeEquiv
subtypeOf := subtypeOf LI subtypeOf o typeEquiv U typeEquiv o subtypeOf
until fixpoint of (typeEquiv, subtypeOf)

Is directly transposed to Haskell, using Data.Relation.SetOfPairs.

Online Demo (uses WASH and GraphViz)




Slicing and Chopping
Via graph reachability

See
Arun Lakhotia. Graph theoretic foundations of program slicing and integration.
The Center for Advanced Computer Studies, University of Southwestern
Louisiana. Technical Report CACS TR-91-5-5, 1991.

Basic idea

1. Construct so-called Program Dependency Graph (PDG).
2. Apply general graph slicing algorithm.

Chop = intersection of forward and backward slice.

Graph slicing/chopping/integration is directly transposed to
Haskell, see Data.Relation.SetOfPairs.

Note: these general algorithms can be applied to any kind of graph,
not just PDGs.

Online Demo: chopping Java “package graphs”.

Formal Concept Analysis
A data analysis technique

See
Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working
with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
- matrix of objects vs. properties

2. Compute concept lattice
- a concept = (extent,intent)
- ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Online Demo.




Formal Concept Analysis
Pseudo code (1/2)

NEIGHBORS ((G, M), (G, M,T))
1 min—gG\G
2 neighbors «— ()
3 foreach g € G\ G do
4 My — (Gu{g})
5 Gl — ﬂf{
6 if (minN (G1\ G\ {g})) =10) then
7 neighbors < neigbors U {(G1, M1)}
8 else
9 min < min \ {g}

10 return neighbors

Note that _" operation denotes computation of intent from extent, or
vice versa, implicitly given a context.

Formal Concept Analysis
Pseudo code (2/2)

LATTICE (G, M,T)
1 e« (07,0
2 insert (e, L)
3 loop
4 foreach = in NEIGHBORS (¢, (G, M,T))
5 try o «— lookup (z, L)
6 with NotFound — insert (z, L)
7 Ty — x4y U{c}
8 ¢t —c"U{z}
9 try ¢ — next (¢, L)
10 with NotFound — exit
11 return L

Transposition to Haskell?




Formal Concept Analysis
Transposition to Haskell

Representation

type Context gm = Rel gm
type Concept g m = (Set g, Set m)
type Conceptlattice g m

= Rel (Concept g m) (Concept g m)

Algorithm

Given this representation, the transposition of pseudo code is
straightforward.

Conclusions
Preliminary

General

» Non-trivial program understanding techniques can be implemented
straightforwardly in Haskell.

« Relation calculus is a convenient instrument here.

« Skipped over extraction, visualization, control issues.
(Strafunski, GraphViz, WASH)

* Functional PU: possible!
Questions

* Performance?

* Interaction?

* Functional PU: practical? useful?




