Constrained datatypes, invariants and
 business rules: a relational approach

JNO, DI/UM

jno@di.uminho.pt
PURe Project (POSI/CHS/44304/2002)
PUReCafé - May 20th, 2004

Constraints: business rules, invariants

- Banking operation:
debit(amount) : Account \longrightarrow Account
Business rule: account balance allways greater than negotiated minimum.
- List operation:

$$
\text { merge : } \quad A^{\star} \times A^{\star} \longrightarrow A^{\star}
$$

Invariant: lists must be sorted.
Business rules $=($ commercial $)$ invariants

Respect for business rules (invariants)

Standard approach: first you have to invent...

```
merge (l,[]) = l
merge ([],r) = r
merge (x:xs,y:ys) | x < y = x : merge(xs,y:ys)
    | otherwise = y : merge(x:xs,ys)
```

and then verify:
$\operatorname{sorted}(\operatorname{merge}(l, r)) \Leftarrow($ sorted $l) \wedge($ sorted $r)$
(Pointwise proofs, theorem provers, etc)

"Respect by construction"

Alternative approach: given

$$
A \stackrel{f}{\leftarrow} A
$$

and invariant B ool $\leftarrow^{\phi} A$ to be respected,
Either you find no way to build f or, if you do, $\phi(f a) \Leftarrow(\phi a)$ is ensured by construction.
(MPC = mathematics of program construction)
Constructive proofs: pointfree calculation in the relational calculus

Relations which ensure properties

For any $B \leftarrow^{R} A$ and property $2 \leftarrow^{\phi} B, R$ will ensure ϕ iff

$$
b R a \Rightarrow \phi b
$$

It is always possible find some ψ such that ψ-pre-conditioned R ensures ϕ :

$$
\begin{equation*}
b R a \wedge \psi a \quad \Rightarrow \quad(\phi b) \tag{1}
\end{equation*}
$$

that is (introduce coreflexives $\Psi=\llbracket \psi \rrbracket, \Phi=\llbracket \phi \rrbracket$):

$$
\begin{equation*}
r n g(R \cdot \Psi) \subseteq \Phi \tag{2}
\end{equation*}
$$

Why is (2) "better" than (1)?

Predicates (invariants, etc) are coreflexives

Strategy: identify every

- predicate $A \xrightarrow{\phi}$ bool with binary relation $\llbracket \phi \rrbracket$ such that $a \llbracket \phi \rrbracket b \equiv a=b \wedge(\phi a)$.
- So $\llbracket \phi \rrbracket$ is coreflexive: $\llbracket \phi \rrbracket \subseteq i d$, cf.

Predicates	Coreflexives
$\lambda x . \mathrm{T}$	$i d$
$\lambda x . \mathrm{F}$	\perp
$p \vee q$	$\llbracket p \rrbracket \cup \llbracket q \rrbracket$
$p \wedge q$	$\llbracket p \rrbracket \cdot \llbracket q \rrbracket$
$\neg p$	$i d-\llbracket p \rrbracket$

"GaloisCalc"

Since $r n g$ and ($R \cdot$) can be found as lower adjoints in

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
Left-division	$(R \cdot)$	$(R \backslash)$	read " R under \ldots "
Range	rng	$(\cdot T)$	$T=!\cdot!$ and lower \subseteq is restricted to core- flexives
Definitions		$f X=\bigcap\{Y \mid X \subseteq g Y\}$	
		$g Y=\bigcup\{X \mid f X \subseteq Y\}$	

we get (for free):

$$
r n g(R \cdot X) \subseteq Y \equiv X \subseteq g_{R} Y
$$

What is the upper adjoint g_{R} ?

Weakest liberal pre-conditions

$g_{R} X$ is well-known - the largest of all pre-conditions over R which ensure X, written $R \emptyset X$:

$$
R \emptyset Y=\bigcup\{X \mid r n g(R \cdot X) \subseteq Y\}
$$

Alternatively:

$$
R \emptyset Y=\operatorname{dom}(Y \cdot R) \cup(i d-\operatorname{dom} R)
$$

Pointwise version (back to predicates):

$$
(R \nmid y) a=\forall b \in B . b R a \Rightarrow(y b)
$$

Universal property

We will never use any of these definitions. Instead, we resort to universal property

$$
\begin{equation*}
r n g(R \cdot X) \subseteq Y \equiv X \subseteq R \emptyset Y \tag{4}
\end{equation*}
$$

that is

$$
\begin{equation*}
X \subseteq R \emptyset Y \equiv R \cdot X \subseteq Y \cdot R \cdot X \tag{5}
\end{equation*}
$$

(\subseteq restricted to coreflexives) or even

$$
X \subseteq R \emptyset Y \equiv R \cdot X=Y \cdot R \cdot X
$$

since $Y \cdot R \subseteq R$.

Galois properties of $R \emptyset \Phi$

Conjunction ${ }^{a}$

$$
\begin{equation*}
R \emptyset(\Phi \cdot \Psi)=(R \emptyset \Phi) \cdot(R \emptyset \Psi) \tag{6}
\end{equation*}
$$

Reflexion ${ }^{b}$

$$
R \emptyset Y=i d \text { wherever rng } R \subseteq Y
$$

Composition ${ }^{c}$

$$
\begin{equation*}
(S \cdot R) \emptyset \Phi \equiv R \emptyset(S \emptyset \Phi) \tag{7}
\end{equation*}
$$

${ }^{a}=$ Upper-adjoint distributivity.
${ }^{b} X=i d$ is unit of composition (Galois + monoids).
${ }^{c}$ Galois + monoids.

Galois properties of $R \emptyset \Phi$

Cancellation

$$
\begin{equation*}
r n g(R \cdot R \emptyset Y) \subseteq Y \tag{8}
\end{equation*}
$$

ie

$$
\begin{equation*}
R \cdot(R \emptyset Y) \subseteq Y \cdot R \cdot(R \emptyset Y) \tag{9}
\end{equation*}
$$

entailing $R \cdot(R \emptyset Y) \subseteq Y \cdot R$.

More properties

Functions

$$
\begin{equation*}
f \emptyset \Phi=\left(f^{\circ} \cdot \Phi \cdot f\right) \cap i d \tag{10}
\end{equation*}
$$

Particular identities

$$
\begin{align*}
i d \emptyset \Phi & =\Phi \tag{11}\\
R \emptyset i d & =i d \tag{12}\\
\perp \emptyset \Phi & =i d \tag{13}\\
(i d-\operatorname{dom} R) & \subseteq R \emptyset \Phi \tag{14}
\end{align*}
$$

etc.

Constrained datatypes

Prospect of category whose objects are coreflexives Ψ, Φ
(constraints) and whose arrows are relations which ensure such constraints, that is, every $\Psi \leftarrow^{R} \Phi$ is - by construction such that

$$
\begin{equation*}
\Phi \subseteq R \emptyset \Psi \tag{15}
\end{equation*}
$$

Check composition: $\Gamma \stackrel{S}{\leftrightarrows} \Psi$ and $\Psi \stackrel{R}{\longleftarrow} \Phi$ compose relationally, yielding $\Gamma \lessdot$ S•R Φ

$$
\begin{align*}
& \Psi \tag{16}\\
& \Phi \\
& \Phi \\
& \Phi \quad S \downarrow \Gamma \\
& \hline \Phi
\end{align*} \subseteq(S \cdot R) \downarrow \Gamma
$$

Proof of (16)

$$
\begin{aligned}
& \Phi \subseteq R \nmid \Psi \wedge \Psi \subseteq S \downarrow \Gamma \\
\Rightarrow & \\
& \\
& \Phi \subseteq R \subseteq-\text { is an upper adjoint, thus monotone }\} \\
\Rightarrow & \\
& \{\subseteq \Psi \text {-transitivity }\} \\
& \Phi \subseteq R \emptyset(S \emptyset \Gamma) \\
\equiv & \{(7)\} \\
& \Phi \subseteq(S \cdot R) \emptyset \Gamma
\end{aligned}
$$

Constraints as types

- Think of constraints Φ, Ψ as types.
- Type polymorphism: arbitrary R is an inhabitant of type $\Psi \longleftarrow-\Phi$ provided (15) holds.
- One always has $i d \leftarrow^{R} \Phi$, since $R \emptyset i d=i d$ and Φ is coreflexive.
- In the "limit", $i d<^{R} i d$ always is a valid type assignment, the most general one (in fact, the "conventional" one).
- Don't we write e. $1+A \times f$ for $i d+i d \times f$? Consistent with id (the largest coreflexive of its type) also being the the smalest equivalence relation on its carrier type. (Cf. initial algebras).

Basics

Ordering:

$$
\frac{\Phi \leftarrow \frac{R}{\leftarrow} \Phi, S \subseteq R}{\Phi \longleftarrow S}
$$

Constraint composition (intersection):

$$
\begin{gather*}
\Phi^{\prime}<\frac{R}{<^{\prime}} \Phi \\
\Psi^{\prime} \stackrel{R}{\longleftarrow} \Psi \tag{17}\\
\left(\Phi^{\prime} \cdot \Psi^{\prime}\right) \stackrel{R}{\longleftrightarrow}(\Phi \cdot \Psi)
\end{gather*}
$$

Basic operators

Union:

$$
\begin{gather*}
\Psi<\frac{R}{\longleftarrow} \Phi \\
\Psi<\frac{S}{\leftarrow} \Phi \tag{18}\\
\Psi<\quad R \cup S
\end{gather*}
$$

Intersection:

$$
\begin{gather*}
\Psi<\frac{R}{\leftarrow} \Phi \\
\Psi<\frac{S}{\leftarrow} \Phi \tag{19}\\
\Psi \longleftarrow R \cap S
\end{gather*}
$$

Subtypes

Subtype ordering: $\Phi^{\prime} \subseteq \Phi$ (a complete lattice, $\perp=\emptyset, \top=i d$)

- Variance:

$$
\begin{equation*}
\frac{\Psi \leftarrow^{R} \Phi, \Phi^{\prime} \subseteq \Phi}{\Psi \leftarrow^{R} \Phi^{\prime}} \tag{20}
\end{equation*}
$$

- Contravariance:

$$
\begin{equation*}
\frac{\Psi^{\prime} \subseteq \Psi, \Psi^{\prime} \Vdash^{R} \Phi}{\Psi \Vdash^{R} \Phi} \tag{21}
\end{equation*}
$$

Invariant preservation

Pointwise:

$$
a^{\prime} R a \wedge \phi a \Rightarrow \phi a^{\prime}
$$

Pointfree $(\Phi=\llbracket \phi \rrbracket)$:

$$
r n g(R \cdot \Phi) \subseteq \Phi \equiv \Phi \subseteq R \emptyset \Phi
$$

that is,

$$
\Phi<^{R} \Phi
$$

Moving on towards induction

We proceed step by step:

Relators

A relator is a functor on relations

which is monotonic and commutes with converse:

$$
\begin{aligned}
R \subseteq S & \Rightarrow(\mathrm{~F} R) \subseteq(\mathrm{F} S) \\
\mathrm{F}\left(R^{\circ}\right) & =(\mathrm{F} R)^{\circ}
\end{aligned}
$$

(Recall that F will commute with composition and identity too.)

Coreflexives are preserved by relators

Easy to check:

$$
\begin{array}{lll}
& \Phi \subseteq i d \\
\Rightarrow & & \{\text { relator }\} \\
& \mathrm{F} \Phi & \subseteq \mathrm{~F} i d \\
\equiv & & \{\text { relator-id }\} \\
& \mathrm{F} \Phi \quad \subseteq i d
\end{array}
$$

Constrained F-algebras

Check what it means to write

$$
\Phi \leftarrow^{R} \mathrm{~F} \Phi
$$

We get

$$
\mathrm{F} \Phi \subseteq R \emptyset \Phi
$$

that is,

$$
R \cdot \mathrm{~F} \Phi \subseteq \Phi \cdot R \cdot \mathrm{~F} \Phi
$$

Since $\Phi \cdot R \cdot \mathrm{~F} \Phi \subseteq \Phi \cdot R$ we get, by monotonicity:

$$
\begin{equation*}
R \cdot \mathrm{~F} \Phi \quad \subseteq \quad \Phi \cdot R \tag{22}
\end{equation*}
$$

In other words: Φ is a (coreflexive) F-congruence for R.

F-congruences

(See When is a function a fold or an unfold? [GHA01])

- Congruences are (endo) relations which are preserved along some kind of algebraic structure.
(Term "congruence" is too strong: it might be better to call these compatible relations, cf. the terminology of [Blo76].)
- Informally, every operation in such a structure applied to congruent arguments should yield congruent results.
- Algebraic structure is captured by the concept of a relator.

F-congruence

Given relation $A<^{R} \mathrm{~F} A$ (a so-called F-algebra), we say that relation $A<^{T} A$ is an F-congruence for R iff

$$
\begin{equation*}
R \cdot \mathrm{~F} T \subseteq T \cdot R \tag{23}
\end{equation*}
$$

Example

$A=A^{\star}, R=[$ nil, cons $]$ and $T=\leq(" p r e f i x "):$

that is:

$$
\begin{gathered}
n i l \leq \text { nil } \\
l^{\prime} \leq l \Rightarrow \operatorname{cons}\left(a, l^{\prime}\right) \leq \operatorname{cons}(a, l)
\end{gathered}
$$

Constrained catamorphisms

Checking the consistency of diagram

First, we need to know about (two forms of) relational cata-fusion [BdM97]:

$$
\begin{align*}
& (T \mid \subseteq S \cdot(|R| \quad \Leftarrow T \cdot \mathrm{~F} S \subseteq S \cdot R \tag{24}\\
& S \cdot(|R|) \subseteq(T \mid) \Leftarrow S \cdot R \subseteq T \cdot \mathrm{~F} S \tag{25}
\end{align*}
$$

Checking the correctness of the constrained $(|R|)$

$$
\begin{aligned}
& \Phi \stackrel{(R D)}{\gtrless} \mu \mathrm{F} \\
& \equiv \quad\{\text { definition }\} \\
& i d \subseteq(R \mid) \backslash \Phi \\
& \equiv \quad\{\text { definition }\} \\
& (R \mid) \subseteq \Phi \cdot(R) \\
& \Leftarrow \quad\{\text { relational cata-fusion }\} \\
& R \cdot \mathrm{~F} \Phi \subseteq \Phi \cdot R \\
& \Leftarrow \quad\{(22) \text { above }\} \\
& \Phi \stackrel{R}{\longleftarrow} \mathrm{~F} \Phi
\end{aligned}
$$

Sorting continued

R must be such that

$$
R \cdot(1+A \times \text { IsSorted }) \subseteq \text { IsSorted } \cdot R
$$

Sorting continued

$$
\begin{aligned}
& R \cdot(1+A \times \text { IsSorted }) \subseteq \text { IsSorted } \cdot R \\
& \equiv \quad\{\text { expanding and restricting to functions }\} \\
& {\left[r_{1}, r_{2}\right] \cdot(1+A \times \text { IsSorted }) \subseteq \text { IsSorted } \cdot\left[r_{1}, r_{2}\right]} \\
& \Leftarrow \quad\{\text { expanding \}} \\
& r_{1} \subseteq \text { IsSorted } \cdot r_{1} \\
& r_{2} \cdot(i d \times \text { IsSorted }) \subseteq \text { IsSorted } \cdot r_{2} \\
& \Leftarrow \quad\{\text { shunting (Galois connections over functions) }\} \\
& \text { img } r_{1} \subseteq \text { IsSorted } \\
& (i d \times \text { IsSorted }) \subseteq r_{2}^{\circ} \cdot \text { IsSorted } \cdot r_{2} \\
& \equiv \quad\left\{\text { choose } r_{1}=\text { nil }=\underline{[]}\right\} \\
& (i d \times \text { IsSorted }) \subseteq r_{2}^{\circ} \cdot \text { IsSorted } \cdot r_{2} \\
& \equiv \quad\{\ldots \ldots . .\} \\
& \text {...... }
\end{aligned}
$$

etc. "à la" Bird-Moor [BdM97].

Insertion sort

I haven't checked, but we should be able to find solution $r_{2}=$ insert, where

```
insert(x,[]) = [x]
insert(x,a:l) | x < a = [x,a]++l
    | otherwise = a:(insert(x,l))
```

Comments:

- Still a lot to be done
- Constrained hylos, constrained F-coalgebras, etc

Constrained F-coalgebras

Check what it means to write

$$
\Phi \xrightarrow{R} \mathrm{~F} \Phi
$$

We get

$$
\Phi \subseteq R \emptyset(\mathrm{~F} \Phi)
$$

that is,

$$
R \cdot \Phi \subseteq(\mathrm{~F} \Phi) \cdot R \cdot \Phi
$$

Since $(\mathrm{F} \Phi) \cdot R \cdot \Phi \quad \subseteq \quad(\mathrm{~F} \Phi) \cdot R$ we get, by monotonicity:

$$
\begin{equation*}
R \cdot \Phi \subseteq \mathrm{~F} \Phi \cdot R \tag{26}
\end{equation*}
$$

In other words: Φ is a (coreflexive) F-invariant for R.

F-invariants

(See When is a function a fold or an unfold? [GHA01]) Duality: given relation $\mathrm{F} A<^{S} A$ (a so-called F-coalgebra), we say that relation $A<^{R} A$ is an F -invariant for S iff

Further work - invariant refinement

Express the "SETS" laws [Oli92] as invariant-refinements rather than datatype refinements:

- Say that $\Psi<_{R} \Phi$ wherever etc

Example: IsSorted $\left.<_{(f f 2 s e q}{ }^{\circ}\right)$ Monotone

- Say that $\Psi \cong_{R} \Phi$ wherever etc

Example: $i d \cong_{(j o i n \circ)}$ Eqdom will replace

$$
\begin{equation*}
A \rightharpoonup(B \times C) \leq(A \rightharpoonup B) \times(A \rightharpoonup C) \tag{28}
\end{equation*}
$$

Cf. PhD work by C. Rodrigues.

References

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall International, 1997. C. A. R. Hoare, series editor.
[Blo76] S.L. Bloom. Varieties of ordered algebras. JCSS, 13:200212, 1976.
[GHA01] Jeremy Gibbons, Graham Hutton, and Thorsten Altenkirch. When is a function a fold or an unfold? Electronic Notes in Theoretical Computer Science, 44(1), 2001.
[Oli92] J. N. Oliveira. Software Reification using the SETS Calculus . In Tim Denvir, Cliff B. Jones, and Roger C. Shaw, editors, Proc. of the BCS FACS 5th Refinement Workshop, Theory and Practice of Formal Software Development, London, UK, pages 140-171. ISBN 0387197524, Springer-Verlag, 8-10 January 1992. (Invited paper).

