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Abstract

This paper shows that three popular functional sorting algorithms can be seen as having
a common structure derived from insertion sort. This structure corresponds to a generic
method for computing a list homomorphism using intermediate data-structures.

1 Introduction

Consider the simplest algorithm for sorting a list, usually known under the name
of insertion sort. We give it here written in Haskell.

isort [] = []
isort (x:xs) = insert x (isort xs)

where insert inserts an element in a sorted list. This is certainly the most natural
way of sorting a list in a traditional functional language: since the list structurally
consists of a head element x and a tail sublist xs, it is natural to recursively sort xs
and then combine this sorted list with x. This pattern of recursion can be captured
by the foldr operator, giving the following definition where the explicit recursion
has been removed.

isort = foldr insert []

Actually, any sorting function is a list homomorphism (Bird, 1987; Gibbons, 1995),
which means that if the initial unsorted list is split at any point and the two resulting
sublists recursively sorted, there exists a binary operator ! that can combine the
two results to give the final sorted list.

isort (l1 ++ l2) = (isort l1)! (isort l2)

where we use the infix operator ! for the linear-time function of type [a]→ [a]→
[a] that merges two sorted lists. A consequence of this (by Bird’s Specialization
Theorem) is that lists can also be sorted rightwards using the foldl operator:

isort = foldl insert’ []
where insert’ l x = insert x l

• “Sorting” is a list homomorphism:

• can be calculated leftwards or rightwards:

isort = foldr insert []

isort = foldl insert’ []
        where insert’ l x = insert x l

[Bird, 1987]
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calculated in these two ways, we call it 
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where insert and ! are related as follows.

insert x l = [x]! l (1)

Since isort is the unique homomorphism that can be calculated in these two ways,
we may refer to it as hom (!) (\x → [x]) [ ]. Finally, we note that ! is associative
with the empty list as unit, forming a monoid over lists. It is also commutative.

In this paper we study, in section 3, a generic sorting algorithm derived from inser-
tion sort that uses intermediate data-structures for computing the homomorphism,
and present three concrete instances of it using different types for these structures.
Section 4 presents a tail-recursive version of the algorithm, and section 5 concludes,
relating the concrete algorithms with the standard sorting algorithms.

2 Background Material

The fold recursion pattern can be generalized for most useful recursive types; in the
context of the algebraic theory of data-types folds are usually called catamorphisms.
The result of a fold on a node of some tree data-type is a combination of the results
of recursively processing each subtree (and the contents of the node, if not empty).

Many efficient sorting algorithms perform recursion twice, on sublists obtained
from the unsorted list, and then combine the results (for this reason they are called
divide and conquer algorithms). These algorithms do not fit the simple iteration
pattern captured by foldr; they can however be defined as compositions of the form
f ◦ u where u is an unfold, a function that takes the unsorted list and builds a
data-structure of a recursive type; the second function is a fold that iterates over
this structure to produce the sorted list.

This intermediate structure is basically a tree that mimics the shape of the recur-
sion tree of the algorithm. An unfold (also called an anamorphism) is a co-recursive
function that constructs this tree in the most natural way, in the sense that the
subtrees of a node must be recursively constructed by unfolding.

The appendix describes three different divide and conquer algorithms. Since all
perform recursion twice, the intermediate trees for these algorithms are binary and
come in two flavors: leaf-labeled (for mergesort, where all the elements are passed
down to the recursive calls, but note that the mergesort leaf-tree may need to
be empty to cope with the empty list) and node-labeled trees (for the remaining
algorithms). These types can be defined as follows.

data BTree a = Empty | Node a (BTree a) (BTree a)
type Heap = BTree
data LTree a = Leaf (Maybe a) | Branch (LTree a) (LTree a)

In figure 1 we show the same algorithms written as compositions of the form
mentioned earlier, where the fold and unfold functions for each tree type are defined
in the appendix. For our current purposes, we are interested in the way in which
this approach exposes the intermediate structures of algorithms.

Let us consider for instance heapsort; clearly the recursion tree of this algorithm
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particular their uniqueness and fusion properties (Meijer et al., 1991). We exemplify
with the fusion law for foldr that states precisely the conditions under which a
function can be composed with a fold to give yet another fold.

h ◦ foldr f e = foldr f ′ e′

⇔ {foldr fusion}
h strict ∧ h e = e′ ∧ h (f x (foldr f e xs)) = f ′ x (h (foldr f e xs))

Strengthening the last condition to h ◦ (f x) = (f ′ x) ◦ h gives a weak version of
the fusion law, which will be used later in the paper.

We direct the reader to (Gibbons, 2003) for a good introduction to the field of
program calculation and full references on this area.

3 Generic Sorting by Insertion

Consider a type constructor C and the following functions:

ist :: a→ C a→ C a

tl :: C a→ [a]

The idea is that C a is a container type for elements of type a; ist inserts an element
in a container to give a new container; and tl converts a container into a sorted list
of type a. For each container type an empty value ε :: C a is defined.

We will force the following equations on this signature, stating that tl is a homo-
morphism between the structures (C a, ist, ε) and ([a], insert, [ ]).

tl ε = [ ] (2)
tl (ist x c) = insert x (tl c) (3)

For any container type we can now define a generic sorting algorithm with the
container acting as intermediate data-structure. The idea is that elements are in-
serted one by one by folding over the list; a sorted list is then obtained using tl.

gisort = tl ◦ (foldr ist ε)

The following result shows that this algorithm is a sorting algorithm, since it is
equivalent to insertion sort:

Proposition 1
gisort = foldr insert [ ]

Proof
Straightforward application of the foldr fusion law, using equations (2), (3).

Examples of Sorting by Insertion. For each tree-shaped container type, a natural
candidate to implement function tl can be described generically as the function that

verifying equations
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isth :: (Ord a) => a -> Heap a -> Heap a
isth x Empty = Node x Empty Empty
isth x (Node y l r) | x<y = Node x (isth y r) l

| otherwise = Node y (isth x r) l

isorth = tlBTree . (foldr isth Empty)

istq :: (Ord a) => a -> BTree a -> BTree a
istq x Empty = Node x Empty Empty
istq x (Node y l r) | x<y = Node y (istq x l) r

| otherwise = Node y l (istq x r)

isortq = tlBTree . (foldr istq Empty)

istm :: (Ord a) => a -> LTree a -> LTree a
istm x (Leaf Nothing) = Leaf (Just x)
istm x (Leaf (Just y)) = Branch (Leaf (Just x)) (Leaf (Just y))
istm x (Branch l r) = Branch (istm x r) l

isortm = tlLTree . (foldr istm (Leaf Nothing))

Fig. 2. Examples of sorting by insertion using a heap, a binary search tree, and a
leaf-tree

iterates over the tree merging together the results of processing subtrees, and the
wrapped contents (if any) of nodes and leaves:

tlBTree = foldBTree (\y l r → [y]" l " r) []
tlLTree = foldLTree (") t where t Nothing = [ ]; t (Just x) = [x]

Figure 2 shows three examples of sorting by insertion, two of which use node-
labeled binary trees and the third uses leaf-trees. The definitions in figure 2 all
verify equation (2); equation (3) can be checked by calculation.

It is easy to see that none of the insertion functions can be written as a fold
over trees, since they all use one of the subtrees unchanged (insertion will proceed
recursively in the other subtree). These are typical examples of situations where
iteration is not sufficient: primitive recursion is required. This has been studied as
the paramorphism recursion pattern (Meertens, 1990). As an example, the following
operator embodies this pattern for leaf-trees:

paraLTree :: ((LTree a)->b->(LTree a)->b->b)-> ((Maybe a)->b)-> LTree a-> b
paraLTree f g (Leaf x) = g x
paraLTree f g (Branch l r) = f l (paraLTree f g l) r (paraLTree f g r)
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(1)
(2)
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(1) is straightforward for these examples



Example proof (outline)

6 J. S. Pinto

This operator enjoys the following fusion law (Meijer et al., 1991):

h ◦ (paraLTree f g) = paraLTree a b

⇔ {paraLTree fusion}
h strict ∧ h ◦ g = b ∧
h(f l (paraLTree f g l) r (paraLTree f g r))

= a l (h (paraLTree f g l)) r (h (paraLTree f g r))

which again can be weakened by strengthening the last condition to h(f l l′ r r′) =
a l l′ r r′. Armed with this law we can prove that equation (3) holds for leaf-trees:
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fusion; the trick is now to define the fold tlLTree as a paramorphism.

(insert x) ◦ tlLTree = paraLTree a b

⇔ {def. of tlLTree as a paramorphism}
(insert x) ◦ (paraLTree f g) = paraLTree a b where

g Nothing = [ ]
g (Just y) = [y]
f l l′ r r′ = l′ # r′

⇔ {paramorphism (strong) fusion law for leaf-trees, with (insert x) strict}
(insert x) ◦ g = b ∧
insert x (f l (tlLTree l) r (tlLTree r)) =
a l (insert x (tlLTree l)) r (insert x (tlLTree r))

⇔ {η-expansion, def. of f, g, a, b}
insert x [ ] = [x] ∧
insert x [y] = [x]# [y] ∧
insert x (tlLTree l # tlLTree r) = (insert x (tlLTree r))# (tlLTree l)

⇔ {(1) and properties of #}
[x] = [x] ∧
[x]# [y] = [x]# [y] ∧
[x]# (tlLTree l)# (tlLTree r) = [x]# (tlLTree l)# (tlLTree r)

The proofs for the remaining instantiations of gisort in figure 2 proceed similarly,
using a paramorphism operator for binary node-labeled trees. All three definitions
verify equations (2) and (3) and are thus sorting algorithms.

4 Generic Sorting Accumulations

It is well-known that the introduction of accumulators to produce tail-recursive
functions (Bird, 1984) explores the properties of an underlying monoid. In the
present case this allows to construct the intermediate structures of our sorting
algorithms in a rightwards fashion (even if the function foldr ist ε is not a list
homomorphism).

We will derive a tail-recursive definition of gisort, which again illustrates an ele-
gant use of fusion. We start by writing a specification for this function gisortt.

gisortt :: [a]→ C a→ [a]
gisortt l y = (isort l)# (tl y)

The tail-recursive function uses an extra accumulator argument of the chosen con-
tainer type. In the call gisortt l y, l is the list that remains to be sorted, and the
accumulator y contains elements already inserted in the container. The right-hand

Specification:

8 J. S. Pinto

side of the equality states how the final result can be obtained using insertion sort
and the conversion of y to a list. The specification can be rewritten as

gisortt l y = (isort l)⊕ y (4)

with the ⊕ operator defined by s⊕ y = s" (tl y).

Proposition 2
The definition gisortt = foldr ist′ tl satisfies specification (4), with ist’ defined by

ist′ x f y = f (ist x y)

Proof
Equation (4) can be written as gisortt = (⊕) ◦ isort, which appeals to the use of the
fusion law since isort is defined as a fold.

foldr ist′ tl = (⊕) ◦ (foldr insert [ ])
⇔ {foldr fusion, with ⊕ strict}

(⊕) [ ] = tl ∧
(⊕) ◦ (insert x) = (ist′ x) ◦ (⊕)

⇔ {η-expansion}
[ ]⊕ y = tl y ∧
(insert x l)⊕ y = ist′ x ((⊕) l) y

⇔ {def. ⊕, properties of ", def. ist’}
tl y = tl y ∧
(insert x l)⊕ y = l ⊕ (ist x y)

⇔ {eq.(1), def. ⊕}
[x]" l " (tl y) = l " (tl (ist x y))

⇔ {eq. (3)}
[x]" l " (tl y) = l " (insert x (tl y))

⇔ {eq.(1), properties of "}
[x]" l " (tl y) = [x]" l " (tl y)

The resulting higher-order fold can be written with explicit recursion as

gisort_t :: (Ord a) => [a] -> C a -> [a]
gisort_t [] y = tl y
gisort_t (x:xs) y = gisort_t xs (ist x y)

5 Conclusion

The intermediate data-structures generated by the folds over lists in the concrete
sorting algorithms of figure 2 enjoy certain properties that can be proved by induc-
tion on the structure of the argument list:
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5. Sorting  Hylos
• properties of the intermediate structures 

easily proved by induction:

• foldr isth Empty and 
foldr istm (Leaf Nothing)
generate balanced trees.

• foldr isth Empty  generates heaps...

• foldr istq Empty generates BSTs...



for heaps, tlBTRee becomes
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anahsort :: (Ord a) => [a] -> Heap a
anahsort = unfoldBTree g where

g [] = Right()
g xs = Left(haux xs)

catahsort :: (Ord a) => Heap a -> [a]
catahsort = foldBTree (\y a b -> y:(merge a b)) []

hsort = catahsort . anahsort

anaqsort :: (Ord a) => [a] -> BTree a
anaqsort = unfoldBTree g where

g [] = Right()
g (x:xs) = Left(x,l,r) where (l,r) = qaux x xs

cataqsort :: (Ord a) => BTree a -> [a]
cataqsort = foldBTree (\y a b -> a++y:b) []

qsort = cataqsort . anaqsort

anamsort :: (Ord a) => [a] -> LTree a
anamsort = unfoldLTree g where

g [] = Right Nothing
g [x] = Right(Just x)
g xs = Left(maux xs)

catamsort :: (Ord a) => LTree a -> [a]
catamsort = foldLTree merge t where

t Nothing = []
t (Just x) = [x]

msort = catamsort . anamsort

Fig. 1. Sorting Hylomorphisms

is a binary tree carrying information in the nodes (since the value of y must be kept
locally at each call), but not in the leaves (since a constant value is returned when
recursion stops). Function g specifies that empty lists generate leaves of the tree
and other lists are used to generate a value for the current node, as well as two new
seeds for generating subtrees of the node (haux does this). The first argument of
the fold is a function that states how the contents y of each node in the tree must
be combined with the results a, b of converting the subtrees to sorted lists.

A key fact is that each composition of a fold and an unfold is equivalent to a
unique recursive definition, called a hylomorphism. We direct the reader to (Au-
gusteijn, 1998) for a detailed study of sorting algorithms defined as hylomorphisms.

Apart from the concise style of programming, using recursion patterns has the
additional advantage that proofs about programs (in particular proofs of semantic
equivalence of programs) can be carried out by calculation, rather than by induction.
This style of proof is founded on the mathematical properties of folds and unfolds, in
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for BSTs, tlBTRee becomes

for leaf-trees, tlLTRee = catamsort

this allows to refine tlBTree:



• have the same characteristics

• take the same asymptotic time to build

Overall, the intermediate structures constructed 
by folding over the unsorted list:

as those constructed by unfolding the trees, as in the 
standard sorting hylomorphisms. 

The algorithms are in this sense equivalent.
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• Trees generated by foldr isth Empty have the property that the contents of
each node is not greater than the contents of its descendent nodes;

• Trees generated by foldr istq Empty are sorted inorder.

Such trees are usually called heaps and binary search trees respectively. It is easy
to see that these order properties allow to refine function tlBTree in these two
situations as cataqsort and catahsort respectively, as defined in figure 1. The concrete
sorting algorithms defined in this paper then differ from the heapsort, quicksort and
mergesort hylomorphisms of figure 1 only in that the unfold component has been
replaced by a fold over the argument list.

Additionally, the trees generated both by foldr isth Empty and by foldr istm (Leaf
Nothing) are balanced : if n ≤ 2k − 1 elements are stored, the height of the tree
is at most k − 1. Together, these are well-known properties of the intermediate
data-structures of the sorting hylomorphisms, responsible for the correction and
time-behaviour of each algorithm. The original unfolds have in this paper been
replaced by functions that generate structures with the same properties, resulting
in algorithms that are essentially equivalent and have the same time-behaviour as
heapsort, mergesort, and quicksort, all obtained from a common scheme derived
from insertion sort.

To sum up, the specification of “sorting” is the list homomorphism hom (#) (\x→
[x]) [ ]. The efficiency of computing it directly leftwards or rightwards can be im-
proved by using an intermediate tree structure (constructed either by folding or
unfolding). The tree can be converted to the result type of the homomorphism by
folding, using the parameters (#), (\x → [x]), [ ] of the homomorphism. This fold
may be optimized depending on properties of the intermediate structures.

This not only shows an interesting common structure of the divide-and-conquer
algorithms, but it also proposes a design principle that can be applied to other list
homomorphisms.
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