Generic Sorting By
Insertion

Jorge Sousa Pinto
PURe Cafe |1-03-04

|. List Homomorphisms

® “Sorting” is a list homomorphism:

isort ({1 ++ 1) = (isort 1) ® (isort I3)

® can be calculated leftwards or rightwards:

isort = foldr insert []

isort = foldl insert’ []
where insert’ 1 x = insert x 1

[Bird, 1987]

® note that an associative operator exists s.t.

insert x [= x| ®1

® since this is the unique function that can be
calculated in these two ways, we call it

simply
hom (©) (\z — [z]) []

2. Sorting by Insertion

We consider a container type constructor C

with operations
ist::a— Ca—Ca

tl:: C a — [a

verifying equations

the =] (1)

tl (ist x ¢) = insert x (tl ¢) (2)

we define a function

gisort = tl o (foldr ist &)

this is a sorting algorithm since

gisort = foldr insert | |

Proof: straightforward application of foldr fusion law

3. Examples of sorting
by Insertion

We instantiate tl as follows for node-labeled and
leaf-labeled binary trees:

t
t

BTree = foldBTree (\y Il r — [y| © Ll O r) |]

L Tree = foldLTree (®) t where t Nothing = | |
t (Just) = |x]

using a heap as container:

isth :: (0rd a) => a -> Heap a -> Heap a
isth x Empty = Node x Empty Empty
isth x (Node y 1 r) | x<y = Node x (isth y r) 1
| otherwise = Node y (isth x r) 1

isorth = t1BTree . (foldr isth Empty)

using a bst as container:

istq :: (Ord a) => a -> BTree a -> BTree a
istq x Empty = Node x Empty Empty
istg x (Node y 1 r) | x<y = Node y (istq x 1) r
| otherwise = Node y 1 (istq x r)

isortq = t1lBTree . (foldr istq Empty)

using a leaf-tree as container:

istm :: (0Ord a) => a -> LTree a -> LTree a

istm x (Leaf Nothing) Leaf (Just x)

istm x (Leaf (Just y)) = Branch (Leaf (Just x)) (Leaf (Just y))
istm x (Branch 1 r) Branch (istm x r) 1

isortm = tlLTree . (foldr istm (Leaf Nothing))

recall equations to be proved:

the =] (1)

tl (ist x ¢) = insert x (tl ¢) (2)

(1) is straightforward for these examples

Example proof (outline)

tILTree o (istm x) = (insert x) o tILTree

|. paramorphism fusion on |hs:

tILTree o (istm x) = paralLTree a b

b Nothing = [z]
b (Just) = [z] ® [y]
all rrv’=1r"© (tliLTree I)

2. express the fold tlLTree as a paramorphism, then
apply (strong) paramorphism fusion to prove

(insert) otlLTree = paralTree a b

4. Generic Sorting
Accumulations

Specification:

gisort, :: [a] — C a — |a]

gisort, [y = (isort 1) ® (tl y)

can be rewritten as

gisort, = () oisort.

where s®y=s0 (tly).

We apply fusion again to get a higher-order fold:

foldr ist’ tl = () o (foldr insert [])

where

st x fy=f (ist z y)

or with explicit recursion

gisort_t :: (0Ord a) => [a] > C a -> [a]
gisort_t [] y = tl y
gisort_t (x:xs) y = gisort_t xs (ist x y)

5.Sorting Hylos

® properties of the intermediate structures
easily proved by induction:

® foldr isth Empty and
foldr istm (Leaf Nothing)
generate balanced trees.

® foldr isth Empty generates heaps...

® foldr istq Empty generates BSTs...

this allows to refine tIBTree:

for heaps, tIBTRee becomes

catahsort :: (0Ord a) => Heap a -> [a]
catahsort = foldBTree (\y a b -> y:(merge a b)) []

for BSTs, tIBTRee becomes

catagsort :: (Ord a) => BTree a -> [a]
catagsort = foldBTree (\y a b -> at++y:b) []

for leaf-trees, tILTRee = catamsort

Overall, the intermediate structures constructed
by folding over the unsorted list:

® have the same characteristics

® take the same asymptotic time to build

as those constructed by unfolding the trees, as in the
standard sorting hylomorphisms.

The algorithms are in this sense equivalent.

To sum up, the specification of “sorting” is the list homomorphism hom (©®) (\x —
[z]) | |. The efficiency of computing it directly leftwards or rightwards can be im-
proved by using an intermediate tree structure (constructed either by folding or
unfolding). The tree can be converted to the result type of the homomorphism by
folding, using the parameters (®), (\x — |[z]),[| of the homomorphism. This fold
may be optimized depending on properties of the intermediate structures.

This not only shows an interesting common structure of the divide-and-conquer
algorithms, but it also proposes a design principle that can be applied to other list

homomorphisms.

