
PURe CAMILA
A System for Software Development using Formal Methods

February 25, 2005

Alexandra F. Mendes João F. Ferreira
alexandra@correio.ci.uminho.pt joao@correio.ci.uminho.pt

Abstract

This work consists in the re-implementation of CAMILA1, which is a software
development environment intended to promote the use of formal methods in industrial
software environments. The new CAMILA, also called PURe CAMILA, is written in
Haskell and makes extensive use of monadic programming. A small prototype interpreter
was created, but the purpose of this work is to study the concepts behind such a tool.
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1 Introduction

Traditionally, when programmers (specially those who have no formal methods ex-
perience) want to verify some program’s correctness they do tests. Debugging consists,
basically, in correcting a program by executing it successively and correcting it when some
test fails.

This approach is not effective and Edsger W. Dijkstra, an eminent computer scientist,
has summarized the flaw in testing in the following quotation:

Program testing can be used to show the presence of bugs, but never to show
their absence.

An alternative to debugging is to use techniques which allow the verification of a
program against its specification. Formal methods and formal specification give the

2



programmer a science of programming, where programs can be calculated from their
specifications.

Generally, when using a formal approach, software development is divided into a
specification phase, in which a mathematical model is built from the user requirements
and a implementation phase in which such model is somehow converted to the final
product. In a sense, software development, using formal methods, is much alike the
”universal problem solving” strategy [Oli97]:

1. understand your problem;

2. build a mathematical model of it;

3. reason in such a model;

4. upgrade your model, if necessary;

5. calculate a final solution and implement it.

In the second step is where we start writing the initial specification. However, prob-
lems may arise because that specification will be based on informal user requirements and
we can not prove its correctness. Since the formal methods of system specification and
development have as mission the construction of reliable computer systems, several tech-
niques have been developed to validate specifications, such as syntax and type checking.
Another technique is to obtain an executable specification by transforming the original
one [Muk97, Gau94], which is used by specification tools such as the IFAD VDM-SL
Toolbox[ELL94] and CAMILA[ABNO97].

Originally, this technique was used mapping the specification into a functional or
logic programming language, but dedicated tools such as the IFAD VDM-SL Toolbox
have proved to be more effective [Muk97]. Still, several studies have been made in
order to translate VDM-SL to functional programming languages [Muk97, BM93]. Al-
though this is not a translation work, these translation studies are interesting, since they
help comparing functional programming languages with specification systems in terms of
syntax and semantic meanings.

1.1 Prototyping specifications

Prototyping a model based specification S means translating S into a program P
which, though not necessarily satisfying efficiency or other non-functional constraints, is
correct with respect to S. This allows the specification to be animated, which enables
developers and end users to check early in the development stage that the specification
is a valid representation of their requirements. Other advantages include[TM92]:

• the promise of a working prototype lessens the risk factor involved for a software
purchaser: instead of waiting untill a full implementation is available, the prototype
is a working model which gives a good indication of what the final product will be
like;

• constructing a prototype helps in debugging the specification: even after proof
obligations have been successfully discharged there may remain errors in the logic.
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If the programming language in which a program P is created (call it PL) is well
chosen, then prototyping P can be a semi-automatic process with a very high degree of
certainty that P will be correct with respect to S. To be a good prototyping language,
PL should contain constructs that are similar to the specification language (say SL) in
which S is written. In effect, this means that the semantic gap between SL and PL
should be small, i.e., data types, functions and operations should be easily translated
from SL to PL.

The main deficiency of prototyped specifications is that they tend to be inefficient in
time and space. This happens because, usually P is written following the same structure
as S and the compilers of good candidates for PL (such as Haskell) tend to produce less
efficient code than imperative languages.

Despite these drawbacks, Haskell seems a good candidate for PL. In section 2.1 we
explain why we have used the Haskell language.

The main goal of this work is to study the design of a generic specification tool, and
implement it using Haskell, a purely functional programming language. We propose a
simple and modular architecture where each piece may be ”disconnected” from the global
system. It’s important to keep in mind that this is a preliminary approach and
some aspects may change in the future.

1.2 Structure of this report

The structure of the present document is as follows:

• Section 2 describes the system’s architecture and explains why we have used
the functional programming language Haskell. It also provides an introduction
to monadic programming methodology and monad transformers, including the de-
scription of their use in the components of the system.

• Section 3 introduces the Vienna Development Method (VDM) and shows some
VDM-SL and VDM++ examples.

• Section 4 explains the most important components of PURe CAMILA and their
implementation;

1. H++ (section 4.1): Haskell libraries implementing mathematical structures;

2. Exceptions (section 4.2): the error mechanism;

3. Data Type Invariants (section 4.3): constraints in the data types;

4. Partiality (section 4.4): partial functions and pre-conditions;

5. State (section 4.5): where we introduce the VDM++, a specification lan-
guage that provides the mechanism to specify object oriented systems, and
describe how we implement state;

6. Persistence (section 4.6): explains a possible way of obtaining state persistence
using the hs-plugins framework.
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2 System’s architecture

Concerning the system’s architecture, we propose a simple and modular one where
each piece may be ”disconnected” from the global system.

Generally, we can describe the system architecture in the way it is presented in figure
1, where each block represents a system’s feature.

Figure 1: PURe CAMILA architecture

H++

State

Data Type Invariants Partial Functions

Error

The blocks illustrated in figure 1 are described as follows:

H++ - this block consists in a set of mathematical structures useful in formal specifi-
cation. It will be described in section 4.1.

Invariants - this block refers to data type invariants. It will be described in section 4.3

Partiality - this block allows us to use partial functions in our specifications, using
pre-conditions. It will be described in section 4.4

Error - this block represents the error mechanism which is necessary to every specifi-
cation system. It will be described in section 4.2

State - this block allows us to build state models where we can define global variables
and operations upon these variables. It will be described in section 4.5

It is important to allow the disconnection of these blocks from the global system,
because there are cases where someone may not want them. For instance, it may be
useful to turn off the data type invariants’ verification or the functions’ partiality (pre-
conditions) to analyze how the system would behave in case of invalid input.
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2.1 Why Haskell?

Haskell is a modern, standard, lazy, polymorphicly typed, purely-functional program-
ming language. It has a module system and a type system which supports a systematic
form of overloading and can express and enforce high assurance properties.

Writing and maintaining large software systems is difficult and expensive, but using
a functional programming language like Haskell, it can be easier and cheaper.

Generally, functional languages are strongly typed, eliminating a lot of errors at com-
pile time and at runtime. They are more intuitive, they offer more and easier ways to
do the work and functional programs tend to be shorter, more stable, easier to maintain
and easier to understand.

As we want to animate specifications, Haskell is a good option because it is superb
for writing specifications which can be executed, due to its expressive syntax and a rich
variety of built-in data types. Many other important Haskell’s features are described in
[Hug89, Syl], but the one we want to emphasize is the monadic programming approach
which is described in the following section.

2.2 Monads

In this subsection, we will present the monadic programming methodology used in
the implementation of CAMILA. Monads can be used for structuring functional programs
and for implementing computational effects usually found in imperative programming
languages, such as state variable updating[Oli01].

A very good introduction on monads is given in [Vis96], [Wad90] and [Wad92].

Definition 2.1. A monad is an unary type M on which the functions

unit : a→Ma

and
bind : Ma→ (a→Mb)→Mb

are defined in such a way that they obey the following three laws (the monad laws):

Left unit : (unit a) ‘bind‘ f = f a
Right unit : m ‘bind‘ unit = m

Associativity : m ‘bind‘ (λa. f a ‘bind‘ (λb. h b)
= (m ‘bind‘ (λa. f a)) ‘bind‘ (λb. h b)

In the context of this work, monads are used to implement three important mecha-
nisms, described next:

Error - using the Exception Monad [Vis96, Wad90, Wad92]. Exception Monad presents
a very interesting feature which is called strict composition: an exception produced
by the producer function g is propagated to the output of the consumer function
f . This feature is well explained in [Oli01] where the problem of composing par-
tial functions is presented. Basically, if we want to compose the partial functions

1 + B �g
A and 1 + C �f

B, we have to extend f to some f ′ capable of
accept arguments from 1 + B:
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1
i1- 1 + B � i2

B

1 + C

f ′

?�

f
...

-

The most obvious instance of . . . in the diagram above is i1 and this corresponds
to strict composition. In practice, using this mechanism, exceptions may be propa-
gated without programmer’s intervention. Section 4.2 details the error mechanism
implementation.

State - using the State Monad [Vis96, Wad90, Wad92]. Formal specifications are usually
made of function and value definitions, together with a state and operations that
may be performed on it. Implementing state in non-pure languages is natural,
because they allow the definition of global variables. In pure functional languages,
such as Haskell, computations which maintain state can be done using the State
Monad. For a type S of states, the monad of state is defined by

type ST x = S → (x, S)
unit x = λs→ (x, s)
m ‘bind‘ f = λs→ (f a) s′ | (s′, a)← m s

Values in the state monad are represented as transition functions from an initial
state to a (value, newState) pair and a new type definition is provided to describe
this construct. Hence, the state monad might more appropriately be called a state
transformer monad.

IO - using the Input/Output Monad [Vis96, Wad90, Wad92]. The system that will im-
plement the specification mechanisms studied in this work will need to interact with
the user and/or with the operating system. Hence, we need to use IO operations
such as reading from standard input, writing to disk files and so on. Haskell provides
IO functions using the monad IO.

Each of these three mechanisms by itself is indispensable but is not enough: we need
to put them together in order to have their features at the same time. We have basically
two ways of putting them together:

1. To create a new monad from scratch, and extend it with all the desired function-
alities. This process is very laborious and time-consuming.

2. To use monad transformers. Monad transformers are type constructors which take
monads as argument and yield new monads. We have used monad transformers
which are introduced briefly in the following section.
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2.3 Monad transformers

A monad transformer is a type constructor which constructs a new monad from
another monad, allowing the creation of customized monads ([Vis96, KW93, LHJ95]).
For each base monad described in the section 2.2, a corresponding monad transformer
can be defined, which captures the same monad features. Combining it with an arbitrary
monad enriches the monad with the features captured in the monad transformer. Thus,
monad transformers can be used to combine in a single monad different monad features
without demanding new data constructors or new monad functions.

Definition 2.2. A monad transformer is a unary type constructor T which receives a
monad as argument and yields a new monad and on which the function

lift : Ma→ (TM)a

is defined in such a way that it obeys the following two laws (the monad transformer
laws):

Unit lift : lift (unitm a) = unittm a
Bind lift : lift (m ‘bindm‘ λa. f a) = (lift m) ‘bindtm‘ (λa. lift (f a))

So, if T is a monad transformer, then for all monad M , (TM) is also a monad. Monad
transformers require the definition of the function lift : M a → (TM) a which encap-
sulates a monad M into a transformed monad TM . A monad transformer essentially
”lifts” the operations of one monad into another.

3 VDM

The acronym VDM stands for Vienna Development Method and it’s origin is related
with the need to solve the problem of the systematic development of a compiler for the
PL/1 programming language. This section highlights VDM’s most important aspects for
this work.

3.1 Introduction

The Vienna Development Method (VDM) was initially developed at the IBM Labo-
ratory at Vienna in the early 1970’s and it consists in a development method in which all
design steps are expressed in a formal (mathematically based) notation [CO84].

VDM is one of the most mature methods and is used mainly for the formal specifi-
cation and development of computing systems.

It consists of several elements[vdm]:

• a specification language called VDM-SL, which is used during specification and
design phases of a computing system development;

• rules for data and operation refinement which allow one to establish links between
abstract requirements specifications and detailed design specifications down to the
level of code;
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• a proof theory in which rigorous arguments can be conducted about the properties
of specified systems and the correctness of design decisions.

The term ”VDM” is sometimes used a little carelessly to mean the specification
language only.

VDM is an example of a model based formal method where global variables (state)
are associated with operations on these variables. The model is formal in the sense that
it uses mathematically based notation (generally, the model uses simple data types like
sets, lists or mappings) and abstract, in the sense that it is free from details concerning
the eventual implementation (eg. efficiency and memory usage)[CO84].

For example, a specification of a bank system would contain a mapping from account
number to account information (holders, ammount, etc.) along with operations to open
new accounts, credit money, etc. Basic types like natural numbers, characters, and type
constructors like sets and maps, are provided ”for free” in VDM-SL.

Generally, a VDM development is made up of state descriptions at sucessive levels of
abstraction and of implementation steps which link the state descriptions[LS90].

Several studies show that VDM is a good choice to help programmers in the early
phases of the software development cycle, since it allows to analyze safety conditions
and properties [ALR98, LS90]. Another good argument to use VDM is that the VDM
Specification Language (VDM-SL) achieved ISO Standardisation in 1996.

Obviously, VDM wouldn’t be widely used if there weren’t tools supporting it. For this
work we have only used and studied IFAD VDM Tools [ELL94].

For more informations about VDM we recommend the consult of [Lar94, Jon90].

3.2 Examples

In this section we will show some VDM-SL and VDM++ examples. These examples
were animated using the IFAD VDM Tools.

VDM-SL: Stack of odd integers

types
Stack = seq of int
inv s == forall i in set (elems s) & i mod 2 <> 0

functions
empty: Stack -> bool
empty(s) == s = [];

push: int * Stack -> Stack
push (n,s) == [n]^s;

pop: Stack -> Stack
pop(s) == tl s
pre not empty(s);
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top: Stack -> int
top(s) == hd s
pre not empty(s);

add: Stack -> Stack
add(s) == [s(1) + s(2)]^(tl (tl s))
pre len(s) >= 2;

values
stack1 = [1,3,5];
stack2 = []

VDM++: State

class stackObj is subclass of stackAlg

instance variables

public stack: Stack := init();

operations

public CLEAR: () ==> ()
CLEAR() == stack := init();

public PUSH: A ==> ()
PUSH(a) == stack := push(a,stack);

public POP: () ==> A
POP() == def r = top(stack)

in (stack := pop(stack);
return r)

pre not empty(stack);

public TOP: () ==> A
TOP() == return top(stack)
pre not empty(stack);

end stackObj

4 PURe CAMILA

In this section we will describe how we have implemented the most important com-
ponents of CAMILA specification system.
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4.1 H++

In this section we’ll present H++, the Haskell libraries which implement mathematical
structures used in formal specifications, such as sets, mappings, relations, etc.

4.1.1 Introduction

In the ”universal problem solving” strategy presented in the introduction (page 2),
one of the steps was to build a mathematical model of the problem in order to reason
in such a model. This mathematical model can only be built if we use mathematical
structures, such as sets, mappings, lists, etc.

Specification languages must permit abstraction from details while preserving essential
properties. Mathematics are used to define more precisely the abstract model.

The advantage of this mathematics is that it provides tools for formal reasoning about
specifications, which can then be examined for completeness and consistency. [Vie93]

These libraries are detailed in [MFP04]

4.2 Exceptions

In this section we will present a way to represent exceptions.

4.2.1 Introduction

Exception handling is a vital piece in the system. We will want the system to throw
an exception every time a data type invariant or a precondition is violated.

In the next section we will detail how we’ve implemented the error mechanism.

4.2.2 Implementation

As already mentioned in section 2.2, we have used error monad to implement the
error mechanism. Haskell provides libraries that already define error monad. Using these
libraries, we just have to define the error type, declare it as instance of Error class and
finally, to create the type that will hold values or exceptions. From this point, all the
functions that can throw errors must have as codomain the last type, capable of holding
values or errors.

More formally, supposing CamilaError′ is the type that defines the error, a total

function B �f
A will be extended to CamilaError �f

A, where CamilaError =
CamilaError′ + B, meaning that it can generate an exception or yield a value of type
B.

Defining CamilaError′ depends on the needs and on the debug information we want
to hold. For now, our type is defined in the following way

data CamilaError′ = Err { reason :: String}

holding just the error message. In the future, we may want to hold detailed information
used for debugging.
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What about CamilaError type? It’s obvious that CamilaError is a coproduct
(CamilaError′+B), implemented in Haskell as Either. Hence, we define CamilaError
as follows

type CamilaError a = Either CamilaError′ a

Using this type, we will represent an error as Left (Err ”Error Message”) and a
value a ∈ A as Right a.

4.2.3 Examples

In this section we can see some examples, using ghci, that demonstrate the error
propagation mentioned in section 2.2.

Consider the following functions:

import Camila.Error

f1 :: Int -> CamilaError Int
f1 x | x < 0 = fail $ show x ++ " is a negative number"

| otherwise = Right (x+1)

comp_ok :: CamilaError Int
comp_ok = do x <- f1 1

y <- f1 2
return (x+y)

propagate :: CamilaError Int
propagate = do x <- f1 1

y <- f1 (-1)
z <- f1 (-2)
return (x+y)

Function f1 throws an error if its argument is a negative number and behaves as the
successor function if its argument is a natural number. Given two monadic values m1
and m2, it’s possible to ”sequence” them, obtaining another such value. In Haskell, we
usually use the do-notation to sequence monadic values. The function comp ok is an
example of this sequencing mechanism: it holds in x the value of f1(1) = 2, in y the
value of f1(2) = 3 and it returns value 2 + 3 = 5. Since return corresponds to function
unit defined in section 2.2, comp ok should return Right 5. In fact:

*Main> comp_ok
Right 5

What about error propagation? Function propagate is a clear example: when f1
evaluates value −1, it will throw an exception and propagate will never evaluate the
next ”steps”.
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*Main> propagate
Left Error: -1 is a negative number

4.3 DT Invariants

Data type invariants are a very important part of any formal specification system.
In the next sections we’ll discuss why they are important and how we’ve implemented
them.

4.3.1 Introduction

If a data type contains values which should not be allowed, then it’s desirable to
restrict its values by means of an invariant. The result of such a constraint is that the
type is restricted to a subset of its original values. The elements of this subset are the
ones that respect the predicate that defines the invariant, ie, the ones who make the
predicate expression true.

In the scope of this work, a data type A constrained by an invariant φ (different from
the always true predicate – λb.True) is represented by Aφ. If φ = λb.True then Aφ = A
and we ommit φ.

A constrained data type Aφ is therefore handled defining a predicate φ that yields
true for all acceptable values of type A. For values a ∈ A with ¬φ(a), the data type
invariant is violated.

When specifying a system, one may want to establish relationships between its com-
ponents that have to be fixed throughout its execution lifetime. Data type invariants
provide a way of defining properties on types.

In sum, data type invariants are a very important mechanism that help us think about
properties of a program. Thinking about datatype invariants will help to improve the data
type implementation.

4.3.2 Invariants in VDM-SL

In VDM-SL we would define a data type invariant as follows:

Stack = seq of int
inv s == forall i in set (elems s) & i mod 2 <> 0

In this example, we are defining a Stack as a sequence of integers, but nor all
sequences of integers are contained in type Stack. In fact, the invariant expression
validates only sequences of odd integers.
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4.3.3 Implementation

Implementing data type invariants in Haskell may be done in several different ways.
The main idea is that, for a given data type, we must define a predicate which defines
its invariant and a way to check if, for certain values of that type, the invariant is true.

Basically, we have seen two alternatives for invariants implementation:

1. Definition of a function for each data type which defines and check the predicate.
This is the IFAD VDM-SL Toolbox approach: they define a inv T function for
type T . This approach was not the chosen one and therefore it will be described
in section 4.3.5.

2. Definition of an overloaded function for each data type. Using Haskell ’s type classes
system, invariants’ definition become very elegant. This is the chosen approach to
implement data type invariants and is described in this section.

So, we have defined a class named CData[Nec05] (Constrained Data Type) which
defines two functions:

• inv :: a → Bool : this is the predicate that we need to define. The default value is
true.

• inv’ :: a → CamilaError a: this is the function that will test the predicate and, in
the case of fail, returns an error.

So, in order to define a constrained data type, we just have to declare that type as
instance of class CData and then define the predicate inv. Next, we present how we can
write in Haskell the example written above in VDM-SL:

-- (1) Datatype definition
type Stack = [Int]

-- (1.1) Datatype invariant
instance CData Stack where

inv s = filter odd s == s

As we can see, the data type definition is straightforward. The invariant definition
consists in declaring an instance of CData class for the type Stack and defining the
function inv.

The CData class is defined as follows:

class CData a where
inv :: a -> Bool
inv a = True
inv’ :: a -> CamilaError a
inv’ a = if (inv a) then return a else fail "Invariant violation"
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If we want to check the invariant of a given data type, we just have to run inv’
function. As an example, we can define empty as follows:

empty :: Stack -> CamilaError Bool
empty s = do inv’ s

return (s == [])

4.3.4 Examples

In this section we can see some execution examples, using ghci. The haskell source
is in appendix (page 30).

camila@host:~/libs$ make ghci top=Camila/Examples/StackAlg.hs
...
...
Prelude Camila.Examples.StackAlg> empty [1]
Right False

Prelude Camila.Examples.StackAlg> empty [1,2]
Left Error: Invariant violation

Prelude Camila.Examples.StackAlg> pop [1,3]
Right [3]

Prelude Camila.Examples.StackAlg> pop [1,2]
Left Error: Invariant violation

4.3.5 Alternatives

As we’ve seen in section 4.3.3, we can define a function for each data type which
defines and checks the predicate.

The IFAD VDM-SL Toolbox approach is to define a function inv T :: t → Bool
where t ∈ T , which for a given allowed value t returns true.

To compare these two alternatives, lets define a function f that will check a certain
invariant φ.

We call this function f inv. Using this last alternative, we could define it in the
following way:

f inv x = if φ(x) then f x
else (error ”Data type invariant violation”)

(1)

Using the first alternative, we would define f inv as follows:
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f inv x = do inv′x
fx

(2)

We can not refute the fact that this second approach is much more elegant than the
first one.

4.4 Partiality

In this section we will show how we implemented partial functions (and pre-conditions).

4.4.1 Introduction

A partial function is a function which is not defined for some of its domain. For
instance, division is (usually) a partial function since anything divided by 0 is undefined.

Partiality of a function f is usually handled defining a predicate (we call it pre-
condition) pre that yields true for all values on which f is defined. For values x with
¬pre(x), we say that the pre-condition is not valid and f can not produce any result.

So, pre-conditions can be defined as constraints on the input for which an operation
is defined. They define the input values for which valid outputs can be expected, ie, they
ensure normal behaviour of the function.

Having no pre-condition is equivalent to a pre-condition of true. By definition, when
a pre-condition fails it means that the operation is prevented from executing.

A very interesting point of view is that a pre-condition P can be seen as a local data
type invariant for the function’s domain. For instance, in the following definition,

f : A→ B (3)

f(a) = b (4)

pre P(a) = ... (5)

P can be seen as type A’s invariant only in the scope of f ’s definition (4).

4.4.2 Partiality in VDM-SL

In VDM-SL we would define a pre-condition as follows:

top: Stack -> int
top(s) == hd s
pre not empty(s);

add: Stack -> Stack
add(s) == [s(1) + s(2)]^(tl (tl s))
pre len(s) >= 2;

In this example, function top will yield a result if the input stack is not empty. If the
stack is empty, then an error will occur saying that the pre-condition was violated.
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The function add has also a pre-condition associated which restricts its input to stacks
with more than one element.

4.4.3 Implementation

In the specification presented in page 9 we can see three partial functions: pop, top
and add. Their partiality is defined using the expression pre. For instance, pop defines
pre as pre not empty(s), i.e., the stack received by pop can’t be empty.

We show two alternatives for defining these pre-conditions:

1. Definition of a mechanism similar to the one presented in section 4.3, exploring the
idea presented above, in which a pre-condition can be seen as a local data type
invariant.

2. Definition of a function for each function which defines the predicate. This is the
IFAD VDM-SL Toolbox approach: they define a pre F function for function F .
This alternative was not the chosen one and it will be presented in section 4.4.5.

So, in section 4.3 we have seen a way of defining data type invariants. We can use the
same idea for partial functions, since a pre-condition is just a constraint on the function’s
argument.

Following this idea, we have defined a class named Partial defined as follows:

class Partial a where
pre :: a -> Bool
pre a = True
pre’ :: a -> CamilaError a
pre’ a = if (pre a) then return a else fail "Pre-condition violated!"

This class is very similar to CData class. Actually, the only differences are the name
of the functions and the error message!

A problem arises when we try to define pre-conditions for partial functions using this
method: we can’t create more than one instance of Partial for the same type. So, if we
have more than one partial function with the same type argument, we have to define
more than one instance of Partial for that type. Since this is not possible, we decided to
create a local data type, similar to the original one, but with a different name.

Briefly, to create a pre-condition:

1. We create a local data type, similar to the type argument, which name is Datatype function
(eg. Stack pop, Stack top, Stack add);

2. We define an instance of Partial to this local data type.

For example, we would define pop as follows:
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-- First, we create a "local" data type
data Stack_pop = Stack_pop Stack deriving Show

-- Second, we define it as instance of Partial
instance Partial Stack_pop where

pre (Stack_pop s) = not $ s == []

-- Pop is defined as follows:
pop :: Stack -> CamilaError Stack
pop s = do pre’ (Stack_pop s)

s1 <- Right (tail s)
return s1

4.4.4 Examples

In this section we can see some execution examples, using ghci. The haskell source
is in appendix (page 30).

Prelude Camila.Examples.StackAlg> pop [1,3]
Right [3]

Prelude Camila.Examples.StackAlg> pop []
Left Error: Pre-condition violated!

Prelude Camila.Examples.StackAlg> add [1,3,5]
Right [4,5]

Prelude Camila.Examples.StackAlg> add [1]
Left Error: Pre-condition violated!

4.4.5 Alternatives

As said before, another way of defining partial functions is to translate the function
without the pre-condition directly and then create a second, total, function that will
check the condition. The latter, in case of success, will call the partial one, otherwise it
returns an error.

Using this method, pop would become:

-- Translated directly
pop’ :: Stack -> Stack
pop’ s = tail s

-- We define a total function that does pre-checking:
pop_total :: Stack -> CamilaError Stack
pop_total s = if (pre s) then return (pop’ s)

18



else fail "Pre-condition violation!"
where pre = (\x -> not $ x == [])

Comparing the two alternatives as we did before on page 15, we define the function
that will check a pre-condition φ for f in the following way:

f pre x = if φ(x) then f x
else (error ”Pre− condition violated”)

(6)

Using the first alternative, we would define f pre as follows:

f pre x = do pre′x
fx

(7)

4.5 State

In this section we will present a way to represent VDM-SL state variables using
monads.

4.5.1 Introduction

VDM-SL specifications are usually made of function and value definitions, together
with a state and operations that may be performed on it. Implementing state in non-pure
languages is natural, because they allow the definition of global variables. Haskell doesn’t
allow these type of variables, but we may use monads to represent a specification’ state.

Up to now we have considered only functions which, given one or more input values,
would produce some result. This result could then be the input for other functions
(function composition). Although this form of specification is theoretically sufficient, it
is unrealistic for most computing systems.

One of the most important steps in a model based specification is to capture the
central object or objects of the problem and map those objects to data structures. In
Information Systems applications, for example, the central object might be a library
system or some other large data base[TM92].

This central object is called the system state, and instances of it are called states.
Often an operation may only need to access or change a small part of the state; all other
parts of the state are implicitly assumed to be unchanged.

4.5.2 VDM++

IFAD VDM-SL Toolbox have an interpreter for VDM++, which is a formal speci-
fication language intended to specify object oriented systems. The language is based on
VDM-SL, and has been extended with class and object concepts, which are also present
in languages like Smalltalk-80 and Java. This combination facilitates the development
of object oriented formal specifications [IFA00].
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The specification presented in 3.2 can be animated with that interpreter, like in the
following example:

> create s := new stackObj()
> create r := new stackObj()
> print s.PUSH(1)
> print r.PUSH(3)

In this case, two instances have been created (r and s) and operation PUSH was
executed in each one.

4.5.3 Implementation

We have used state monad to implement state variables and state reading and up-
dating. Haskell provides libraries that already define the state monad and functions that
will help state manipulation. In fact, the use of state monad is ”disguised”: we have
used state monad transformer applied to monad IO. This new monad (state + IO) was
then applied to the error monad transformer yielding another monad, with the features
we need (error + state + IO).

Using state and error monad transformers, already defined in Haskell libraries, the
IO monad and the error structure (CamilaError′), we have defined the following data
type,

type InterpState a = ErrorT CamilaError′ (StateT CamilaState IO) a
= ErrorT (StateT CamilaState IO (Either CamilaError′ a))
= ErrorT (StateT (CamilaState→ IO (Either CamilaError′ a,CamilaState)))

where CamilaState is:

data CamilaState = CamilaState { checkDTInv :: Bool,
checkPre :: Bool,
instances :: FiniteMap String (String, Dynamic)

}

CamilaState is the data type that holds state information. For the moment, our
state has three values:

• checkDTInv - if true, system will check data type invariants;

• checkPre - if true, system will check pre-conditions;

• instances - map that holds all instances: the keys are instances’ identifiers, the
values are those instances’ state.
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More precisely, the values of map instances are a pair (String, Dynamic) where
the first component represents the “class” name (used by the interpreter) and the second
component represents the instance’s state. We have wrapped the state with data type
Dynamic, in order to have an heterogeneous finite map. We will have to use injection
toDyn and projection fromDyn to get the “real” state.

A function operating on the state will be of type InterpState a, where a is the value
it returns. Since we have used Haskell libraries, we have access to some functions that
help changing variables and getting their state

available some functions that help us to change and get state variables. For instance,
the function that creates a new instance (and returns the new instances space) can be
defined as follows:

create :: (Typeable a) => String -> String -> a ->
InterpState (FiniteMap String (String,Dynamic))

create id t obj = do modify (\s -> s { instances = addToFM (instances s) id (t,(toDyn obj)) })
insts <- gets instances
return insts

4.5.4 Examples

In this section we can see some execution examples, using ghci. The haskell source is in
appendix (page 31).

camila@host:~/libs$ make ghci top=Camila/Examples/StackObj.hs
...
...

Prelude Camila.Examples.StackObj> exec obj_prog1
Top: 5
Stack: [5,3,1]
()

Prelude Camila.Examples.StackObj> exec obj_prog2
ERROR: Invariant violation

Prelude Camila.Examples.StackObj> exec obj_prog3
ERROR: Pre-condition violated!

4.6 Persistence

How that we have state, we want to keep it from computation to computation, i.e.,
we want state persistence. In order to have persistence and to animate specifications
defined using the methods described in this report, we have built a small interpreter
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which connects all blocks. This interpreter is based in hs-plugins2, a framework for
loading plugins written in Haskell into an application in runtime[PSSC04].

At this moment, the interpreter has as only purpose the animation of the concepts
explored throughout this report. The interpreter allows us to load our specifications, to
create new instances and to run operations on these instances. It also allows the program
to have persistence, i.e., to hold the state from computation to computation and while
the user interacts with it. We’ll show some examples in the section 4.7.1.

There is a important issue about the instances structure presented above, which is
defined as

instances :: FiniteMap String (String,Dynamic)

The problem is that, although Haskell libraries provide the data type Dynamic, we
could not use it in the interpreter. We had to use the Dynamic provided with hs-
plugins package. After several IRC and email discussions with Donald Bruce Stewart
(hs-plugins author), we found out that Data.Dynamic fails due to a static/dynamic typing
key problem. The solution is to use AltData.Dynamic provided with hs-plugins. The only
difference is that new types have to have an instance Typeable, rather than just ”deriving
Typeable”.

This small interpreter is very interesting in the way it makes possible to see the con-
nection between the mechanisms described in this report. User interaction is facilitated
because we have the possibility of running Haskell functions received as Strings. This
way, we can create customized commands ”on-the-fly” and run them.

We consider it very slow, but, we don’t think it’s for the monad use. In fact, we think
the reasons are:

• Every time we evaluate an expression, hs-plugins framework creates a temporary
file with some extra code, runs it and shows the result. We consider that the I/O
operations associated contribute significantly to time degradation;

• Every time we need to operate in an arbitrary instance state, we have to:

– get dynamic representation of the state;

– get the ”real” state using projection fromDyn

– run the desired operation in the above state: this is accomplished creating
a String with the command we would execute (using runInstance function
with the above state), running it with hs-plugins functions and updating the
instances state with the new state.

4.7 Creating object-oriented specifications

When creating an object-oriented specification, some systematic steps must be done.
Let’s build such a specification step-by-step. The specification we’ll build is the one of

a Stack Folder. Basically, we have a left stack and a right stack that, together, represent
a book: the read pages are in the left stack and the unread pages are in the right stack.
In section 5 we will present the same example.

2http://www.cse.unsw.edu.au/∼dons/hs-plugins
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First, we need to define the module name and to import the modules we need.

module Camila.Examples.Folder where

import Camila.Prelude
import Camila.Examples.StackAlg
import AltData.Typeable

The last import (AltData.Typeable) must be present in every specification, because
we need to define the instance variables as instance of class AltData.Typeable.

Next, we must define the instance variables and the initial state:

-- Instance Variables
data FolderIVars = FolderIVars { stateFolder :: (Stack,Stack) } deriving Show

-- Initial State
initialFolder = FolderIVars { stateFolder = ([],filter odd [1..4]) }

A important point is that specifications will have to have certain elements with fixed
names. Supposing the module name is Module, we will have to have the following fixed
names:

Instance variables - must begin with the module name, followed by the IV ars. Exam-
ples: ModuleIVars, FolderIVars, StackIVars.

Initial state - must begin with initial, followed by the module name. Examples: ini-
tialModule, initialFolder, initialStack.

State variables - must begin with state, followed by the module name and it must be a
tuple with all the desired values. Examples: stateModule, stateFolder, stateStack.

We also have to define the instance variables type as instance of class Typeable, so
that the interpreter can use injection toDyn on that type. It’s not very difficult, as we
can see:

-- We have to define FolderIVars as instance of AltData.Typeable to
-- allow the interpreter to make dynamic values
instance Typeable FolderIVars where

typeOf _ = mkAppTy (mkTyCon "FolderIVars") []

Finally, we must define the operations. Every operation op must be of type

op :: ST ivars a

where ivars is the type of the instance’s variables and a is the operation’s return
type. For instance, the operation that returns the current page of a book is:
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oppage :: ST FolderIVars Int
oppage = do (lpages,rpages) <- gets stateFolder

top <- liftE $ top rpages
return top

4.7.1 Examples

Examples of the interpreter working can be seen in section 5

5 Examples

In this section we will show a specification based on the mechanisms described in
this report.

The example we present in this section is the one of a Stack Folder. Basically, we
have a left stack and a right stack that, together, represent a book: the read pages are
in the left stack and the unread pages are in the right stack. In this book we can:

• read one page (opread): we pop one element of the right stack and push it to the
left stack;

• get one page back (opback): we pop one element of the left stack and push it to
the right stack;

• get the current page (oppage): we just have to return the top element of the right
stack.

In Haskell, we could define this example in the following way:

{-# OPTIONS -fglasgow-exts #-}
module Camila.Examples.Folder where

import Camila.Prelude
import Camila.Examples.StackAlg
import AltData.Typeable

-- Instance Variables
data FolderIVars = FolderIVars { stateFolder :: (Stack,Stack) } deriving Show

-- Initial State
initialFolder = FolderIVars { stateFolder = ([],filter odd [1..4]) }

-- We have to define FolderIVars as instance of AltData.Typeable to
-- allow the interpreter to make dynamic values
instance Typeable FolderIVars where

typeOf _ = mkAppTy (mkTyCon "FolderIVars") []

-- Operations
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-- opread: reads one page

-- opread has a pre-condition: when we reach the end of the book, we
-- can not read another page
data Folder_opread = Folder_opread FolderIVars deriving Show

instance Partial Folder_opread where
pre (Folder_opread f) = snd (stateFolder f) /= []

opread :: ST FolderIVars ()
opread = do (lpages,rpages) <- gets stateFolder

folder <- get
liftIO $ putStrLn $ "Before: " ++ show folder -- just to check state
liftE $ pre’ (Folder_opread folder) -- check pre-condition
rpages2 <- liftE $ pop rpages
lpages2 <- liftE $ push (head rpages) lpages
modify(\s -> s { stateFolder = (lpages2,rpages2) })
folder <- get
liftIO $ putStrLn $ "After: " ++ show folder -- just to check state

-- opback: gets back one page

-- opback has a pre-condition: when we reach the beginning of the
-- book, we can not go back any further
data Folder_opback = Folder_opback FolderIVars deriving Show

instance Partial Folder_opback where
pre (Folder_opback f) = fst (stateFolder f) /= []

opback :: ST FolderIVars ()
opback = do (lpages,rpages) <- gets stateFolder

folder <- get
liftIO $ putStrLn $ "Before: " ++ show folder -- just to check state
liftE $ pre’ (Folder_opback folder) -- check pre-condition
lpages2 <- liftE $ pop lpages
rpages2 <- liftE $ push (head lpages) rpages
modify(\s -> s { stateFolder = (lpages2,rpages2) })
folder <- get
liftIO $ putStrLn $ "After: " ++ show folder -- just to check state

-- oppage: returns the current page

oppage :: ST FolderIVars Int
oppage = do (lpages,rpages) <- gets stateFolder

top <- liftE $ top rpages
return top
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Next, we’ll see the interpreter in action. First, let’s start it:

camila@host(~)$ ./icamila
____ _ _

/ ___|__ _ _ __ ___ (_) | __ _
| | / _‘ | ’_ ‘ _ \| | |/ _‘ | Camila - Formal Specification System
| |__| (_| | | | | | | | | (_| | http://camila.di.uminho.pt
\____\__,_|_| |_| |_|_|_|\__,_| Type :? for help

Loading package base
Loading package lang
... linking ... done
camila>

Next, we need to load the Folder example:

camila> :l Camila.Examples.Folder
camila>

Now, we have to create a Folder instance:

camila> create f := new Folder
camila> print f
<FolderIVars>
camila>

As we can see, a new folder instance has been created. Using command print we
can see the type of the instance.

Now, we can run the defined operations on the instance f:

amila> eval f opread
Before: FolderIVars {stateFolder = ([],[1,3])}
After: FolderIVars {stateFolder = ([1],[3])}
()
camila> eval f opread
Before: FolderIVars {stateFolder = ([1],[3])}
After: FolderIVars {stateFolder = ([3,1],[])}
()
camila>

As we can see, we are able to run operations on instances and the interpreter allows
persistence! In fact, if we run opread once again, we should get a pre-condition error.
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camila> eval f opread
Before: FolderIVars {stateFolder = ([3,1],[])}
Pre-condition violated!
camila>

As expected, the pre-condition was violated. It’s very interesting to note that after
the error ocurrence, the rest of the operations are not evaluated. This is due to the
already mentioned monadic error propagation.

6 Conclusion

Before starting the project, the general idea was that stateless formal specifications
would be easily ”converted” to Haskell and object oriented specifications would be a
little more complicated. It’s proved that this initial idea was right: Haskell is so expres-
sive that the stateless specifications are almost directly translated. The object oriented
specifications need a little more work to be translated.

It’s important to note that the framework created allows, in a systematic and elegant
way, the animation of formal specifications. The systematic property is important in the
way it facilitates the conversion of VDM-SL to our framework. We believe this conversion
is not difficult and won’t offer great resistance.

The use of Haskell type classes and the monadic approach make the methodology
presented more elegant and structured. In pages 15 and 19 we’ve presented the difference
between using error monad and the traditional ”if ... then ... else” code, and we believe
that the monadic alternative is better, not only because it’s shorter but also because
it’s more structured. Using this alternative, to check or not a data type invariant or a
pre-condition is just determined by the existence of inv′ or pre′.

Finally, the interpreter we’ve created is significant in the sense it proves that it’s
possible to integrate all the concepts presented.

6.1 Limitations

Although we have demonstrated Haskell ’s capability to create programs that animate
formal specifications, there are several limitations in this work:

Debugging information - we consider debugging information important, and at this
moment, the only debugging information available is the error type;

Partiality code - to create a pre-condition, we need to create a local data type and then
define it as instance of class Partial. This methodology is not very pleasant and if
the Haskell prototype is not automatically generated, it can be a very tedious job;

Special cases - we don’t have much experience in formal specification and it’s possible
that some cases may be difficult to prototype, using the presented methodologies.
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6.2 Future work

As future work, we think it would be important to:

• create VDM-SL frontends capable of converting VDM-SL specifications to Haskell code
following the methodologies presented;

• create a good interpreter with automatic module loading and compiling to animate
the specifications;

• study the possibility of defining every mechanism as a monad transformer (see
[LHJ95]).
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A Haskell examples

A.1 Stack Algebra

{-# OPTIONS -fglasgow-exts #-}
module Camila.Examples.StackAlg where

import Camila.Prelude

-- Datatype definition
type Stack = [Int]

-- Datatype invariant
instance CData Stack where

inv s = (filter odd s) == s

-- Functions
init’ :: Stack
init’ = []

empty :: Stack -> CamilaError Bool
empty s = do inv’ s

return (s == [])

push :: Int -> Stack -> CamilaError Stack
push n s = do s1 <- Right ([n]++s)

inv’ s1

-- First, we define a local datatype
data Stack_pop = Stack_pop Stack deriving Show

-- Second, we define it as instance of Partial
instance Partial Stack_pop where

pre (Stack_pop s) = not $ runError $ empty s

-- Pop is defined as follows:
pop :: Stack -> CamilaError Stack
pop s = do inv’ s

pre’ (Stack_pop s)
return (tail s)

data Stack_top = Stack_top Stack deriving Show

instance Partial Stack_top where
pre (Stack_top s) = not $ runError $ s == []

top :: Stack -> CamilaError Int
top s = do inv’ s

pre’ (Stack_top s)
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return (head s)

data Stack_add = Stack_add Stack deriving Show

instance Partial Stack_add where
pre (Stack_add s) = length s >= 2

add :: Stack -> CamilaError Stack
add s = do inv’ s

pre’ (Stack_add s)
ret <- Right $ [s!!0 + s!!1] ++ tail (tail s)
return ret

-- Examples:

alg_prog1 = do s <- push 1 []
s1 <- push 2 s -- invariant violation
s2 <- pop s1
return s2

alg_prog2 = do s <- push 1 []
s1 <- pop s
s2 <- pop s1 -- pre-condition violated
return s2

alg_prog3 = do s1 <- push 1 []
s2 <- push 3 s1
return s2

A.2 Stack Object

{-# OPTIONS -fglasgow-exts #-}
module Camila.Examples.StackObj where

import Camila.Prelude
import Camila.Examples.StackAlg
import AltData.Typeable

-- instance variables
data StackIVars = StackIVars { stateStack :: Stack } deriving Show
-- initial state
initialStack = StackIVars { stateStack = init’ }

-- We have to define StackIVars as instance of AltData.Typeable,
-- to allow the interpreter to make dynamic values
instance Typeable StackIVars where

typeOf _ = mkAppTy (mkTyCon "StackIVars") []
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-- operations
opclear :: ST StackIVars ()
opclear = modify (\s -> s { stateStack = init’ })

oppush :: Int -> ST StackIVars ()
oppush a = do actual <- gets stateStack

--liftE $ inv’ actual -- push verifies it
new <- liftE $ push a actual
modify (\s -> s { stateStack = new})

oppop :: ST StackIVars Int
oppop = do actual <- gets stateStack

t <- liftE $ top actual
new <- liftE $ pop actual
modify (\s -> s { stateStack = new })
return t

optop :: ST StackIVars Int
optop = do actual <- gets stateStack

element <- liftE $ top actual
return element

-- Examples (of state + error)
obj_prog1 = do opclear

oppush 1
oppush 3
oppush 5
i <- optop
liftIO $ putStrLn $ "Top: " ++ show i
stack <- gets stateStack
liftIO $ putStrLn $ "Stack: " ++ show stack

obj_prog2 = do opclear
oppush 1
oppush 3
oppush 2
i <- optop
liftIO $ putStrLn $ "Top: " ++ show i
stack <- gets stateStack
liftIO $ putStrLn $ "Stack: " ++ show stack

obj_prog3 = do opclear
oppop

--- Functions needed to animate the examples
exec :: (Show a) => ST StackIVars a -> IO ()
exec p = do result <- run p

if (isLeft result) then putStrLn $ "ERROR: " ++ reason (unLeft result)
else putStrLn $ show $ unRight result
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run p = runInstance p initialStack

unLeft (Left a) = a
unRight (Right a) = a

isRight (Right _) = True
isRight _ = False

isLeft (Left _) = True
isLeft _ = False
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