
1

Joost Visser
Universidade do Minho, Portugal

Functional Implementation of
Program Understanding Algorithms

Challenge

Develop 100% functional program understanding algorithms.

Questions

Is it possible?

Is it practical?

Is it useful?

Challenge
Pure PURe

2

Program Understanding Tools
Common ingredients

Extraction

From program sources, extract basic information into an initial

source model.

Engine

Combine, condense, aggregate, or otherwise process the basic

information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

This talk

Program Understanding
A categorization

Program Understanding

Quantative Relational

Metrics
- size
- complexity
- maintainability
- …

Dependencies
- control-flow
- data-flow
- structural
- …

(non-exhaustive)

3

Relational PU Algorithms
Overview

Basis

Relation calculus.

Some algorithms

- Type reconstruction

- Slicing and chopping

- Formal concept analysis

Relation calculus
Representations & operations

Relation

type Rel a b = Set (a,b) set of pairs

Labeled relation

type LRel a b l = FM (a,b) l map from pairs

Note

Rel a b

 == Set (a,b)

 == FM (a,b) ()

 == LRel a b ()

4

Type Reconstruction
From typeless legacy code

See

• Arie van Deursen and Leon Moonen. An empirical Study Into Cobol Type
Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)
- assign: ex. a := b

- expression: ex. a <= b

- arrayIndex: ex. A[i]

2. Compute derived relations

- typeEquiv: variables belong to the same type

- subtypeOf: variables belong to super/subtype

- extensional notion of type: set of variables

Type Reconstruction
From typeless legacy code

Pseudo code from paper

Is directly transposed to Haskell, using Data.Relation.SetOfPairs.

Online Demo (uses WASH and GraphViz)

5

Slicing and Chopping
Via graph reachability
See
• Arun Lakhotia. Graph theoretic foundations of program slicing and integration.

The Center for Advanced Computer Studies, University of Southwestern
Louisiana. Technical Report CACS TR-91-5-5, 1991.

Basic idea

1. Construct so-called Program Dependency Graph (PDG).

2. Apply general graph slicing algorithm.

Chop = intersection of forward and backward slice.

Graph slicing/chopping/integration is directly transposed to

Haskell, see Data.Relation.SetOfPairs.

Note: these general algorithms can be applied to any kind of graph,

not just PDGs.

Online Demo: chopping Java “package graphs”.

Formal Concept Analysis
A data analysis technique

See
• Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working

with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
 - matrix of objects vs. properties

2. Compute concept lattice
 - a concept = (extent,intent)
 - ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Online Demo.

6

Formal Concept Analysis
Pseudo code (1/2)

Note that _’ operation denotes computation of intent from extent, or

vice versa, implicitly given a context.

Formal Concept Analysis
Pseudo code (2/2)

Transposition to Haskell?

7

Formal Concept Analysis
Transposition to Haskell

Representation

type Context g m = Rel g m
type Concept g m = (Set g, Set m)
type ConceptLattice g m

= Rel (Concept g m) (Concept g m)

Algorithm

Given this representation, the transposition of pseudo code is

straightforward.

General

• Non-trivial program understanding techniques can be implemented

straightforwardly in Haskell.

• Relation calculus is a convenient instrument here.

• Skipped over extraction, visualization, control issues.

(Strafunski, GraphViz, WASH)

• Functional PU: possible!

Questions

• Performance?

• Interaction?

• Functional PU: practical? useful?

Conclusions
Preliminary

