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Abstract 1.1. Terminology

Understanding a system’s implementation without A feature f is a realized functional requirement (the
prior knowledge is a hard task for reengineers in general. term feature is intentionally defined weakly because its
However, some degree of automatic aid is possible. In this gyact meaning depends on the specific context). Generally,
paper, we present a technique building a mapping betweenihe term feature also subsumes non-functional require-
the system’s externally visible behavior and the relevant ments. However, in the context of this paper only func-
parts of the source code. Our technique combines dynamictona features are relevant, i.e., we consider a feature an
and static analyses to rapidly focus on the system’s parts gpservable result of value to a user.

urgently required for a goal-directed process of program A scenarios is a sequence of user inputs triggering

understanding. actions of a system that yields an observable result to an
] actor [3]. A scenario is said to execute a feature if the
1. Introduction observable result is executed by the scenario’s actions. A

Understanding h tain feature is imol ted i scenario may execute multiple features. Scenarios resem-
nderstanding now a certain feature 1S Implemented 1S o\ \se cases but do not include options or choices, so a

a major problem of program understanding, especially oo 1se subsumes multiple scenarios.
when the understanding is directed to a certain goal like component is a computational unit of a system
changing or extending the feature. Before real understand-COmponemS consist of an interface which offers the ser-

ng star?s, one has 10 localize the implementation of the vices of the component and the implementation of these
feature in the code. Systems often appear as a large num;

ber of modul h tainina hundreds of I t cod services. The services of the component coherently con-
er o modules each containing hundreds ot ines ol Code. i, 0 15 the purpose of the component. We address sub-
It is in general not obvious which components implement

: X o -~ " programs as well as sets of subprograms as components.
a given feature. Typically any existing documentation is The result of our technique are sets of subprograms imple-
outdated, the system’s original architects are no longer

. A menting features.
available or their view is outdated due to changes made by subprogram is a function or procedure according to
others.

L . the programming language. Subprograms are the lowest-
One option is to completely reverse engineer the sys- brog d languag prog

: ) : e level kind of components.
_tem in order to_exhausnvely |_dent|fy 'FS components. We The execution summaryof a given program run lists
mte_grateq publls_hed automatic te_chnlques_for compone_nta” subprograms called during the run. Tlegecution
retr_leval in an incremental seml-au_tomatlc_ process, in .. o ists the sequence of all performed calls.
WhICh the results of selected automatic techniques are val- feature-component mapdescribes which compo-
idated by the user [13]. - nents implement a given set of relevant features.
However, the problem of assigning features to compo-
nents is not solved by such an exhaustive analysis.q1 2. Qverview
Besides, components implementing a specific set of fea-
tures suffice in many cases, so exhaustive methods are not The remainder of this article is organized as follows.
cost-effective and feature-oriented search focusing on theSection 2 starts with related research and gives a brief
components of interest is needed. overview on the process presented in this article, Section 3
This paper describes a process and its supporting techbriefly introduces concept analysis. Section 4 explains
niques to identify components implementing a specific set how concept analysis can be used to derive the correspon-
of related features. The process is automated to a greatlence of scenarios executing features and components,
extent. It combines static and dynamic analyses and usesection 5 describes how static information can be incorpo-
concept analysis — a mathematical technique to investigaterated. Section 6 shows our implementation of the tech-
binary relations — to derive correspondences between feanique and Section 7 describes our experiences in a case
tures and components. study. Section 8 concludes the paper.



2. Related Research on Localizing Features repeat the analysis using each feature separately and then
unite the specifically required subprograms. However,
Chen and Rajlich [5] propose a semi-automatic method even then relationships among pairs of features cannot be
for feature localization, in which an analyst browses the jgentified.

statically derived system dependency graph (SDG) [9] QOur own contribution. Our technique combinestatic

The SDG describes detailed dependencies among subpro- dd X | o identfy th ts impl
grams, types, and variables at the level of individual and dynamicanalyses to identify the components imple-

expressions and statements. Even though navigation on thghenting a set of related features. Dynamic information by

SDG is computer-aided, the analyst takes on all the search'® of execuhqn summaries ggnera}ted by a profiler for
for a feature’s implementation. Thus, this method is less different scenarios is used to identify the subprograms

suited to quickly and cheaply localize features if it starts executed when any of the given features is invoked, simi-

without any pre-knowledge on where to begin searching. !arly to_ Wilde and Scully. O_ne scenario representg the
Moreover, the method relies on the SDG’s quality. If invocation of preferably one single feature only and yields

the SDG includes overoptimistic assumptions on function all ;ubprc;grgmsl erecullteld for"thls fgatgre. b
pointers, the analyst may miss functions called via func- eyond simply localizing all requireéd subprograms, we

tions pointers. If it reflects too conservative assumptions, Esf con(;ept analys:js to dter(ljve bdeta|led relitrl]onsmpls
the search space increases drastically. It is statically unde—t_e wt;gn %a utr_e S anb executed su tgljrograms. d bese rela-
cidable which control flow paths are taken at runtime, so lonships identify subprograms jointly required by any

that every conservative static analysis will yield an overes- subset of features, classify subprograms as low-level or

timated search space. In contrast dynamic analyses exactlp'gh'level with respect to the given set of features, reveal

tell which parts are really used at runtime — though only f‘d‘?'g"’”t?" dtipend%nmes betw?ﬁnt stubp:rc])grams, ??1 help
for a particular run. However, dynamic analyses recording IO identify the Stud pr_ogra[nts_ a | ogether constitute a
the execution trace only view the system as a black box arger component during static analysis.

giving no insights in internal aspects, like conditions under The qurma‘uon gained by concept "’?”a'ys's 1S then.
which subprograms are called. used to guide a subsequent static analysis along the static

Wilde and Scully [21] use a dynamic analysis to local- dependency graph in order to narrow the executed subpro-
ize features as follows: grams to those that form self-contained and understand-
. N o _ able feature-specific components. Subprograms that are

1. Theinvoking input set (i.e., a set of test cases or —in

. - etk > only utility subprograms used as building blocks for a
our terminology — a set of scenarios) is identified that component but not containing any application-specific
will invoke a feature.

logic are sorted out. Additional static analyses, like
2. Theexcluding input set Bs identified that will not  strongly connected component identification, dominance

invoke a feature. analysis, and program slicing [9] support the search for the
3. The program is executed twice usih@nd E sepa- ~ components of interest.
rately. The general process is as follows (explanations follow):

4. By comparison of the two resulting execution traces, 1. identify the set of relevant features {f;.. f,}
the subprograms can be identified that implement the 2 jdentify scenario = {S1.. S} so that the features in
feature. F are covered

Wilde and Scully focus_ on localizing specifica!ly 3. generate execution summaries (profiler); step 3 yields
needed rather than all required components. For deriving all required subprogran = {s, } for each sce-
all required components, the execution trace for the nario S

including input set is sufficient. By subtracting all subpro-
grams in the execution trace for the excluding input set 4. create relation tabl® such that &, sy), (S, <), -,
from those in the execution trace for the invoking input (& sp) DR
set, only those subprograms remain that specifically deal
with the feature. This information alone is not sufficient to . . . . .
identify the interface and the constituents of a component 6. identify relationships between scenarios and subpro-
in the source code, but these subprograms are at least a grams
starting point for a more detailed static analysis. 7. perform static dependency analyses

However, Wilde and Scully's approach deals with one In [6], we explained the first six steps of this process
feature at a time and gives little insight into connections pased on dynamic information only that results in a fea-
between a set of related features. If a set of related featuresure-component map. This article extends the process by
is to be considered rather than a single feature, one couldadditionally exploiting static analyses and by providing

5. perform concept analysis fd, (A R)



another case study. will be laid down as follows;

Applicability. The retrieval of the feature-component map * subprograms will be considered objects,
is based on dynamic information where all subprograms « scenarios will be considered attributes,
are collected that are executed when a feature is invoked.
Invoking externally visible features is comparatively sim-
ple when a graphical user interface is available. Then, usu-
ally only a menu selection or a similar interaction is . ! . - )
necessary. In the case of a batch system, one has to var inary .relatlon between arbitrary objects and gttnbutes
command line switches and to provide different sets of test h‘?W” n Table 1'as an abstra'cF example. A.n Ob%‘b?‘s
data to invoke a feature. However, one might need somegttributea; if row i and columnj is marked with art] in
knowledge on internal details of a system in order to find Table 1 (the example stems from Lindig and Snelting

 a pair ubprogram sscenario $is in relationR if sis
executed whe®is performed.

However, here — for the time being — we will use the

suitable test data. [10]). For this table, also known aslation table, the fol-
Our technique is primarily suited for functional fea- lowing equations hold:

tures that. may be mapped to components. In particular o({oy}) = {a;, a,}

non-functional features do not easily map to components.

For example, features would have to take time into t({a7,ag}) = {03 04}

account for applications where timing is critical (because

it may result in different behavior). i I I I I I I
The technique is not suited for features that are only o o |U

internally visible, like a program using a garbage collector. 02 oo g

Strictly speaking, internal features may be viewed as 03 oo o (oo

implementation details. It is not clear how to execute inter- 04 o|0D|O0|DO0)|]0O|CO

nal features from outside and how to derive from an execu-

. . . Table 1: Example relation.
tion summary how these features are implemented — or if

they are implemented at all. A pair (O, A) is calledconceptif A=g(0) 00 = 1(A)
holds, i.e., all objects share all attributes. For a concept
3. Concept Analysis (O, A), Ois theextent of ¢, denoted byexten(c), andA is

theintent of ¢, denoted bynten{c).

Concept analysis is a mathematical technique that pro- Informally, a concept corresponds to a maximal rectan-
vides insights into binary relations. The mathematical gle of filled table cells modulo row and column permuta-
foundation of concept analysis was laid by Birkhoff in tions. For example, Table 2 contains the concepts for the
1940. Primarily Snelting has recently introduced concept relation in Table 1.
analysis to software engineering. Since then it has been

used to evaluate class hierarchies [19], explore configura- Gy ({01, 02, 03, 04}, 0)

Eon struc‘;u;es of [p1r5e]proces(,jsortstatements [14, 18], for :e- C, ({05, 03, 04}, {3, ay))
ocumentation , an 0 recover components

[4,8,10,16,17,20]. Cs (fod {as, &)

The binary relation in our specific application of con- Cq ({02, 04}, {23, &, &})
cept analysis to Qerlve the scenarlo-subprogram relation- Cs ({03 04}, {23 & 3 &, ag)
ships states which subprograms are required when a
feature is invoked. Ce ({o4} {as ay, &, &, &, &)

Concept analysis is based on a relatiohetween a set C; | (O {a, &, &, &, &, &, &, a})

of objectsO and a set of attributés hencer [0 0 x A.

The tupleC = (0, A, R) is calledformal context. For a Table 2: Concepts for Table 1.

set of objectsD 0 O the set ofcommon attributes o is The set of all concepts of a given formal context forms
defined as: a partial order via:
a(0) = {aDA|0(o 0 O)(o, &) O R} (04, A)) £(0,, Ay) = O, 00, or equivalently with
Analogously, the set afommon objectst for a set of (01, A =(0z Ay) = AT A,;.
attributesAJ A is defined as: If ¢, < ¢, holds, thenc, is called asubconceptof c,
1(A) = {o00|0(al A)(o, a) UR} andc, is calledsuperconceptof ¢;. For instance,

In Section 4.1 the formal context for applying concept ({02, 04}, { @3, a4, as}) < ({0p, 03, 04}, { a3, a4}) is true in
analysis to derive the scenario-subprogram relationships



Table 2. shown in Figure 2. The content of a noNean this repre-
The setl of all concepts of a given formal context and sentation can be derived as follows:

the partial ordek form a complete lattice, callecbncept « the objects oN are all objects at and beldwy
lattice: « the attributes oN are all attributes at and abdve
L(©) = {(0, A)02°x2*|A=0(0) DO = 1(A)} For instance, the node in Figure 2 marked withand
The infimum of two concepts in this lattice is com- as is the concept ({8 04}, {a3, &, &) -
puted by intersecting their extents as follows: T
(04, A) O(0, Ay) = (070 0,,0(0,n Oy))
The infimum describes a set of common attributes of
two sets of objects. Similarly, theupremum is deter- EYREDS ag ag, a7, ag
mined by intersecting the intents: 01 0 03
(04, A O(0, Ay) = (T(A N AY), AN Ay)
The supremum ascertains the set of common objects, m
which share all attributes in the intersection of two sets of T
attributes. Figure 2. Sparse representation of Figure 1.

4. Dynamic Analysis

|:| concept In order to derive the feature-component map via con-
cept analysis, one has to define the formal context
i, (objects, attributes, relation) and to interpret the resulting

concept lattice accordingly.

4.1. Context for Scenarios and Subprograms

Figure 1. Concept lattice for Table 1. The goal of the dynamic analysis is to find out which
The concept lattice for the example relation in Table 1 subprograms contribute to a given set of features. For each
can be graphically depicted as a directed acyclic graphfeature, a scenario is prepared that exploits this feature.
whose nodes represent concepts and whose edges denotéence, subprograms will be considered objects of the for-
the superconcept/subconcept relation < as shown inmal context, whereas scenarios will be considered

Figure 1. The most general concept is called tibye ele- attributes. In the reverse case, the concept lattice is simply
ment and is denoted byr . The most special concept is inverted but the derived information will be the same.
called thebottom elementand is denoted by . The relation for the formal context necessary for con-
The combination of the graphical representation in CEPtanalysis is thus defined as follows:
Figure 1 and the contents of the concepts in Table 2 form (s, 9 UR if and only if subprogrars is required
the concept lattice. The complete information can be visu- for scenarid5 a subprogram is required when it
alized in a more readable equivalent way by marking only needs to be executed.
the graph node with an attribugel] A whose represented In order to obtain the relation, a set of scenarios needs
concept is the most general concept thatdasits intent. to be prepared where each scenario executes preferably
Analogously, a node will be marked with an objecf] O only one relevant feature. Then the system is used accord-
if it represents the most special concept that bas its ing to the set of scenarios, one at a time, and the execution
extent. The unique elemeptin the concept lattice marked summaries are recorded. Each system run yields all
with a is therefore: required subprograms for a single scenario, i.e., one col-
_D . umn of the relation table can be filled per system run.
n(@) = {cOL(C)abinten( g} EQ@ Applying all scenarios provides the complete relation
The unique elementmarked with object is: table.
v =L eoLe)jomexten 9 EQ()  4.2. On Features and Scenarios
We will call a graph representing a concept lattice
using this marking strategysparse representatiorof the Because one feature can be invoked by many scenarios

lattice. The equivalent sparse representation for Figure 1 isand one scenario can invoke several features, there is not



always a strict correspondence between features and scdrom the concept lattice. Consequently, we will assume
narios. If there is am:m mapping between scenarios and that a scenario can easily be mapped onto a feature in the
features, one has to locate the concepts in the lattice wherdollowing.

scenarios contributing to a feature overlap. Assume we

analyze a drawing tool and features are the ability to draw 4-3. Interpretation of the Concept Lattice

different types ofobjects like circles, rectangle, etc., and Concept analysis applied to the formal context

the ability to apply differenictionson drawn objects, like . . ' . . .
move. rotate. or scale. Let us further assume that we haVedescrlbed in the last section yields a lattice, from which
four scenarios: scenar is “draw a circle and move'l interesting relationships can be derived. These relation-

is “d ircl d le it'S- is “d tanal ships can be fully automatically derived and presented to
Spis "draw a circle and scale it; S is "draw a rectangle the analyst such that the theoretical background can be

and move it",and$; is “draw a rectangle and scale itTn  pigden. The only thing an analyst has to know is how to
the concept lattice for these scenarios, the concept includ+nterpret the derived relationships. This section explains
ing Sy and S will include all subprograms related to the  how interesting relationships can be derived automatically.
featuremovewhereas the concept includirgg and S As already abstractly described in Section 3 the follow-

contains the subprograms for teealingfeature. The con-  ing base relationships can be derived from the sparse rep-
cept includingS, andS; includes all subprograms needed resentation of the lattice (note the duality):

to drawcircles the concept including: andS; includes * A subprograms is required for all scenarios at and

all subprograms related tectanglesBecause features are abovey(s) - as defined by EQ(1) on page 4 —in the lat-
combined in scenarios, one has to interpret the results tce.

revealed by the concept lattice. For instance, if the system ¢ A scenarioS requires all subprograms at and below
is implemented in an object-oriented style in which the H(S — as defined by EQ(2) on page 4 — in the lattice.

actions on each object type are implemented by a separate, A subprograms is specific to exactly one scenaif

subprogram, one will get concepts each including one  gjs the only scenario on all paths froys) to the top
object type and one action. Presumably, there are some glement.

subprograms needed for all operations on circles (like
drawing and hiding), which will go into one subconcept
(see Figure 3).

» A scenaricSis specific to exactly one subprograxii s
is the only subprogram on all paths fron{S) to the
bottom element (i.es is the only subprogram required
to implement scenarig).

a%a 4 a%a
circlescale | |circlemove| |circlealign]| , . o
» Scenarios to which two subprogramsands, jointly

circlescale contribute can be identified bys;) O y(s,). In the lat-

circlemove Key:| scenariol tice, it is the closest common node toward the top ele-
g;:g:g:'r'agvr\‘l scenario2 ment starting at the nodes to which and s, are
R attached. All scenarios at and above this common node

Figure 3. Concept lattice A. are those jointly implemented Isy ands,.

In an alternative functional-style implementation, in « Subprograms jointly required for two scenari®sand
which each subprogram implements actions on different S, are described by(S;) Ou(Sy). In the lattice, it is the
types of objects, one will get one concept for each action  ¢jgest common node toward the bottom element start-
including scenarios for all object types (see Figure 4). ing at the nodes to whic; andS, are attached. All

Interestingly enough, the concept lattice will thus show .
. ! ; ) subprograms at and below this common node are those
whether an object-oriented or functional-style implemen- g .
. jointly required forS; andS,.
tation was chosen.
« Subprograms required for all scenarios can be found at

. L4Vl . XX . '\/‘_ the bottom element.
circlemove| |[circlerotate| |circlealign ) )
rectmove | | rectrotate | | rectalign » Scenarios that require all subprograms can be found at
linemove | | linerotate linealign the top element.
AN ValeN AR Beyond these relationships between subprograms and
Figure 4. Alternative concept lattice B. scenarios, further useful aspects between scenarios on one
In most cases the relationship between scenarios andﬂand and between subprograms on the other hand may be

features is a 1:1 mapping or is at least intuitively clear derived:



* If y(s1) < ¥(sp) holds for two subprograms; ands,, known that distinguish feature-specific code from general-
then subprogrars, is more specific with respect to the purpose code, this analysis cannot be automated and

given use case than subprogragrbecauses, contrib- human expertise is necessary. However, the concept lattice

utes not just to the features for whigh contributes, may narrow the cand|dates for manual inspection.
The concept lattice and the dependency graph can help

but also to other features. _ to decide in which order the subprograms are to be
* If W(S) <U(Sy) holds for two scenarioS; andS,, then  inspected such that the effort for manual inspection can be
scenarids; is based on scenarf§) because if5, is exe- reduced to a minimum. Since we are interested in subpro-

cuted, all subprograms in the extentyS)) need also ~ grams most specific to a featurave start at those subpro-
to be executed. gramss that are attached ta(f), i.e., for whichu(f) = y(s)

. ... holds. If there are no such subprograms, we collect all
Thl.JS. the Iattlcgz also r'eflects th? level of application concepts belowu(f) with minimal distance fronu(f) to
3p§C|f|c(j:|tg/. T?e I'nngT?%n Sisctrr']bEd a}botvel can fbe which subprograms are attached. There can be more than
erived by a toof and ted back 1o the analyst. InSpecting ., ,q concept, so we unite all subprograms that are attached
the relationships derived from the concept lattice, a deci-, ' cib oo concepts. The subset of subprograms iden-
sion may be made to analyze only a subset of the original

features in depth due to the additional dependencies thaﬂgﬁgdl?hglt;;tnegp Szrtué(%ccepted by manual inspection is
concept analysis could reveal. All subprograms required

for these features (easily derived from the concept lattice) 5 2. |nspection of the Static Call Graph

form a starting point for further static analyses to identify

components, to investigate quality (like maintainability, Next, we inspect all subprograms called from subpro-
extractability, and integrability) and to estimate effort for grams inS(f) We generate the call graph (as one specific

subsequent steps. subset of the dependency graph) that contains all subpro-
grams transitively called by subprogramsSf)as derived
5. Static Dependency Analysis by a static analysis. We concentrate on subprograms here

because they are the active constituents of a component.
From the concept lattice, we can easily derive all sub- G|obal variables and types may be added once all subpro-
programs executed for any set of relevant features (notegrams have been identified. Subprogramsif) are said
that we use features and scenarios as synonyms from hergy be therootsof this call graph. A static points-to analysis
on, see Section 4.2). However, this gives us only a set ofjs needed to resolve calls via function pointers if present.
subprograms, but it is not clear which of these subpro- The static points-to analysis may take advantage of the
grams form a feature-specific component and which of knowledge about actually called functions yielded by the
them are general-purpose subprograms that are only use@ynamic analysis.
as building blocks for other components but do not contain |t is sufficient to consider only those subprograsifer
any feature-specific logic. Given a featdref interest this  which s O extent (1(f)) holds because only those subpro-
question can be answered as follows: grams are actually called whdris invoked according to
« As a first approximation, all subprograms in the extent the dynamic analysis. Hence, we combine static and
of conceptu(f) according to EQ(2) on page 4 may dynamic information to eliminate conditional static sub-
jointly constitute a component. program calls in order to reduce the search space.

« Irrelevant subprograms among these subprograms can T the component for the featurfeis to be understood,
be sorted out by a goal-directed manual inspection. ~ C@lls to subprograms not iextenti(f)) can be safely
ignored in the original source code in order to cut apparent

5.1. Building the Starting Set static dependencies — unless there is another relevant fea-
ture relying on the same subprogram and in whose context
All subprograms in the extent of a concept jointly con- the call is actually executed. In this case, one can apply
tribute to all features in the intent of the concept, which slicing techniques to separate the code relevant for each
immediately follows from the definition of a concept. feature.
However, there may also be subprograms in the extent that  Once the call graph is generated, it can be traversed to
contribute to other features as well, so they are not specificinspect subprograms. Any kind of traversal is possible, but
to the given feature. There may be subprograms in thea depth-first search is most suited because a subprogram
extent that do not contain any feature-specific code at all.can only be understood if all its called subprograms are
Thus, subprograms in the extent of the concept need to beunderstood. Moreover, in a breadth-first search, a human
inspected manually. Because there are no reliable criteriahas to cope with continuous context switches. The goal of



the inspection is to sort out subprograms that do notthe extracted components — those elements of a compo-
belong to the component in a narrow sense because theyent used in other parts of the system — andréwiired

do not contain feature-specific code. Two additional analy- interface— those elements of the system the component’s
ses gather further information useful while navigating on elements rely on and that are not declared by the compo-
the call graph: nent itself.

 Strongly connected component analysigsed to iden- ]
tify cycles in the call graph: If there is one subprogram 6. Implementation
in a cycle that contains feature-specific code, all sub-
programs of the cycle need to be added to the compo-
nent because of the cyclic dependency.

« Dominance analysiss used to identify subprograms
that are local to other subprograms. A subprogsais o pnortunistic integration of the following parts:
said to dominate another subprogrsyiif every path in « Gnu C compilergce to compile the system using a

the call graph from one of its roots &(f)to s, contains command line switch for generating profiling informa-
;. In other wordss, can only be called by way & . If tion,

a subprograns is found to be feature-specific, then all . Gnu object code viewenm and a short Perl script in
its dominators also need to be added to the component, order to identify all functions of the system (as

because they need to be called in ordersfa be exe- opposed to those included from standard libraries),
cuted. If neither of a dominator’s dominatees contain
feature-specific code and the dominator itself is not
feature-specific, then the dominator is a clear cutting .
point as all its dominatees are local to it. Consequently, * COncept analysis toabonceptd11],

the dominator and all its dominatees can be safely ¢ graph editorGraphlet[2] to visualize the concept lat-
omitted while understanding the system. tice,

Inspection is done along the call relation in the call < one short Perl script to convert the file formatscoh-
graph rather than following a top-down traversal in the ceptsandGraphlet(147 LOC),
concept lattice because the lattice does not really reflect « and our extended version of Rigi [22].
the dependencieg(s;) > y(s,) does not imply thas, calls

The implementation of detecting the executed subpro-
grams per scenario and applying concept analysis is sur-
prisingly simple (if one already has a tool for concept
analysis). Our prototype for a Unix environment is an

* Gnu profilergprof and a short Perl script to ascertain
the executed functions in the execution summary,

) ! ) For deriving the static dependency graph and to iden-
s,. However, the concept lattice may still provide useful tify components, we have developed the Bauhaus toolkit
information for the inspection. In Section 4.3 we made the [1]. It allows deriving detailed dependencies as system
observation that the lower a conceys) is in the lattice, dependency graph (SDG) [9] and more coarse-grained
the more general subprograsnis as it serves more fea- dependencies as resource flow graph (RFG) [12]. An SDG
tures — and vice versa. Thus, the concept lattice gives usdescribes set-use data dependencies and control dependen-
insight into the level of abstraction of a subprogram and, cjes at the level of expressions and statements, while an
therefore, contributes to the degree of confidence that adRFG contains on|y g|oba| declarations (g|oba| variables,
specific subprogram contains feature-specific code. user-defined types, and subprograms) and their relation-
If more than one feature is relevant, one simply unites ships (variable access, signature relations, calls, etc.). The
the starting sets for each feature and then follows the samerFG is derived from the SDG by abstracting from individ-
approach. For more than one feature, the concept latticeyal expressions and statements and is better suited for pre-
provides insight into feature interaction and identifies sub- sentation to a human analyst. The Bauhaus toolkit uses
programs jointly used by several features. Such subpro-Rigi [22] to visualize the RFG. Rigi supports graph navi-
grams can then be considered a component of their owngation and provides immediate access to the original
Hence, not only one component is detected but the callsource code for a more detailed investigation. We added
graph is partitioned into several connected components bymultiple additional automatic analyses specifically to sup-
merging connected concepts in the lattice and by filtering port component retrieval [13], like identification of cyclic

out subprograms in their extent. dependencies and local (i.e., dominated) parts (see Section
Once all subprograms have been identified, static 5 2).

dependency analysis, e.g., program slicing, can be used to

extract the components’ code including necessary variable7. Cgse Study

and type declarations. Moreover, static dependency analy-

sis will also be used to identify therovided interfaceof We analyzed two web browsers (see Table 3) using the



same set of relevant related features. The concept lattice  description of the software architecture was recov-
for each of these systems was derived as described in Sec- ered.

tion 6. The required subprograms as identified by dynamic

analysis and the relationships derived by concept analysis’-2- Scenarios for Dynamic Analysis

formed a starting point for the static dependency analysis.
The static dependency analysis was done on the resourc%
flow graph [12] using the Bauhaus toolkit. The experi- r
ences are reported in this section.

For each experiment and each browser, we ran the
owser in a start-end scenario in which the browser was
started and immediately quit in order to separate start-up
and shutdown code. The following additional scenarios
System Version KLOC (wc) #subprograrhs were defined specifically to the two experiments. Use case

Mosaid > d 51.44D Zd1 History was covered by the following three scenarios:

chimerd  2.0a1b 38,208 obs (H1) basic scenaridoing nothing but browsing
Table 3: Analyzed web browsers. (H2) scenariaising the back buttorand

(H3) scenariausing the back and forward buttons
7.1. Case Study Setup For Chimera, the last scenario was not performed
(because Chimera possesses no forward button). Use case

In two experimentsHistory andBookmarkwe tried 10 gqokmark was covered by the following four scenarios:
understand how two specific sets of related features are

implemented in both browsers using the process described (B1) tk))aSIlf scinarltzjslmply apening and closing the
above. The goal of this analysis was to recover the feature- 00 m.ar W'h ow
specific components and the way they interact, i.e.,, to  (B2) scenario:adding a new bookmark for the cur-

reverse engineer a partial description of the software archi- rently displayed URL

tecture. The partial software architecture, for instance, (B3) scenarioremoving a bookmark

allows one to decide whether feature-specific components (B4) scenarioselecting a bookmark and visiting the
can be extracted from one system and integrated into associated URL

another system with only minor changes. Chimera does  g4ch scenario was immediately ended by quitting the

not implement all features that Mosaic provides and we rgqpective system. We provided scenarios that use one fea-

wanted to find out whether the respective feature-specificy o only except for one scenario: One cannot use the for-

components of Mosaic can be reused for Chimera. ward button without using the back button. Consequently,
Use caseHistory (H) : Chimera allows going back in  the concept containing subprograms executed for scenario
the history of already visited URLs. However, Chi- (H2) is a subconcept of the concept related to (H3). Like-
mera does not havefarward button that allows a user  wise, a bookmark can only be deleted when an URL has
to move forward in the history again after theack been added before. However, to circumvent this problem,
button was used. Mosaic has botbackandforward we started the browser with a non-empty bookmark file in
button. In this experimengoing backandgoing for- all scenarios. Thus, we did not consider the case of inser-
ward were considered related features. tion into an empty bookmark list.

Use caseBookmark (B): Both Mosaic and Chimera
offer bookmarks for visited URLs. URLs may be
bookmarked, and bookmarked URLs may be loaded
and removed. We considered the following related
features:addition of a new bookmark for a currently
viewed URL.removal of a bookmarkandnavigation
to a bookmarked URL

The question we want to answer in our case study was

as follows:

7.3. Static Dependency Analysis

In the dependency graph for the browsers (given as
RFG, see Section 6), visualized using the Bauhaus exten-
sion to Rigi, we derived all statically transitively called
functions (using Rigi's basic selection facilities) and inter-
sected the static information with the actually executed
functions manually. We additionally filtered out all func-
tions specific to HTML and the X-window-based graphi-
Identification and extraction: How are the history  cal user interface guided by the browser’s proper naming
and the bookmark features implemented in Mosaic? conventions. These functions were all in the bottom ele-
What are the interfaces between the specific compo-ment of the concept lattice.
nents that implement these features and the rest of
Mosaic? Analogously for Chimera’s partial imple- 7.4. Results

mentation of these features. In both cases, a partial )
Table 4 provides a summary of the numbers of subpro-



grams that needed to be further considered in each stefResults for History. The interface between Mosaic’s
and shows how the search space could be reduced in eachrowser kernel and the history component (see Figure 6) is
step. (H) denotes the history, (B) the bookmark experi- formed by three subprograms to (a) get the current URL,
ment. The total number of all functions of the kernels (not (b) set the current URL, and (c) communicate the action
including libraries such aktml, jpeg zlib) are in column and event (changed URL).

(1), the number of actually executed subprograms for each The history component can be easily extracted from
scenario is shown in column (2). All functions statically Mosaic’s source code because it is a separate component —
called by subprograms selected from the set of dynami-while the history is an integral part of Chimera'’s kernel.
cally executed functions in upper concepts of the lattice There is no set of subprograms of Chimera that could be
are in column (3). The intersection of column (2) and (3) reasonably addressed as “history manager component” as
is contained in column (2) (3). Columnrelevantreports in Mosaic. Chimera uses a layer of wrappers calling a dis-
all functions in column (2)n (3) that are specific to the patching routine around a list of actions where the dis-
selected features according to our manual inspection. All played URLSs are part of that list.

other functions are used for other purposes than book- As the analysis of the partial architectural architectures

marks and histories. reveals, re-using Mosaic’s history components in Chimera
would be very difficult due to the architectural mismatch
(2) 2) 3) (2)n (3)| relevant [7]
Mosaic/(B 701 359 9p 74 16 ) )
the meaning of the letters is
Mosaic/(H 348 74 66 5 described in the text
Chimera/(B 928 431 89 85 3
Chimera/(H 419 12B 55 24 owser

Table 4: Subprogram counts for Mosaic and Chimera

ere, the
history is
located

Mosaic’s history Chimera’s history

Ocomponent 8 data storage —» procedure call

Figure 6. Mosaic’s and Chimera’s history architecture

Results for Bookmarks.The partial architectures of the
two systems are similar to each other with respect to book-
marks. Both architectures include an encapsulated book-
mark component, which communicates via a narrow
interface with the basic browser kernel (see Figure 7).

The basic actions that have to be performed are: (a) get
Eventually, only a small number of subprograms currently shown URL, (b) set currently shown URL, (c)
needed to be inspected more thoroughly due to the top-display the bookmarks, and (d) communicate the book-

down inspection process. As an example, Figure 5 showsmark selection back.

the remaining subprograms of Chimera (omitting their ~ Exchanging the two implementations between Mosaic

names) relevant to the history experiment. This picture and Chimera would be reasonably easy.

clearly shows the possible cutting points in the depen-

dency graph between functions specific to the history fea-8. Conclusions

tures (upper region) and non-specific functions (lower

region). The technique presented in this paper identifies all
We recovered the parts of the architecture of Mosaic Components specific to a set of related features using exe-

and Chimera relevant to the two use cases. The recovere@ution traces for different usage scenarios. At first, concept

partial architecture shows that Chimera’s browser kernel is@nalysis — a mathematically sound technique to analyze

built around a list of visited URLs whereas Mosaic’'s binary relations — allows to locate the most feature-specific

browser kernel does not know the history of visited URLs Subprograms among all executed subprograms. Then, a
at all. static analysis uses these feature-specific subprograms to

R. procedure calls procedure

Figure 5. Relevant parts of Chimera for history
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