
Constrained datatypes, invariants and

business rules: a relational approach

JNO, DI/UM
jno@di.uminho.pt

PURe Project (POSI/CHS/44304/2002)

PUReCafé - May 20th, 2004

Constraints: business rules, invariants

• Banking operation:

debit(amount) : Account // Account

Business rule: account balance allways greater than
negotiated minimum.

• List operation:

merge : A? ×A? // A?

Invariant: lists must be sorted.

Business rules = (commercial) invariants

1

Respect for business rules (invariants)

Standard approach: first you have to invent. . .

merge (l,[]) = l

merge ([],r) = r

merge (x:xs,y:ys) | x < y = x : merge(xs,y:ys)

| otherwise = y : merge(x:xs,ys)

and then verify :

sorted(merge(l, r)) ⇐ (sorted l) ∧ (sorted r)

(Pointwise proofs, theorem provers, etc)

“Respect by construction”

Alternative approach: given

A A
foo

and invariant Bool A
φoo to be respected,

Either you find no way to build f or, if you do,
φ(f a)⇐ (φ a) is ensured by construction.

(MPC = mathematics of program construction)

Constructive proofs: pointfree calculation in the
relational calculus

2

Relations which ensure properties

For any B A
Roo and property 2 B

φoo , R will ensure φ
iff

bRa ⇒ φ b

It is always possible find some ψ such that ψ-pre-conditioned R
ensures φ:

bRa ∧ ψ a ⇒ (φ b) (1)

that is (introduce coreflexives Ψ = [[ψ]], Φ = [[φ]]):

rng (R ·Ψ) ⊆ Φ (2)

Why is (2) “better” than (1)?

Predicates (invariants, etc) are coreflexives

Strategy: identify every

• predicate A
φ // bool with binary relation [[φ]] such

that a[[φ]]b ≡ a = b ∧ (φ a).

• So [[φ]] is coreflexive: [[φ]] ⊆ id, cf.

Predicates Coreflexives

λx. t id
λx. f ⊥
p ∨ q [[p]] ∪ [[q]]
p ∧ q [[p]] · [[q]]
¬p id− [[p]]

3

“GaloisCalc”

Since rng and (R ·) can be found as lower adjoints in

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f= g[g= f] Obs.

Left-division (R ·) (R \) read “R under . . . ”

Range rng (·>)
> = !◦ · ! and lower ⊆
is restricted to core-
flexives

Definitions

f X =
⋂

{Y | X ⊆ gY }

g Y =
⋃

{X | f X ⊆ Y }

(3)

we get (for free):

rng (R ·X) ⊆ Y ≡ X ⊆ gR Y

What is the upper adjoint gR?

Weakest liberal pre-conditions

gR X is well-known — the largest of all pre-conditions over R
which ensure X, written R \•X:

R \• Y =
⋃
{X | rng (R ·X) ⊆ Y }

Alternatively:

R \• Y = dom (Y ·R) ∪ (id− domR)

Pointwise version (back to predicates):

(R \• y)a = ∀b ∈ B. bRa⇒ (y b)

4

Universal property

We will never use any of these definitions. Instead, we resort
to universal property

rng (R ·X) ⊆ Y ≡ X ⊆ R \• Y (4)

that is

X ⊆ R \• Y ≡ R ·X ⊆ Y ·R ·X (5)

(⊆ restricted to coreflexives) or even

X ⊆ R \• Y ≡ R ·X = Y ·R ·X

since Y ·R ⊆ R.

Galois properties of R \• Φ

Conjunction a

R \• (Φ ·Ψ) = (R \• Φ) · (R \•Ψ) (6)

Reflexion b

R \• Y = id wherever rng R ⊆ Y

Composition c

(S ·R) \• Φ ≡ R \• (S \• Φ) (7)

a=Upper-adjoint distributivity.
bX = id is unit of composition (Galois + monoids).
cGalois + monoids.

Galois properties of R \• Φ

Cancellation

rng (R ·R \• Y) ⊆ Y (8)

ie

R · (R \• Y) ⊆ Y ·R · (R \• Y) (9)

entailing R · (R \• Y) ⊆ Y ·R.

5

More properties

Functions

f \• Φ = (f◦ · Φ · f) ∩ id (10)

Particular identities

id \• Φ = Φ (11)
R \• id = id (12)
⊥ \• Φ = id (13)

(id− domR) ⊆ R \• Φ (14)

etc.

Constrained datatypes

Prospect of category whose objects are coreflexives Ψ,Φ
(constraints) and whose arrows are relations which ensure such

constraints, that is, every Ψ Φ
Roo is — by construction —

such that

Φ ⊆ R \•Ψ (15)

Check composition: Γ Ψ
Soo and Ψ Φ

Roo compose

relationally, yielding Γ Φ
S·Roo

Ψ ⊆ S \• Γ
Φ ⊆ R \•Ψ
Φ ⊆ (S ·R) \• Γ

(16)

6

Proof of (16)

Φ ⊆ R \•Ψ ∧ Ψ ⊆ S \• Γ

⇒ { R \• is an upper adjoint, thus monotone }

Φ ⊆ R \•Ψ ∧ R \•Ψ ⊆ R \• (S \• Γ)

⇒ { ⊆-transitivity }

Φ ⊆ R \• (S \• Γ)

≡ { (7) }

Φ ⊆ (S ·R) \• Γ

Constraints as types

• Think of constraints Φ,Ψ as types.

• Type polymorphism: arbitrary R is an inhabitant of type

Ψ Φoo provided (15) holds.

• One always has id Φ
Roo , since R \• id = id and Φ is

coreflexive.

• In the “limit”, id id
Roo always is a valid type

assignment, the most general one (in fact, the
“conventional” one).

• Don’t we write e. 1 +A× f for id+ id× f? Consistent
with id (the largest coreflexive of its type) also being the
the smalest equivalence relation on its carrier type. (Cf.
initial algebras).

7

Basics

Ordering:

Φ Φ
Roo , S ⊆ R

Φ Φ
Soo

Constraint composition (intersection):

Φ′ Φ
Roo

Ψ′ Ψ
Roo

(Φ′ ·Ψ′) (Φ ·Ψ)Roo

(17)

Basic operators

Union:

Ψ Φ
Roo

Ψ Φ
Soo

Ψ Φ
R∪Soo

(18)

Intersection:

Ψ Φ
Roo

Ψ Φ
Soo

Ψ Φ
R∩Soo

(19)

8

Subtypes

Subtype ordering: Φ′ ⊆ Φ (a complete lattice, ⊥ = ∅,> = id)

• Variance:

Ψ Φ
Roo ,Φ′ ⊆ Φ

Ψ Φ′Roo
(20)

• Contravariance:

Ψ′ ⊆ Ψ, Ψ′ Φ
Roo

Ψ Φ
Roo

(21)

Invariant preservation

Pointwise:

a′Ra ∧ φa⇒ φa′

Pointfree (Φ = [[φ]]):

rng (R · Φ) ⊆ Φ ≡ Φ ⊆ R \• Φ

that is,

Φ Φ
Roo

Moving on towards induction

From A

[[g,f]]

��

f // FA

F[[g,f]]

��
B FBg

oo

to Φ

[[R,S]]

��

S // F Φ

F[[R,S]]

��
Ψ F Ψ

R
oo

We proceed step by step:

9

Relators

A relator is a functor on relations

A

R

��

FA

F R

��
B FB

which is monotonic and commutes with converse:

R ⊆ S ⇒ (FR) ⊆ (FS)
F (R◦) = (FR)◦

(Recall that F will commute with composition and identity too.)

Coreflexives are preserved by relators

Easy to check:

Φ ⊆ id

⇒ { relator }

F Φ ⊆ F id

≡ { relator-id }

F Φ ⊆ id

10

Constrained F-“maps”

Easy to infer F Ψ F Φ
F Roo in

Φ

R

��

F Φ

F R

��
Ψ F Ψ

from Ψ Φ
Roo , as follows:

Ψ Φ
Roo

≡ { definition }

Φ ⊆ R \•Ψ

≡ { universal property (5) }

R · Φ ⊆ Ψ ·R · Φ
⇒ { relator }

FR · F Φ ⊆ F Ψ · FR · F Φ

≡ { universal property (5) }

F Φ ⊆ FR \• F Ψ

≡ { definition }

F Ψ F Φ
F Roo

11

Constrained F-algebras

Check what it means to write

Φ F Φ
Roo

We get

F Φ ⊆ R \• Φ

that is,

R · F Φ ⊆ Φ ·R · F Φ

Since Φ ·R · F Φ ⊆ Φ ·R we get, by monotonicity:

R · F Φ ⊆ Φ ·R (22)

In other words: Φ is a (coreflexive) F-congruence for R.

F-congruences

(See When is a function a fold or an unfold? [GHA01])

• Congruences are (endo) relations which are preserved
along some kind of algebraic structure.

(Term “congruence” is too strong: it might be better to call these

compatible relations, cf. the terminology of [Blo76].)

• Informally, every operation in such a structure applied to
congruent arguments should yield congruent results.

• Algebraic structure is captured by the concept of a
relator.

12

F -congruence

Given relation A FA
Roo (a so-called F-algebra), we say

that relation A A
Too is an F-congruence for R iff

R · FT ⊆ T ·R A

T

��

FA
Roo

F T

��

⊇

A FA
R

oo

(23)

Example

A = A?, R = [nil, cons] and T =≤ (“prefix”):

nil_

≤

��

cons(a, l)
_

≤

��

(a, l)�consoo
_

id×≤

��

⊇

nil cons(a, l′) (a, l′)�
cons

oo

that is:

nil ≤ nil

l′ ≤ l⇒ cons(a, l′) ≤ cons(a, l)

Constrained catamorphisms

Checking the consistency of diagram

µF

(|R|)
��

F(µF)inoo

F(|R|)
��

Φ F Φ
R

oo

First, we need to know about (two forms of) relational
cata-fusion [BdM97]:

(|T |) ⊆ S · (|R|) ⇐ T · FS ⊆ S ·R (24)
S · (|R|) ⊆ (|T |) ⇐ S ·R ⊆ T · FS (25)

13

Checking the correctness of the constrained (|R|)

Φ µF
(|R|)oo

≡ { definition }

id ⊆ (|R|) \• Φ

≡ { definition }

(|R|) ⊆ Φ · (|R|)

⇐ { relational cata-fusion }

R · F Φ ⊆ Φ ·R

⇐ { (22) above }

Φ F Φ
Roo

Example — Sorting

Given

IsSorted
def= (|in · (id+ ok)|)

for

ok(a, x) = ∀b ∈ elems x. a ≤ b

build

A?

(|R|)
��

1 +A×A?inoo

F (|R|)
��

IsSorted 1 +A× IsSorted
R

oo

14

Sorting continued

R must be such that

A?

IsSorted

��

1 +A× A?Roo

1+A× IsSorted

��

⊇

A? 1 +A× A?
R

oo

R · (1 +A× IsSorted) ⊆ IsSorted ·R

Sorting continued

R · (1 + A× IsSorted) ⊆ IsSorted ·R

≡ { expanding and restricting to functions }

[r1, r2] · (1 + A× IsSorted) ⊆ IsSorted · [r1, r2]

⇐ { expanding }

r1 ⊆ IsSorted · r1

r2 · (id× IsSorted) ⊆ IsSorted · r2

⇐ { shunting (Galois connections over functions) }

img r1 ⊆ IsSorted
(id× IsSorted) ⊆ r◦2 · IsSorted · r2

≡ { choose r1 = nil = [] }

(id× IsSorted) ⊆ r◦2 · IsSorted · r2

≡ { }
......

etc. “à la” Bird-Moor [BdM97].

15

Insertion sort

I haven’t checked, but we should be able to find solution
r2 = insert, where

insert(x,[]) = [x]
insert(x,a:l) | x < a = [x,a]++l

| otherwise = a:(insert(x,l))

Comments:

• Still a lot to be done

• Constrained hylos, constrained F-coalgebras, etc

Constrained F-coalgebras

Check what it means to write

Φ
R // F Φ

We get

Φ ⊆ R \• (F Φ)

that is,

R · Φ ⊆ (F Φ) ·R · Φ

Since (F Φ) ·R · Φ ⊆ (F Φ) ·R we get, by monotonicity:

R · Φ ⊆ F Φ ·R (26)

In other words: Φ is a (coreflexive) F-invariant for R.

16

F -invariants

(See When is a function a fold or an unfold? [GHA01])

Duality: given relation FA A
Soo (a so-called F-coalgebra),

we say that relation A A
Roo is an F-invariant for S iff

S ·R ⊆ FR · S A
S // FA

⊇

A

R

OO

S
// FA

F R

OO (27)

Further work — invariant refinement

Express the “SETS” laws [Oli92] as invariant-refinements
rather than datatype refinements:

• Say that Ψ <R Φ wherever etc
Example: IsSorted <(ff2seq◦) Monotone

• Say that Ψ ∼=R Φ wherever etc
Example: id ∼=(join◦) Eqdom will replace

A ⇀ (B × C) ≤ (A ⇀ B)× (A ⇀ C) (28)

Cf. PhD work by C. Rodrigues.

References

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Series
in Computer Science. Prentice-Hall International, 1997. C.
A. R. Hoare, series editor.

[Blo76] S.L. Bloom. Varieties of ordered algebras. JCSS, 13:200–
212, 1976.

[GHA01] Jeremy Gibbons, Graham Hutton, and Thorsten Al-
tenkirch. When is a function a fold or an unfold? Electronic
Notes in Theoretical Computer Science, 44(1), 2001.

[Oli92] J. N. Oliveira. Software Reification using the SETS Cal-
culus . In Tim Denvir, Cliff B. Jones, and Roger C.
Shaw, editors, Proc. of the BCS FACS 5th Refinement
Workshop, Theory and Practice of Formal Software Devel-
opment, London, UK, pages 140–171. ISBN 0387197524,
Springer-Verlag, 8–10 January 1992. (Invited paper).

17

