Constrained datatypes, invariants and
business rules: a relational approach

JNO, DI/UM
jno@di.uminho.pt
PURE ProJect (POSI/CHS/44304/2002)

PURECAFE - May 20th, 2004

Constraints: business rules, invariants

e Banking operation:
debit(amount) : Account — Account

Business rule: account balance allways greater than
negotiated minimum.

e List operation:
merge : A" X A¥ —— A*
Invariant: lists must be sorted.

Business rules = (commercial) invariants

Respect for business rules (invariants)

Standard approach: first you have to invent. ..
merge (1,[1) =1
merge ([1,r) =r
merge (x:xs,y:ys) | x <y = x : merge(xs,y:ys)
| otherwise = y : merge(x:xs,ys)
and then verify:
sorted(merge(l,r)) < (sortedl) A (sorted r)

(Pointwise proofs, theorem provers, etc)

“Respect by construction”

Alternative approach: given

A<l 4

and invariant Bool <L A to be respected,

Either you find no way to build f or, if you do,
¢(f a) < (¢ a) is ensured by construction.

(MPC = mathematics of program construction)

Constructive proofs: pointfree calculation in the
relational calculus

Relations which ensure properties

For any B<L A and property 2 < B, R will ensure ¢
iff

bRa = &b

It is always possible find some v such that v-pre-conditioned R
ensures ¢:

bRaAva = (¢b) (1)
that is (introduce coreflexives ¥ = [¢], ® = [¢]):
mg(R-W) C @)

Why is (2) “better” than (1)?

Predicates (invariants, etc) are coreflexives

Strategy: identify every

e predicate A 2, bool with binary relation [¢] such
that af¢lb=a=bA (¢ a).

e So [¢] is coreflexive: [¢] C id, cf.

’ Predicates \ Coreflexives ‘

Ax. T id
Azr. F 1
pVgq [p] U [4]
pAq [p] - [4]
—p id — [p]

“GaloisCalc”

Since rng and (R -) can be found as lower adjoints in

(fX)CYy=Xc@gY)

Description [=g [g=ft [Obs.]
Left-division (R-) | (R\) read “R under ..."
T =1°.Tand lower C
Range rng (T is restricted to core- (3)

flexives

Fx o= [(rixcevy
gv = [Jixirxcyy

Definitions

we get (for free):
mg(R-X)CY = XCyrY

What is the upper adjoint gr?

Weakest liberal pre-conditions

gr X is well-known — the largest of all pre-conditions over R
which ensure X, written R ¢ X:

Rey = [J{X|mg(R-X)CY}
Alternatively:
ReY = dom(Y -R)U (id— domR)
Pointwise version (back to predicates):

(Rey)a = VYbe B.bRa= (yb)

Universal property

We will never use any of these definitions. Instead, we resort

to universal property

mg(R-X)CY = XCRaY (4)
that is
XCRa2Y = R-XCY R-X (5)
(C restricted to coreflexives) or even
XCReY = R-X=Y-R-X
sinceY - RCR.
Galois properties of R«
Conjunction ¢
Re(®-V) = (Re®)-(ReV) (6)
Reflexion °
R @Y =id wherever mg RCY
Composition ¢
(S-R)e® = R¥(5e9) (7)
a—Upper-adjoint distributivity.
®X = id is unit of composition (Galois + monoids).
¢Galois + monoids.
Galois properties of R« ®
Cancellation
mg (R-RyY)CY (8)
ie
R-(RRY)CY-R-(RRY) (9)

entailing R- (R®Y)CY - R.

More properties

Functions
fa@=(f°-®-f)nid (10)
Particular identities
ided = ® (11)
Reid = id (12)
Lled = id (13)
(id—domR) C Ra® (14)

etc.

Constrained datatypes

Prospect of category whose objects are coreflexives W, &
(constraints) and whose arrows are relations which ensure such

constraints, that is, every ¥ <L ® is — by construction —
such that

®C Ry (15)

Check composition: T' <% yoand v<E— o compose

relationally, yielding T <>% &

U C Sarl
® C RwU (16)
® C (S-R)al

Proof of (16)

OC RV A UCSel

= { R % _is an upper adjoint, thus monotone }
PC RV A RaUCRa(Sel)

= { C-transitivity }

PC Re(Sel)
{ (M}

O C (S R)aT

Constraints as types

e Think of constraints ®, ¥ as types.

e Type polymorphism: arbitrary R is an inhabitant of type
U <—— & provided (15) holds.

e One always has id<L & , since Reid=1id and @ is
coreflexive.

o In the “limit", id<—— id always is a valid type
assignment, the most general one (in fact, the
“conventional” one).

e Don't we write e. 1 + A x f for id + id x f? Consistent
with id (the largest coreflexive of its type) also being the
the smalest equivalence relation on its carrier type. (Cf.
initial algebras).

Basics

Ordering:

d<"—-% , SCR

d<" o

Constraint composition (intersection):

<23

<"y (17)
(@ -0 <E— (& D)

Basic operators

Union:

v<2 9 (18)

Intersection:

v<2 % (19)

Subtypes

Subtype ordering: ®' C ® (a complete lattice, L =, T = id)

e Variance:

U<t 5, d'CO

\I} & @/
e Contravariance:

\I,lglpy \IJ/&(D

v<t 9

Invariant preservation

Pointwise:
adRaANopa= pa
Pointfree (® = [¢]):
mg(R-®)C® = OCRed

that is,

Moving on towards induction

From AHf-FA
[gf]]i lF[[9./ 1
B<——FB
to »—>>Fo
[RS ﬂl \LF[[R,S |
\I'<TF\I/

We proceed step by step:

Relators

A relator is a functor on relations

A FA
A e
B---FB

which is monotonic and commutes with converse:

RCS = (FR)C(FS)
F(R®) = (FR)

(Recall that F will commute with composition and identity too.)

Coreflexives are preserved by relators

Easy to check:
& C id
= { relator }
F® C Fid

{ relator-id }

Fe C id

10

Constrained F-“maps”

Easy to infer FU FE F® in

o FO
Rl Jrn
L

from W <L ® , as follows:

v< 9

{ definition }
DCReT

{ universal property (5) }
R PCU-R-®
= { relator }
FR-FOCFU-FR-F&®

{ universal property (5) }
FOCFRaFUT

{ definition }

FU<""Fo

11

Constrained F-algebras

Check what it means to write

o<"—Fo
We get

FO C Rad
that is,
R-F® C ®&-R-F®

Since - R-F® C &-R we get, by monotonicity:

R-F® C @ R (22)

In other words: @ is a (coreflexive) F-congruence for R.

F-congruences

(See When is a function a fold or an unfold? [GHAO1])

e Congruences are (endo) relations which are preserved
along some kind of algebraic structure.

(Term “congruence” is too strong: it might be better to call these
compatible relations, cf. the terminology of [Blo76].)

e Informally, every operation in such a structure applied to
congruent arguments should yield congruent results.

e Algebraic structure is captured by the concept of a
relator.

12

F-congruence

Given relation A<2—F A (a so-called F-algebra), we say

that relation A <—— A is an F-congruence for R iff

R-FT C T-R A r

FA (23)

Example

A= A* R =[nil,cons] and T =< (“prefix"):

nil cons(a,l) <— 4 (a,l)
< <l) lz‘dx<
nil cons(a,l') <—————(a,l')
that is:
nil < nil

I <l=cons(a,l') < cons(a,l)

Constrained catamorphisms

Checking the consistency of diagram

HF <" F(uiF)

(IRI)l J{FGRD

<I><TF(I>

First, we need to know about (two forms of) relational
cata-fusion [BdM97]:

(T) € S-(R) <« T-FS C S-R (24)
S.(R) € (T) « SR C T-FS (25

13

Checking the correctness of the constrained (| R))

(RD

-~ uF

{ definition }
id C (R)«®
{ definition }

(R) < @-(R)

<= { relational cata-fusion }
R-F® C ¢ R

<= { (22) above }

d<"Fo

Example — Sorting

Given
IsSorted (in - (id + ok)))
for
ok(a,z) =Vb € elemsx. a < b
build

A*<—m1+A><A*

(IRI)J/ J{F(IRD

IsSorted = 1+ A x IsSorted

14

Sorting continued

R must be such that
A* DU — 1+ Ax A*

IsSorted D) 1+Ax IsSorted

A= 1+ AX A"

R-(14+ Ax IsSorted) C IsSorted-R

Sorting continued

R-(1+ Ax IsSorted) C IsSorted-R

{ expanding and restricting to functions }
[ri,m2] - (1+ A x IsSorted) C IsSorted - [r1,r2]
“= { expanding }

ri C IsSorted-r;
ro - (id x IsSorted) C IsSorted -2

= { shunting (Galois connections over functions) }

imgri C IsSorted
(id x IsSorted) C ry-IsSorted-ry

{ choose r1 =nil =[] }

(id x IsSorted) C ry-IsSorted-rs

Il
-~
—

etc. “a la" Bird-Moor [BdM97].

15

Insertion sort

| haven't checked, but we should be able to find solution
ro = insert, where

insert (x,[1) [x]
insert(x,a:1) | x < a = [x,a]++1
| otherwise = a:(imsert(x,1))

Comments:
e Still a lot to be done

e Constrained hylos, constrained F-coalgebras, etc

Constrained F-coalgebras

Check what it means to write
o —">Fo
We get
® C Re(FO)
that is,
R-® C (F®)-R-®
Since (F®)-R-® C (F®)-R we get, by monotonicity:
R-® C F®-R (26)

In other words: @ is a (coreflexive) F-invariant for R.

16

F-invariants

(See When is a function a fold or an unfold? [GHAO1])
Duality: given relation FA<2 A (a so-called F-coalgebra),

we say that relation A <8 A is an F-invariant for S iff

_ :

———————F4

SR C FR-S A—35 S F4 (27)
R‘ D
A s

Further work — invariant refinement

Express the “SETS" laws [Oli92] as invariant-refinements
rather than datatype refinements:

e Say that U <p ® wherever etc
Example: IsSorted <(faseqo) Monotone

e Say that U =i ® wherever etc
Example: id = (;,in0) Eqdom will replace

A= BxCO)<(A—=B)x(A—0) (28)

Cf. PhD work by C. Rodrigues.

References

[BAM97] R. Bird and O. de Moor. Algebra of Programming. Series
in Computer Science. Prentice-Hall International, 1997. C.

A. R. Hoare, series editor.

[Blo76] S.L. Bloom. Varieties of ordered algebras. JCSS, 13:200-

212, 1976.

[GHAO1] Jeremy Gibbons, Graham Hutton, and Thorsten Al-
tenkirch. When is a function a fold or an unfold? Electronic

Notes in Theoretical Computer Science, 44(1), 2001.

[01i92] J. N. Oliveira. Software Reification using the SETS Cal-
culus . In Tim Denvir, Cliff B. Jones, and Roger C.
Shaw, editors, Proc. of the BCS FACS 5th Refinement
Workshop, Theory and Practice of Formal Software Devel-
opment, London, UK, pages 140-171. ISBN 0387197524,

Springer-Verlag, 8-10 January 1992. (Invited paper).

17

