
Automatic Generation of Language-based

Tools using LISA system

Pedro Rangel Henriques a,1 Maria João Varanda Pereira b,2,∗
Marjan Mernik c,3 Mitja Lenič c

aUniversity of Minho, Department of Informatics, Portugal
bPolytechnic Institute of Bragança, Portugal

cUniversity of Maribor, Faculty of Electrical Engineering and Computer Science,
Slovenia

Abstract

Many tools have been built in the past years, based on the different formal methods
and processing different parts of language specification, such as: scanner generators,
parser generators and compiler generators. The automatic generation of a complete
compiler was the primary goal of such systems. However, researchers soon recognized
the possibility that many other language-based tools could be generated from formal
language specifications. In the paper language-based tools generated automatically
using LISA system are described. Examples of LISA generated tools among com-
pilers/interpreters are editors, analyzers, and visualizers/animators. In the paper,
special emphasis is given to the latter because, to our knowledge, none of the existing
compiler generators are able to automatically generate visualizers/animators.

Key words: language theory, compiler generation, language-based tools,
visualizers/animators

∗ Corresponding author.
Email addresses: prh@di.uminho.pt (Pedro Rangel Henriques), mjoao@ipb.pt

(Maria João Varanda Pereira), marjan.mernik@uni-mb.si (Marjan Mernik),
mitja.lenic@uni-mb.si (Mitja Lenič).
1 The paper is an extension of already published paper at Workshop on Language
Description, Tools and Applications, ENTCS 65, No. 3, 2003
2 The work of M. João is partially supported by the Portuguese program PRODEP,
acção 5.2 da medida 5 – doutoramentos
3 The project was supported by Slovenian and Portugal governments under the
contract SLO-P-11/01-04

Preprint submitted to Elsevier Science 11 September 2004



1 Introduction

The advantages of formal specification of programming language semantics
are well known. First, the meaning of a program is precisely and unambigu-
ously defined; second, it offers a unique possibility for automatic generation of
compilers or interpreters. Both these factors contribute to the improvement of
programming language design and development. The programming languages
that have been designed with one of the various formal methods have a bet-
ter syntax and semantics, less exceptions and are easier to learn. Moreover,
from formal language definitions many other language-based tools can be au-
tomatically generated, such as: pretty printers, syntax-directed editors, type
checkers, dataflow analyzers, partial evaluators, debuggers, profilers, test case
generators, visualizers, animators, documentation generators, etc. For a more
complete list see [1]. In most of these cases the core language definitions have
to be augmented with the tool-specific information. In other cases, just a part
of formal language definitions is enough for automatic tool generation or im-
plicit information must be extracted from the formal language definition in
order to automatically generate a tool.

The goal of the paper is twofold. On one hand we discuss some of the tools
in this last case, like editors to help in writing sentences of the language
and various inspectors (such as automata visualizers, syntax tree visualizers,
semantic evaluator animators) that are helpful for a better understanding
of the language analysis process. Those examples have all been incorporated
in the compiler generator system LISA [2]. On the other hand we present
some extensions to the language definitions in a manner to make automatic
generation of an algorithm animator and program visualizer possible.

Program visualizers/animators are very useful tools for deeper and clearer
understanding of algorithms. As such, they are very valuable for program-
mers and students. Currently, algorithm animators and program visualizers
are strongly language and algorithm-oriented, and they are not developed in
a systematic or automatic way. In this paper we aim to show that animators
could be also automatically generated from extended language definitions. We
will briefly propose a specific solution for the development of such a tool, the
Alma system, discussing its architecture and its implementation. The system
has a front-end specific for each language and a generic back-end, and uses
a decorated abstract syntax tree (DAST) as the intermediate representation
between them. In the implementation of the Alma system the language de-
velopment system LISA is used twice. It generates the front-end for each new
language, and some parts of it (Java classes) are reused to build the back-end.

The organization of the paper is as follows. In section 5 related work is de-
scribed. Language-based tools that are automatically generated by the LISA

2



system are described in section 3. The design and implementation of the Alma
system are described in section 4. A synthesis and concluding remarks are
presented in section 6.

2 Background

Let us start with some standard definitions about languages [3] that make au-
tomatic implementation of programming languages and language-based tools
possible. An alphabet Σ is a finite nonempty set of symbols, which are assumed
to be indivisible. A string over an alphabet Σ is a finite sequence of symbols
of Σ. A set of all strings over an alphabet Σ is denoted Σ∗ and a set of all
nonempty strings over Σ is denoted Σ+. For any alphabet Σ, a language over
Σ is a subset of Σ∗.

A context-free grammar G is a quadruple (V, T, P, S), where V is a set of non-
terminal symbols, T is a set of terminal symbols with T ⊆ Σ∗, T ∩V = ∅, the
relation P ⊆ V × (V ∪ T )∗ is a finite set of production rules and S the start
symbol with S ∈ V . The production of the form A → α means A derives α,
where A ∈ V is a non-terminal symbol and α ∈ (V ∪ T )∗ a string of terminal
and non-terminal symbols. A sentential form of G is any string of terminal
and non-terminal symbols. Let γ1 and γ2 be two sentential forms of grammar
G, then γ1 directly derives γ2, denoted γ1 ⇒ γ2, if γ1 = σατ , and γ2 = σβτ ,
and α → β is a production in P . Let γ1 and γ2 be two sentential forms of a
grammar G, then γ1 derives γ2, denoted γ1 ⇒∗ γ2, if there is a sequence of
(zero or more) sentential forms σ1, . . . , σn such that γ1 ⇒ σ1 . . . ⇒ σn ⇒ γ2.

The context-free language L(G) produced from grammar G is the set of all
strings consisting only of terminal symbols that can be derived from the start
symbol S by sequential application of production rules, L(G) = {x|S ⇒∗

x, x ∈ T ∗}. The membership problem, given a string x ∈ T ∗ does it belong
to L(G), is decidable for any context-free grammar. This has very practical
implications, since it enables us to check if the computer program is gram-
matically (syntactically) correct. To specify the semantics of programming
languages, context-free grammars need to be extended. Attribute grammars
[4] are a generalization of context-free grammars in which each symbol has an
associated set of attributes that carry semantic information, and with each
production a set of semantic rules with attribute computation is associated.
An attribute grammar consists of:

• A context-free grammar G.
• A set of attributes A(X) for each non-terminal symbol X ∈ N . A(X) is

divided into two mutually disjoint subsets, I(X) of inherited attributes and
S(X) of synthesized attributes. Now set A =

⋃
A(X).

3



• A set of semantic rules R. Semantic rules are defined within the scope of a
single production. A production p ∈ P, p : X0 → X1 . . . Xn (n ≥ 0) has an
attribute occurrence Xi.a if a ∈ A(Xi), 0 ≤ i ≤ n. A finite set of semantic
rules Rp is associated with the production p with exactly one rule for each
synthesized attribute occurrence X0.a and exactly one rule for each inherited
attribute occurrence Xi.a, 1 ≤ i ≤ n. Thus Rp is a collection of rules of
the form Xi.a = f(y1, . . . , yk), k ≥ 0, where yj, 1 ≤ j ≤ k, is an attribute
occurrence in p and f is a semantic function. In the rule Xi.a = f(y1, . . . , yk),
the occurrence Xi.a depends on each attribute occurrence yj, 1 ≤ j ≤ k.
Now set R =

⋃
Rp. For each production p ∈ P, p : X0 → X1 . . . Xn (n ≥ 0)

the set of defining occurrences of attributes is DefAttr(p) = {Xi.a|Xi.a =
f(. . .) ∈ Rp}. An attribute X.a is called synthesized (X.a ∈ S(X)) if there
exists a production p : X → X1 . . . Xn and X.a ∈ DefAttr(p). It is called
inherited (X.a ∈ I(X)) if there exists a production q : Y → X1 . . . X . . . Xn

and X.a ∈ DefAttr(q).

Therefore, an attribute grammar is a triple AG = (G, A, R) which consists
of a context-free grammar G, a finite set of attributes A and a finite set of
semantic rules R. Attribute grammars have proved to be very useful in spec-
ifying the semantics of programming languages, in automatic constructing of
compilers/interpreters, in specifying and generating interactive programming
environments and in many other areas [5].

3 Tools from language definitions generated by the LISA system

LISA is a compiler-compiler, or a system that generates automatically a com-
piler/interpreter from attribute grammar based language specifications. The
syntax and semantics of LISA specifications and its special features (“tem-
plates” and “multiple attribute grammar inheritance”) are described in more
detail in [6]. The use of LISA in generating compilers for real programming
languages (e.g. PLM, AspectCOOL and COOL, SODL) are reported in [7],
[8], [9].

To illustrate LISA style, the specification of a toy language—Simple Expression
Language with Assignments, SELA—is given below. From these descriptions
LISA automatically generates a SELA compiler/interpreter.

language SELA {
lexicon

{
Number [0-9]+

Identifier [a-z]+

Operator \+ | :=

ignore [\0x09\0x0A\0x0D\ ]+

}
attributes Hashtable *.inEnv, *.outEnv;

4



int *.val;

rule Start

{ START ::= STMTS compute

{ STMTS.inEnv = new Hashtable();

START.outEnv = STMTS.outEnv;

};
}

rule Statements

{ STMTS ::= STMT STMTS compute

{ STMT.inEnv = STMTS[0].inEnv;

STMTS[1].inEnv = STMT.outEnv;

STMTS[0].outEnv = STMTS[1].outEnv;

}
| STMT compute

{ STMT.inEnv = STMTS[0].inEnv;

STMTS[0].outEnv = STMT.outEnv;

};
}

rule Statement

{ STMT ::= #Identifier \:= EXPR compute

{ EXPR.inEnv = STMT.inEnv;

STMT.outEnv = put(STMT.inEnv,

#Identifier.value(), EXPR.val);

};
}

rule Expression

{ EXPR ::= EXPR + EXPR compute

{ EXPR[2].inEnv = EXPR[0].inEnv;

EXPR[1].inEnv = EXPR[0].inEnv;

EXPR[0].val = EXPR[1].val + EXPR[2].val;

};
}

rule Term1

{ EXPR ::= #Number compute

{ EXPR.val = Integer.valueOf(

#Number.value()).intValue();

};
}

rule Term2

{ EXPR ::= #Identifier compute

{ EXPR.val = ((Integer)EXPR.inEnv.get(

#Identifier.value())).intValue();

};
}

method Environment

{
import java.util.*;

public Hashtable put(Hashtable env, String name, int val)

{
env = (Hashtable)env.clone();

env.put(name, new Integer(val));

return env;

}
}

}

Besides that, LISA derives other tools (Figure 1. In the following subsections
three families of such tools are described: editors to help the final users in the
creation and maintenance of the sentences of the specified language, i.e., the
source texts (or source programs) that he wants to process (compile/interpret);
inspectors that are useful to understand the behavior or debug the generated
language processor itself (compiler/interpreter); and visualizers/animators,

5



Generated tool Purpose

Editors Easier creation and maintenance of programs
written in newly specified langauge

Inspectors Useful to understand the behavior of generated
language compiler/interpreter

Visualizers/Animators Useful to understand the meaning of programs
written in newly specified langauge

Table 1
LISA generated language-based tools

similar to inspectors, useful to understand the meaning of the source program
that is being processed.

Automatic generation is possible whenever a tool can be built from a fixed
part and a variable part; and also the variable part, language dependent, has
to be systematically derivable from the language specifications. That part has
a well defined internal representation that can be traversed by the algorithms
of the fixed part. Table 2 summarizes those parts for some of the language-
based tools generated by the LISA system. It is not the aim of this paper to
describe all those algorithms (many of them are described in [10]), except the
most interesting ones for program visualizations and animations. They are
described in detail in section 4.

3.1 Editors

Two different LISA generated language oriented editors, that is editors that
are sensitive to the language lexicon/syntax, are described in this section.

3.1.1 Language Knowledgeable Editors

LISA generates a language knowledgeable editor, which is a compromise be-
tween text editors and syntax-directed editors, from formal language speci-
fications. The LISA generated language knowledgeable editor is aware of the
regular definitions of the language lexicon (see table 2). Therefore, it can color
the different parts of a program (comments, operators, reserved words, etc.) to
enhance understandability and readability of programs. In Figure 1 operators
in SELA programs are recognized while editing and displaying in a different
colour.

6



Generated
tool

Formal specifica-
tions

Fixed part Variable part

Lexer regular definitions algorithm which in-
terprets action table

action table:
State× Σ → State

Parser (LR) BNF algorithm which in-
terprets action table
and goto table

action table:
State× T → Action
goto table: State ×
(T ∪N) → State

Evaluator Attribute Grammars
(AG)

tree walk algorithm semantic functions

Language
knowledgeable
editor

regular definitions
(extracted from AG)

matching algorithm same as lexer

Structure edi-
tor

BNF (extracted from
AG)

incremental parsing
algorithm

same as parser

FSA visualiza-
tion

regular definitions
(extracted from AG)

FSA layout algo-
rithm

same as lexer

Syntax tree vi-
sualization

BNF (extracted from
AG)

syntax tree layout al-
gorithm

syntax tree

Dependency
graph visual-
ization

extracted from AG DG layout algorithm dependency graph

Semantic
evaluator
animation

extracted from AG semantic tree layout
algorithm

decorated syntax
tree & semantic
functions

Program vi-
sualization
and animation
(ALMA)

additional formal
specifications

visual and rewrite
rules & visualization,
rewriting and anima-
tion algorithm

decorated abstract
tree (DAST)

Table 2
Fixed and variable parts of LISA generated language-based tools

3.1.2 Syntax-directed Editors

Syntax-directed editors are editors which are aware of the language syntax
of edited programs. They help users to write syntactically correct programs
before they are actually compiled, exhibiting that structure and/or inserting
directly the keywords at the right places (the user only has to fulfill the variable
parts of his text). A Structure Editor is a kind of syntax-directed editor, where
the syntax structure of written programs are explicitly seen while editing the
program (see Figures 2 and 3).

7



Fig. 1. Language knowledgeable editor

Fig. 2. Structure editor

3.2 Inspectors for Language Processors

Four different LISA generated inspectors are introduced in this subsection.
Inspectors are useful in better understanding how automatically generated
language compiler/interpreter works.

3.2.1 Finite State Automaton Visualization

With the help of visual representation of directed graphs it becomes clear how
complex automata can be specified with simple regular expressions and how
some simple automata require a complex regular expression (like comments in
C). It is also possible to determine the conflicts in specifications and resolve
them using FSA visualization. In Figure 4 a finite state automaton of the

8



Fig. 3. Syntax tree view

Fig. 4. FSA view

SELA language is presented.

3.2.2 Syntax Tree Visualization

The basic understanding of a compiler is based on the understanding of the
parsing procedure. This tool is a graphical browser for the syntax tree built

9



Fig. 5. Dependency graph view

by the LISA generated compiler after parsing a given source program. With
this kind of visualizations it is possible to measure the impact of different
grammar specifications on the shape and size of the tree, and assess their
effect on compiler implementation; in that way it is possible to design a better
syntax and thereby an easier and understandable semantics.

Figure 3 illustrates the output of this tool: a part of the syntax tree selected
by the user while editing a program.

3.2.3 Dependency Graph Visualization

As attribute grammars are specified on the declarative level, the order of
attribute evaluation is determined by the compiler construction tool. But that
sequence is also important for language designer to understand the actual
evaluation order.

Even more relevant is the detection of cycles on a grammar; if the attribute
dependencies induce indirect cycles, they can be easily discovered with the aid
of visual representations.

In Figure 5 an augmented dependency graph, drawn by the LISA generated
tool for the 5th SELA production, is presented.

3.2.4 Semantic Evaluator Animation

In attribute grammars a set of attributes carrying semantic information is
associated with each nonterminal. For example, attributes inEnv and val

are associated with nonterminal EXPR (see SELA language specifications). In

10



Fig. 6. Semantic Evaluation view

the evaluation process the value of these attributes has to be computed. The
semantic analysis is better understood by animating the visits to the nodes
of the semantic tree, and the evaluation of attributes in these nodes; Figure 6
shows a snap-shot of the animation process. Therefore, the animation of the
evaluation process is also very helpful in the debugging process. Users can also
control the execution by single-stepping and setting the breakpoints.

3.3 Program Visualization and Animation

Another instance of tools that can be derived from formal language specifica-
tion are program visualizers/animators. The purpose of such a family of tools
is to help the programmer to inspect the data and control flow of a source
program—static view of the algorithms realized by the program (visualiza-
tion) —and to understand its behaviour—dynamic view of the algorithms’
execution (animation). Such a tool can be obtained by the specialization of a
generic visualizer/animator (a language-independent back-end) providing an
extension to the LISA attribute grammar that specifies the language to be
analyzed. The AG extension just defines the way the input sentence should be
converted into the animator’s internal representation (DAST)—see Figure 7.

Below is an example of such an extension for the SELA language, introduced
in the previous subsections.

import "AlmaLib.lisa";11



Fig. 7. Animator generation from LISA specification

language AlmaSELA extends SELA, AlmaBase {
rule extends Start

{
START ::= STMTS compute

{ ALMA_ROOT<START,STMTS>

ALMA_TAB<START,STMTS>

};
}

rule extends Statements

{ STMTS ::= STMT STMTS compute

{ ALMA_STATS<STMTS, STMT, STMTS[1]>

}
| STMT compute

{ ALMA_IDENT<STMTS, STMT>

};
}

rule extends Statement

{ STMT ::= #Identifier := EXPR compute

{
ALMA_ASSIGN<STMT,ALMA_VAR(#Identifier), EXPR>

};
}

rule extends Expression

{ EXPR ::= EXPR + EXPR compute

{
ALMA_OPER<EXPR[0],EXPR[1], EXPR[2], "+">

};
}

rule extends Term1

{ EXPR ::= #Number compute

{
ALMA_CONST<EXPR,#Number>

};
}

rule extends Term2

{ EXPR ::= #Identifier compute

{
ALMA_VAR<EXPR,#Identifier>

};
}

}

The extension shown above illustrates the use of templates, and multiple at-
tribute grammar inheritance that are both standard LISA features [6]. It is
used to specify the attribute evaluation related to the DAST construction; it

12



Fig. 8. Visualization generated by the animator

assumes the syntax and semantics specified in SELA attribute grammar and
adds new computing statements just to build the internal representation used
by Alma. To write in a clear and concise way those statements, we use tem-
plates. Each template is specified as:

template<attributes X_in,Y_in>
compute ALMA_ROOT
{ X_in.dast=new Alma.CRoot(Y_in.tree);
}

The method CRoot is one of pre-defined methods inherited from AlmaBase and is
used to construct the DAST nodes. The attribute tree is used to collect the nodes
of the DAST and then all the tree will be in dast attribute.

From this specification we generate a parser and a translator that converts each
input text into an abstract representation used by the animator, common to all
different source languages. That processor, we call it the animator’s front-end, is
the language dependent component of the tool. In this case, its fixed part is more
complex than in the cases studied in previous subsections 3.1 and 3.2: it is not just a
standard algorithm (we use three language independent algorithms), but it requires
also two standard data structures (a visual rule base, and a rewriting rule base).
NEWmarjan
In the DAST used in Alma each node is related with concepts involved in the source
program. The visualization of these concepts will allow to understand the program.
The DAST is language-independent. The Alma project is an independent work and
its approach can be implemented in any compiler compiler tools. In this case it is
developed to work over LISA system.
NONEWmarjan

So, taking a source program in SELA:

a:=2+5
b:=a+3
c:=a+b

these algorithms can generate a visualization like the one that can be seen in Figure
8. Take the picture as an example because the final layout (drawings used) can be
modified by the Alma designer. Drawing procedures called by the visualizing rules
can easily be changed.

NEWmarjan
The system allows the visualization of data structures and it can also cope with

13



procedures and objects.
NONEWmarjan

The system, to be discussed in the next section has a front-end specific for each lan-
guage and a generic back-end, and uses a decorated abstract syntax tree (DAST) for
the intermediate representation between them. A general overview of Alma’s spec-
ifications and structures, and its relation to a LISA generated compiler is provided
in Figure 7.

4 Alma Implementation

The Alma system was designed to become a new generic tool for program visual-
ization and animation based on the internal representation of the input program in
order to avoid any kind of annotation of the source code (with visual types or state-
ments), and to be able to cope with different programming languages. NEWmarjan
The users of Alma system are people who want to quickly visualize a program with-
out been worried about the semantics of the program. By other hand,a person that
has a program to be animated can not be worried about where the program must
be annotated, which is the syntax of those annotations or what can be watched in
this program in order to understand it. Many concepts are common to many lan-
guages. So, using some rewriting and visualizing rules written for the main concepts
involved, we can automatically generate animation of many many programs. We
only have to identify the concepts to be visualized.
The rewriting and visualizing rules are already constructed for those concepts, what
allows to automatic generate animations without modifying the source text neither
specify the semantics of the program.
NONEWmarjan

4.1 Alma Architecture

To comply with the requirements above, we conceived the architecture shown in
Figure 9.

In Alma we also use a DAST as an internal representation for the meaning of the
program we intend to visualize; in that way, we isolate all the source language depen-
dencies in the front-end, while keeping the generic animation engine in the back-end.
The DAST is specified by an abstract grammar independent of the concrete source
language. We include in appendix A that grammar to formalize the type (structure,
and attributes) of DAST nodes. In some sense we can say that the abstract grammar
models a virtual machine. So the DAST is intended to represent the program state
in each moment, and not to reflect directly the source language syntax. In this way

14



Fig. 9. Architecture of Alma system

we rewrite the DAST to describe different program states, simulating its execution;
notice that we deal with a semantic transformation process, not only a syntactic
rewrite.

A Tree Walk Visualizer, traversing the tree, creates visual representations of nodes,
gluing figures in order to get the program image on that moment. Then the DAST
is rewritten (to obtain the next internal state), and redrawn, generating a set of
images that will constitute the animation of the program.
NEW
Different visualizations can be generated from the same DAST depending on the vi-
sualization rules. Different front-end (one for each source language) generate nodes
from the internal representation of Alma. These nodes will constitute the DAST of
the source program.
NONEW

4.1.1 Visualization in Alma

The visualization is achieved applying visualizing rules (VR) to DAST subtrees;
those rules define a mapping between trees and figures. When the partial figures
corresponding to the nodes of a given tree are assembled together, we obtain a visual
representation for the respective program.

Visualizing Rules

The VRB (Visualizing Rule Base) is a mapping that associates with each attributed
tree, defined by a grammar rule (or production), a set of pairs

VRB: DAST 7→ set (cond × dp)

15



where each pair has a matching condition, cond, and a procedure, dp, which defines
the tree visual representation. Each cond is a predicate, over attribute values asso-
ciated with tree nodes, that constrains the use of the drawing procedure (dp), i.e.,
cond restricts the visualizing rule applicability.
The written form of each visualizing rule is as follows:

vis_rule(ProdId)= <tree-pattern>,
(condition),
{drawing procedure}

<tree-pattern> = <root, child_1, ..., child_n>

In this template, condition is a boolean expression (by default, evaluates to true)
and drawing procedure is a sequence of one or more calls to elementary drawing
procedures.
A visualizing rule can be applied to all the trees that are instances of the production
ProdId. A tree-pattern is specified using variables to represent each node. At least,
each node has the attributes value, name and type that will be used on the rule
specification, either to formulate the condition, or to pass to the drawing procedures
as parameters.
Notice that, although each VRB associates to a production a set of pairs, its written
form, introduced above, only describes one pair, for the sake of simplicity; so it
can happen to have more than one rule for the same production. To illustrate the
idea suppose that in Alma’s abstract grammar a relational operation, rel oper, is
defined by the 13th production:

p13: rel_oper : exp exp

where exp is defined as:

p14: exp : CONST
p15: exp : VAR
p16: exp : oper

A visual representation for that relational operation could be as the one shown in
figure 10.

Fig. 10. Visualization of a relational operation

The visualizing rule to specify that mapping are written below.

vis_rule(p13) =
<opr,a,c>,
((a.type=exp) AND (c.type=exp)),

16



{drawRect(a.name,a.value),drawRect(c.name,c.value),
put(opr.name),put(’?’)}

NEW
This visualization rule is applied to three node tree: an operator and two operands.
Each operand can be a CONST, VAR or oper (another operation). For each operand a
rectangle is constructed with its value inside and its name as a label of the rectan-
gle. Then the operation is drawed and a ? which says that is a relational operation.
NONEW

Visualization Algorithm

The visualization algorithm traverses the tree applying the visualizing rules to the
sub-trees rooted in each node according to a bottom-up approach (post-fix traver-
sal). Using the production identifier of the root node, it obtains the set of possible
representations; then a drawing procedure is selected depending on the first con-
straint condition that is true.
The algorithm is presented below.

visualize(tree){
If not(empty(tree))

then forall t in children(tree) do visualize(t);
rules <- VRB[prodId(tree)]; found <- false;
While (not(empty(rules)) and not(found))

do r <- choice(rules);
rules <- rules - r;
found <- match(tree,r)

If (found) then draw(tree,r); }

NEWmarjan
A program animation could not be code visualization: it depends on the granularity
of the visualization rules. The DAST is an abstract representation of the source
code and we can apply a visualization rule to each node of the tree (getting a more
detailed visualization, usually an operational view like a debugger) or we can apply
a visualization rule to a set of nodes or even to the root. In this last case, the ani-
mation can be very different from a debugger output, it’s more abstract.
We assume that Alma system can have the same problems as other systems that
use visual languages. We can have scalability problems and we must care about
the drawings been used in order to get a visualization that really helps program
understanding.
NONEWmarjan

17



4.1.2 Animation in Alma

Each rewriting rule (RR) specifies a state transition in the process of program ex-
ecution; the results of applying the rule is a new DAST obtained by a semantic
(may be also a syntactic) change of a sub-tree. This systematic rewriting of the
original DAST is interleaved with a sequence of visualizations producing an anima-
tion. A main function synchronizes the rewriting process with the visualization in
a parameterized way, allowing for different views of the same source program.

Rewriting Rules

The RRB (Rewriting Rule Base) is a mapping that associates a set of tuples with
each tree.

RRB: DAST 7→ set(cond × newtree × atribsEval)

where each tuple has a matching condition, cond, a tree, newtree, which defines syn-
tactic transformations, and an attribute evaluation procedure, atribsEval, which
defines the changes in the attribute values (semantic modifications).
The written form of each rewriting rule is as follows:

rule(ProdId)= <tree-pattern>,
(condition),
<NewProdId: newtree>,
{attribute evaluation}

<tree-pattern> = <root, child_1, ..., child_n>
<newtree> = <root, child_1, ..., child_n>

In this template, condition is a boolean expression (by default, evaluates to true)
and attribute evaluation is a set of statements that defines the new attribute
values (by default, evaluates to skip).
A rewriting rule can be applied to all the trees that are instances of the production
ProdId. A tree-pattern associates variables to nodes in order to be used in the
other fields of the rule specification: the matching condition, the new tree and the
attribute evaluation. When a variable appears in both the tree-pattern (we call
the left side of the RR) and the newtree (so called right side of the RR), it means
that all the information contained in that node, including its attributes will not be
modified, i.e. the node is kept in the transformation as it is.
Notice that, although each RRB associates to a production a set of tuples, its written
form, introduced above, only describes one tuple. So, it can happen to have more
than one rule for the same production. For instance, consider the following produc-
tions, belonging to Alma’s abstract grammar, to define a conditional statement:

p8: IF : cond actions actions

18



p9: | cond actions

The DAST will be modified using the following rules:

rule(p8) = <if,op,a,b>,
(op.value=true),
<p9:if,op,a>,
{ }

rule(p8) = <if,op,a,b>,
(op.value=false),
<p9:if,op,b>,
{ }

Rewriting Algorithm

The rewriting algorithm is also a tree-walker that traverses the tree until a rewrit-
ing rule can be applied, or no more rules match the tree nodes (in that case, the
transformation process stops). For each node, the algorithm determines the set of
possible RR using its production identifier (ProdId) and evaluating the contextual
condition associated with those rules. The DAST will be modified removing the
node that matches the left side of the selected RR and replacing it by the new tree
defined by the right side of that RR. This transformation can be just a semantic
modification (only attribute values change), but it can also be a syntactic modifi-
cation, (some nodes disappear or are replaced).
The rewriting algorithm follows:

rewrite(tree){
If not(empty(tree)) then rules <- RRB[prodId(tree)];
found <- false;
While (not(empty(rules)) and not(found))

do r <- choice(rules);
rules <- rules - r;
found <- match(tree,r)

If (found)
then tree <- change(tree,r)
else a <- nextchild(tree)

While (not(empty(a)) and not(rewritten(a)))
do a <- nextchild(tree)

If not(empty(a)) then tree <- rebuild(tree,a,rewrite(a))
return(tree) }

19



Fig. 11. Architecture of LISA system

Animation Algorithm

The main function defines the animation process, calling the visualizing and the
rewriting processes repeatedly. The simplest way consists in redrawing the tree
after each rewriting, but the sequence of images obtained can be very long and
may not be the most interesting. So the grain of the tree redrawing is controlled
by a function, called below shownow(), that after each tree’s syntactic-semantic
transformation decides if it is necessary to visualize it again; the decision is made
taking into account the internal state of the animator (that reflects the state of
program execution) and the value of user-defined parameters.
The animation algorithm, that is the core of Alma’s back-end, is as follows:

animate(tree){
visualize(tree);
Do rewrite(tree);

If shownow() then visualize(tree);
until (tree==rewrite(tree)) }

When no more rules can be applied, the output and input of the rewrite function
are the same.

4.2 Reusing LISA in Alma implementation

LISA itself, and the generated compilers, are implemented, in the programming
language Java, following an object-oriented approach—see Figure 11 to get a general
picture of LISA architecture integrated with all its generated tools. It was very easy
to identify and understand the data structures and functions used by LISA system
and tools to process a given attribute grammar specification or a source programs—
they are properly encapsulated in classes, as attributes and methods. Therefore,
the coding of data structures and algorithms needed to implement Alma became
straightforward, due to the reuse of some of the referred classes.
A global view of Alma implementation is provided in Figure 12. To build the DAST—
that is the output of Alma’s front-end (generated by LISA), and the input of Alma’s

20



Fig. 12. Connection between LISA system and Alma system

back-end—the developer of the AG specification shall call some specific methods
(provided in Alma’s standard library) to create a new tree node for each symbol of
the DAST abstract language and to collect the trees associated with its children. To
implement those methods, we just reused the Java classes CTreeNode, CSyntaxTree,
CParseSymbol, used by LISA to create its internal tree representations.
As an immediate consequence, all the facilities provided in the LISA environment
to manipulate those trees became available to process the DAST.
Those classes were reused once again to build the maps VRB and RRB necessary
for the implementation of the back-end (visualization and animation) algorithms,
as described in subsections 4.1.1 and 4.1.2—remember that every (visualizing or
rewriting) rule in both maps is defined in terms of tree-patterns.

The back-end itself is another Java class, specially developed for that purpose, that
reuses the data structures and implements directly the algorithms shown in the
previous subsections. To code that class, we kept the OO approach followed in LISA
development.
To code the main class of Alma, it should contain the necessary methods to call and
synchronize the animator’s front-end and back-end functions, we simply reused and
adapted the standard Java class, Compile.java, made available in LISA library as
the main class for its generated compilers.

4.3 Alma animation examples

In this section, some Alma animation examples will be presented. SELA language,
already introduced in section 3 and used in all examples of this paper, will be im-
proved in order to show the animation of conditional and repetitive statements.
Now, each statement can be an assignment as in the first version of SELA language,
but it can also be a conditional or repetitive statement, or a reading/writing state-
ment. In this new language we can have several kinds of arithmetic and relational

21



Fig. 13. Example source program

operators.
Two program examples written in this language will be presented. For each one
some images of the generated animation will be shown and also the visualization of
the DAST generated by the front-end of Alma.

4.3.1 An example

The example presented in figure 13 has an assignment, a repetitive statement, a
reading and a writing statement. The figure 14 gives a visualization of the DAST
generated by the front-end of Alma. The figures 15, 16, 17, and 18 show several vi-
sualizations belonging to Alma animation. The first one represents the initial state
of the program; the second and third one shows the first and second iteration of the
cycle; in the fourth one the cycle is finished and the last one represents the final
state of the program.
Notice that symbol ---> represents an assignment or an operation (if an arithmetic
symbol is under the arrow); the symbol # represents a conditional statement; the
symbol @ represents a repetitive statement; the symbol =~=>> represents a write
and <<=~= a read statement.
NEW
The litle window under each visualization its an overview of the execution trace and
the circled part corresponds to the visualization that is shown.
NONEW

22



Fig. 14. Generated DAST for the example

Fig. 15. 1st visualization of the example

4.4 Use of Alma System

A typical user only has to create the input of the system, editing the program he
wants to animate. Then, he submits his program using a command line like:

> java Compile file_name.test

and the program will be animated. For each programming language that has
an Alma front-end previously created, the programmer just uses the system
(as exemplified above) without any additional specification or modification.
This is the original Alma purpose and its main use mode.
The generality of the system can be a handicap to achieve output effects.
We think that the system would be more useful if it allows the addition of
new rules to support new concepts or generate different outputs. Alma system
has a fixed part (visualization/animation algorithms; tree, nodes, identifier
table and rules structure; rule bases interpretation, etc) and a variable part

23



Fig. 16. 7th visualization of the example

Fig. 17. 11th visualization of the example

(visualization and rewriting rules, nodes, etc). We conclude that the fixed part
gives generality and the variable part makes possible to obtain more adequate
visualizations.
In the next section we will show how different kind of users can interact with
the system in order to get the most appropriate animation.

24



Fig. 18. 13th of the example

4.5 Other Alma features

NEW
Alma System can also cope with different languages, different level of anima-
tion detail, different types of visualizations and different types of paradigms.
NONEW

Different Languages
If we want to apply the system to a different source language, we only have
to construct a front-end that defines the concrete syntax of the new language
and maps its main concepts to Alma nodes. This front-end can be generated
using LISA system.

Different level of animation detail
We can also modify the sampling frequency (number of state transformations
(tree rewritings) before a visualization) or choose the set of nodes he wants to
visualize, in order to get a different level of animation detail. An animation
can have more or less visualizations depending on the desired detail level. The
most detailed animation implies the visualization of the tree after each rewrit-
ing. The synchronization between these processes depends on a function called
shownow. This function counts the rewritings and returns 0 or 1 depending
on the desired frequency.
The visualization is obtained traversing a DAST that has associated draw-
ings. If we decide to show only some nodes we will get a less detailed visual
representation. There are nodes that are more important than the others and
their visualization can explain all the functionality of the program. We will
also access an interface where we can easily choose those nodes and watch the

25



results.
We have to distinguish animation detail level from visualization detail level.
On the first one, we do not have to change the drawings (it is concerned with
process synchronization, number of visualizations), and on the second we have
to redefine visualization rules in order to get different results, as we will dis-
cuss in the next paragraph.

Different types of visualizations
Alma system has two bases of rules that can be improved with new semantics
or new drawings. We may want to get different visualizations for the same
language he used before or he may want to animate a very different language
and he must define new visualizations for it. There are several possibilities to
change visualizations: varying the level of visualization detail using a different
mapping between nodes and drawings; choosing different drawings; or both in
order to get a different abstraction level.
The generated visualizations are based on rules that map nodes to draws. If
we want to change the draws in order to get a different visualization, we can
modify rules or specify new ones. We can represent the same concepts with
different drawings.
If we want to change the visualization detail we must associate the drawings
to another level of nodes. In some cases, we can use the same drawings but
when the concepts concerned to this level are different we must define an-
other drawings too. Changing drawings and associated nodes, we can modify
the abstraction level of the visual results. The idea is to create new visual-
ization rules in order to associate more abstract drawings to higher level nodes.

Different type of paradigms
When we have a very different source language mainly if it implements a dif-
ferent programming paradigm, we have to verify which concepts are common
and which are not. For the last ones, we have to specify new visualization
rules, create new DAST nodes and specify new semantics with rewriting rules.
In this section we will show an example in Prolog.
We take as example the following input program:

mother(julie,susan).
mother(susan,john).
father(peter,paul).
father(peter,susan).
parents(M,P,E):-mother(M,E),father(P,E).

We must have a front-end to map the Prolog concepts to Alma nodes. An
extended LISA grammar associates facts and rules to PROCDEF node, because
this node represents the definition of a code block that can be invoked from
any place of the program. The execution tree for the query:

26



? - parents(M,P,susan).

can be seen on figure 19.

Fig. 19. Execution tree created by Alma

A query is mapped to a CALLPROC node that has associated a set of parameters
(LST) and a PROCDEF node which defines a fact or a rule. In the first case, the
CALLPROC has the value true but, in the second case, it is necessary to verify
the truth of every predicate on the rule body, replacing the inner CALLPROC

nodes by the appropriate PROCDEF nodes. Each PROCDEF node has a local
identifier table associated, whose variable values will be used (on PROCDEF
exit) to update the outer table.

The animation of the execution tree (simulation of the proof process) uses the
visualization rules already defined for other languages. In a similar way, we
apply the same rewriting rules used to simulate procedure calls.
The effect can be seen in figure 20 that presents the less detailed version of
the generated animation (the minimal number of steps are shown).
NEW
In figure 21 we show another kind of visualization for the same program. We
get this visualization using other visualizing rules.
NONEW
With this example, we have illustrated the possibility of reusing the visualiza-
tion and rewriting rules, already defined in Alma for imperative languages, to
animate declarative programs (proof processes).
But the system is also prepared to be extended with extra rules if it is neces-
sary. For example, we can have several PROCDEF for each CALLPROC node and,
in this case, we should use a backtracking stack. So, we have to define new
rewriting rules to specify the management of this stack.
NEW
Although these examples, we assume that Alma will be used in small and do-
main specific languages for which there are no debugging tools neither any

27



Fig. 20. Alma generated animation

Fig. 21. Another Alma generated animation
kind of visualizers. Alma produces graphical representations that usually have
problems of scalability and it’s also very dificult to chose the appropriate
drawings for better understanding. So, we are not discussing here the output
quality or the system performance, we are just defending that we can auto-
maticaly visualize different concepts and different languages using the same
old approach: a DAST-based approach.
NONEW

5 Related Work

The development of the first compilers in the late fifties without adequate
tools was a very complicated and time consuming task. For instance, the im-
plementation of the compiler for the programming language FORTRAN took
about 18 human years. Later on, formal methods, such as operational seman-

28



tics, attribute grammars, denotational semantics, action semantics, algebraic
semantics, and abstract state machines, were developed. They made the im-
plementation of programming languages easier and finally contributed to the
automatic generation of compilers/interpreters. Many tools have been built in
the past years, based on the different formal methods and processing different
parts of language specification, such as: scanner generators, parser generators
and compiler generators. The automatic generation of a complete compiler
was the primary goal of such systems. However, researchers soon recognized
the possibility that many other language-based tools could be generated from
formal language specifications. Therefore, many tools not only automatically
generate a compiler but also complete language-based environments. Such
automatically generated language-based environments include editors, type
checkers, debuggers, various analyzers, etc. For example, the FNC-2 [11] is
an attribute grammar system that generates a scanner/parser, an incremental
attribute evaluator, a pretty printer, a dependency graph visualizer, etc. The
CENTAUR system [12] is a generic interactive environment which produces a
language specific environment from formal specifications written in Natural Se-
mantics, a kind of operational semantics. The generated environment includes
a scanner/parser, a pretty printer, a syntax-directed editor, a type checker,
an interpreter and other graphic tools. The SmartTools system [13], a succes-
sor of the CENTAUR system, is a development environment generator that
provides a compiler/interpreter, a structured editor and other XML related
tools. The ASF+SDF environment [14] generates a scanner/parser, a pretty
printer, a syntax-directed editor, a type checker, an interpreter, a debugger,
etc, from algebraic specifications. In the Gem-Mex system [15] the formal lan-
guage is specified with abstract state machines. The generated environment
includes a scanner/parser, a type checker, an interpreter, a debugger, etc. The
LRC system [16] from high-order attribute grammar specifications generates
incremental scanner/parser and attribute evaluators, syntax-directed editor,
multiple views of the abstract semantic tree (unparsing windows), windows-
based interfaces, etc. From the above description of various well known com-
piler/interpreter generators can be noticed that editors, pretty printers, and
type checkers are almost standard tools in such automatically generated en-
vironments. To our knowledge none of the existing compiler generators auto-
matically generate visualizers and animators for programs written in a newly
specified language.
Searching for tools that produce some kind of animation in order to explain
the semantics underlying a given program (to help the programmers reasoning
about it), we found several interesting animators and visualization systems —
for instance: BALSA [17]; TANGO [18]; JCAT [19]; ZSTEP [20]; JELIOT [21];
PAVANE [22] or LENS [23]. However, most of the well known animation sys-
tems are not general purpose. They just animate a specific algorithm (allowing
or not the choice of some configuration parameters) or, if they accept a larger
set of algorithms, the programs must be written in a specific language. Usually
in that case, the programmer shall use special data types or procedures (visual

29



annotations) on the source code, which means that, the source program must
be modified in order to be animated. The animators described in the literature
are not constructed automatically from language specifications.

6 Conclusion

Many applications today are written in well-understood domains. One trend
in programming is to provide software tools designed specifically to handle the
development of such domain-specific applications in order to greatly simplify
their construction. These tools take a high-level description of the specific task
and generate a complete application.
One such well established domain is compiler construction, because there is
a long tradition of producing compilers by hand, and because the underlying
theory (supporting all the analysis phases, and even code generation and opti-
mization processes) is well understood. At present, there exist many generators
which automatically produce compilers or interpreters from programming lan-
guage specifications.
As shown in this paper, not just standard compilers/interpreters can be gener-
ated automatically. Formal language specifications contain a lot of information
from which many language-based tools, such as editors, type checkers, debug-
gers, visualizers, animators, can be generated. Sometimes the implicit infor-
mation is enough, but in some other cases some extra data must be added.
Concrete examples of both types, produced by the generator system LISA,
were introduced and discussed along the article. We do not intend to discuss
in this paper the actual performance of LISA, because our aim is to enhance
the capabilities of the attribute grammar specifications; however our experi-
ments allow us to say that execution time of the generated tools is completely
acceptable when compared with similar programs.
The benefits of this approach to software development are many fold. On one
hand, the developer just writes formal descriptions that are more concise and
clear—they are faster to produce and easier to understand and maintain, be-
cause they are shorter; it is well known that thousands of lines of complex
code are automatically obtained from a grammar definition written in just
some dozens of lines. On the other hand, different tools can be obtained from
the same specification, which is obviously a major advantage. Last but not
least, a very good code (developed by experts in language processing methods
and algorithms) is reused in the automatic generation process.
Discussing in detail the architecture and implementation of one particular tool,
the program visualizer/animator Alma, we also proved that: (1) a grammatical
approach to software engineering, supported by generators, is a nice way to
develop applications (we systematically created a general animator instead of
an algorithm or language dependent one); and (2) a modular, object-oriented,

30



way of programming is valuable for effective reuse of the code (we used some
LISA classes in Alma), saving in fact development time and effort.

References

[1] J. Heering, P. Klint, Semantics of programming languages: A tool-oriented
approach, ACM Sigplan Notices 35 (3) (2000) 39–48.

[2] M. Mernik, M. Lenič, E. Avdičaušević, V. Žumer, Compiler/interpreter
generator system LISA, in: IEEE CD ROM Proceedings of 33rd Hawaii
International Conference on System Sciences, 2000.

[3] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, Reading, MA, 1979.

[4] D. Knuth, Semantics of contex-free languages, Math. Syst. Theory 2 (2) (1968)
127–145.

[5] J. Paakki, Attribute grammar paradigms - a high-level methodology in language
implementation, ACM Computing Surveys 27 (2) (1995) 196–255.

[6] M. Mernik, M. Lenič, Enis Avdičaušević, V. Žumer, Multiple Attribute
Grammar Inheritance, Informatica 24 (3) (2000) 319–328.

[7] M. Mernik, M. Lenič, E. Avdičaušević, V. Žumer, A reusable object-oriented
approach to formal specifications of programming languages, L’Objet 4 (3)
(1998) 273–306.

[8] E. Avdičaušević, M. Lenič, M. Mernik, V. Žumer, AspectCOOL: An experiment
in design and implementation of aspect-oriented language, ACM SIGPLAN
Notices 36 (12) (2001) 84–94.

[9] M. Mernik, U. Novak, E. Avdičaušević, M. Lenič, V. Žumer, Design and
implementation of simple object description language, in: ACM Symposium
on Applied Computing, SAC’2001, 2001, pp. 590–594.

[10] J. D. U. A. V. Aho, R. Sethi, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[11] M. Jourdan, D. Parigot, The FNC-2 system user’s guide and reference manual,
release 1.19, Tech. rep., INRIA Rocquencourt (1997).

[12] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
CENTAUR: The system, ACM SIGPLAN Notices 24 (2) (1989) 14–24.

[13] I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, C. Pasquier, SmartTools:
A generator of interactive environments tools, in: 10th International Conference
on Compiler Construction, Vol. 2027, Lecture Notes in Computer Science,
Springer-Verlag, 2001, pp. 355–360.

31



[14] M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. Oliver, J. Scheerder, J. Vinju, E. Visser,
J. Visser, The ASF+SDF Meta-environment: A component-based language
development environment, in: 10th International Conference on Compiler
Construction, Vol. 2027, Lecture Notes in Computer Science, Springer-Verlag,
2001, pp. 365–370.

[15] M. Anlauff, P. Kutter, A. Pierantonio, Formal aspects and development
environments for Montages, in: 2nd International Workshop on the Theory and
Practice of Algebraic Specifications (ASF+SDF’97), Electronic Workshops in
Computing, Springer/British Computer Society, 1997.

[16] J. Saraiva, M. Kuiper, Lrc - a generator for incremental language-oriented tools,
in: 7th International Conference on Compiler Construction, Vol. 1383, Lecture
Notes in Computer Science, Springer-Verlag, 1998.

[17] M. H. Brown, R. Sedgewick, A system for algorithm animation, in:
SIGGRAPH’84, Vol. 18, ACM Computer Graphics, Minneapolis, 1984, pp. 177–
186.

[18] J. T. Stasko, Simplifying algoritm animation with TANGO, in: IEEE Workshop
on Visual Languages, IEEE, 1990.

[19] M. H. Brown, M. A. Najork, R. Raisamo, A Java-based implementation
of collaborative active textbooks, in: VL’97 - IEEE Symposium on Visual
Languages, IEEE, 1997, pp. 376–384.

[20] H. Lieberman, C. Fry, ZStep 95: A reversible, animated source code stepper, in:
ACM Conference on Computers and Human Interface, Denver, Colorado, 1995.

[21] J. Haajanen, M. Pesonius, E. Sutien, T. Terasvirta, P. Vanninen, J. Tarhio,
Animation of user algorithms in the web, in: VL’97 - IEEE Symposium on
Visual Languages, IEEE, 1997, pp. 360–368.

[22] G. C. Roman, K. Cox, C. Wilcox, J. Plun, PAVANE: A system for declarative
visualization of concurrent computations, Journal of Visual Languages and
Computing 3 (1) (1992) 161–193.

[23] S. Mukherjea, J. T. Stasko, Applying algorithm animation techniques
for program tracing, debugging, and understanding, in: 15th International
Conference on Software Engineering, Baltimore, 1993, pp. 456–465.

A Alma Abstract Grammar

pprog: prog : STATS

pstats: STATS : stat STATS

pstat: | stat

pstat1: stat : IF

32



pstat2: | WHILE

pstat3: | ASSIGN

pstat4: | READ

pstat5: | WRITE

pstat6: | CALLPROC

pstat7: | PROCDEF

pstat8: | RETURN

pifelse: IF : cond actions actions

pifthen: | cond actions

pwhile: WHILE : cond actions

passign: ASSIGN : VAR exp

pread: READ : VAR

pwrite1: WRITE : VAR

pwrite2: | CONST

pcall1: CALLPROC : LST

pcall2: | LST PROCDEF

pcond: cond : RELOPER

pactions: actions : STATS

popr: RELOPER : exp LST

pop: OPER : exp LST

plst: LST : exp LST

pnull: | epsilon

pexp1: exp : CONST

pexp2: | VAR

pexp3: | OPER

pexp4: | RELOPER

pexp5: | CALLPROC

pconst: CONST : num

pret: RETURN : exp

ppdef: PROCDEF : LST STATS

pvar1: VAR : id

33


