
Aiding Program Comprehension by Static and Dynamic Feature Analysis

Thomas Eisenbarth, Rainer Koschke, Daniel Simon

Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
{eisenbts, koschke, simondl}@informatik.uni-stuttgart.de
its
lly,

re-
-
an

g
an
e
. A
m-

o a

.
r-

se
n-

ub-
nts.
le-

st-

.
ief
n 3
ns
on-
nts,
o-
h-
ase
Abstract

Understanding a system’s implementation without
prior knowledge is a hard task for reengineers in general.
However, some degree of automatic aid is possible. In this
paper, we present a technique building a mapping between
the system’s externally visible behavior and the relevant
parts of the source code. Our technique combines dynamic
and static analyses to rapidly focus on the system’s parts
urgently required for a goal-directed process of program
understanding.

1. Introduction

Understanding how a certain feature is implemented is
a major problem of program understanding, especially
when the understanding is directed to a certain goal like
changing or extending the feature. Before real understand-
ing starts, one has to localize the implementation of the
feature in the code. Systems often appear as a large num-
ber of modules each containing hundreds of lines of code.
It is in general not obvious which components implement
a given feature. Typically any existing documentation is
outdated, the system’s original architects are no longer
available or their view is outdated due to changes made by
others.

One option is to completely reverse engineer the sys-
tem in order to exhaustively identify its components. We
integrated published automatic techniques for component
retrieval in an incremental semi-automatic process, in
which the results of selected automatic techniques are val-
idated by the user [13].

However, the problem of assigning features to compo-
nents is not solved by such an exhaustive analysis.
Besides, components implementing a specific set of fea-
tures suffice in many cases, so exhaustive methods are not
cost-effective and feature-oriented search focusing on the
components of interest is needed.

This paper describes a process and its supporting tech-
niques to identify components implementing a specific set
of related features. The process is automated to a great
extent. It combines static and dynamic analyses and uses
concept analysis – a mathematical technique to investigate
binary relations – to derive correspondences between fea-
tures and components.

1.1. Terminology

A feature f is a realized functional requirement (the
term feature is intentionally defined weakly because
exact meaning depends on the specific context). Genera
the term feature also subsumes non-functional requi
ments. However, in the context of this paper only func
tional features are relevant, i.e., we consider a feature
observable result of value to a user.

A scenario s is a sequence of user inputs triggerin
actions of a system that yields an observable result to
actor [3]. A scenario is said to execute a feature if th
observable result is executed by the scenario’s actions
scenario may execute multiple features. Scenarios rese
ble use cases but do not include options or choices, s
use case subsumes multiple scenarios.

A component is a computational unit of a system
Components consist of an interface which offers the se
vices of the component and the implementation of the
services. The services of the component coherently co
tribute to the purpose of the component. We address s
programs as well as sets of subprograms as compone
The result of our technique are sets of subprograms imp
menting features.

A subprogram is a function or procedure according to
the programming language. Subprograms are the lowe
level kind of components.

The execution summaryof a given program run lists
all subprograms called during the run. Theexecution
trace lists the sequence of all performed calls.

A feature-component mapdescribes which compo-
nents implement a given set of relevant features.

1.2. Overview

The remainder of this article is organized as follows
Section 2 starts with related research and gives a br
overview on the process presented in this article, Sectio
briefly introduces concept analysis. Section 4 explai
how concept analysis can be used to derive the corresp
dence of scenarios executing features and compone
Section 5 describes how static information can be incorp
rated. Section 6 shows our implementation of the tec
nique and Section 7 describes our experiences in a c
study. Section 8 concludes the paper.

hen
r,
be

-
y

or
s
i-
e
s

e
ps
ela-
y
or
al
elp
a

n
atic
ro-
d-

are
a
c
e
ce
he

):

ds

ro-

s
a-
by
g

2. Related Research on Localizing Features

Chen and Rajlich [5] propose a semi-automatic method
for feature localization, in which an analyst browses the
statically derived system dependency graph (SDG) [9].
The SDG describes detailed dependencies among subpro-
grams, types, and variables at the level of individual
expressions and statements. Even though navigation on the
SDG is computer-aided, the analyst takes on all the search
for a feature’s implementation. Thus, this method is less
suited to quickly and cheaply localize features if it starts
without any pre-knowledge on where to begin searching.

Moreover, the method relies on the SDG’s quality. If
the SDG includes overoptimistic assumptions on function
pointers, the analyst may miss functions called via func-
tions pointers. If it reflects too conservative assumptions,
the search space increases drastically. It is statically unde-
cidable which control flow paths are taken at runtime, so
that every conservative static analysis will yield an overes-
timated search space. In contrast dynamic analyses exactly
tell which parts are really used at runtime – though only
for a particular run. However, dynamic analyses recording
the execution trace only view the system as a black box
giving no insights in internal aspects, like conditions under
which subprograms are called.

Wilde and Scully [21] use a dynamic analysis to local-
ize features as follows:

1. Theinvoking input set I(i.e., a set of test cases or – in
our terminology – a set of scenarios) is identified that
will invoke a feature.

2. The excluding input set Eis identified that will not
invoke a feature.

3. The program is executed twice usingI and E sepa-
rately.

4. By comparison of the two resulting execution traces,
the subprograms can be identified that implement the
feature.

Wilde and Scully focus on localizing specifically
needed rather than all required components. For deriving
all required components, the execution trace for the
including input set is sufficient. By subtracting all subpro-
grams in the execution trace for the excluding input set
from those in the execution trace for the invoking input
set, only those subprograms remain that specifically deal
with the feature. This information alone is not sufficient to
identify the interface and the constituents of a component
in the source code, but these subprograms are at least a
starting point for a more detailed static analysis.

However, Wilde and Scully’s approach deals with one
feature at a time and gives little insight into connections
between a set of related features. If a set of related features
is to be considered rather than a single feature, one could

repeat the analysis using each feature separately and t
unite the specifically required subprograms. Howeve
even then relationships among pairs of features cannot
identified.

Our own contribution. Our technique combinesstatic
and dynamicanalyses to identify the components imple
menting a set of related features. Dynamic information b
way of execution summaries generated by a profiler f
different scenarios is used to identify the subprogram
executed when any of the given features is invoked, sim
larly to Wilde and Scully. One scenario represents th
invocation of preferably one single feature only and yield
all subprograms executed for this feature.

Beyond simply localizing all required subprograms, w
use concept analysis to derive detailed relationshi
between features and executed subprograms. These r
tionships identify subprograms jointly required by an
subset of features, classify subprograms as low-level
high-level with respect to the given set of features, reve
additional dependencies between subprograms, and h
to identify the subprograms that together constitute
larger component during static analysis.

The information gained by concept analysis is the
used to guide a subsequent static analysis along the st
dependency graph in order to narrow the executed subp
grams to those that form self-contained and understan
able feature-specific components. Subprograms that
only utility subprograms used as building blocks for
component but not containing any application-specifi
logic are sorted out. Additional static analyses, lik
strongly connected component identification, dominan
analysis, and program slicing [9] support the search for t
components of interest.

The general process is as follows (explanations follow

1. identify the set of relevant featuresF = { f1.. fn}

2. identify scenariosA = {S1.. Sq} so that the features in
F are covered

3. generate execution summaries (profiler); step 3 yiel
all required subprogramsO = {s1 …sp} for each sce-
nario

4. create relation tableR such that (S1, s1), (S1, s2), ..,
(Sq, sp) ∈R

5. perform concept analysis for (O, A,R)

6. identify relationships between scenarios and subp
grams

7. perform static dependency analyses

In [6], we explained the first six steps of this proces
based on dynamic information only that results in a fe
ture-component map. This article extends the process
additionally exploiting static analyses and by providin

e
es

g

n-
-
he

s

another case study.

Applicability. The retrieval of the feature-component map
is based on dynamic information where all subprograms
are collected that are executed when a feature is invoked.
Invoking externally visible features is comparatively sim-
ple when a graphical user interface is available. Then, usu-
ally only a menu selection or a similar interaction is
necessary. In the case of a batch system, one has to vary
command line switches and to provide different sets of test
data to invoke a feature. However, one might need some
knowledge on internal details of a system in order to find
suitable test data.

Our technique is primarily suited for functional fea-
tures that may be mapped to components. In particular
non-functional features do not easily map to components.
For example, features would have to take time into
account for applications where timing is critical (because
it may result in different behavior).

The technique is not suited for features that are only
internally visible, like a program using a garbage collector.
Strictly speaking, internal features may be viewed as
implementation details. It is not clear how to execute inter-
nal features from outside and how to derive from an execu-
tion summary how these features are implemented – or if
they are implemented at all.

3. Concept Analysis

Concept analysis is a mathematical technique that pro-
vides insights into binary relations. The mathematical
foundation of concept analysis was laid by Birkhoff in
1940. Primarily Snelting has recently introduced concept
analysis to software engineering. Since then it has been
used to evaluate class hierarchies [19], explore configura-
tion structures of preprocessor statements [14, 18], for re-
documentation [15], and to recover components
[4,8,10,16,17,20].

The binary relation in our specific application of con-
cept analysis to derive the scenario-subprogram relation-
ships states which subprograms are required when a
feature is invoked.

Concept analysis is based on a relationR between a set
of objectsO and a set of attributesA, henceR ⊆ O × A.

The tupleC = (O, A, R) is calledformal context. For a
set of objectsO ⊆ O the set ofcommon attributes σ is
defined as:

Analogously, the set ofcommon objectsτ for a set of
attributesA⊆ A is defined as:

In Section 4.1 the formal context for applying concept
analysis to derive the scenario-subprogram relationships

will be laid down as follows;

• subprograms will be considered objects,

• scenarios will be considered attributes,

• a pair (subprogram s, scenario S) is in relationR if s is
executed whenS is performed.

However, here – for the time being – we will use th
binary relation between arbitrary objects and attribut
shown in Table 1 as an abstract example. An objectoi has
attributeaj if row i and columnj is marked with an✕ in
Table 1 (the example stems from Lindig and Sneltin
[10]). For this table, also known asrelation table, the fol-
lowing equations hold:

A pair (O, A) is calledconceptif
holds, i.e., all objects share all attributes. For a conceptc =
(O, A), O is theextent of c, denoted byextent(c), andA is
the intent of c, denoted byintent(c).

Informally, a concept corresponds to a maximal recta
gle of filled table cells modulo row and column permuta
tions. For example, Table 2 contains the concepts for t
relation in Table 1.

The set of all concepts of a given formal context form
a partial order via:

 or equivalently with

.

If c1 ≤ c2 holds, thenc1 is called asubconceptof c2

andc2 is calledsuperconcept of c1. For instance,
({ o2, o4}, { a3, a4, a5}) ≤ ({ o2, o3, o4}, { a3, a4}) is true in

σ O() a A∈ o O∈() o a,() R∈∀{ }=

τ A() o O∈ a A∈() o a,() R∈∀{ }=

a1 a2 a3 a4 a5 a6 a7 a8

o1 ✕ ✕

o2 ✕ ✕ ✕

o3 ✕ ✕ ✕ ✕ ✕

o4 ✕ ✕ ✕ ✕ ✕ ✕

Table 1: Example relation.

C1 ({o1, o2, o3, o4}, ∅)

C2 ({o2, o3, o4}, {a3, a4})

C3 ({o1}, {a1, a2})

C4 ({o2, o4}, {a3, a4, a5})

C5 ({o3, o4}, {a3, a4, a6, a7, a8})

C6 ({o4}, {a3, a4, a5, a6, a7, a8})

C7 (∅, {a1, a2, a3, a4, a5, a6, a7, a8})

Table 2: Concepts for Table 1.

σ o1{ }() a1 a2,{ }=

τ a7 a8,{ }() o3 o4,{ }=

A σ O()= O∧ τ A()=

O1 A1,() O2 A2,()≤ O1 O2⊆⇔

O1 A1,() O2 A2,()≤ A1 A2⊇⇔

n-
xt
g

h
ch
re.
r-
d

ply

-

ds
bly
rd-
ion
all
ol-
n.
n

rios
not
Table 2.
The setL of all concepts of a given formal context and

the partial order≤ form a complete lattice, calledconcept
lattice:

The infimum of two concepts in this lattice is com-
puted by intersecting their extents as follows:

The infimum describes a set of common attributes of
two sets of objects. Similarly, thesupremum is deter-
mined by intersecting the intents:

The supremum ascertains the set of common objects,
which share all attributes in the intersection of two sets of
attributes.

The concept lattice for the example relation in Table 1
can be graphically depicted as a directed acyclic graph
whose nodes represent concepts and whose edges denote
the superconcept/subconcept relation < as shown in
Figure 1. The most general concept is called thetop ele-
ment and is denoted by . The most special concept is
called thebottom element and is denoted by .

The combination of the graphical representation in
Figure 1 and the contents of the concepts in Table 2 form
the concept lattice. The complete information can be visu-
alized in a more readable equivalent way by marking only
the graph node with an attributea ∈ A whose represented
concept is the most general concept that hasa in its intent.
Analogously, a node will be marked with an objecto ∈ O
if it represents the most special concept that haso in its
extent. The unique elementµ in the concept lattice marked
with a is therefore:

EQ (1)

The unique elementγ marked with objecto is:

EQ (2)

We will call a graph representing a concept lattice
using this marking strategy asparse representationof the
lattice. The equivalent sparse representation for Figure 1 is

shown in Figure 2. The content of a nodeN in this repre-
sentation can be derived as follows:

• the objects ofN are all objects at and belowN,

• the attributes ofN are all attributes at and aboveN.

For instance, the node in Figure 2 marked witho2 and

a5 is the concept ({o2, o4}, {a3, a4, a5}) .

4. Dynamic Analysis

In order to derive the feature-component map via co
cept analysis, one has to define the formal conte
(objects, attributes, relation) and to interpret the resultin
concept lattice accordingly.

4.1. Context for Scenarios and Subprograms

The goal of the dynamic analysis is to find out whic
subprograms contribute to a given set of features. For ea
feature, a scenario is prepared that exploits this featu
Hence, subprograms will be considered objects of the fo
mal context, whereas scenarios will be considere
attributes. In the reverse case, the concept lattice is sim
inverted but the derived information will be the same.

The relation for the formal context necessary for con
cept analysis is thus defined as follows:

(s, S) ∈ R if and only if subprograms is required
for scenarioS; a subprogram is required when it
needs to be executed.

In order to obtain the relation, a set of scenarios nee
to be prepared where each scenario executes prefera
only one relevant feature. Then the system is used acco
ing to the set of scenarios, one at a time, and the execut
summaries are recorded. Each system run yields
required subprograms for a single scenario, i.e., one c
umn of the relation table can be filled per system ru
Applying all scenarios provides the complete relatio
table.

4.2. On Features and Scenarios

Because one feature can be invoked by many scena
and one scenario can invoke several features, there is

Figure 1. Concept lattice for Table 1.

L C() O A,() 2
O

2
A×∈ A σ O()= O τ A()=∧{ }=

O1 A1,() O2 A2,()∧ O1 O2∩ σ O1 O2∩(),()=

O1 A1,() O2 A2,()∨ τ A1 A2∩() A1 A2∩,()=

C1

C5

C7

C2

C4C3

C6

<

concept

⊥

µ a() c L C()∈ a intent c()∈{ }∨=

γ o() c L C()∈ o extent c()∈{ }∧=

o4

a1, a2
o1

a5
o2

a6, a7, a8
o3

a3, a4

Figure 2. Sparse representation of Figure 1.

e
the

t
h
n-
to
be

to
ns
ly.
-

ep-

t-

e-

de

rt-

se

at

at

nd
one
be
always a strict correspondence between features and sce-
narios. If there is ann:m mapping between scenarios and
features, one has to locate the concepts in the lattice where
scenarios contributing to a feature overlap. Assume we
analyze a drawing tool and features are the ability to draw
different types ofobjects, like circles, rectangle, etc., and
the ability to apply differentactionson drawn objects, like
move, rotate, or scale. Let us further assume that we have
four scenarios: scenarioSA is “draw a circle and move it”,
SB is “draw a circle and scale it”, SC is “draw a rectangle

and move it”,andSD is “draw a rectangle and scale it”. In
the concept lattice for these scenarios, the concept includ-
ing SA andSC will include all subprograms related to the
featuremovewhereas the concept includingSB and SD

contains the subprograms for thescalingfeature. The con-
cept includingSA andSB includes all subprograms needed
to drawcircles, the concept includingSC andSD includes
all subprograms related torectangles. Because features are
combined in scenarios, one has to interpret the results
revealed by the concept lattice. For instance, if the system
is implemented in an object-oriented style in which the
actions on each object type are implemented by a separate
subprogram, one will get concepts each including one
object type and one action. Presumably, there are some
subprograms needed for all operations on circles (like
drawing and hiding), which will go into one subconcept
(see Figure 3).

In an alternative functional-style implementation, in
which each subprogram implements actions on different
types of objects, one will get one concept for each action
including scenarios for all object types (see Figure 4).
Interestingly enough, the concept lattice will thus show
whether an object-oriented or functional-style implemen-
tation was chosen.

In most cases the relationship between scenarios and
features is a 1:1 mapping or is at least intuitively clear

from the concept lattice. Consequently, we will assum
that a scenario can easily be mapped onto a feature in
following.

4.3. Interpretation of the Concept Lattice

Concept analysis applied to the formal contex
described in the last section yields a lattice, from whic
interesting relationships can be derived. These relatio
ships can be fully automatically derived and presented
the analyst such that the theoretical background can
hidden. The only thing an analyst has to know is how
interpret the derived relationships. This section explai
how interesting relationships can be derived automatical

As already abstractly described in Section 3 the follow
ing base relationships can be derived from the sparse r
resentation of the lattice (note the duality):

• A subprograms is required for all scenarios at and
aboveγ(s) – as defined by EQ(1) on page 4 – in the la
tice.

• A scenarioS requires all subprograms at and below
µ(S) – as defined by EQ(2) on page 4 – in the lattice.

• A subprograms is specific to exactly one scenarioS if
S is the only scenario on all paths fromγ(s) to the top
element.

• A scenarioSis specific to exactly one subprograms if s
is the only subprogram on all paths fromµ(S) to the
bottom element (i.e,s is the only subprogram required
to implement scenarioS).

• Scenarios to which two subprogramss1 ands2 jointly
contribute can be identified byγ(s1) ∨ γ(s2). In the lat-
tice, it is the closest common node toward the top el
ment starting at the nodes to whichs1 and s2 are
attached. All scenarios at and above this common no
are those jointly implemented bys1 ands2.

• Subprograms jointly required for two scenariosS1 and
S2 are described byµ(S1) ∧ µ(S2). In the lattice, it is the
closest common node toward the bottom element sta
ing at the nodes to whichS1 andS2 are attached. All
subprograms at and below this common node are tho
jointly required forS1 andS2.

• Subprograms required for all scenarios can be found
the bottom element.

• Scenarios that require all subprograms can be found
the top element.

Beyond these relationships between subprograms a
scenarios, further useful aspects between scenarios on
hand and between subprograms on the other hand may
derived:

Figure 3. Concept lattice A.

circlemovecirclescale circlealign

circlescale
circlemove
circlealign
circledraw

scenario1
scenario2

...

Key:

Figure 4. Alternative concept lattice B.

circlemove
rectmove
linemove

circlerotate
rectrotate
linerotate

circlealign
rectalign
linealign

l-
nd

tice

elp
e
be
ro-

all

han
hed
en-
is

o-
c
ro-

ere
nt.

ro-

t.
he
e

-

nd
-

nt
fea-
ext
ly
ch

to
ut
ram
re
an
of
• If γ(s1) < γ(s2) holds for two subprogramss1 and s2,
then subprograms2 is more specific with respect to the
given use case than subprograms1 becauses1 contrib-
utes not just to the features for whichs2 contributes,
but also to other features.

• If µ(S1) < µ(S2) holds for two scenariosS1 andS2, then
scenarioS2 is based on scenarioS1 because ifS2 is exe-
cuted, all subprograms in the extent ofµ(S1) need also
to be executed.

Thus the lattice also reflects the level of application
specificity. The information described above can be
derived by a tool and fed back to the analyst. Inspecting
the relationships derived from the concept lattice, a deci-
sion may be made to analyze only a subset of the original
features in depth due to the additional dependencies that
concept analysis could reveal. All subprograms required
for these features (easily derived from the concept lattice)
form a starting point for further static analyses to identify
components, to investigate quality (like maintainability,
extractability, and integrability) and to estimate effort for
subsequent steps.

5. Static Dependency Analysis

From the concept lattice, we can easily derive all sub-
programs executed for any set of relevant features (note
that we use features and scenarios as synonyms from here
on, see Section 4.2). However, this gives us only a set of
subprograms, but it is not clear which of these subpro-
grams form a feature-specific component and which of
them are general-purpose subprograms that are only used
as building blocks for other components but do not contain
any feature-specific logic. Given a featuref of interest this
question can be answered as follows:

• As a first approximation, all subprograms in the extent
of conceptµ(f) according to EQ(2) on page 4 may
jointly constitute a component.

• Irrelevant subprograms among these subprograms can
be sorted out by a goal-directed manual inspection.

5.1. Building the Starting Set

All subprograms in the extent of a concept jointly con-
tribute to all features in the intent of the concept, which
immediately follows from the definition of a concept.
However, there may also be subprograms in the extent that
contribute to other features as well, so they are not specific
to the given feature. There may be subprograms in the
extent that do not contain any feature-specific code at all.
Thus, subprograms in the extent of the concept need to be
inspected manually. Because there are no reliable criteria

known that distinguish feature-specific code from genera
purpose code, this analysis cannot be automated a
human expertise is necessary. However, the concept lat
may narrow the candidates for manual inspection.

The concept lattice and the dependency graph can h
to decide in which order the subprograms are to b
inspected such that the effort for manual inspection can
reduced to a minimum. Since we are interested in subp
grams most specific to a featuref we start at those subpro-
gramss that are attached toµ(f), i.e., for whichµ(f) = γ(s)
holds. If there are no such subprograms, we collect
concepts belowµ(f) with minimal distance fromµ(f) to
which subprograms are attached. There can be more t
one concept, so we unite all subprograms that are attac
to one of these concepts. The subset of subprograms id
tified in this step and accepted by manual inspection
called thestarting set S(f).

5.2. Inspection of the Static Call Graph

Next, we inspect all subprograms called from subpr
grams inS(f). We generate the call graph (as one specifi
subset of the dependency graph) that contains all subp
grams transitively called by subprograms inS(f)as derived
by a static analysis. We concentrate on subprograms h
because they are the active constituents of a compone
Global variables and types may be added once all subp
grams have been identified. Subprograms inS(f) are said
to be therootsof this call graph. A static points-to analysis
is needed to resolve calls via function pointers if presen
The static points-to analysis may take advantage of t
knowledge about actually called functions yielded by th
dynamic analysis.

It is sufficient to consider only those subprogramss for
which s ∈ extent (µ(f)) holds because only those subpro
grams are actually called whenf is invoked according to
the dynamic analysis. Hence, we combine static a
dynamic information to eliminate conditional static sub
program calls in order to reduce the search space.

If the component for the featuref is to be understood,
calls to subprograms not inextent(µ(f)) can be safely
ignored in the original source code in order to cut appare
static dependencies – unless there is another relevant
ture relying on the same subprogram and in whose cont
the call is actually executed. In this case, one can app
slicing techniques to separate the code relevant for ea
feature.

Once the call graph is generated, it can be traversed
inspect subprograms. Any kind of traversal is possible, b
a depth-first search is most suited because a subprog
can only be understood if all its called subprograms a
understood. Moreover, in a breadth-first search, a hum
has to cope with continuous context switches. The goal

po-

t’s
o-

o-
ur-
t
n

-

n-
kit
m
ed
G
den-
an
s,
n-
he
-
re-
es

i-
al
ed
p-

tion

he
the inspection is to sort out subprograms that do not
belong to the component in a narrow sense because they
do not contain feature-specific code. Two additional analy-
ses gather further information useful while navigating on
the call graph:

• Strongly connected component analysisis used to iden-
tify cycles in the call graph: If there is one subprogram
in a cycle that contains feature-specific code, all sub-
programs of the cycle need to be added to the compo-
nent because of the cyclic dependency.

• Dominance analysisis used to identify subprograms
that are local to other subprograms. A subprograms1 is
said to dominate another subprograms2 if every path in
the call graph from one of its roots inS(f)to s2 contains
s1. In other words,s2 can only be called by way ofs1. If
a subprograms is found to be feature-specific, then all
its dominators also need to be added to the component,
because they need to be called in order fors to be exe-
cuted. If neither of a dominator’s dominatees contain
feature-specific code and the dominator itself is not
feature-specific, then the dominator is a clear cutting
point as all its dominatees are local to it. Consequently,
the dominator and all its dominatees can be safely
omitted while understanding the system.

Inspection is done along the call relation in the call
graph rather than following a top-down traversal in the
concept lattice because the lattice does not really reflect
the dependencies:γ(s1) > γ(s2) does not imply thats1 calls
s2. However, the concept lattice may still provide useful
information for the inspection. In Section 4.3 we made the
observation that the lower a conceptγ(s) is in the lattice,
the more general subprograms is as it serves more fea-
tures – and vice versa. Thus, the concept lattice gives us
insight into the level of abstraction of a subprogram and,
therefore, contributes to the degree of confidence that a
specific subprogram contains feature-specific code.

If more than one feature is relevant, one simply unites
the starting sets for each feature and then follows the same
approach. For more than one feature, the concept lattice
provides insight into feature interaction and identifies sub-
programs jointly used by several features. Such subpro-
grams can then be considered a component of their own.
Hence, not only one component is detected but the call
graph is partitioned into several connected components by
merging connected concepts in the lattice and by filtering
out subprograms in their extent.

Once all subprograms have been identified, static
dependency analysis, e.g., program slicing, can be used to
extract the components’ code including necessary variable
and type declarations. Moreover, static dependency analy-
sis will also be used to identify theprovided interfaceof

the extracted components – those elements of a com
nent used in other parts of the system – and therequired
interface– those elements of the system the componen
elements rely on and that are not declared by the comp
nent itself.

6. Implementation

The implementation of detecting the executed subpr
grams per scenario and applying concept analysis is s
prisingly simple (if one already has a tool for concep
analysis). Our prototype for a Unix environment is a
opportunistic integration of the following parts:

• Gnu C compilergcc to compile the system using a
command line switch for generating profiling informa
tion,

• Gnu object code viewernm and a short Perl script in
order to identify all functions of the system (as
opposed to those included from standard libraries),

• Gnu profilergprof and a short Perl script to ascertain
the executed functions in the execution summary,

• concept analysis toolconcepts [11],

• graph editorGraphlet [2] to visualize the concept lat-
tice,

• one short Perl script to convert the file formats ofcon-
cepts andGraphlet (147 LOC),

• and our extended version of Rigi [22].

For deriving the static dependency graph and to ide
tify components, we have developed the Bauhaus tool
[1]. It allows deriving detailed dependencies as syste
dependency graph (SDG) [9] and more coarse-grain
dependencies as resource flow graph (RFG) [12]. An SD
describes set-use data dependencies and control depen
cies at the level of expressions and statements, while
RFG contains only global declarations (global variable
user-defined types, and subprograms) and their relatio
ships (variable access, signature relations, calls, etc.). T
RFG is derived from the SDG by abstracting from individ
ual expressions and statements and is better suited for p
sentation to a human analyst. The Bauhaus toolkit us
Rigi [22] to visualize the RFG. Rigi supports graph nav
gation and provides immediate access to the origin
source code for a more detailed investigation. We add
multiple additional automatic analyses specifically to su
port component retrieval [13], like identification of cyclic
dependencies and local (i.e., dominated) parts (see Sec
5.2).

7. Case Study

We analyzed two web browsers (see Table 3) using t

v-

he
as
up
s
se

d
ase

e
fea-
or-
ly,
rio

e-
as
m,
in
er-

as
en-

r-
d

-
i-
ng
e-

o-
same set of relevant related features. The concept lattice
for each of these systems was derived as described in Sec-
tion 6. The required subprograms as identified by dynamic
analysis and the relationships derived by concept analysis
formed a starting point for the static dependency analysis.
The static dependency analysis was done on the resource
flow graph [12] using the Bauhaus toolkit. The experi-
ences are reported in this section.

7.1. Case Study Setup

In two experiments,History andBookmark, we tried to
understand how two specific sets of related features are
implemented in both browsers using the process described
above. The goal of this analysis was to recover the feature-
specific components and the way they interact, i.e., to
reverse engineer a partial description of the software archi-
tecture. The partial software architecture, for instance,
allows one to decide whether feature-specific components
can be extracted from one system and integrated into
another system with only minor changes. Chimera does
not implement all features that Mosaic provides and we
wanted to find out whether the respective feature-specific
components of Mosaic can be reused for Chimera.

Use caseHistory (H) : Chimera allows going back in
the history of already visited URLs. However, Chi-
mera does not have aforwardbutton that allows a user
to move forward in the history again after theback
button was used. Mosaic has both abackandforward
button. In this experiment,going backandgoing for-
ward were considered related features.

Use caseBookmark (B): Both Mosaic and Chimera
offer bookmarks for visited URLs. URLs may be
bookmarked, and bookmarked URLs may be loaded
and removed. We considered the following related
features:addition of a new bookmark for a currently
viewed URL, removal of a bookmark, andnavigation
to a bookmarked URL.

The question we want to answer in our case study was
as follows:

Identification and extraction: How are the history
and the bookmark features implemented in Mosaic?
What are the interfaces between the specific compo-
nents that implement these features and the rest of
Mosaic? Analogously for Chimera’s partial imple-
mentation of these features. In both cases, a partial

description of the software architecture was reco
ered.

7.2. Scenarios for Dynamic Analysis

For each experiment and each browser, we ran t
browser in a start-end scenario in which the browser w
started and immediately quit in order to separate start-
and shutdown code. The following additional scenario
were defined specifically to the two experiments. Use ca
History was covered by the following three scenarios:

(H1) basic scenariodoing nothing but browsing,

(H2) scenariousing the back button, and

(H3) scenariousing the back and forward buttons.
For Chimera, the last scenario was not performe

(because Chimera possesses no forward button). Use c
Bookmark was covered by the following four scenarios:

(B1) basic scenario:simply opening and closing the
bookmark window,

(B2) scenario:adding a new bookmark for the cur-
rently displayed URL,

(B3) scenario:removing a bookmark,

(B4) scenario:selecting a bookmark and visiting the
associated URL.

Each scenario was immediately ended by quitting th
respective system. We provided scenarios that use one
ture only except for one scenario: One cannot use the f
ward button without using the back button. Consequent
the concept containing subprograms executed for scena
(H2) is a subconcept of the concept related to (H3). Lik
wise, a bookmark can only be deleted when an URL h
been added before. However, to circumvent this proble
we started the browser with a non-empty bookmark file
all scenarios. Thus, we did not consider the case of ins
tion into an empty bookmark list.

7.3. Static Dependency Analysis

In the dependency graph for the browsers (given
RFG, see Section 6), visualized using the Bauhaus ext
sion to Rigi, we derived all statically transitively called
functions (using Rigi’s basic selection facilities) and inte
sected the static information with the actually execute
functions manually. We additionally filtered out all func
tions specific to HTML and the X-window-based graph
cal user interface guided by the browser’s proper nami
conventions. These functions were all in the bottom el
ment of the concept lattice.

7.4. Results

Table 4 provides a summary of the numbers of subpr

System Version KLOC (wc) #subprograms

Mosaic 2.6 51,440 701

Chimera 2.0a19 38,208 928

Table 3: Analyzed web browsers.

) is
L,
n

m
nt –
l.
be
” as
is-
s-

es
ra
h

k-
ok-
w

get
)
k-

ic

all
xe-
pt
ze
fic
, a
s to
grams that needed to be further considered in each step
and shows how the search space could be reduced in each
step. (H) denotes the history, (B) the bookmark experi-
ment. The total number of all functions of the kernels (not
including libraries such ashtml, jpeg, zlib) are in column
(1), the number of actually executed subprograms for each
scenario is shown in column (2). All functions statically
called by subprograms selected from the set of dynami-
cally executed functions in upper concepts of the lattice
are in column (3). The intersection of column (2) and (3)
is contained in column (2)∩ (3). Columnrelevantreports
all functions in column (2)∩ (3) that are specific to the
selected features according to our manual inspection. All
other functions are used for other purposes than book-
marks and histories.

Eventually, only a small number of subprograms
needed to be inspected more thoroughly due to the top-
down inspection process. As an example, Figure 5 shows
the remaining subprograms of Chimera (omitting their
names) relevant to the history experiment. This picture
clearly shows the possible cutting points in the depen-
dency graph between functions specific to the history fea-
tures (upper region) and non-specific functions (lower
region).

We recovered the parts of the architecture of Mosaic
and Chimera relevant to the two use cases. The recovered
partial architecture shows that Chimera’s browser kernel is
built around a list of visited URLs whereas Mosaic’s
browser kernel does not know the history of visited URLs
at all.

Results for History. The interface between Mosaic’s
browser kernel and the history component (see Figure 6
formed by three subprograms to (a) get the current UR
(b) set the current URL, and (c) communicate the actio
and event (changed URL).

The history component can be easily extracted fro
Mosaic’s source code because it is a separate compone
while the history is an integral part of Chimera’s kerne
There is no set of subprograms of Chimera that could
reasonably addressed as “history manager component
in Mosaic. Chimera uses a layer of wrappers calling a d
patching routine around a list of actions where the di
played URLs are part of that list.

As the analysis of the partial architectural architectur
reveals, re-using Mosaic’s history components in Chime
would be very difficult due to the architectural mismatc
[7].

Results for Bookmarks.The partial architectures of the
two systems are similar to each other with respect to boo
marks. Both architectures include an encapsulated bo
mark component, which communicates via a narro
interface with the basic browser kernel (see Figure 7).

The basic actions that have to be performed are: (a)
currently shown URL, (b) set currently shown URL, (c
display the bookmarks, and (d) communicate the boo
mark selection back.

Exchanging the two implementations between Mosa
and Chimera would be reasonably easy.

8. Conclusions

The technique presented in this paper identifies
components specific to a set of related features using e
cution traces for different usage scenarios. At first, conce
analysis – a mathematically sound technique to analy
binary relations – allows to locate the most feature-speci
subprograms among all executed subprograms. Then
static analysis uses these feature-specific subprogram

(1) (2) (3) (2)∩ (3) relevant

Mosaic/(B) 701 359 99 74 16

Mosaic/(H) 348 74 65 6

Chimera/(B) 928 431 89 55 3

Chimera/(H) 419 123 55 24

Table 4: Subprogram counts for Mosaic and Chimera

procedure calls procedure

Figure 5. Relevant parts of Chimera for history

removenavigate add

lower region

upper region

component data storage procedure call

Figure 6. Mosaic’s and Chimera’s history architecture

Mosaic’s history Chimera’s history

history

browser

GUI
browser

GUI

dispatch

inner
state

here, the
history is
located

(c)

(b)
(a)

the meaning of the letters is
described in the text

n

r
s,

f
’,

re

e

g

y
,

r

-
d

t-

n

g
-

-

-

identify additional feature-specific subprograms along the
dependency graph. The combination of dynamic and static
information reduces the search space drastically.

In a case study, analyzing two web browsers, we could
recover a partial description of the software architecture
with respect to a specific set of related features. Common-
alities and variabilities between these partial architectures
could be recovered quickly. Altogether, we found 16 and
6, respectively, feature-specific subprograms out of 701
subprograms for Mosaic and 3 and 24, respectively, out of
928 for Chimera. Only very few subprograms needed to be
inspected manually.

Deriving partial architectures with the described tech-
nique can support a more goal-oriented and cost-effective
program understanding and reverse engineering, thereby
facilitating feature-specific re-use and reengineering.

The approach is only applicable to externally visible
and executable features, primarily suited for functional
features.

References

[1] Bauhaus project, University of Stuttgart,
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus.

[2] Brandenburg, F.J., ‘Graphlet’, Universität Passau,
http://www.infosun.fmi.uni-passau.de/Graphlet.

[3] Booch, G., Rumbaugh, Jacobson, J., ‘The Unified Modeling
Language Reference Manual’,Addison-Wesley.

[4] Canfora, G., Cimitile, A., De Lucia, A., Di Lucca, G.A., ‘A
Case Study of Applying an Eclectic Approach to Identify
Objects in Code’,Workshop on Program Comprehension, pp.
136-143, 1999.

[5] Chen, K., Rajlich, V., ‘Case Study of Feature Location Using
Dependence Graph’,Proc. of the 8th Int. Workshop on Pro-
gram Comprehension, pp. 241-249, June 2000.

[6] Eisenbarth, E., Koschke, R. Simon, D., ‘Feature-Driven Pro-
gram Understanding Using Concept Analysis of Execution
Traces’,Proc. Int. Workshop on Program Comprehension,
2001, to appear.

[7] Garlan, D., Allen, R., Ockerbloom, J., ‘Architectural Mis-
match or, Why it’s hard to build systems out of existing

parts‘,Proceedings of the 17th International Conference o
Software Engineering, pp. 179-185, April 1995

[8] Graudejus, H., ‘Implementing a Concept Analysis Tool fo
Identifying Abstract Data Types in C Code’, master thesi
University of Kaiserslautern, Germany, 1998.

[9] Horwitz, S., Reps, T., Binkley, D., ‘Interprocedural slicing
using dependence graphs’,ACM Transactions on Program-
ming Languages and Systems, vol. 12, no. 1, pp. 26-60, Janu-
ary 1990.

[10]Lindig, C., Snelting, G., ‘Assessing Modular Structure o
Legacy Code Based on Mathematical Concept Analysis
Proceedings of the International Conference on Softwa
Engineering, pp. 349-359, 1997.

[11]Lindig, C., Concepts,
ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/misc.

[12]Koschke, R., Girard, J.-F., Würthner, M., ‘An Intermediat
Representation for Reverse Engineering Analyses’,Proceed-
ings of the Working Conference on Reverse Engineerin,
1998.

[13]Koschke, R., ‘Atomic Architectural Component Recover
for Program Understanding and Evolution’, Dissertation
Institut für Informatik, Universität Stuttgart, 2000,
http://www.informatik.uni-stuttgart.de/ifi/ps/rainer/thesis.

[14]Krone, M., Snelting, G., ‘On the Inference of Configuration
Structures From Source Code’,Proceedings of the Interna-
tional Conference on Software Engineering, pp. 49-57, May
1994.

[15]Kuipers, T., Moonen, L., ‘Types and Concept Analysis fo
Legacy Systems’,Proc. Int. Workshop on Program Compre-
hension, 2001.

[16]Sahraoui, H., Melo. W, Lounis, H., Dumont, F., ‘Applying
Concept Formation Methods to Object Identification in Pro
cedural Code’,Proceedings of the Conference on Automate
Software Engineering, pp. 210-218, November 1997.

[17]Siff, M., Reps, T., ‘Identifying Modules via Concept Analy-
sis’, Proceedings of the International Conference on Sof
ware Maintenance, pp. 170-179, October 1997.

[18]Snelting, G., ‘Reengineering of Configurations Based o
Mathematical Concept Analysis’,ACM Transactions on Soft-
ware Engineering and Methodologyvol. 5, no. 2, pp. 146-
189, April 1997.

[19]Snelting, G., Tip, F., ‘Reengineering Class Hierarchies Usin
Concept Analysis’,Proceedings of the ACM SIGSOFT Sym
posium on the Foundations of Software Engineering, pp. 99-
110, November 1994.

[20]van Deursen, A., Kuipers, T., ‘Identifying objects using clus
ter and concept analysis’,Proc. Int. Conf. Software Engi-
neering, 1999.

[21]Wilde, N., Scully, M.C., ‘Software Reconnaissance: Map
ping Program Features to Code’,Software Maintenance:
Research and Practice, vol. 7, pp. 49-62, 1995.

[22]Wong, K., ‘The Rigi User’s Manual’, Version 5.4.4., June
1998.

Figure 7. Mosaic’s and Chimera’s bookmark architec-
ture

Mosaic’s bookmarks Chimera’s bookmarks

book-

browser

GUI

book-
marks

browser

GUI

dispatch

inner
state

(c)

(d)
(b)

(a)

(c)

(d)
(b)

(a)

the meaning of the letters is
described in the text

	Aiding Program Comprehension by Static and Dynamic Feature Analysis
	Thomas Eisenbarth, Rainer Koschke, Daniel Simon
	Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
	{eisenbts, koschke, simondl}@informatik.uni-stuttgart.de
	Abstract
	1. Introduction
	1.1. Terminology
	1.2. Overview

	2. Related Research on Localizing Features
	1. The invoking input set I (i.e., a set of test cases or – in our terminology – a set of scenari...
	2. The excluding input set E is identified that will not invoke a feature.
	3. The program is executed twice using I and E separately.
	4. By comparison of the two resulting execution traces, the subprograms can be identified that im...
	Our own contribution
	1. identify the set of relevant features F = {f1.. fn}
	2. identify scenarios A = {S1.. Sq} so that the features in F are covered
	3. generate execution summaries (profiler); step 3 yields all required subprograms O = {s1 ºsp} f...
	4. create relation table R such that (S1, s1), (S1, s2), .., (Sq, sp) ŒÄR
	5. perform concept analysis for (O, A,R)
	6. identify relationships between scenarios and subprograms
	7. perform static dependency analyses

	Applicability

	3. Concept Analysis
	Table 1: Example relation.
	Table 2: Concepts for Table 1.
	Figure 1. Concept lattice for Table 1.
	EQ (1)
	EQ (2)
	Figure 2. Sparse representation of Figure�1.

	4. Dynamic Analysis
	4.1. Context for Scenarios and Subprograms
	4.2. On Features and Scenarios
	Figure 3. Concept lattice A.
	Figure 4. Alternative concept lattice B.

	4.3. Interpretation of the Concept Lattice

	5. Static Dependency Analysis
	5.1. Building the Starting Set
	5.2. Inspection of the Static Call Graph

	6. Implementation
	7. Case Study
	Table 3: Analyzed web browsers.
	7.1. Case Study Setup
	7.2. Scenarios for Dynamic Analysis
	7.3. Static Dependency Analysis
	7.4. Results
	Table 4: Subprogram counts for Mosaic and Chimera
	Figure 5. Relevant parts of Chimera for history
	Results for History
	Figure 6. Mosaic’s and Chimera’s history architecture

	Results for Bookmarks
	Figure 7. Mosaic’s and Chimera’s bookmark architecture

	8. Conclusions
	References
	[1] Bauhaus project, University of Stuttgart, http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus.
	[2] Brandenburg, F.J., ‘Graphlet’, Universität Passau, http://www.infosun.fmi.uni-passau.de/Graph...
	[3] Booch, G., Rumbaugh, Jacobson, J., ‘The Unified Modeling Language Reference Manual’, Addison-...
	[4] Canfora, G., Cimitile, A., De Lucia, A., Di Lucca, G.A., ‘A Case Study of Applying an Eclecti...
	[5] Chen, K., Rajlich, V., ‘Case Study of Feature Location Using Dependence Graph’, Proc. of the ...
	[6] Eisenbarth, E., Koschke, R. Simon, D., ‘Feature-Driven Program Understanding Using Concept An...
	[7] Garlan, D., Allen, R., Ockerbloom, J., ‘Architectural Mismatch or, Why it’s hard to build sys...
	[8] Graudejus, H., ‘Implementing a Concept Analysis Tool for Identifying Abstract Data Types in C...
	[9] Horwitz, S., Reps, T., Binkley, D., ‘Interprocedural slicing using dependence graphs’, ACM Tr...
	[10] Lindig, C., Snelting, G., ‘Assessing Modular Structure of Legacy Code Based on Mathematical ...
	[11] Lindig, C., Concepts, ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/misc.
	[12] Koschke, R., Girard, J.-F., Würthner, M., ‘An Intermediate Representation for Reverse Engine...
	[13] Koschke, R., ‘Atomic Architectural Component Recovery for Program Understanding and Evolutio...
	[14] Krone, M., Snelting, G., ‘On the Inference of Configuration Structures From Source Code’, Pr...
	[15] Kuipers, T., Moonen, L., ‘Types and Concept Analysis for Legacy Systems’, Proc. Int. Worksho...
	[16] Sahraoui, H., Melo. W, Lounis, H., Dumont, F., ‘Applying Concept Formation Methods to Object...
	[17] Siff, M., Reps, T., ‘Identifying Modules via Concept Analysis’, Proceedings of the Internati...
	[18] Snelting, G., ‘Reengineering of Configurations Based on Mathematical Concept Analysis’, ACM ...
	[19] Snelting, G., Tip, F., ‘Reengineering Class Hierarchies Using Concept Analysis’, Proceedings...
	[20] van Deursen, A., Kuipers, T., ‘Identifying objects using cluster and concept analysis’, Proc...
	[21] Wilde, N., Scully, M.C., ‘Software Reconnaissance: Mapping Program Features to Code’, Softwa...
	[22] Wong, K., ‘The Rigi User’s Manual’, Version 5.4.4., June 1998.

