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Abstract

Formal methods are mathematical techniques used to certify safe systems.
Such methods abound and have been successfully used in classical Engi-
neering domains, yet informatics is the exception. There, they are still
immature and costly; furthermore, software engineers frequently view
them with "fear". Thus, the use of formal methods is typically restricted
to cases where they are essential. In other words, they are mostly used
in the class of systems where safety is imperative, as the lack of it can
lead to significant losses (material or human). We denote such systems
critical. The present is leading us to a future where critical systems are
ubiquitous.

Recent research in the Mondrian project emphasises the need for
expressive logics to formally specify reconfigurable systems, i.e., systems
capable of evolving in order to adapt to the different contexts induced
by the dynamics of their surroundings. In the same project, theoretical
foundations for the formal specification of reconfigurable systems, were
developed in a sound, generic, and systematic way, resorting for this to
hybrid logics – their intrinsic properties make them natural candidates for
such job. From those foundations a methodology for specifying reconfi-
gurable systems was built and proposed: Instead of choosing a logic for
the specification, build an hybrid ad-hoc one, by taking into account the
particular characteristics of each reconfigurable system to be specified.

The purpose of this dissertation is to bring the proposed methodo-
logy into practice, by creating suitable tools for it, and by illustrating its
application to relevant case studies.

Keywords : Formal methods, modelling, reconfigurable systems, hybrid
logics, institutions.
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Resumo

Métodos formais são técnicas matemáticas usadas para certificar sistemas
fiáveis. Tais métodos são comuns e usados com sucesso nas engenharias
clássicas. No entanto, informática é a excepção. No que respeita este
campo, os métodos formais são prematuros e relativamente dispendi-
osos; para além disso, os engenheiros de software vêem estas técnicas
com alguma apreensão. Assim, o emprego de métodos formais está ti-
picamente restrito a casos onde são absolutamente essenciais. Por outras
palavras, são maioritariamente usados na classe de sistemas, cujas falhas
têm o potencial de tragédia, seja ela material ou humana; tais sistemas
têm a denominação de críticos. O presente leva-nos para um futuro em
que os sistemas críticos são ubíquos.

Investigação recente no project Mondrian enfatiza a necessidade de
lógicas expressivas, para especificar formalmente sistemas reconfiguráveis,
i.e., sistemas que evoluem de modo a se adaptarem aos diferentes contex-
tos, induzidos pela dinâmica do meio que os rodeia. No mesmo projecto,
bases teóricas para a especificação formal de sistemas reconfiguráveis fo-
ram establecidas de forma sólida, genérica e sistemática, recorrendo-se
para isso às lógicas híbridas – as suas propriedades intrínsecas, fazem de-
las candidatos naturais para a especificação de sistemas reconfiguráveis.
Dessas teorias foi inferida e proposta uma metodologia para especificar
sistemas reconfiguráveis: Em vez de escolher uma lógica para a especifica-
ção, construir uma outra, híbrida ad-hoc, tendo em conta as características
particulares de cada sistema reconfigurável a especificar.

O propósito desta dissertação é de trazer a metodologia proposta à
práctica, criando-se para isso, ferramentas que a suportem, e ilustrando a
sua aplicação a casos de estudo relevantes.

Keywords : Métodos formais, modelação, sistemas reconfiguráveis, ló-
gicas híbridas, instituições.
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Chapter 1

Introduction

1.1 Motivation

Software is an integral part of our lives. We have it in our cars, planes,
medical devices, cellphones, and even in our toasters. This ubiquity, and
the increased dependency of our daily lives on computer-based devices
is potentially critical because software is generally built in an informal,
non coherent and unscientific way.

To give a sense of safety and quality to software products, testing still
is the main, and often the only, method used. Yet as Dijkstra said, it only
shows the presence, not the absence of bugs. Moreover, when an error
is uncovered, often is the case were it would be detected earlier with
alternative practices, thus preventing wasted time and money.

Due to the limitations of this trial-and-error approach one ought to
consider additional techniques in software development. In particular
modelling, whose importance has been recognised centuries ago in sev-
eral Engineering domains, albeit in software development being often
neglected.

Currently, UML is the de facto standard for modelling. Indeed, UML is
a simple language that can help in structuring and schematising projects,
and even in finding inconsistencies early in the project. However it is also
an ambiguous language that like testing, cannot prove the correctness of

1
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a design or the corresponding code.

Therefore, one may legitimately reach the conclusion that at least
when millions of euros and/or human lives are at stake, most of the soft-
ware is not trustworthy. To tackle this (and being us in an Engineering
area) there is an agenda for developing sound mathematical based theo-
ries, that can provide efficient ways to guarantee that software behaves as
expected. Significant progress has been made on this subject in the last
30 years, however it still is considered far behind against other Engineer-
ings. Such fact can been supported by the following statement presented
on [MBMNed] and given by a software engineer : I’m not afraid of work-
ing with symbols and formulas, like most software engineers and consultants I
encounter are.

Moreover, most formal methods for software engineering are still ex-
pensive to use, and require highly qualified personnel. Hence, they are
scarcely used out of the critical systems’ frontier. The lack of tool support
is another obstacle to the general use of formal methods. Reinforcing this
last statement, a study referred in [MBMNed] asking for suggestions for
curricular improvement in the formal methods area, pointed out that the
most frequent one was indeed, increased tool support.

In broad terms, this dissertation aims at contributing to fill the gap
between theory and practice, i.e., between mathematically sound and ex-
pressive methods, and suitable support tools.

1.2 Context

More concretely, our focus is on a specific class of specification methods –
those based on the hybrid extension of modal logic, which is particularly
useful to reason about reactive systems, i.e., systems whose interaction
with their environment, proceeds along computation and whose evolu-
tion is, to a large extent, determined by such interactions.

Hybrid logics add expressive power to ordinary modal logic, through
the introduction of propositional symbols of a new sort, called nominals,
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each being true at exactly one possible state or world (of the underlying
Kripke frame). Identifying each world with a particular execution mode
in a reactive system, provides an interesting framework to specify reconfig-
urable systems. Those are systems whose "form" (i.e. resources involved,
network topology, etc) changes along the computational process in re-
sponse to varying context conditions. Their behaviour is indexed to a set
of different run-time modes between which the system commutes dynam-
ically. Reconfigurable systems are now everywhere, from service-oriented
applications to cloud management or robot controllers.

Such systems can be modelled as classical state-machines or labelled
transition systems. Modal logic, in which the value of an assertion is
relative to a particular mode, state or point in the system’s evolution, is
the standard specification language for the transitional behaviour of this
sort of models. As mentioned above, the hybrid extension further provides
a way to refer to particular, suitably named states. Several variants of
such logics exist, with corresponding axiomatizations, model classes and
proof theories. In some cases, as discussed below, they come equipped
with specific theorem provers.

From the point of view of the working software engineering, however,
there is a need to combine hybrid logic with whatever formalism one may
think more suitable to specify the functional behaviour of the system, in-
side each state or operation mode. For example, in very simple cases,
propositional logic may be enough; if data types are present one may
need, however, equational logic or even the full power of first-order. In
other cases more exotic formalisms may be in order: for example fuzzy
or other sort of probabilistic logic are being increasingly used to reason
about, run–time composition of software services and bio-inspired algo-
rithms.

The need to combine hybrid logics, to cater for transitional behaviour,
with a variety of other logics to capture functional requirements in con-
crete system states, lead to the development of a generic, broad scope
method to introduce hybrid features in whatever logic one wants to take
for the underlying functional specifications. This is referred as the hybridi-
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sation method and was introduced in [MMDB11]. The process amounts
to a systematic way to extend any logic, defined as an institution [GB92,
Dia08], with the properties characteristic of hybrid logic. The result is
usually called an hybridised logic.

This method was developed in the context of the Mondrian
1 project,

and its application to the specification of reconfigurable systems, has been
discussed in a number of papers by the project team starting in [MFMB11].

Actually, the Mondrian project gave a special focus to reconfigurable
systems. A concern justified by the fact that a significant part of existing
software is in fact reconfigurable. For instance, the well known auto pilot
mechanism in a plane, supports different configurations: While in the
ON mode the engine follows directions from a map and a GPS device; if
in the OFF mode, directions are to be given by the pilot.

The Mondrian project and the hybridisation process of arbitrary logics,
mentioned above, provides the context for the present dissertation.

1.3 Contributions

The overall aim of this dissertation is to provide effective tool support
for stating and verifying formal specifications written in hybridised log-
ics, constructed accordingly to the systematic hybridisation method docu-
mented in [MMDB11]. Adopting the same generic approach underlying
the method, our aim is not to build dedicated proof tools for each possi-
ble hybridised logic, which moreover would be a giant task, but to develop
support for defining hybrid versions of whatever logics one may be inter-
ested in, on top of the HETS [MML07] platform.

What makes the hybridisation method developed in [MMDB11] effec-
tive, is the representation of logics as institutions [GB92]. As an abstract
representation of a logical system, encompassing syntax, semantics and
satisfaction, an institution provides modular structuring and parameteri-
zation mechanisms which are defined "once and for all", abstracting from

1http://www.di.uminho.pt/mondrian

http://www.di.uminho.pt/mondrian
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the concrete particularities of each specification logic. Intuitively, and
slightly forcing the meaning of words, one may regard institutions as a
kind of (formal) boilerplates...for logics. But institutions, originally pro-
posed by Joseph Goguen and Burstall in the 70’s, also provide a sys-
tematic way to relate logics and transport results from one to another,
through the so-called comorphism. This means that a theorem prover for
the latter, can be used to reason about specifications written in the for-
mer. The hybridisation method, whose implementation this dissertation
discusses, takes advantage of this to "freely" provide suitable tool sup-
port for specifications, through suitable translations to first-order logic.
HETS concretises the theory of institutions and respective comorphisms, in
the form of a sound framework. We take advantage of it, to implement
the hybridisation method.

In this context, the research programme of this dissertation lead to the
following contributions:

1. The integration and exploration of the hybridisation method (pro-
posed in [MMDB11]) on top of HETS the platform. In particular,

(a) The implementation of an hybridised version of CASL [MHST03]
into HETS, which provided a first step for implementing the
more generic version of the hybridisation process;

(b) A performance analysis and comparison, involving the tool
support achieved for the hybridised version of CASL, and dedi-
cated provers for hybrid logics;

(c) The implementation of the hybridisation process into HETS, in
a generic setting.

The results achieved in this line of work were published in [NMMB13b].

2. The development of several illustrative examples and an extensive
case study with hybrid specifications, which entails the need to re-
sort to a number of different base logics.
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3. The extension of the hybridisation process, to the relational frame-
work underlying Alloy [Jac06], one of the most successful lightweight
formal tools. In particular,

(a) the formalisation of Alloy as an institution;

(b) followed by the definition of a suitable comorphism from Alloy

to first order logic;

(c) then on the practical side, the exploration of a case study in-
volving DCR graphs [HM10], that brings the theory developed
into practice.

The results achieved in this line of work were published in [NMMB13a,
NMMBar].

4. Further development of the theory underlying the hybridisation method,
by addressing the following points:

(a) Identification of the hybridisation method as an endofunctor,
paving the way for a more generic proof support for hybridised
logics, than the one introduced in [MMDB11];

(b) Development of a technique that at some extent, provides to
hybrid specifications the means to reason about evolving inter-
faces, alongside with the already existing machinery for talking
about evolving configurations.

Results achieved, were published in [MNMB13].

Overall, this dissertation is supported by four publications in inter-
national events with peer–review: [NMMB13b], [NMMB13a], [NMMBar]
and [MNMB13].

1.4 Roadmap

This chapter sums up the motivation, context and contributions for this
MSc. dissertation.
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The remaining chapters are structured as follows:

• Chapter 2 summarises the theory supporting this dissertation. It
also describes the HETS platform and dedicated provers for hybrid
logics.

• The core of this dissertation, i.e., the development of tool support
for hybridised logics, is presented in Chapter 3. It starts by introduc-
ing, the hybridisation of a singular logic with the respective proof
support. Then, HETS implementation of the generic hybridisation
process is introduced.

Technical details are complemented with (small) case studies resort-
ing to the hybridisation.

• Chapter 4 illustrates the methodology behind the hybridisation pro-
cess with an extensive case study on a critical medical device. In
this context, several hybridised logics are employed, ranging from
the more conventional to the more exotic ones.

• Chapter 5 presents an extension of the method suitable to hybridise
Alloy and provides tool support to its hybridised version. The the-
ory is put into practice with a case study on medical workflows.

• Chapter 6 discusses further extensions to the hybridisation method.

• Finally, chapter 7 concludes this dissertation.

The diagram below gives the dependency relation between technical
chapters (solid lines), and suggests reading sequences (dashed lines):
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Chapter 2

Background

2.1 Hybrid logics

2.1.1 Modal logics

Reconfigurable systems by definition, have different modes of opera-
tion. They evolve by reacting to different events, changing their attributes
along time. This leads to a notion of relative truth, i.e., properties hold
not statically, but rather relative to stages of evolution – one property true
at one mode of operation, may not be at another.

Actually not only reconfigurable systems, but many others have rel-
ativeness intrisinc in them, which is only expectable since it is a natural
law in our reality. For example, the proposition "is raining" is only true
at certain points in time.

Modal logics [BdRV01] are suitable languages to deal with this rela-
tive truth pattern. They distinguish themselves by being able to express
transitions between states and making restrictions to the worlds associ-
ated with those transitions. Therefore, modal logics are considered to be
natural candidates for the specification of reconfigurable systems, if the
underlying states and transitions are regarded as the modes of operation
and triggers for them, respectively.

States and transitions form what is the called Kripke frame. Modal
logic formulas make assertions about the underlying transition structure,

9
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but do not fix the sort of model one may want to associate with a specific
state. This for instance, may be a propositional, first order, or whatever
structure is found appropriate.

Arguably the simplest modal logic is the modal propositional logic
(henceforth MPL). As its name suggests, states correspond to propo-
sitional models, with the propositions changing their truth value along
them. From another perspective, one may see MPL as an extension of
propositional logic, with a modality operator, resulting in the following
grammar:

ρ := p | ¬ρ | ρ⇒ ρ′ | [r]ρ, where

p is a proposition and r is a modality, i.e., the identification of a particular
transition.

As usual, ρ ∨ ρ′ and ρ ∧ ρ′ are defined by ¬ρ ⇒ ρ′ and ¬(ρ ⇒ ¬ρ′),
respectively.

The new operator, [r], is what turns propositional logic into a modal
logic. It provides the machinery to restrict properties in all states that can
be accessed by a given modality (i.e. transition), considering a state as a
point of evaluation – the state at which an expression is to be evaluated.
To give an example: [r]p is one of the sentences that is possible to build
with the grammar presented above. Roughly speaking, when evaluated
at world w, it states: p holds for any world w′, that is accessible from state
w, through a transition corresponding to modality r. Dually, one can also say
that there is a transition by r to a world where p holds : ¬[r]¬p. 〈r〉p, is
a compact way of expressing the same, i.e., ¬[r]¬p ≡ 〈r〉p.

As already mentioned, one of the limitations of modal logics is their
limited inability to address a specific state. Hybrid logics naturally over-
come this limitation. This explains why we focus on them, in this disser-
tation.

2.1.2 Hybrid logics

Arthur Prior [Bla06] paved the path for hybrid logics in the late 60’s. No-
tably, this class of logics boosts the expressivity of modal logics without
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affecting neither decidability nor complexity [BBW06].
The standard hybrid logics as presented in [AtC06], extend modal log-

ics with special propositions, which can only be true at exactly one state.
They are called nominals, and regarded as state names or identifiers. Ad-
ditionally, we have a new operator that moves the point of evaluation to a
world referred by a nominal. Thus, hybrid logics provide the machinery
to refer directly to states.

Analogous toMPL,HPL is the hybrid logic whose worlds are propo-
sitional models. Its sentences are given by the following grammar:

ρ = p | ¬ρ | ρ⇒ ρ′ | [r]ρ | n | @nρ, where

p is a proposition, r a modality, and n a nominal
The novelty, is the operator @; it changes the point of evaluation to the

state referred by the respective nominal. I.e., the formula coming after
this operator, is evaluated at the state pointed by the nominal associated
with @. For example, @n p means that : At state n, p holds.

Along with @, comes the possibility of using nominals on their own.
This allows assertions regarding equality between worlds. For instance,
@nm, means that n and m point to the same world. Another example is
@nn, which is actually a tautology for this particular logic.

Typically HPL model semantics is given by Kripke frames along with
an assignment function, as shown below:

Definition 2.1.1. An HPL model is a triple (W, R, g) where :

• W is the finite set of worlds,

• R the set of modalities, which in true are binary relations over W ×W,

• g the assignment function that for each world, gives a truth value to a
proposition, g : W → P → {0,1}. As a side note, the latter may also be
seen as a family of functions, (gw : P→ {0,1})w∈W .

Finally the satisfaction is defined as follows:
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Definition 2.1.2. Given an HPL model M = (W,R,g) and a naming function
f, assigning to each nominal a world. The relation M, f , w |= ρ, for w a world,
and ρ an HPL formula, is defined as:

M, f , w |= p iff g(w, p) = 1
M, f , w |= ¬ρ iff M, f , w 6|= ρ

M, f , w |= ρ⇒ ρ′ iff M, f , w |= ρ′ whenever M, f , w |= ρ

M, f , w |= [r]ρ iff for all (w, w′) ∈ r, M, f , w′ |= ρ

M, f , w |= n iff f (n) = w
M, f , w |= @nρ iff M, f , f (n) |= ρ

The following example illustrates the use of hybrid logics for specifi-
cation.

Example 2.1.1. Consider a smoke detector, that can work at normal or low bat-
tery mode. When functioning at normal mode, the sensor is queried at an high
frequency. But, when the battery is low, the detector switches to a lower querying
frequency so that battery may be preserved.

The description given above, is depicted by the following Kripke frame:

Normal PowerSave

BatteryLow

BatteryNorm

Clearly in this system, there are exactly two possible modes of operation
(1), which furthermore must be mutually exclusive (2). Although with
MPL is not possible to specify requirements (1) and (2), with HPL we
can do it resorting to nominals, as the following shows:

(Normal ∨ PowerSave) (1) ¬(Normal ∧ PowerSave) (2)

From the example’s description, is also clear that when a transition
by BatteryLow happens, the achieved state must always be at a low fre-
quency mode (3). This can be written inMPL as follows:



2.1. HYBRID LOGICS 13

[BatteryLow]¬HighFreq (3)

However, we also know that such transition happens between modes
Normal and PowerSave (4). This cannot be expressed withMPL, due to
the lack of nominal support and control of the evaluation point. On the
other hand, with HPL, requirements (3,4) are straightforward:

@Normal[BatteryLow](PowerSave ∧ ¬HighFreq)(3, 4)

HPL provides machinery to specify other interesting properties. For
instance, that the available transitions form a cycle: From Normal mode,
we can jump to a state through BatteryLow, and then to Normal again, through
BatteryNorm (5).

@Normal〈BatteryLow〉〈BatteryNorm〉Normal (5)

2.1.3 Expressive hybrid logics

Although, hybrid logics already give a boost to modal logics’ expressive
power, there has been work trying push such expressiveness even further,
even if, some times at the cost of decidability and increased complexity.
One of the most significant results is a new operator that significantly
increases hybrid logics expressiveness, but turns them undecidable in the
process. This operator, often called binder (↓) and introduced by Goranko
[Gor96], names states dynamically. I.e., binds a new name to a state,
but just in a sentence’s context. One classical example of a property that
cannot be expressed using standard hybrid logics is reflexivity, as in the
following Kripke frame:

r

With the binder such property is stated in the following way:

↓ x . 〈r〉x
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Note that the world did not have a pre–defined name, and therefore we
could never refer it with standard hybrid logics. Using the binder, we
gave it a name in an ad hoc way, thus overcoming the reference impossi-
bility.

Other possible extension is the addition of the so called global operator

(
◦
∀) [GG93] (and the dual existential operator) to hybrid logics. The catch

is that the respective satisfiability problem is turned EXPTIME-complete.
This operator, behaves in a similar way to universal quantification in first
order logic. However with the difference that it can only quantify over
states and cannot bind a variable’s name to them. When using the global
operator, as its name suggests, the point of evaluation becomes global.
I.e., the sentence associated to it, is not evaluated at just one, but at all
available worlds.

Another notion worth mentioning is that of rigid designators. Desig-
nators are called rigid, when they must "behave" in the same way at all
states of the underlying model. Therefore, they are typically used to
express invariant properties. Returning to the smoke detector system,
a simple requirement that can be formalised resorting to the notion of
rigidness is: When smoke is detected, a warning ensues independently of which
state the system is.

To conclude, nominal quantification ( ∀©, ∃©) may also be considered.
The latter works like the quantification in first order logic, with the dif-
ference that only nominals may be quantified. As expected, decidability
is lost and complexity becomes exponential. However, it should be noted
that nominal quantification is enough to "cover" all the other extensions
mentioned above: Given a sentence ρ, we have

• ↓ x . ρ ≡ ∃©x . x ∧ ρ;

•
◦
∀ ρ ≡ ∀©x . @x ρ;

• To assert rigidness of a predicate p, one simply writes: ∀©x, x′ . @x p⇒
@x′ p.
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We conclude this brief survey of hybrid logics, mentioning that the
hybridisation method, which is presented further in this document, in-
corporates nominal quantification. However, the latter can always be dis-
carded whenever decidability and low complexity are a priority.

2.2 Hybridisation

2.2.1 Institutions

The navel of this dissertation, namely, the hybridisation process, relies on
a number of formal concepts1 whose definitions are recalled here. Being
more specific, the present section recalls the notion of an institution – the
framework in which the theory of hybridisation was developed.

The institution concept [GB92, Dia08] formalises the essence of a what
a logical system is, by encompassing syntax, semantics and satisfaction.
Introduced by Joseph Goguen and Rod Burstall in the late 70’s, its original
aim was to provide a sound foundation for the

“development of as much computing science as possible, in a general and
uniform way,"

as a response to the increasing number of emerging logics in software
specification.

The hybridisation process reaches its generic setting, because the the-
ory of institutions provides means to completely abstract from each par-
ticularly a logic may have, therefore paving the way to develop theory
"once and for all" logics. Formally,

Definition 2.2.1. An institution is a tuple (SignI ,SenI ,ModI , (|=IΣ)Σ∈|SignI |),
where :

• SignI is a category, whose objects are called signatures;

• SenI : SignI → Set, is a functor that for each signature Σ, gives a set
whose elements are the Σ–sentences;

1typically framed in the language of category theory (c.f. [Awo10]).
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• ModI : (SignI)op → C, is a functor giving for each signature Σ a cate-
gory whose objects are the Σ-models;

• |=IΣ ⊆ |ModI(Σ)| × SenI(Σ), is the satisfaction relation such that for
each morphism ϕ : Σ→ Σ′, the following holds :

ModI(ϕ)(M′) |=IΣ ρ iff M′ |=IΣ′ SenI(ϕ)(ρ) for any

M′ ∈ |ModI(Σ′)|, ρ ∈ SenI(Σ)

The reduct of M′ through a signature morphism ϕ, is denoted as
ModI(ϕ)(M′), or in a more compact way as M′ �ϕ. Dually, M′ is called
the model expansion by ϕ of M′ �ϕ.

To achieve simple notations, for any signature object Σ, we may use
notation CΣ to express “the component C of signature Σ".

Following the category theory tradition of describing notions in terms
of diagrams, the structure of an institution I may be intuitively seen as
follows,

SignI

Cop Set

(ModI)op SenI

along with the satisfaction condition, expressed by the diagram shown
below:

Σ

Σ′
ϕ

ϕ ∈ hom(SignI)

ModI(Σ′)

SenI(Σ′)

|=IΣ

ModI(Σ)

SenI(Σ)

ModI(ϕ)

|=IΣ′

SenI(ϕ)

The notion of an amalgamation square is often essential for "captur-
ing" logics, and so is employed in the present document. We recall the
correspondent definition.
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Definition 2.2.2. A commuting square of functors,

A′

A1

A2

A

G1

G2

F1

F2

is a weak amalgamation square, if and only if, for each M1 ∈ |A1|, M2 ∈ |A2|,
such that F1(M1) = F2(M2), there is an object M′ ∈ |A′| such that G1(M′) =
M1 and G2(M′) = M2. When M′ is unique, we have a strong amalgamation
square.

In particular when F, G denote signature morphisms mapped by a functor ModI ,
a commuting square of the corresponding signature morphisms,

Σ

Σ1

Σ2

Σ′

θ1

θ2

ϕ

ϕ′

is a weak amalgamation square, if and only if, for each M1 ∈ |ModI(Σ1)|,
M2 ∈ |ModI(Σ2)|, such that ModI(θ1)(M1) = ModI(θ2)(M2), there is an
object M′ ∈ |ModI(Σ′)| called the amalgamation of M1 and M2, such that
ModI(ϕ)(M′) = M1 and ModI(ϕ′)(M′) = M2. The square is strong if M′ is
unique.

The simplest example of an institution is the singular logic.

Example 2.2.1. The singular logic

Signatures. Sign1 is the singleton category, having only one (atomic) object
and the respective identity arrow.

Sentences. Sen1 is a functor that for each object in Sign1 returns the empty
set.
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Models. Mod1 is a functor that for each object in Sign1 returns the 1
category. Therefore it is the identity functor.

Satisfaction. |=1 is the family of relations indexed by the objects in Sign1.
For each Σ ∈ |Sign1|, |=1

Σ= |Mod1(Σ)| × Sen1(Σ).

Satisfaction condition. The proof for this institution comes for free, as for
any Σ ∈ |Sign1|, Sen1(Σ) = ∅.

The institution capturing propositional logic, is also an interesting exam-
ple:

Example 2.2.2. Propositional logic

Signatures. SignPL is a category whose objects are sets of propositional
symbols. A morphism, ϕ, in this category is a function ϕ : P→ P′ that for each
p ∈ P, gives a ϕ(p) ∈ P′.

Sentences. SenPL is a functor such that, for each Σ ∈ |SignPL|, returns
the set of expressions built of propositional symbols of Σ, closed by the typical
boolean connectives. Given a morphism ϕ : Σ→ Σ′ in SignPL:

SenPL(ϕ)(p) = ϕ(p)
SenPL(ϕ)(ρ⇒ ρ′) = SenPL(ϕ)(ρ)⇒ SenPL(ϕ)(ρ′)

SenPL(ϕ)(¬ρ) = ¬SenPL(ϕ)(ρ)

Models. ModPL is a functor that, for each Σ ∈ |SignPL|, gives the category
generated by the powerset of propositional symbols P ordered by the set inclusion.
In other words, models are the sets of holding propositional symbols in Σ; and
the corresponding morphisms are the inclusions between those models. Given
a signature morphism ϕ : Σ → Σ′ in SignPL, the reduct of a model M ∈
|ModPL(Σ′)| through the morphism ϕ is defined as follows : For each p ∈ Σ,
p ∈ M �ϕ iff ϕ(p) ∈ M.

Satisfaction. |=PL is the satisfaction relation such that, given any Σ ∈
|SignPL| and M ∈ |ModPL(Σ)|:
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M |=PLΣ ρ⇒ ρ′ iff M |=PLΣ ρ′ whenever M |=PL ρ

M |=PLΣ ¬ρ iff M 6|=PLΣ ρ

M |=PLΣ p iff p ∈ M

Satisfaction condition. The proof of the satisfaction condition, follows
by induction. Given any morphism ϕ : Σ → Σ′ in SignPL, a model M′ ∈
|ModPL(Σ′)| and a sentence ρ ∈ SenPL(Σ):

When ρ := p,

M′ �ϕ|=PLΣ p

⇔ {Satisfaction definition }

p ∈ M′ �ϕ

⇔ {Reduct definition }

ϕ(p) ∈ M′

⇔ {SenPL definition }

SenPL(ϕ)(p) ∈ M′

⇔ {Satisfaction definition }

M′ |=PLΣ′ SenPL(ϕ)(p)

When ρ is an implication :

M′ �ϕ|=PLΣ ρ⇒ ρ′

⇔ {Satisfaction definition }

M′ �ϕ|=PLΣ ρ′ whenever M′ �ϕ|=PLΣ ρ
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⇔ {Induction hypothesis, 2× }

M′ |=PLΣ′ SenPL(ϕ)(ρ′) whenever M′ |=PLΣ′ SenPL(ϕ)(ρ)

⇔ {Satisfaction definition }

M′ |=PLΣ′ SenPL(ϕ)(ρ)⇒ SenPL(ϕ)(ρ′)

⇔ {SenPL definition }

M′ |=PLΣ′ SenPL(ρ⇒ ρ′)

The case for negation is similar to the above.

Naturally, one of the most used logics, first order logic, can also be
defined in institutional terms:

Example 2.2.3. First Order logic

Signatures. SignFOL is a category whose objects are triples (S, F, P), where
S is the set of sort symbols, F a family of function symbols indexed by their arity,
F = (Fw→s|w ∈ S∗, s ∈ S) and P a family of relational symbols also indexed by
their arity, P = (Pw|w ∈ S∗). A signature morphism in this category is also a
triple (ϕst, ϕop, ϕrl) such that for ϕ : (S, F, P)→ (S′, F′, P′), if f ∈ Fw→s, then
ϕop( f ) ∈ F′

ϕst(w)→ϕst(s)
, and if p ∈ Pw then ϕrl(p) ∈ P′

ϕst(w).

Sentences. For each signature object (S, F, P) ∈ |SignFOL|, SenFOL((S, F, P))
is the smallest set of first order sentences:

t ≈ t′, for t, t′ ∈ terms
p(t1, . . . , tn), for t1, . . . , tn ∈ terms and p ∈ Pw

¬ρ, for ρ ∈ SenFOL((S, F, P))
ρ⇒ ρ′, ρ, ρ′ ∈ SenFOL((S, F, P))
∀x : s . ρ, s ∈ S, ρ ∈ SenFOL((S, F ] {x}→s, P))

where a term of sorts is a syntactic structure σ(t1, . . . , tn), such that σ ∈
Fs1,...,sn→s and t1, . . . , tn are terms of sort s1, . . . , sn, respectively. A signature
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morphism ϕ defines a term translation function terms(ϕ), given by

terms(ϕ)(σ(t1, . . . , tn)) = ϕop(σ)(terms(ϕ)(t1), . . . , terms(ϕ)(tn)).

Given a signature morphism ϕ in SignFOL, sentences are mapped in the follow-
ing way:

SenFOL(ϕ)(t ≈ t′) = terms(ϕ)(t) ≈ terms(ϕ)(t′)
SenFOL(ϕ)(p(t1, . . . , tn)) = ϕrl(p)(terms(ϕ)(t1), . . . , terms(ϕ)(tn))

SenFOL(ϕ)(¬ρ) = ¬SenFOL(ϕ)(ρ)

SenFOL(ϕ)(ρ⇒ ρ′) = SenFOL(ϕ)(ρ)⇒ SenFOL(ϕ)(ρ′)

SenFOL(ϕ)(∀x : s . ρ) = ∀x : ϕst(s) . SenFOL(ϕ′)(ρ),
where ϕ′ canonically extends ϕ with ϕ′op(x) = x

Models. For each signature (S, F, P) ∈ |SignFOL|, ModFOL((S, F, P)) is
a category whose objects are models with the following components : a carrier
set |Ms|, for each s ∈ S; a function M f : |Mw| → |Ms|, for each fw→s ∈ F; a
relation Mp ⊆ |Mw|, for each p ∈ Pw.

For any signature morphism ϕ : (S, F, P) → (S′, F′, P′), and any (S′, F′, P′)–
model M′, ModFOL(ϕ)(M′), or M′ �ϕ, is defined as:

• for any s ∈ S, |(M′ �ϕ)s| = |M′ϕst(s)
|

• for any f ∈ Fw→s, (M′ �ϕ) f = M′
ϕop( f )

• for any p ∈ Pw, (M′ �ϕ)rl = M′
ϕp(p)

Satisfaction. For any Σ–model M ∈ |ModFOL(Σ)|, with Σ ∈ |SignFOL|,
the satisfaction relation is inductively defined in the following way:

M |=FOLΣ t ≈ t′ iff Mt = Mt′

M |=FOLΣ p(t1, . . . , tn) iff (t1, . . . , tn) ∈ Mp

M |=FOLΣ ¬ρ iff M 6|=FOLΣ ρ

M |=FOLΣ ρ⇒ ρ′ iff M |=FOLΣ ρ′ whenever M |=FOLΣ ρ

M |=FOLΣ ∀x : s . ρ iff for any model expansion M′ along the inclusion morphism x
previously defined in the functor SenFOL, M′ |=FOLΣ′ ρ
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Lemma 2.2.1. The following diagram is a strong amalgamation square for ModFOL

Σ

Σ1

Σ2

Σ′

x

ϕ

ϕ′

xϕ

where ϕ′ canonically extends ϕ with ϕ′f (x) = x, and x, xϕ are inclusion mor-
phisms. I.e. both add x (which is a constant function {x}→s) as a fresh symbol
to the respective signatures.

Proof. From ModFOL(x)(M1) = ModFOL(ϕ)(M2), we know that:

For any: s ∈ SΣ, |M1s| = |M2ϕst(s)|;
f ∈ (Fw→s)Σ, M1 f = M2ϕop( f );
p ∈ (Pw)Σ, M1p = M2ϕrl(p).

⇒ {M2 is the xϕ reduct of M′; transitivity }

For all models expansions M′ of M2, by the inclusion morphism xϕ: given any,
s ∈ SΣ, |M1s| = |M′ϕst(s)

|;
f ∈ (Fw→s)Σ, M1 f = M′

ϕop( f );
p ∈ (Pw)Σ, M1p = M′

ϕrl(p).

⇒ {|M1s| = |M′ϕst(s)
|, for any s ∈ SΣ; inclusion morphism definition }

There is exactly one model expansion of M2 by xϕ, denoted as M′, such that
M′x = M1x, entailing that for any : s ∈ SΣ, |M1s| = |M′ϕst(s)

|;
f ∈ (Fw→s)Σ, M1 f = M′

ϕop( f );
p ∈ (Pw)Σ, M1p = M′

ϕrl(p);
M′x = M1x.

⇔ {inclusion morphism x, definition }
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There is exactly one model expansion of M2 by xϕ, denoted as M′, such that, for
any : s ∈ SΣ1 , |M1s| = |M′ϕst(s)

|;
f ∈ (Fw→s)Σ, M1 f = M′

ϕop( f );
p ∈ (Pw)Σ1 , M1p = M′

ϕrl(p);
M′x = M1x.

⇔ {ϕ′ definition }

There is exactly one model expansion of M2 by xϕ, denoted as M′, such that for
any : s ∈ SΣ1 , |M1s| = |M′ϕ′st(s)

|;
f ∈ (Fw→s)Σ1 , M1 f = M′

ϕ′op( f );
p ∈ (Pw)Σ1 , M1p = M′

ϕ′rl(p).

⇔ {reduct definition }

There is exactly one model expansion of M2 by xϕ, denoted as M′, such that
M1 = ModFOL(ϕ′)(M′)

Lemma 2.2.2. For any signature morphism ϕ : Σ→ Σ′, a Σ′–model M′, and a
term t, built from Σ, (M′ �ϕ)t = M′terms(ϕ)(t).

Proof. When t := σ, for σ ∈ (F→s)Σ and s ∈ SΣ,

(M′ �ϕ)σ

⇔ {Reduct definition }

M′
ϕop(σ)

⇔ {terms(ϕ) definition }

M′terms(ϕ)(σ)
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When t := σ(t1, . . . , tn), for σ ∈ (Fw→s)Σ with w, s ∈ (SΣ)
∗ and t1, . . . , tn ∈

Σ–terms,

(M′ �ϕ)σ(t1,...,tn)

⇔ {Reduct definition, and I.H. for each term }

M′
ϕ f (σ)((terms(ϕ)(t1),...,terms(ϕ)(tn))

⇔ {terms(ϕ) definition }

M′terms(ϕ)(σ(t1,...,tn))

Satisfaction condition. The proof for the satisfaction condition, follows
by induction. Given a morphism ϕ : Σ → Σ′ in SignFOL, a model M′ ∈
|ModFOL(Σ′)| and a sentence ρ ∈ SenFOL(Σ),

When ρ := t ≈ t′, for t, t′ Σ–terms

M′ �ϕ|=FOLΣ t ≈ t′

⇔ {Satisfaction definition }

(M′ �ϕ)t = (M′ �ϕ)t′

⇔ {Lemma 2.2.2 }

M′terms(ϕ)(t) = M′terms(ϕ)(t′)

⇔ {Satisfaction definition }

M′ |=FOLΣ′ terms(ϕ)(t) ≈ terms(ϕ)(t′)

⇔ {SenFOL(ϕ) definition }
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M′ |=FOLΣ′ SenFOL(ϕ)(t ≈ t′)

The case where ρ = p(t1, . . . , tn) for p ∈ (Pw)Σ and w ∈ (SΣ)
∗ comes out

straightforwardly, by using the lemma 2.2.2 and the reduct/satisfaction defini-
tions.

The implication and negation cases are proved analogously, to what was done in
the PL institution (c.f. example 2.2.2).

When ρ := ∀x : s . ρ′, for s ∈ SΣ and ρ′ a Σ–sentence,

M′ �ϕ|=FOLΣ ∀x : s . ρ′

⇔ {Satisfaction definition }

For all model expansions of M′ �ϕ, denoted as (M′ �ϕ)’, by the inclusion
morphism x previously defined on SenFOL, (M′ �ϕ)′ |=FOLΣ′ ρ′

⇔ {Lemma 2.2.1 and I.H. }

For all model expansions of M′, denoted as M′′, by the inclusion morphism xϕ,
previously defined on SenFOL, M′′ |=FOLΣ′x SenFOL(ϕ′)(ρ′)

⇔ {Satisfaction definition }

M′ |=FOLΣ′ ∀x : ϕst(s) . SenFOL(ϕ′)(ρ)

⇔ {SenFOL(ϕ) definition }

M′ |=FOLΣ′ SenFOL(ϕ)(∀x : s . ρ)

Example 2.2.4. First order Equational logic (FEQ) is a sub–institution of
FOL, without the relational symbols and the corresponding interpretations in
models.
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Example 2.2.5. First order Partial logic (FP) as an institution, extends
FEQ as follows: Signature become tuples (S, TF, PF), where TF is the fam-
ily of (total) functions, and PF the family of partial functions indexed by their
arity. As expected we assume that TFw→s ∩ PFw→s = ∅. Signature morphisms
are defined in the usual way.

Models have to interpret partial functions, meaning that for some arguments
the latter may not be defined.

Three kinds of atoms are added to sentences – definedness (def(_)), existential
equality ( e

=) and strong equality (=). Actually the semantics of the latter is
equivalent to the typical equality, as we will see next.

Regarding satisfaction, for any valid terms t, t′, def(t) holds iff t is defined
in the corresponding model. t e

= t′ holds iff t, t′ are defined and equal. Finally
t = t′ holds iff both terms are undefined or both are defined and equal.

Example 2.2.6. Equational logic (EQ) is a sub–institution of FEQ, where
the sentences are restricted to universally quantified equations – those of the form
∀X . t = t′.

Jumping to more "exotic" logics, the multi-valued ones replace the
two-elements set of truth values {true, f alse}, structured as a Boolean
algebra, by other sets structured as complete residuated lattices (cf. [Got01]
for an overview).

Multi-valued logics were first formalised as institutions in [ACEGG90],
being [Dia13a] a recent reference. We follow the latter in formalisation be-
low.

Example 2.2.7. Multi-valued and Fuzzy Logics.

A residuated lattice is a structure L = (L,≤,∧,∨,>,⊥, ?), where

• (L,∧,∨,>,⊥) is a lattice ordered by ≤, over an alphabet L, with (binary)
infimum and supremum, ∧ and ∨, and biggest and smallest elements, >
and ⊥;
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• ? is an associative and commutative binary operation such that, for any
elements x, y, z ∈ L:

– x ?> = > ? x = x;

– y ≤ z implies that (x ? y) ≤ (x ? z);

– there exists an element x ⇒ z such that

y ≤ (x ⇒ z) iff x ? y ≤ z.

The residuated lattice L is complete if any subset S ⊆ L has infimum and
supremum denoted by

∧
S and

∨
S, respectively.

Given a complete residuated lattice L, we define the institution MVLL as
follows.

• SigMVLL = SigFOL;

• Sentences of SenMVLL(S, F, P) are pairs (ρ, p) where

– p is an element of L, and

– ρ is a sentence generated from relational atoms of π(t1, . . . , tn), for
π ∈ Ps1...sn and ti an algebraic term of sort si, by the (extended) set of
connectives {⇒ ∧,∨,>,⊥, ?} and quantifiers (∀X) and (∃X) for
X a finite set of variables.

• a model M ∈ |ModMVLL(S, F, P)| consists of

– an algebra (S, F),

– for each π ∈ Ps1...sn , a function Mπ : Ms1...sn → L.

Morphisms between models M and N are algebra homorphisms such that
for any π ∈ Ps1...sn , Mπ(t1, . . . , tn) ≤ Nπ(hs1(t1), . . . , hsn(tn)).

• For any M ∈ ModMVLL(S, F, P) and for any (ρ, p) ∈ SenMVLL(S, F, P)
the satisfaction relation is given by

M |=MVLL
(S,F,P) (ρ, p) iff p ≤ (M |= ρ)



28 CHAPTER 2. BACKGROUND

where M |= ρ is inductively defined as follows:

– for any relational atom π(t1, . . . , tn),
(M |= π(t1, . . . , tn)) = Mπ(Mt1 , . . . , Mtn);

– (M |= >) = >;

– (M |= ⊥) = ⊥;

– (M |= ρ1 � ρ2) = (M |= ρ1)� (M |= ρ2), for � ∈ {∧,∨,⇒, ?};

– (M |= (∀X)ρ) =
∧ {

M′ |= ρ|M′ �(S,F,P)= M
}

;

– (M |= (∃X)ρ) =
∨ {

M′ |= ρ|M′ �(S,F,P)= M
}

.

This institution captures a number of multi-valued logics in the liter-
ature. For instance,

Example 2.2.8. Fuzzy logic (FZL) is the sub–institution ofMVL, where L
is the Łukasiewicz arithmetic lattice over the closed interval [0, 1], where x ? y =

1−max{0, x + y− 1)} (and x ⇒ y = min{1, 1− x + y}).

Example 2.2.9. 3–valued logic (3VL), which is the sub-institution ofMVL,
where the alphabet of L has 3 elements.

2.2.2 Morphisms

There are two types of arrows that can be defined to relate institutions,
morphisms and comorphisms. The former are adequate for expressing
"forgetful" operations from a "more complex" institution to a structurally
"simpler" one. The latter "embed" a "simpler" institution into a more
"complex" one.

One motto of category theory is that "arrows is what matters", a fact
founded on the notion that any category can be defined just in terms
of morphisms 2. Also supporting this motto, suitable comorphisms in
the category of institutions, have been successfully used for providing
proof support to different logics. Such is possible because conservative
comorphisms allow to "borrow" proof support, by "transporting" specific

2Objects are the identity arrow.
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theories in a given logic, into another that, in principle, has better proof
support.

A comorphism in the category of institutions, is formally defined as
follows:

Definition 2.2.3. Consider two institutions I = (SignI , SenI , ModI |=I) and
I ′ = (SignI

′
, SenI

′
, ModI

′
, |=I ′). A comorphism, I → I ′ is a triple (Φ, α, β)

consisting of :

• a functor Φ: SignI → SignI
′
;

• a natural transformation α: SenI ⇒ SenI
′
.Φ;

• a natural transformation β: ModI
′
.Φop ⇒ ModI , where for all Σ ∈

|SignI |, Φ(Σ)-Models M’ and Σ-sentences ρ :

βΣ(M′) |=IΣ ρ iff M′ |=I ′Φ(Σ) αΣ(ρ)

Definition 2.2.4. On the conditions above, the following commuting diagram of
model transformations,

ModI
′
(Φ(Σ′))

ModI
′
(Φ(Σ))

ModI(Σ′)

ModI(Σ)

ModI
′
(ϕ′)

βΣ′

βΣ

ModI(ϕ)

is a weak amalgamation square, if and only if, for each MΦ ∈ |ModI
′
(Φ(Σ))|,

M′ ∈ |ModI(Σ′)|, such that βΣ(MΦ) = ModI(ϕ)(M′), there is a model
M′Φ ∈ |ModI(Φ(Σ′))|, such that ModI

′
(ϕ′)(M′Φ) = MΦ and βΣ′(M′Φ) =

M′. When M′ is unique, the amalgamation square is called strong.

Definition 2.2.5. A comorphism is conservative whenever for any Σ ∈ |SignI |,
βΣ is surjective. I.e., for any Σ–model M, there is a Φ(Σ)–model M′, such that
βΣ(M′) = M.
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There is also a special kind of comorphism (typically called an en-
coding) devised for when the source institution is "too complex" to be
"embedded" into the target one. In an encoding such structural complex-
ity is shifted to the mapping Φ on signatures, by switching the target
institution with its presentation:

Definition 2.2.6. For any institution I , its presentation I pres is also an insti-
tution. In the latter, signatures Σ ∈ |SignI |, are extended to be pairs (Σ, Γ),
such that Γ ⊆ SenI(Σ); and models M ∈ ModI(Σ) are restricted to the ones
where Γ is satisfied, i.e., M |=IΣ Γ.

2.2.3 The hybridisation method

Software products are built and maintained, with respect to requirements
of different nature. Moreover, if one decides to formalise them using
specification logics, will probably find the need for different ones, suitable
for whatever type of requirement that may appear.

To "connect" requirements of different families in a specification, it
may be of the interest of the user to formally combine the logics found
more suitable to deal with them. Actually this conforms with what
Goguen and Meseguer beautifully put in [GM87]:

“The right way to combine various programming paradigms is to discover their
underlying logics, combine them, and then base a language upon the combined

logic."

Currently, sundry results on the subject of combining logics at the
institutional level, exist. From such, one may mention:

1. The addition of a linear temporal logic layer (c.f. [ST12]) to a given
institution. Sentences are extended with the expected machinery,
and the resulting models are linear sequences of the base institu-
tion’s models.

2. The modalisation process [DS07], as the name suggests, brings the
modal machinery to an institution. As such, the hybridisation method
underlying this dissertation [MMDB11] extends this work.
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3. [Dia13b] presents a very recent result, which turns an institution
into a many-valued one.

As already mentioned, the hybridisation process [Mad13] is an ex-
tension of the modalisation one, which endows the hybrid properties to
a given logic, while retaining the latter’s original properties. Thus, hy-
bridised logics may be used to support the following methodology :

Whenever reconfigurable systems are in order, chose a logic to talk about the
configurations. Then, hybridise it for dealing with the reconfigurations.

In a more technical perspective, the hybridisation process acts on the
category of institutions: For an object I in this category, the hybridisation
gives an object HI in the same category, by extending the former logic
with the hybrid machinery.

Formally

Definition 2.2.7. Given an institution, I = (SignI , SenI , ModI , (|=IΣ)Σ∈|SignI |),
the hybridisation method produces another institution,
HI = (SignHI , SenHI , ModHI , (|=HIΣ )Σ∈|SignHI |), such that:

• SignHI = SignI × SignREL. Objects in SignREL are tuples (Noms, λ),
where Noms denote a set of nominals, and λ the set of modalities. Signa-
ture morphisms for SignREL are defined as expected.

• Given a signature (Σ, ∆) ∈ |SignHI |, with ∆ = (Noms, λ), SenHI((Σ, ∆))
is the least set such that :

– Noms ⊆ SenHI((Σ, ∆));

– SenI(Σ) ⊆ SenHI((Σ, ∆));

– ρ⇒ ρ′ ∈ SenHI((Σ, ∆)), for ρ, ρ′ ∈ SenHI((Σ, ∆));

– ¬ρ ∈ SenHI((Σ, ∆)), for ρ ∈ SenHI((Σ, ∆));

– @iρ ∈ SenHI((Σ, ∆)), for ρ ∈ SenHI((Σ, ∆)) and i ∈ Noms;

– [m]ρ ∈ SenHI((Σ, ∆)), for ρ ∈ SenHI((Σ, ∆)) and m ∈ λ;
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– ∀©x . ρ ∈ SenHI((Σ, ∆)), for ρ ∈ SenHI((Σ, ∆′)), with ∆′ =
(Noms ] {x}, λ).

For any morphism in the SignHI category, (ϕ, θ) : (Σ, ∆) → (Σ′, ∆′)
with ∆ = (Noms, λ), sentences are mapped in the following way :

SenHI((ϕ, θ))(n) = θNoms(n), for n ∈ Noms
SenHI((ϕ, θ))(δ) = SenI(ϕ)(δ), for δ ∈ SenI(Σ)
SenHI((ϕ, θ))(ρ⇒ ρ′) = SenHI((ϕ, θ))(ρ)⇒ SenHI((ϕ, θ))(ρ′)

SenHI((ϕ, θ))(¬ρ) = ¬SenHI((ϕ, θ))(ρ)

SenHI((ϕ, θ))(@iρ) = @θNoms(i)
SenHI((ϕ, θ))(ρ)

SenHI((ϕ, θ))([m]ρ) = [θλ(m)]SenHI((ϕ, θ))(ρ)

SenHI((ϕ, θ))( ∀© x . ρ) = ∀©x . SenHI((ϕ, θ′))(ρ), where
θ′ canonically extends θ with θ′Noms(x) = x

• For any signature (Σ, ∆) ∈ |SignHI |, a model M ∈ |ModHI((Σ, ∆))| is
a tuple ( f , R), such that :

– R ∈ |ModH(∆)|. A model in ModH(∆) has a carrier set |R| defining
the possible worlds; a function n : Noms∆ → |R|, and for each
modality symbol m in ∆, a binary relation Rm ⊆ |R| × |R| defining
the corresponding accessibility relation. In other words, such models
are Kripke frames with a naming function.

Given a model R′ ∈ |ModH(∆′)|, its reduct by θ : ∆ → ∆′, denoted
as R′ �θ, is defined in the following way:

∗ |R′| = |R′ �ϕ |,
∗ for any n ∈ Noms∆, Rn(n) = R′n(θNoms(n))

,

∗ for any m ∈ λ∆, Rm = R′
θλ(m)

– f is a function such that f : |R| → |ModI(Σ)|. I.e., each world of the
hybrid component points to a model in the base institution. Notice
that all models in the codomain, share a unique signature. This is a
known limitation of the hybridisation method.
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The reduct ( f , R), of a model ( f ′, R′) ∈ |ModHI((Σ′, ∆′))|, by the signa-
ture morphism (ϕ, θ) : (Σ, ∆)→ (Σ′, ∆′), is defined as :

( f , R) = (ModI(ϕ). f ′, ModH(θ)(R′))

• For any signature, (Σ, ∆) ∈ |SignHI |, a model ( f , R) ∈ |ModHI((Σ, ∆))|,
a world w ∈ |R|, and a sentence ρ ∈ SenHI((Σ, ∆)), the respective satis-
faction relation is defined in the following way :

( f , R), w |=HI(Σ,∆) n iff Rn(n) = w, for n ∈ Noms∆

( f , R), w |=HI(Σ,∆) δ iff f (w) |=IΣ δ, δ ∈ SenI(Σ)

( f , R), w |=HI(Σ,∆) ρ⇒ ρ′ iff ( f , R), w |=HI(Σ,∆) ρ′ whenever ( f , R), w |=HI(Σ,∆) ρ

( f , R), w |=HI(Σ,∆) ¬ρ iff ( f , R), w 6|=HI(Σ,∆) ρ

( f , R), w |=HI(Σ,∆) @iρ iff ( f , R), Rn(i) |=HI(Σ,∆) ρ

( f , R), w |=HI(Σ,∆) [m]ρ iff for all (w, w′) ∈ Rm, ( f , R), w′ |=HI(Σ,∆) ρ

( f , R), w |=HI(Σ,∆) ∀©x . ρ iff for all model expansions R′ of R along the

inclusion morphism previously defined in SenHI ,
( f , R′), R′n(x) |=

HI
(Σ,∆′) ρ

Lemma 2.2.3. On the conditions above, the following diagram is a strong amal-
gamation square for ModHI ,

(Σ, ∆)

(Σ, ∆1)

(Σ2, ∆2)

(Σ2, ∆′)

(id, x)

(ϕ, θ)

(ϕ, θ′)

(id, x(ϕ,θ))

where θ′ canonically extends θ with θ′Noms(x) = x, and (id, x) and (id, x(ϕ,θ))

are inclusion morphisms adding a fresh nominal x to the respective signatures.

Proof. From ModHI((id, x))(M1) = ModHI((id, x(ϕ,θ)))(M2) we know that:

|R1| = |R2|,
for any n ∈ Noms∆ R1n(n) = R2n(θNoms(n)),
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for any m ∈ Mods∆ R1m = R2θMods(m)

⇒ {definition of inclusion morphism; transitivity }

For all model expansions M′ of M2 by the inclusion morphism (id, x(ϕ,θ)):
|R1| = |R′|,

for any n ∈ Noms∆ R1n(n) = R′n(θNoms(n))
,

for any m ∈ Mods∆ R1m = R′
θMods(m)

⇒ {|R1| = |R′|; inclusion morphism (id, x(ϕ,θ)) definition }

There is exactly one model expansion M′ of M2 by the inclusion morphism
(id, x(ϕ,θ)) such that:
|R1| = |R′|,

for any n ∈ Noms∆ R1n(n) = R′n(θNoms(n))
,

for any m ∈ Mods∆ R1m = R′
θMods(m),

and R1n(x) = R′n(x)

⇔ {definition of the inclusion morphism (id, x); definition of θ′ }

There is exactly one model expansion M′ of M2 by the inclusion morphism
(id, x(ϕ,θ)), such that:
|R1| = |R′|,

for any n ∈ Noms∆1 R1n(n) = R′n(θ′Noms(n))
,

for any m ∈ Mods∆1 R1m = R′
θ′Mods(m)

⇔ { M1 has exactly the same underlying models of I than M. The same

happens between M′ and M2. }

There is exactly one model expansion of M2 by the inclusion morphism
(id, x(ϕ,θ)) such that
|R1| = |R′|,

for any n ∈ Noms∆1 R1n(n) = R′n(θ′Noms(n))
,
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for any m ∈ Mods∆1 R1m = R′
θ′Mods(m)

,

and f1 = ModI(ϕ). f ′

⇔ {ModHI reduct definition }

There is exactly one model expansion M′ of M2 by the inclusion morphism
(id, x(ϕ,θ)), such that:

( f1, R1) = ModHI((ϕ, θ′))( f ′, R′)

Satisfaction proof. Given a signature (Σ′, ∆′) ∈ |SignHI |, a signature
morphism (ϕ, θ) : (Σ, ∆) → (Σ′, ∆′), a (Σ′, ∆′)–model M′, and a (Σ, ∆)–
sentence ρ, for any world, w ∈ M′|R′| :

When ρ := n, n ∈ Noms∆ :

M′ �(ϕ,θ), w |=HI(Σ,∆) n

⇔ {Satisfaction definition }

(M′ �(ϕ,θ))Rn(n)
= w

⇔ {Reduct definition }

M′Rn(θNoms(n))
= w

⇔ {Satisfaction definition }

M′, w |=HI(Σ′,∆′) θNoms(n)

⇔ {SenHI definition }

M′, w |=HI(Σ′,∆′) SenHI((ϕ, θ))(n)
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When ρ ∈ SenI(Σ) :

M′ �(ϕ,θ), w |=HI(Σ,∆) ρ

⇔ {Satisfaction and reduct definition }

(M′ �(ϕ,θ))ModI (ϕ). f ′(w) |=IΣ ρ

⇔ {The base logic is an institution }

(M′ �(ϕ,θ)) f ′(w) |=IΣ′ SenI(ϕ)(ρ)

⇔ {Reduct definition }

M′f ′(w) |=
I
Σ′ SenI(ϕ)(ρ)

⇔ {Satisfaction definition }

M′, w |=HI(Σ′,∆′) SenI(ϕ)(ρ)

⇔ {SenHI definition }

M′, w |=HI(Σ′,∆′) SenI((ϕ, θ))(ρ)

Proofs for the next two cases are analogous to the same ones in FOL.
When ρ := @iρ,

M′ �(ϕ,θ), w |=HI(Σ,∆) @iρ

⇔ {Satisfaction definition }

M′ �(ϕ,θ), Rn(i) |=HI(Σ,∆) ρ

⇔ {Induction hypothesis }
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M′, Rn(i) |=HI(Σ′,∆′) SenHI((ϕ, θ))(ρ)

⇔ {Reduct definition }

M′, R′n(θNoms(i))
|=HI(Σ′,∆′) SenHI((ϕ, θ))(ρ)

⇔ {Satisfaction definition }

M′, w |=HI(Σ′,∆′) @θNoms(i)SenHI((ϕ, θ))(ρ)

⇔ {SenHI definition }

M′, w |=HI(Σ′,∆′) SenHI((ϕ, θ))(@iρ)

Proof for the modality case is analogous to the above.

Proof for the quantification case is analogous to the quantification case in
FOL, when replacing the employed amalgamation lemma, by 2.2.3.

2.3 Proof support for hybrid logics

2.3.1 Conventional proof strategies

Considerable work has been made on proof theory for hybrid logics since
the 90’s. In particular proof theory for HPL and HFOL has been no-
tably extended in [Bra11], paving the way for a number of proof-tool
implementations. However, to the best of our knowledge there is not any
assisted prover for HFOL.

Several proof methods, considered suitable for tool implementation,
have been developed for HPL. Resolution and tableau are among the
most successful ones on this category, and as such, they were consistently
relied on for the implementation of several dedicated HPL proof tools.
In the next section, some of them are briefly described, to contextualise a
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comparison between them and the tools developed in the context of this
dissertation. Naturally, such comparison can only be made for HPL, due
to the absence of proof tools for other hybrid logics.

Translation is another proof strategy, suitable for implementation. It
works by "borrowing" the proof support from another logic. A legitimate
choice for the logic being targeted in such translation, is FOL, as it is
endowed with several forms of proof methods and an impressive number
of proof tools.

As it should be expected, the translation strategy has its own limita-
tions: When translating into another logic, one may be forced to enter
into undecidability, or at least increased complexity.

The translation method, is used in this dissertation to at some extent,
adding proof support for hybridised logics [MMDB11]. The following
section, describes this technique from a technical perspective.

2.3.2 Proofs with comorphisms

We have presented hybridised logics as suitable candidates when the
specification of reconfigurable systems is in order. However, their po-
tentialities for specification shall always be limited if assisted reasoning
is not supported.

Reference [MMDB11] describes how a comorphism from a base insti-
tution I to FOL, can be lifted into another one from HI to FOL, while
in the well–behaved cases retaining conservativeness. In such cases, this
provides means to "borrow" the proof environment from FOL, and use
it on HI . Formally speaking,

Definition 2.3.1. Given a comorphism, (Φ, α, β) : I → FOL,
the lifting, (Φ′, α′, β′) : HI → FOL is defined in the following way:

• For a signature (Σ, ∆) ∈ |SignHI |, Φ′((Σ, ∆)) = (S′, F′, P′), such that
for Φ(Σ) = (S, F, P):

– S′ = S ] {World},
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– F′ = (FWorld,w→s|Fw→s ∈ F) ] (n|n ∈ ∆Noms)→World, for w, s ∈
S∗,

– P′ = (PWorld,w|Pw) ] (m|m ∈ ∆λ)World,World, for w ∈ S∗;

• Given a signature (Σ, ∆) ∈ |SignHI | and a (Σ, ∆)–sentence ρ, α′ is de-
fined as follows:

α′(Σ,∆)(ρ) = (∀x : World) ηx
(Σ,∆)(ρ), where

ηx
(Σ,∆)(n) = x ≈ n, for n ∈ Noms∆

ηx
(Σ,∆)(ρ) = (αx

Σ. αΣ)(ρ), for ρ ∈ SenI(Σ)

ηx
(Σ,∆)(ρ⇒ ρ′) = ηx

(Σ,∆)(ρ)⇒ ηx
(Σ,∆)(ρ

′)

ηx
(Σ,∆)(¬ρ) = ¬ηx

(Σ,∆)(ρ)

ηx
(Σ,∆)(@iρ) = ηi

(Σ,∆)(ρ)

ηx
(Σ,∆)([m]ρ) = (∀y : World) m(x, y)⇒ η

y
(Σ,∆)(ρ)

ηx
(Σ,∆)( ∀©x′ . ρ) = (∀x′ : World) ηx

(Σ,∆′)(ρ), where ∆′ = (∆Noms ] {x′}, ∆λ)

where,

αx
Σ( f (t1, . . . , tn)) = f (x, αx

Σ(t1), . . . , αx
Σ(tn)), for f ∈ FΣ

αx
Σ(t ≈ t′) = αx

Σ(t) ≈ αx
Σ(t
′)

αx
Σ(p(t1, . . . , tn)) = p(x, αx

Σ(t1), . . . , αx
Σ(tn)), for p ∈ PΣ

αx
Σ(ρ⇒ ρ′) = αx

Σ(ρ)⇒ αx
Σ(ρ
′)

αx(¬ρ) = ¬αx
Σ(ρ)

αx
Σ(∀y : s . ρ) = ∀y : s . αx

Σ′(ρ), where Σ′ = (SΣ, FΣ ] {y}→s, PΣ)

• Given a signature (Σ, ∆) ∈ |SignHI |, and a model Φ′(Σ, ∆)–model M,
β′(Σ,∆)(M) = ( f , R) such that :

– |R| = |MWorld|,

– For each symbol n ∈ ∆Noms, Rn(n) = Mn,

– For each symbol m ∈ ∆λ, Rm = Mm,

– For each w ∈ |R|, f (w) = βΣ(M′), with M′ being defined as :

∗ For each sort s ∈ (SΣ\World), |Ms| = |M′s|3

3Notice that we may not have conservativeness for β′, since we are assuming that
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∗ For each σ ∈ (Fa→s)Σ\(F→World)Σ, Mσw = M′σ, where a, s ∈
S∗Σ and σw denotes the function resulting from applying the ar-
gument w to σ;

∗ For each p ∈ (Pa)Σ\(PWorld,World)Σ, Mpw = M′p, where a ∈ S∗Σ
and pw denotes the predicate resulting from applying the argu-
ment w to predicate p.

2.3.3 Dedicated provers for the propositional case

There are several dedicated provers forHPL. Among them, HyLoRes[AH02]
and HTab[HA09] distinguish themselves by their availability, stability,
documentation and respective features, although others should also be
mentioned, namely, HyLoTab [vE02], Pilate and Herod [CMC10], Hy-
dra [BBW01] and Spartacus [GKS10].

Since one of the contributions of this dissertation is to "freely" provide
hybridised logics (integrated in HETS) with the respective tool support, it
is natural to have some kind of comparison against the dedicated provers.
Therefore, follows a succinct description of HyLoRes and HTab, in order
to have a more clear context for this comparison to be made in chapter 3.

HyLoRes is the first and the only prover, to our knowledge, imple-
menting the HPL resolution method. Unfortunately, accordingly to its
repositories, development has stopped in 2009. HyLoRes supports HPL,
with the binder and the global operator, entailing that termination is not
guaranteed. Overall it is considered to be a successful prover, and is often
involved in comparisons between HPL provers.

HTab, as its name suggests, uses the HPL tableau method, which is
considered to be the most successful when dealing with modal logics.
Like HyLoRes, supports HPL with the binder and the global operator,
once again not guaranteeing termination. Additionally, HTab provides
prototype mechanisms to build specifications driven by the user. To the

these models (M′) have the same carrier sets, which is not necessarily true and thus
possible models are not being considered. The way to guarantee conservativeness, is
to make suitable restrictions to the hybridised logic in question in order to remove the
unconsidered models.
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best of our knowledge, HTab is the fastest dedicated HPL prover.
The algorithms behind these provers work in a similar way: The sen-

tence being evaluated is negated, and a model that satisfies it is searched
for. The search is made by removing possible hypothesis by means of
contradictions. If in the end all hypothesis have been removed, i.e., if no
model exists, the sentence can be taken as valid.

Ending this section, two minor contributions resulting from the anal-
ysis of the described provers, are mentioned:

• Changes on the compiler used by HyLoRes, turned impossible its
compilation on recent systems. However, in the context of this dis-
sertation HyLoRes’s code was updated and put available online 4.
As such, this prover be now used in the newest systems, and more-
over, along the update process, a deeper perspective of HyLoRes’s
inner workings was obtained.

• In order to avoid the hassle of obtaining and compiling each prover
separately, a package was made that provides an easier way of in-
stalling several of these systems without the need for compiling.
More concretely, a Mac Os package including HyLoRes, HTab and
Spartacus binaries, was built and put available online5. Hopefully
this will provide an easier way to use such systems, thus widening
their use within the scientific community.

4https://github.com/nevrenato/HyLoRes_Source
5https://github.com/nevrenato/Hybrid_package
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Chapter 3

Hybridisation in HETS

The core of this dissertation is the integration of the hybridisation method
into HETS. This work, was framed by two milestones. In the first one, a
single language was to be hybridised, and the respective proof support
(as described in section 2.3.2) provided. Integration of these into HETS,
would then follow. The second, aimed at a more generic hybridisation,
one that potentially gives to the end user an hybridised version of each
logic already available in HETS.

The present chapter describes the results achieved in this dissertation
with respect to both milestones.

3.1 Background

3.1.1 HETS as the implementation framework

The Heterogeneous Tool Set (HETS), based on the theory of institutions,
follows the multi logic approach by providing the means to integrate a
number of institutions, comorphisms, and respective tools within a sin-
gle framework. Therefore, one can see HETS as a graph whose nodes
are individual logics (institutions), and the edges are translations (comor-
phisms) between them, providing a method to "transport” properties and
proofs inside the network. Additionally we have extra an dimension over
the latter, relating nodes and compatible reasoning tools.

43
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Such tools range from easy-to-use automatic theorem provers (as Dar-
win [BFT06], SPASS [WDF+09], Vampire [RV02], EProver [Sch02]) to
interactive ones (such as Isabelle [NWP02], VSE [AHL+00] or LEO II
[BTPF08]).

HETS is targeted as an implementation framework for the hybridisa-
tion process, given its institutional theoretical foundation which fits well
this approach. Furthermore, the community supporting HETS, is increas-
ing and actively developing improvements, extensions, and fixing bugs.
Therefore, at this level, the hybridisation method has fertile grounds to
grow.

3.1.2 CASL

The Common Algebraic Specification Language [MHST03], also known
as CASL, was developed within the CoFI initiative, with purpose of cre-
ating a sort of an universal language for specifying requirements and de-
sign conventional software packages. The resulting product is a language
extending FOL with:

1. Subsorting;

2. Generated types, i.e., types whose all elements are exclusively built
by constructors;

3. Free types, i.e., types that are generated, and whose different con-
structors terms must denote different elements;

4. Partial functions.

From an institutional perspective, a CASL signature is a tuple (S, TF, PF, P),
where S is the set of sort symbols; TF the set of function symbols; PF the
set of partial function symbols and P the set of relational symbols. As
expected, TF ∩ PF ⊆ ∅. If subsorting functionality is intended, then the
previous signature is extended with a partial order relation ≤ on sorts.

Sentences extend FOL’s ones in order to accommodate the function-
alities previously described.
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Currently CASL is regarded as thede facto standard language for alge-
braic specifications. Furthermore it is integrated into HETS, along with
many of its expansions, as depicted by figure 3.1. One such expansion,
particularly relevant to the work presented here, is MCASL [Mos04]. The
latter adds to CASL the ability to deal with modalities, therefore turn-
ing it into a modal logic whose underlying worlds, correspond to CASL
models. Naturally, we are dealing with an expansion similar to the hy-
bridised version of CASL (which is introduced in the present chapter).
Actually MCASL was of utmost importance as an object of analysis, used
to understand how to implement a CASL extension in HETS.

Other relevant expansions of CASL, currently implemented in HETS
are:

• CoCASL [MRRS06] which introduces coalgebraic types. It should
be interesting to explore in which ways HCASL relates to CoCASL,
since a modal logic can be generalised into a coalgebraic one [CKP+08];

• CspCASL [Rog03] which combines the process algebra CSP with
CASL;

• HasCASL [SM09] which extends CASLwith the implementation of
a partial λ–calculus. This provides functional programming and
specification within a single language, consequently narrowing the
gap between both. Furthermore, portions of HasCASL’s hybrid1

models can actually be executed, since a comorphism from Has-
CASL to Haskell

2 is implemented. It should be very interesting to
ascertain how the hybridised version of HasCASL, behaves in terms
of state–based programming.

1Specifications in HasCASL are hybrid, in the sense that code and specification are
mixed together.

2Haskell is also captured as an institution, meaning that HETS can be embedded to
itself!
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Heterogeneous tool subset

HasCASL

HCASLMCASL
Prop

Haskell

SoftFOL

Isabelle

OWL

VSE
CASL

Provers

Vampire

SPASS

Eprover

Darwin

...

CoCASL

Figure 3.1: A subset of HETS logic graph

3.2 On applying the hybridisation to CASL

3.2.1 HCASL in HETS

The first step of integrating the hybridisation process into HETS, con-
sisted of the hybridisation of CASL, the almost lingua franca of HETS, and
its posterior implementation in the framework. Then, resorting to the
technique presented in section 2.3.2, we provided proof support for it.

Recalling that the only hybrid logic with tool support was HPL, this
first result is interesting because we gave tool support to a powerful hy-
bridised logic. Furthermore, since CASL harbours may sub–logics, its
hybridisation can also accommodate the hybrid versions of those. Thus,
this result actually gives tool support to a number of hybridised logics.
Examples of such are : HPL, HEQ, HFOL, HFP . . .

From a more technical perspective, applying the hybridisation method
to CASL results in a new logic (henceforth namedHCASL) which extends
the former with the expected hybrid machinery. In particular, HCASL
extends CASL signatures, by supporting the declaration of nominals and
modalities. In addition, sentences are extended as follows:
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ρ := n | δ | ρ⇒ ρ′ | ¬ρ |@i ρ | [m]ρ | ∀©x . ρ

for n a nominal, δ a CASL sentence, ρ, ρ′ HCASL sentences, and m a
modality.

Notice that, there are repeated operators in the grammar above: Both
¬ and ⇒ are defined at the hybrid level, although, they were already
present in CASL. Although repeated operators may cause ambiguities,
such is not the case here since the repeated ones (¬,⇒) can be "collapsed"
into the correspondent originals, as they semantically coincide.
HCASL’s underlying models are Kripke frames whose worlds point

to CASL models obliged to share a given signature, as imposed by the
hybridisation method. In addition, we need to restrict the pointed mod-
els to have the same realisation of carrier sets. Otherwise there will be
HCASL’s models that cannot be translated into FOL, thus conservative-
ness is lost.

Given the details of HCASL as an hybridised logic, we are ready to
go over its integration into HETS.

One fundamental step in the process of integratingHCASL into HETS,
was the reverse engineering of other CASL extensions already there im-
plemented. This so that we could have a better understanding of the
framework implementation at a low level. In particular, MCASL was no-
tably useful for such, since it is a similar logic to HCASL. From analysing
such extensions, we have learned that CASL acts as a boilerplate 3, mak-
ing easier and rather mechanical to create new extensions. Actually to
concretise a CASL extension, one just needs to,

1. instantiate the datatype encoding CASL signatures, with the one
defining the signatures of the extension;

2. do the same thing with respect to sentences;

3. extend the CASL’s parser in order to support the new functionali-
ties;

3In fact, CASL is built in HETS as a generic data structure with "holes" to be filled by
each extension.
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4. finally, extend the CASL’s semantics analyser accordingly.

Following this procedure, CASL’s signature datatype and the corre-
sponding parser were enriched in order to support the declaration of
nominals and modalities, as described by the following grammar:

Nominals-decl := nominals Ids
Modalities-decl := modalities Ids
Ids := Id(,Id)*

In addition, CASL’s sentences were extended as follows :

CSen := HSen | CSen ∧ CSen | ¬ CSen | Term ≈ Term | . . .
HSen := @ Id CSen | 〈Id〉 CSen | [Id] CSen | 〈Id〉” CSen |

Here Id | ! Id CSen | ? Id CSen | true | false

As already mentioned, we added a new constructor (HSen) to the
one syntactically defining CASL’s sentences (CSen) 4, thus, extending the
latter with the typical hybrid machinery. Furthermore one may notice
that there are "extra" (i.e. not included in the hybridisation method) alter-
natives in the HSen constructor. Actually, such alternatives are macros
defined as follows:

• The second one is the dual of the modality operator;

• The fourth one corresponds to patterns of the kind [r]ρ∧〈r〉ρ (〈r〉”ρ ≡
[r]ρ ∧ 〈r〉ρ). This pattern was found to be commonly used on speci-
fications involving hybridised logics, hence its definition as a macro;

• The seventh one, is the dual of the universal quantification of nom-
inals, which is denoted by the exclamation point;

• Finally the last two, define the typical true/ f alse macros.

4CSen is a generic datatype, which we are instantiating with the HSen datatype.
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An additional macro was implemented regarding rigid designators:
Whenever the keyword rigid is put behind a declaration of predicates or
operations, they will behave in a rigid way, as section 2.1.3 describes.

Notice also the fifth alternative, denoting the case of when a nomi-
nal is taken for a sentence – The keyword Here is necessary, so that the
CASL’s parser does not wrongly sees the ensuing nominal as the typical
proposition.

Finally, sentences in HSen obey the left precedence approach. For
instance, HCASL sees the sentence @n p ∧ q ∧ r, as ((@n p) ∧ q) ∧ r.

We have just described how HCASL extends CASLregarding syntax.
On the side of semantics, a number of features were added in order to
correctly analyse HCASL’s specifications. The resulting analyser inherits
the features from the CASL’s analyser, therefore can detect invalid spec-
ifications with respect to the CASL component. In addition, the features
added provide means to detect invalid specifications regarding the hy-
brid component. In this context, they are invalid whenever one of the
following is true:

• Repeated declarations of nominals/modalities;

• Quantified nominals sharing symbols with declared nominals. For
instance, a specification with a declared nominal, n, and a quantified
nominal, n, is not valid;

• Sentences with nominals/modalities that were not previously de-
clared or introduced by nominal quantification.

We have also mentioned that HCASL’s specifications can be validated
resorting to the proof method provided. Such comes from the lifting
introduced in section 2.3.2, and is currently integrated into HETS, thus
providing to the end user an impressive number of proof tools. More
concretely the user has at its disposal any proof tool already made avail-
able to CASL.

The proof method achieved for HCASL (i.e. its translation targeting
FOL) is conservative due to the restriction applied to HCASL which
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states that local models must have a common realisation of the carrier
sets. Thus, we have a sound method to generate proofs for HCASL’s
specifications.

Lets us give an example of this translation at work. Consider an
HCASL signature Σ = ((S, F, P), (Noms, λ)):

S = {A},

F = {},

P = {R}A×A,

Noms = {N},

λ = {M}.

Translating the signature above to FOL, results in,

S = {A, World},

F = {N}→World,

P = {R}World×A×A ∪ {M}World×World.

Now consider the following sentences built from Σ:

@N〈M〉N;

∀a, a′ : A . @NR(a, a′)⇒ @N[M]R(a′, a).

The respective translation is then:

M(N, N);

∀a, a′ : A . R(N, a, a′)⇒ (∀w : World . M(N, w)⇒ R(w, a′, a)).

3.2.2 HCASL at work – A case study

HCASL provides means to model in a natural way reconfigurable sys-
tems whose modes of operation can be suitably specified with CASL. The
objective of this section is to illustrate HCASL at work, through a small
case study. We present below the key points of the corresponding speci-
fication, and divided into the following points:
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1. The specification of the underlying Kripke frame, i.e., identification
of the possible modes of operation and transitions between them;

2. Identification of the "global" signature used by the "local" configu-
rations;

3. "Global" property definition, i.e., definition of properties common to
all configurations;

4. "Local" property definition, i.e., definition of properties in the con-
text of each local configuration.

The full specification can be seen in appendix A.

Example 3.2.1. The swinging calculator, is a reconfigurable system whose only
operation changes its behaviour along two possible states. In one state it behaves
like the addition over naturals, in the other like multiplication. One switches
between these two modes through the Shift command, as depicted below.

Sum Mult

Shi f t

Shi f t

Let us then start by focusing on the underlying Kripke frame of this ex-
ample.

The swinging calculator was described to have two possible operating
modes – Sum and Mult. Additionally, such modes are reachable from
one another. One possible formulation for this, is as follows:

modalities Shift
nominals Sum, Mult
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@Sum ¬ Mult
Sum ∨ Mult

@Sum 〈Shi f t〉" Mult
@Mult (〈Shi f t〉 Sum ∧ [Shift] Sum)

The purpose of the first two sentences, is to define the possible modes
of operation. In particular, the first one avoids models where Sum and
Mult are collapsed into each other. While the second one limits models
to have at maximum two possible states, Sum and Mult. Thus all valid
Kripke frames for this example will have precisely the two desired modes
of operation.

The possible reconfigurations are defined by the last two sentences,
each "create and cut" the relevant relations, accordingly to the example’s
description. Actually, the macro 〈r〉”ρ (defined in section 3.2.1) , is useful
in these situations as it provides means to "create and cut" in "one step".
This can be seen in the last two sentences, where one applies the macro
and the other does not, although it could.

The specification of the "global" signature of the swinging calculator,
is as follows,

op __#__ : Nat × Nat→ Nat

with # denoting the operation that behaves as the addition or multi-
plication, depending on the current state.

Let us now focus on the specification of the "global" properties of this
system. Recalling that operation # behaves as either addition or multipli-
cation, we have the commutative and associative laws as possible "global"
properties:

∀ n, m, p : Nat
• n # m = m # n
• (n # m) # p = n # (m # p)
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Finally, let us focus on the "local" properties. They are the ones defin-
ing the operation # relative to each possible modes of operation, i.e., Sum
and Mult. For both states, the operation # was defined accordingly to
Peano’s arithmetical definitions, as shown below:

∀ n, m : Nat
• @Sum n # 0 = n
• @Sum n # suc(m) = suc(n # m)
• @Mult n # 0 = 0
• ∃ p, q : Nat

• @Mult n # suc(m) = p ∧ @Sum n # q = p ∧ @Mult n # m = q

Completed the specification the next natural step is to check for prop-
erties. The following are simple examples of properties that one may
want to prove.

∀ n, m, r : Nat
• @Sum (n < m⇒ n < m # r) %(lemma1)%

• @Mult (m = 0 ∨ m = suc(0)⇒ n # m <= n) %(lemma6)%

• ∃ p : Nat • @Sum n # n = p⇒ @Mult n # suc(suc(0)) = p %(DoubleDef)%

• ∃ p, q : Nat
• m <= suc(0)⇒ @Sum n # m = p ∧ @Mult n # m = q⇒ p >= q

%(CasesSumBiggerMult)%

All of the properties presented above were easily proved by one of the
reasoners connected to HETS, namely SPASS.

To conclude this case study, figure 3.2 registers an HETS session rela-
tive to this example showing the proof window, part of the model theory,
and the specification graph.

3.2.3 HCASL as an HPL prover

The integration of HCASL (jointly with its encoding to FOL) into HETS,
provides new proof tools to a significant number of hybridised logics. In
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Figure 3.2: HETS session respective to the swinging calculator example
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this context, it should be interesting (at least from an academic point of
view) to have a comparison, for each one of these logics, of such "old"
tools with the ones provided in this dissertation. As already mentioned,
prior to the work relative to this dissertation the only hybridised language
with tool support was the HPL, therefore the envisaged comparison is
only possible for this case.

The comparison consists of feeding a set of sentences to both classes
of tools and analysing the respective outputs to provide conclusions with
respect to performance. However, not being one of the goals of this dis-
sertation, the comparison to be presented is not at all complete. Thus,
any conclusion taken from it, should only be taken as indicative.

In section 2.3.3, several dedicated HPL provers were mentioned, and
two (HTab and HyLoRes) of them distinguished due to their performance
and documentation, among other things. They make one side of the
comparison.

On the other side, we have two state-of-the-art FOL theorem provers,
currently connected to HETS – SPASS and Darwin, although in the in-
terest of being practical, the latter is only used on the most interesting
cases.

The set of input formulas used for the comparison, was obtained from
HTab

5 and HyLoRes
6 online repositories, and filtered in order to make

this comparison as balanced as possible. As such, the resulting set con-
tains sundry input formulas ranging from ones with singular clauses to
others with hundreds.

For automation purposes and to pave the way for a more thorough
comparison, a small application with two functionalities was developed:

• the first one picks specifications in HTab’s format, and makes them
compatible to HCASL;

• the second one does the same with HyLoRes as the source format.

5http://hylo.loria.fr/intohylo/htab.php
6http://hylo.loria.fr/intohylo/hylores.php
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This application is available online7.
Tables 3.1 and 3.2, register the outputs obtained from this comparison,

in terms of time. We use centiseconds as the unit of measure, and any
result equal or above 18000 (3 minutes) is classified as a timeout. Notice
that while the table 3.1 concerns unsatisfiable formulas, table 3.2 goes
over satisfiable ones. The latter are usually harder to check, thus we give
more focus to them. Its also worth noticing that the same tables, use the
column Id to uniquely identify the formulas within the input set 8.

The results shown provide interesting information with respect to the
performance of the provers being tested. The most obvious, is that HTab

is an impressive tool, even when compared against the other dedicated
tool, HyLoRes. Both for simple formulas, are consistently faster than the
method implemented in this dissertation, which is not surprising since
they are dedicated. Yet, when looking to the results of the more complex
formulas, things are not so obvious.

It is interesting to see that when formulas start to get harder, the gap
between the "old" and "new" tools closes substantially; there are even
cases where the "new" performs better. This is probably due to world
class provers (where SPASS and Darwin fit) integrating heavy optimiza-
tions to tackle hard formulas.

Whenever complex formulas are taken into consideration one can
clearly see that HyLoRes performs badly against our proposal. On the
other hand, HTab is notably faster – both SPASS and Darwin rarely reach
similar or better times. However, notice the results of the test formula,
D_tab, defined as ∀©x . @x( ∃©y . y ∧ 〈m〉¬y). From analysing the underly-
ing algorithms of both HTab and HyLoRes, it seems that formulas akin
to the latter induce an infinite loop on these systems. In order to under-
stand why this happens, we need to know two particular rules of these
algorithms: Whenever verifying a given sentence,

1. if an instance of the universal nominal quantifier appears, all ex-
isting nominals must be checked to see if they conform with the

7https://github.com/nevrenato/HTab2HCASL
8Online available at: https://github.com/nevrenato/HTab2HCASL
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statement associated with that instance;

2. if an instance of the existential nominal quantifier appears, a fresh
nominal is introduced.

Now, notice that the formula, ∀©x . @x( ∃©y . y∧ 〈m〉¬y), has an existen-
tial nominal quantifier "inside" a universally quantified statement. Due
to this, whenever rule 1 is applied, a new nominal is created in the pro-
cess (rule 2); then, since a new nominal was introduced, the algorithm is
obliged to use rule 1 again. However, by applying rule 1 we create yet
another nominal and so we have an infinite loop.

To sum up, the dedicated HPL tools involved in this comparison (i.e.
HTab and HyLoRes), seem to be consistently better in terms of perfor-
mance when compared to our proposal. This is expected as such tools
are dedicated HPL provers, while on the other side we have non ded-
icated ones (i.e. SPASS and Darwin) accessed through HETS. However,
when the input formulas get increasingly harder, the difference between
them blurs to a point where it is not easy to see which side best per-
forms. Typically, it is the hard formulas and not the simple ones that
may cause problems. Thus, taking into account what was said about the
performance of the "new" tools, we think that they present an interesting
alternative even for property verification in the HPL domain. Moreover
for non propositional hybridised logics the "new" tools are the only op-
tion available.

As already mentioned, one must be careful about further conclusions
taken from the comparison presented as it is incomplete in many ways.
For instance, the set of input formulas used is very small; instead, a gen-
erator of random HPL formulas should be put to use. Moreover only
two of the many provers connected to HETS were used. Indeed with
enough time, one could resort to other world class provers, such as Vam-
pire, MathServe or EProver

9. The results obtained, even if indicative
are useful to illustrate our point.

9Actually, as new provers are constantly being added into HETS, this task would
never end.
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Id HTab HyLoRes SPASS Darwin

01 1 1 10
02 1 1 12
03 1 1 9
04 1 1 14
05 2 1 12
06 1 1 12
07 1 1 14
11 1 1 14
12 1 1 13
13 2 1 8
29 1 8 15
32 1 1 9
34 1 1 8
35 1 1 5
37 1 1 6
39 11 1774 1070 70
40 15 timeout 3500 2120

Table 3.1: Unsatisfiable formulas with timeout being at 18000 csec

3.3 Hybridisation in HETS – going generic

In broad terms, the previous sections of this chapter introduced and ex-
plored HCASL along with the respective proof support. This relates to
the first milestone of the core of this dissertation, i.e., the hybridisation of
a specific logic, as the first step to integrating the hybridisation process
into HETS. The current section presents the second step, i.e., the incorpo-
ration of the hybridisation process into HETS, in a generic way. In theory,
such provides by request the hybridised version of a given logic available
in HETS; which includes already hybridised logics.

In practice, we extended HETS with a quasi generic hybridisation pro-
ces. It is quasi in the sense that some manual intervation is needed in
order to hybridise a logic in HETS: The sentence’s parser and analyser
of the logic to be hybridised need to be presented to the hybridisation
framework. This is made at code level. Once done, the logic in question
can be hybridised an arbitrary number of times. Actually, the follow-
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Id HTab HyLoRes SPASS Darwin

02 1 1 12
03 1 1 12
04 1 1 9
05 2 1 13
06 1 1 11
07 1 1 8
13 1 1 17
17 1 1 13
18 2 1 16
19 1 8 17
21 1 1 18
30 1 1 6
31 1 1 9
34 1 1 11
35 11 1774 10
39 40 timeout 1600 timeout
41 11 timeout 146 timeout
42 140 timeout 262 50
43 45 timeout 289 290
44 46 timeout 702 660

D_tab timeout timeout 13 < 1
hard 1800 timeout 3300 timeout

Table 3.2: Satisfiable formulas with timeout being at 18000 csec
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ing logics already meet the referred requirements to be hybridised in this
way: CASL, Propositional and CoCASL.

On a more technical perspective, the hybridisation framework is im-
plemented in HETS as an "incomplete" logic, i.e., we do not know at the
full extent which are its possible signatures and sentences. We complete
it when parsing the input specification by checking which base logic the
user has chosen. Then, whenever necessary, the hybridisation framework
resorts to the tools specific to that logic. HETS is not prepared for this
kind of procedure and moreover does not know all the tools respective
to a given logic. This justifies the condition mentioned above, needed to
hybridise a logic in HETS.

A challenge that emerges from the pursue of generic hybridisation, is
to avoid ambiguities arising from combining the hybrid component with
the base logic. Actually they may have symbols in common which do
not necessarily have the same semantical meaning. For instance, take an
HCASL specification whose signature has a nominal p and a predicate
p. It is not clear if the sentence p ∧ p, is referring to the nominal p, the
predicate p, or both. In a first instance this was resolved by enforcing the
use of the keyword Here before a nominal. However, in the context of
a generic hybridisation such technique does not remove all ambiguities.
To see why this is true, consider an H2PL specification, that on the top
level has a nominal n, and on the lower one has another nominal n. A
sentence such as Here n ∧ Here n, clearly does not carry enough informa-
tion for us to know which nominals are being referred, even when using
the previous technique. Note that H2PL is the logic resulting from the
hybridisation of HPL.

In order to overcome the ambiguity problem once and for all, a syn-
tactical constraint was introduced: Sentences corresponding to the base
logic, must be wrapped within brackets. Thus, in the H2PL specification
above, the sentence Here n ∧ Here n is changed to n ∧ {n}. It becomes
clear that the left side refers to nominal n of the top level, while the right
side corresponds to nominal n of the base logic (i.e. HPL). Notice also
that with this approach, the sentence n ∧ {n ∧m} in H2PL, is equivalent
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to n ∧ {n} ∧ {m}, as the operators denoted by ∧, semantically coincide.
Let us now present the generic hybridisation framework at work,

through an illustrative example:

logic Hybrid
baselogic Hybrid
Basic_Spec {

baselogic Propositional
Basic_Spec { props p }
Nominals Portugal, England, Canada
Modalities Car
• @ Portugal 〈Car〉 England

}
Nominals Europe, America
Modalities Plane
• America⇒ { ¬ ( Portugal ∨ England ) } ∧ Europe⇒ { ¬ Canada };
• @ Europe 〈Plane〉 ( America ∧ { Canada } )

Its corresponding logic is a double hybridisation of the Propositional

language and gives geographic information. In particular, it describes
routes in a map linked by some means of transport (the modalities) be-
tween different places (identified by nominals). One level of hybridis-
ation corresponds to countries; the second one to continents. Clearly,
in this case nominals can be ordered with respect to the order used to
build an hierarchy of countries and continents. Note how this hierar-
chy is brought back into sentences. For instance the last sentene in the
specification states: from Europe one can travel by plane to America; and, in
particular, to Canada.
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Chapter 4

Case study : The insulin infusion
pump

The motivation for the incorporation of the hybridisation process into
HETS, a main objective of this dissertation, was to contribute with effec-
tive tool support for a methodology for the suitable specification of re-
configurable systems, by expressing them as structural automata, whose
states define configurations, and transitions reconfigurations. The theo-
retical foundations for this, were laid out in [MMDB11] with the intro-
duction of the hybridisation method. The corresponding practical side is
the focus of this dissertation.

In chapter 3, we integrated the hybridisation method into HETS, or
in other words, we brought the hybridisation to the working software
engineer. Such provides a concrete framework for the specification of
reconfigurable systems with a suitable logic which combines the hybrid
component with any logic that the user may see suitable to formalise the
configurations of a particular system.

This chapter illustrates the whole methodology at work. The case
study, from the medical domain, is the partial specification of a medical
device that has been helping millions to lead a normal life – the insulin
infusion pump (henceforth called IIP).

Diabetes mellitus is an incurable disease affecting the lives of millions

63
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around the world. In the most severe forms, diabetes is controlled by
insulin injections, a treatment that hinders a normal life for the patient in
many ways.

The insulin infusion pump was created with the purpose to replace the
referred treatment. It works by injecting insulin trough a subcutaneous
catheter, at different rates along time, in order to compensate the occur-
ring insulin disequilibriums. An increasing number of patients is turning
to this kind of devices due to the numerous benefits that come with them,
namely increased convenience and flexibility, as well as greater dose pre-
cision and quicker dosing adjustments.

Even though the IIP acts as a key contributor for patients to lead a
normal life, it does imposes risks (c.f. [ZJJ10]). Risks come from the com-
plexity rooted in the infusion pump technology, and may cause severe
harm, or even death. On the software side, formal specification methods
may help on mitigating such dangers.

The application of (formal) specification techniques to design and de-
velop IIPs, is an ongoing concern of the scientific community, which
has already tackled this subject with several approaches. For example,
[AJJ+07] uses reference models (i.e. sets of communicating state machines)
which are translated into UPAAL for verification. Also, the Msc. thesis
[XM12], takes Event-B as specification language to model a version of
state machines oriented to timing issues. In both cases a specific logic is
chosen based on the perspective from which the IIP is seen. Our approach
differs here: Instead of fixing a particular logic, we chose a suitable one
whenever a requirement of a different nature appears. Since the IIP is a
complex and heterogeneous device, with requirements of different kinds,
it should be appropriate to take a number of logics for the complete spec-
ification. Also, independently of the logics being chosen, one wants to
retain the automata specification capabilities, hence their hybridised ver-
sions are in order. Tool support for this comes at some extent with the
new version of HETS introduced in chapter 3.

Concerning the IIPs safe behaviour, Zhang et al, give important con-
tributions on this subject (c.f. [ZJJ10, ZJJR11]) by eliciting an impressive
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number of safety requirements. We base on them to illustrate the method-
ology proposed for specifying heterogeneous systems.

The remaining of this chapter introduces the specification of the in-
fusion pump whose requirements are collected in appendix B. They are
divided in different tables organised by the (hybridised) logic that seems
more suitable to express them. Actually this case study aims at illustrat-
ing the expressive power of this specification methodology in which dif-
ferent logics (and their hybridised versions) can be simultaneously used
to tackle complex problems. Our integration of the hybridisation process
in HETS, makes possible the offer of suitable proof support to reason and
verify the corresponding properties.

4.1 On specifying the IIP – reconfigurations

The specifications described in this section, formalise the requirements
in table B.1. The latter leads us to take the IIP system as a simple state
machine where configurations are points, i.e., they carry no information.
Reconfigurations thus, are the only concern at this level, and a logic as
simple as H1 suffices. HETShowever, does not embeds it; therefore to
have suitable tool support, HPL is used instead.

The formalisation of first three requirements of table B.1, gives an
automata as presented below:

On O f f

Test

TurnO f f

DiagOk

Let us then analyse each of the three requirements and the corresponding
formalisations. The first requirement describes the possible modes of
operation which we can simply formulate as:
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On ∨ Test ∨O f f

Requirement 2 is more complex. It says that there is a path from state
O f f to On, with Test being a middle point. Moreover, it imposes that
On can only be directly reached from Test, and even then, only through
a modality denoting that all diagnostic tests went ok. To formalise this
requirement, firstly one "creates" the referred path where Test is in the
middle:

@O f f 〈Diag〉Test ∧@Test〈Ok〉On

Then, the statement that On is only directly reachable from Test through
the modality Ok, ensues. This is done by forcing just Test to be reached
through the modality Ok, and prohibiting any transition to On, through
modalities TurnO f f and Diag:

〈Ok〉true⇒ Test ∧ ¬(〈TurnO f f 〉On ∨ 〈Diag〉On)

Requirement 3 simply states that when On, the pump can be turned
O f f :

@On〈TurnO f f 〉O f f

Such requirement may be however not "strong" enough. For instance, it
allows the pump to go from On to Test through TurnO f f , which does
not make much sense. It is possible to forbid this case by changing the
previous sentence to,

@On〈TurnO f f 〉O f f ∧@On[TurnO f f ]O f f

which is equivalent to,

@On〈TurnO f f 〉”O f f

These first three requirements already give a minimal automata, which
can be validated resorting to the provers connected to HETS. For instance,
we can prove properties regarding cyclic paths, such as

@On〈TurnO f f 〉〈Diag〉〈Ok〉On
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The complete specification of this fragment of the problem is available
in appendix C (specification IIP_fst).

Requirement 4 on table B.1 leads us to a second stage in this speci-
fication. Its description suggests a refinement of the problem by stating
that two states are particular cases of another one. Such is not possible to
specify with HPL, thus a change of logic is in order.

In this new stage the previous configurations cease to be just points.
They become themselves state machines. We are therefore dealing with
hierarchic state machines.

What is the suitable logic to specify hierarchic state machines ?

In the context of the hybridisation process, the answer is straightfor-
ward: H1 deals with state machines, whose states are points. Hybridising
H1 again, results in a logic able to express state machines whose states
are the underlying models ofH1, i.e., state machines with states as points.
HH1 (denoted as H21) is thus one possible answer. However, as done be-
fore in order to guarantee tool support we use H2PL instead.
H2PL is used to specify the last three requirements (4, 5 and 6) of ta-

ble B.1. The corresponding specification defines the following hierarchic
state machine:

On O f f

TurnO f f

TurnOn

NorSus

TestO f f
Sus

Res O f fTest

NorSus

Diag

Ok

Before going into the details of each requirement, notice the black
states within On and O f f in the above figure. Although unnecessary,
they cannot be removed due to a limitation of the hybridisation method:
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Configurations must share a given signature. In the context of H2PL,
this rule limits all supernominals (nominals carrying other nominals) to
carry the same set of states. Hence, supernominals can become "over-
populated". One way to deal with this is to turn the unwanted states
inaccessible. For instance, Test and O f f are unwanted within On. Then:

@On{¬(〈Res〉(O f f ∨ Test) ∨ 〈Sus〉(O f f ∨ Test) ∨ 〈Diag〉(O f f ∨ Test))}

Note that the length of the above sentence increases proportionally
to the number of declared modalities. The implication of this is that
formulas akin to the ones above, may become cumbersome to write when
many modalities are declared. One way to avoid this would be with
modality quantification: The latter sentence would simply become,

@On{¬∃m : Λ . 〈m〉(O f f ∨ Test)}

Unfortunately, quantification of modalities is not included in the hy-
bridisation method.

Consider now requirement 4. It states that when the pump is On,
there are two possible modes of operation: Suspension and Normal. With
H2PL this becomes:

@On{Sus ∨ Nor}

Requirement 5, defines the reconfigurations between states Suspension
and Normal, which can be formalised as:

@On{@Sus〈Res〉”Nor ∧@Nor〈Sus〉”Sus}

Finally, we have requirement 6 which addresses refinement in a clear
way. It announces a transition Ok, from O f f to On. But in particular,
from Test (within O f f ) to Nor (within On). One way to formulate this, is
as follows:

O f f ∧ {Test} ⇒ 〈Ok〉”(On ∧ {Nor})

Or alternatively:

@O f f {Test} ⇒ 〈Ok〉”(On ∧ {Nor})

The full specification of this fragment of the problem is available in
appendix C (specification IIP_Dupl).
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4.2 On specifying the IIP – configurations

In this section we concentrate on the possible modes of insulin infusion.
We regard the latter as the possible configurations of an IIP system which
has different insulin outputs throughout the day. This is critical for the
patient since inaccurate insulin quantities may cause harm, or even death.

To better contextualise the specifications, let us first analyse the differ-
ent insulin infusion modes:

• Normal basal – The profile followed by default; it can be defined to
allow the delivery of different quantities of insulin throughout the
day;

• Temporary basal – Is used as a temporary measure when the normal
basal mode is not suitable for a particular situation;

• Instantaneous bolus – Is a one time insulin delivery, typically used
to cover food intake or similar situations. It adds up to one of the
basal modes;

• Extended bolus – Serves the same purpose of the instantaneous bo-
lus, but instead delivers the bolus at a constant rate along an interval
of time.

Each mode characterises the insulin infusion rate, thus entailing that
the configurations of the underlying Kripke models cannot be just points.
Instead they must be instances of an algebra. Furthermore, the kind of
algebra (or base logic) to employ is strongly related to the nature of the
requirements to be specified. As such, since in the insulin infusion rate
characterisations, requirements of different nature abound, several hy-
bridised logics (each with its own underlying algebra) are used for spec-
ifying the insulin infusion rates.

As already mentioned, our concern at this stage is not on the transition
system, but rather on "what is inside" the configurations. In this sense,
the transition structure was defined once (based on the requirements in
table B.2) and is the frame for the different models, emerging from the
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requirements relative to the insulin infusion rates. In other words, along
the different models presented below, the transition structure remains the
same; the configuration’s algebra (i.e. the base logic), is what changes.

Let us start by analysing the transition structure, given by the formal-
isation of the requirements in table B.2:

Sus1 TBasal Basal Sus2

TBasalBo BasalBo

Res

Sus

Res

Sus

Res

Temp

BolusERes BolusERes
Sus Sus

From the figure above, is possible to see that the reconfigurations include
the main modes of insulin infusion, basal (Basal) and temporary basal
(TBasal); but also the bolus modes denoted as TBasalBo and BasalBo. In
addition, it is possible to see that from any mode of infusion the pump
can be suspended (Sus1, Sus2) as the requirement 4 of table B.2 states.
The reader may wonder about what is the reason to have two states de-
noting the suspension mode. The reason is that hybrid logics do not have
memory of the previous state. Thus, if the pump is suspended and wants
to resume it cannot know to which state should return to. If each relevant
mode has its own suspended state, then when resuming, there is only one
possible mode to return to.

The complete specification regarding the formalisation of the transi-
tion system given above, is available in appendix C (specification
IIP_low_KripkeF).

The specification of the configurations (i.e. the insulin infusion modes),
brings again the need to choose a suitable base logic to use. Clearly PL
or HPL are no more suitable logics, since the requirements (from ta-
bles B.3,B.4) concerned with insulin infusion rates, require quantification,
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equality statements and relations. Table B.3 only requires the first two,
therefore FEQ is a suitable logic to specify the respective requirements.
Let us further analyse them.

Requirement 1 of this table details about the maximum insulin flow al-
lowed in the different modes. In particular, it specifies that the maximum
insulin flow must be 0 when the pump is suspended. The formalisation
of this, entails first of all, the need to declare a constant function repre-
senting the maximum insulin flow:

maxFlow : Nat

Naturally, its value may change along the possible modes of operation.
In other words, its value is only constant locally. Note also, that we chose
the natural numbers to model the insulin flow. This is a clear abstraction
from the physical world and may not be sufficiently precisely in more
demanding contexts. But it is enough for the illustrative character of this
chapter.

Declared a function denoting the maximum insulin flow, saying that
its value is 0 in the suspended modes is straightforward:

(Sus1∨ Sus2)⇒ maxFlow = 0

The insulin flow at Basal and TBasal modes is defined by require-
ments 2, 3. They state that the insulin infusion rate must conform with
the profiles corresponding to these modes. To model this, firstly three
functions need to be declared. One to represent the current insulin flow,
and two to represent the basal and temporary basal profiles. With re-
spect to the latter, their values cannot change along the possible modes
(requirement 6), i.e., they must be rigid:

rigid basal, tbasal : Time→ Nat
curFlow : Time→ Nat

Note that we introduced a new sort (Time) in the specification with
the purpose of having more intuitive descriptions for names. Actually,
Time is just a type synonym for Nat.

With these functions declared, let us formalise requirements 2,3:
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@Basal∀t : Time . curFlow(t) = basal(t)
@TBasal∀t : Time . curFlow(t) = tbasal(t)

Requirement 4 is similar to 2 and 3. It states that in the modes where
a bolus is being given, the current flow is the result of the corresponding
bolus and the active profile. Once again, a new rigid function needs to be
declared to denote the profile corresponding to the extended bolus:

rigid extBolus : Time→ Nat

Then requirement 4 can be formalised:

@BasalBo∀t : Time . curFlow(t) = basal(t) + extBolus(t)
@TBasalBo∀t : Time . curFlow(t) = tbasal(t) + extBolus(t)

Requirement 5 distinguishes from the others because it refers to the
behaviour of the extended bolus profile. In particular, it says that in
any extended bolus session, the corresponding rates must be constant.
However it does not define what a session is, giving room for different
interpretations. Ours is that is a segment of the extended bolus profile
whose insulin infusion rates never fall to 0 and whose adjacent points
(i.e. time instants) always return 0. To exemplify this interpretation, the
graphic below portrays extended bolus sessions denoted by the area filled
with diagonal lines:

Time→

R
at

e
→

Extended bolus sessions

Given the definition of an extended bolus session, the formalisation of
requirement 5 becomes:
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∀t : Time . extBolus(t) 6= 0⇒
(extBolus(t− 1) 6= 0⇒ extBolus(t) = extBolus(t− 1))∧
(extBolus(t + 1) 6= 0⇒ extBolus(t) = extBolus(t + 1))

SinceHFEQ is a sublogic ofHCASL, properties regarding the formu-
lation of these requirements can be automatically verified. For instance,
we can state that:

¬(∀t : Time . curFlow(t) = basal(t))⇒ ¬Basal

or,

(∀t : Time . extBolus(t) = 0)⇒
∀t : Time . ∃n : Nat . @BasalcurFlow(t) = n ∧@BasalBocurFlow(t) = n

The formulation of the requirements on table B.2 reflects one of the
limitations of the hybridisation method – that all configurations must
share a given signature. This can be seen in the respective specification
since the infusion profiles are defined for all configurations, which is a
too strong assumption. To see why consider the suspended mode where
clearly the infusion profiles do not need to be defined there.

One way to tackle the overrestriction described is by employing the
logic HFP instead of HFEQ. Although it is still not possible to define
a different signature for each configuration, one can however define at
which states the infusion profiles are defined using partial functions em-
bedded in HFP . To do this firstly the profiles need to be declared as
partial functions:

basal, tbasal, extBolus : Time→? Nat

Then, we need to say at which states they are defined. For example,
in the basal case the procedure should be as follows:

(Basal ∨ BasalBo)⇒ ∀t : Time . d f (basal(t))
¬(Basal ∨ BasalBo)⇒ ∀t : Time .¬d f (basal(t))
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Note that, rigidity needs to be retained in order to conform with the
requirements described. Naturally, for partial functions such condition
can be only applied at the configurations in which they are defined. Let
us exemplify how it may be formulated for the basal profile:

∀t : Time . ∃n : Nat . @Basalbasal(t) = n⇔ @BasalBobasal(t) = n

Alternatively, by resorting to nominal quantification and the proper-
ties of the strong equation, the latter sentence can also be formulated in
as follows:

∀©w, w′ . ∀t : Time . ∃n : Nat . @wbasal(t) = n⇒ @w′basal(t) = n

The above is interesting because we do not have to explicitly refer
the relevant states, thus we can apply it in a generic way to the other
infusion profiles. However, this approach is not used in this specification
as nominal quantification increases complexity.

The next set of requirements to be formalised is from table B.4. Ac-
tually, just one requirement is present, but it is perhaps one of the most
critical. It states that independently of the mode of operation, the current
flow can never surpass the maximum insulin flow established. The for-
mulation of this typically involves the use of relations. However, these
are not built-in HFEQ or HFP . Therefore a sensible step to take is to
increase the power of the logics being used, accordingly. To do this we
switch to HFOL which treats relations as first-class citizens. Then we
proceed to formalise the requirement in question:

∀t : Time . curFlow(t) ≤ maxFlow

With HFOL interesting properties of this specification can be elab-
orated. Fortunately these can also be proved with the help of HETS as
HFOL is a sub–logic of HCASL. For example the following is easily
proved:

@Basal∀t : Time . basal(t) ≤ maxFlow
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The above is interesting in the sense that it proves that any require-
ment concerning the validation of the basal profile with respect to the
maximum flow, is redundant when the requirement 1 of table B.4 is
present.

Another interesting (proved) property, states that the insulin flow in
the suspended mode is not bigger than in any another modes:

∀t : Time . ∀n : Nat . (@Sus1curFlow(t) = n)⇒ curFlow(t) ≥ n

A last example of a proved property, is the following:

∀t : Time . ∃n, n′ : Nat .
@BasalcurFlow(t) = n ∧@BasalBocurFlow(t) = n′ ∧ n ≤ n′

It simply states that the insulin flow in Basal mode is not bigger than in
BasalBo. This makes sense since the BasalBo mode has an insulin flow
equal to the one in Basal mode plus any bolus currently active.

As usual, the complete specifications regarding the logics HFEQ,
HFP and HFOL, are available in appendix C (specifications IIP_low

and IIP_lowPar).
Up until now, the focus of this section was on the specification of

different insulin infusion modes. For this, we resort to the hybridised
versions of a number of conventional logics, namely: PL, FEQ, FP and
FOL. As a last stage in this case study, we focus on yet another IIP’s
critical component – the insulin reservoir.

The insulin reservoir has a sensor attached that is able to tell the
amount of insulin remaining. However, this sensor (like all others) is not
perfect in the sense may not be completely exactly. Therefore, these de-
grees of uncertainty should be taken into consideration, when specifying
the IIP system. Many–valued or probabilistic logics, are the typical candi-
dates for this kind of specification. But at the same time reconfigurability
is in order, thus we need the hybridised versions of these logics.

To illustrate what can be expressed by such logics, let us assume a
predicate empty, that given an instant of time says if the reservoir is empty
or not. In addition consider another predicate (alarm), that for an instant
of time tells if the alarm is active:
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empty, alarm : Time

In this context there could be a requirement stating: Whenever the reser-
voir is found to be empty, in the next instant of time the alarm must be activated.
With HFOL this is formulated as:

∀t : Time . empty(t)⇒ alarm(t + 1)

with a valid instance of the predicate empty being as follows:

Time→

{0
,1
}

An instance of the predicate empty

However this sort of ideal situation typically does not exist in the "real
world".

In practice, we may consider that there are cases where the value of
predicate empty is unknown. For this, we can use H3VL since it has the
truth value space of {0, u, 1}; with u denoting the unknown value.

Now, let us analyse a possible requirement : "In basal mode, at any
instant of time, if one knows for sure that the reservoir is not empty, and
in the next instant that becomes unclear, then it is also unclear if the alarm
must be activated."

@Basal∀t : Time .¬(empty(t), u) ∧ (empty(t + 1), u)⇒ (alarm(t + 2), u)

Continuing with the latter requirement, in basal with bolus mode, the
insulin flow is usually bigger. As such, in the described situation we want
to make sure that the alarm is activated:

@BasalBo∀t : Time .¬(empty(t), u) ∧ (empty(t + 1), u)⇒ (alarm(t + 2), 1)

On the other hand, since in the suspended mode there is no insulin
flow, the alarm does not need to be activated:
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(Sus1∨ Sus2)⇒
∀t : Time .¬(empty(t), u) ∧ (empty(t + 1), u)⇒ (alarm(t + 2), 0)

The following graphic portrays the kind of uncertainty obtained, with
predicate empty defined in the truth value space of H3VL.

Time→

{0
,u

,1
}

An instance of the predicate empty

To deal with uncertainty, one can also specify a probabilistic behaviour
to the sensor, i.e., rather than saying if deposit is full or not, a level of
confidence is given regarding that information. FZL (a probabilist logic),
takes the closed interval [0, 1] as the truth value space. The granularity of
uncertainty obtained is very impressive and can be used to model systems
more realistically. The codomain of predicate empty becomes a R–valued
interval as exemplified in the following graph:

Time→

Pr
ob

ab
ili

ty
→

An instance of the predicate empty

As usual, to employ FZL in the reservoir case, we need its hybridised
version, HFZL. Then we may refine the latter requirement as follows: In
basal mode, at any instant of time, if one knows with a degree of confidence x that
the reservoir is empty, and in the next instant of time that confidence becomes y,
then the alarm becomes active with a confidence of z.
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@Basal∀t : Time . (empty(t), x) ∧ (empty(t + 1), y)⇒ (alarm(t + 2), z)

We can also adapt this requirement to the other configurations as we
did when illustrating the H3VL case. For instance, we can say that when
this situation occurs in the basal with bolus mode, the alarm must be
activated:

@BasalBo∀t : Time . (empty(t), x) ∧ (empty(t + 1), y)⇒ (alarm(t + 2), 1)

On the other hand, in the suspended mode the alarm does not need
to be active:

(Sus1∨ Sus2)⇒
∀t : Time . (empty(t), x) ∧ (empty(t + 1), y)⇒ (alarm(t + 2), 0)

Let us take yet another approach. Systems whose configurations evolve
temporally can be captured by the hybridisation method when taking a
linear discretisation of time as the reconfiguration space. Configurations
are then time instants and a modality a f ter relates them chronologically.
Nominals refer to such instants.

Adding an additional hybrid layer to HFZL with the intent to cap-
ture time, provides us with the option to discard the sort Time and the
universal quantification when formalising the latter requirement. It then
becomes:

@Basal(empty, x) ∧ 〈next〉@Basal(empty, y)⇒ 〈a f ter〉@Basal(alarm, z)



Chapter 5

Case study: Hybridising Alloy

Lightweight formal methods combine mathematical rigour with simple
notations and ease-of-use support platforms. Alloy [Jac06], based on a
single sorted relational logic whose models can be automatically tested
with respect to bounded domains, is one of the most successful exam-
ples. Its simple but powerful language combined with an analyser which
can promptly give counter-examples depicted graphically, makes Alloy

increasingly popular both in academia and industry. Successful stories re-
port on the discovery of faults in software designs previously thought to
be faultless. The tool, however, may also bring a false sense of security, as
absence of counter-examples does not imply model’s correctness. There-
fore, in the project of critical systems the use of Alloy should be framed
into wider toolchains involving more general, even if often less friendly
theorem provers. Actually, Alloy impairments on the verification side
may be overcome by "connecting" it to reasoners able to guarantee cor-
rectness. In such a toolchain, properties can be first tested within the Al-
loy analyser; if no counter-examples are found, a theorem prover is then
asked to generate a proof, at least in what concerns some critical design
fragments. The rationale is that typically finding counter-examples is eas-
ier than generating a proof – how often has one tried to prove a property,
only to find out a simple example invalidating it? A number of attempts
have been made in this direction (cf. [MC12, UGGT12, AKMR03]). The

79
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Heterogeneous tool subset

HasCASL

HCASLMCASL
Prop

Haskell

SoftFOL

Isabelle

OWL

VSE

Alloy
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Provers

Vampire

SPASS

Eprover

Darwin

...

Figure 5.1: “Plugging” Alloy into the Hets network

usual approach is to translate Alloy models into the input language of
a given theorem prover and (re)formulate the proof targets accordingly.
For instance, [UGGT12], one of the most recent proposals in this trend,
translates models into a first-order dialect supported by the KEY theorem
prover. Our proposal in this chapter goes one step further by "plugging"
Alloy into the HETS network, as depicted in figure 5.1.

Plugging Alloy to HETS brings for free the power of several provers
and model checkers connected into the network, including, for instance,
Vampire, SPASS, EPROVER, Darwin, Isabelle, among many others. Ex-
periments can then be carried out in different tools, typically tuned to
specific application areas. Moreover, Alloy models can also be trans-
lated into a number of languages available in HETS, including CASL,
HasCASL, or even Haskell. The price for this greater level of gener-
alisation (when compared to related work), is to capture Alloy as an
institution and to define a conservative comorphism, targeting one of the
central languages in HETS.

The other obvious advantage is that by capturing Alloy as an in-
stitution, its hybridised version (HAlloy) is provided "for free". Thus
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this chapter, expands the hybridisation’s field of action to the domain of
lightweight formal tools. As expected, tool support for HAlloy comes
from the lifting presented in section 2.3.2, applied to the comorphism
Alloy→ CASL introduced in this chapter.

Taking into account the motivations just described, the present chapter
formalises Alloy as an institution and defines an encoding leading to
a broad proof support for it. This chapter’s contribution is illustrated
through a case study whose typical proof support is restricted to bounded
domains. In a second moment, this exercise is extended by making use
of the hybridisation method.

5.1 Alloy in the category of institutions

5.1.1 Alloy as an institution

Alloy [Jac06] is based on a single sorted relational language extended
with a transitive closure operator.

Roughly speaking, an Alloy specification is divided into declarations,
of both relations and signatures, and sentences. Signatures will be called
kinds from now on to distinguish them from signatures in an institution.
Actually, kinds are nothing more than unary relations whose purpose is
to restrict other relations. This is in line with Alloy’s motto which regards
everything as a relation. Additionally, kinds may be turned hierarchical
by an annotation with the keyword extends, establishing the obvious
inclusion relation. When two kinds are in different subtrees (i.e.one is
not a descendant of the other) they are supposed to be mutually disjoint.
Finally, kinds may be of type

1. Abstract, i.e., included in the union of its descendants

2. Some, i.e., required to have at least one element

3. One, i.e., exactly with one element
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The Alloy analyser checks an assertion against a specification by seeking
for counter-examples within bounded domains.

One of non standard features in Alloy is the support for transitive
closure over arbitrary expressions. This cannot be directly encoded into
CASL since it is not an higher order logic construction. Consequently, in
the sequel only the transitive closure of atomic relations will be consid-
ered1. This is done, however, without loss of generality: for an arbitrary
expression we just declare an extra binary relation and state that the latter
is equal to the former.

The Alloy institution (SignA, SenA, ModA, |=A), is defined as follows:

Signatures. Objects in SignA are tuples, (S, m, R, X), composed by:

• A family of sets containing kinds and indexed by a type, S =

{St}t∈{All,Abs,Som,One}. SAll represents all kinds, SAbs the abstract
ones, SSom the non-empty ones, and SOne the kinds containing ex-
actly one element. Clearly, for all St, St ⊆ SAll.

• m : SAll → SAll is a function that gives the parent of each kind,
i.e., m(s) = s′ means that s′ is the parent of s. Top level kinds are
considered the parents of themselves, and therefore, m takes the
form of a forest structure.

• A family of relational symbols R = (Rw|w ∈ (SAll)
+).

• A set of singleton relational symbols X, representing the variable
symbols declared on quantified expressions. Despite being the same
than the elements in SOne, once encoded they must be treated dif-
ferently.

Morphisms ϕ : (S, m, R, X) → (S′, m′, R′, X′) in this category are triples
ϕ = (ϕs, ϕr, ϕv) such that:

1In the corresponding encoding an extra relation is added to each binary one as the
transitive closure of the latter.
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• ϕs : S→ S′ is a function that, for any St ∈ S, if s ∈ St then ϕs(s) ∈ S′t,
and the following diagram commutes:

S

S

m

S′

S′
m′

ϕs

ϕs

• ϕr is a family of functions such that,
ϕr = (ϕw : Rw → R′

ϕs(w))w∈(SAll)+
;

• ϕx : X → X′ is a function.

Sentences. Given a signature Σ = (SΣ, mΣ, RΣ, XΣ) ∈ |SignA|, the set of
expressions Exp(Σ) is the smallest one containing:

p, p ∈ (SΣ)All ∪ (RΣ)w ∪ XΣ

^r, r ∈ (RΣ)w and |w| = 2
∼ e, e ∈ Exp(Σ)
e −> e′, e, e′ ∈ Exp(Σ)
e� e′, e, e′ ∈ Exp(Σ), |e| = |e′|, and � ∈ {+,−, &}
e . e′, e, e′ ∈ Exp(Σ), and |e|+ |e′| > 2

Where the length |e| of an expression e is computed as follows:

|r| = |w|, for r ∈ (RΣ)w

|s| = 1, for s ∈ (SΣ)All

|x| = 1, for x ∈ XΣ

|^r| = |r|
|∼ e| = |e|
|e� e′| = |e|, for � ∈ {+,−, &}
|e . e′| = (|e|+ |e′|)− 2
|e −> e′| = |e|+ |e′|

Finally, the set of sentences, SenA(Σ), is the smallest one containing:
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e in e′ e, e′ ∈ Exp(Σ), and |e| = |e′|
not ρ ρ ∈ SenA(Σ)
ρ implies ρ′ ρ, ρ′ ∈ SenA(Σ)
(all x : e) ρ e ∈ Exp(Σ), |e| = 1, and ρ ∈ SenA(Σ′), where

Σ′ = (SΣ, mΣ, RΣ, XΣ ] {x})

Models. For each signature (S, m, R, X) ∈ |SignA|, a model
M ∈ |ModA((S, m, R, X))| has,

1. A carrier set |M|;

2. An unary relation Ms ⊆ |M|, for each s ∈ SAll;

3. A relation Mr ⊆ Mw, for each r ∈ Rw;

4. A singleton relation, Mx ⊆ |M|, for each x ∈ X.

satisfying the following axioms for any s, s′ ∈ SAll,

1. Ms ⊆ Mm(s)

2. if s ∈ SSom, then Ms 6⊆ ∅

3. if s ∈ SOne, then #Ms = 1

4. if s ∈ SAbs, then Ms ⊆
⋃

q∈m◦(s) Mq

5. if s, s′ are not related by the transitive closure of m, then
Ms ∩Ms′ ⊆ ∅

Evaluation of expressions in such models, is done in the following way:

M∼ e = (Me)◦

Me + e′ = Me + Me′

Me− e′ = Me −Me′

Me & e′ = Me ∩Me′

Me . e′ = Me . Me′

Me −> e′ = Me ×Me′

M^r =
⋃

n∈Nat Mrn , such that Mr0 = Mr and Mrn+1 = (Mr . Mrn)
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A signature morphism, ϕ : Σ→Σ′, is mapped to ModA(ϕ) : ModA(Σ′)→
ModA(Σ). Giving for each M′ ∈ |ModA(Σ′)|, its ϕ-reduct, M′ �ϕ∈ |ModA(Σ)|.
The latter is defined as follows:

|(M′ �ϕ)| = |M′|
(M′ �ϕ)s = M′

ϕs(s)
, for any s ∈ (SΣ)All

(M′ �ϕ)r = M′
ϕr(r)

, for any r ∈ (RΣ)w

(M′ �ϕ)x = M′
ϕx(x), for any x ∈ XΣ

Satisfaction. Given a Σ-model M, for Σ ∈ |SignA|, the satisfaction rela-
tion is defined for each Σ-sentence as follows:

M |=AΣ e in e′ iff Me ⊆ Me′

M |=AΣ not ρ iff M 6|=AΣ ρ

M |=AΣ ρ implies ρ′ iff M |=AΣ ρ′ whenever M |=AΣ ρ

M |=AΣ (all x : e)ρ iff M′ |=AΣ′ (x in e) implies ρ,
for all model expansions M′ along the
inclusion morphism x, previously defined
in SenA.

Lemma 5.1.1. The following diagram is a strong amalgamation square,

Σ

Σ1

Σ2

Σ′

x

ϕ

ϕ′

xϕ

where ϕ′ canonically extends ϕ with ϕ′v(x) = x, and x, xϕ are inclusion mor-
phisms. I.e. both just add x to XΣ, as a fresh symbol to the respective signatures.
Proof. From ModA(x)(M1) = ModA(ϕ)(M2), we know that:

For any: s ∈ (SΣ)All, M1s = M2ϕs(s);
r ∈ (RΣ)w, M1r = M2ϕr(r);

y ∈ XΣ, M1y = M2ϕx(y);
|M1| = |M2|.
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⇒ {M2 is the xϕ reduct of M′; transitivity }

For all models expansions M′ of M2, by the inclusion morphism xϕ: given any,
s ∈ (SΣ)All, M1s = M′

ϕs(s)
;

r ∈ (RΣ)w, M1r = M′
ϕr(r)

;
y ∈ XΣ, M1y = M′

ϕx(y)
;

|M1| = |M′|.

⇒ {|M1| = |M′|; inclusion morphism definition }

There is exactly one model expansion of M2 by xϕ, denoted as M′, such that
M′x = M1x, entailing that for any: s ∈ (SΣ)All, M1s = M′

ϕs(s)
;

r ∈ (RΣ)w, M1r = M′
ϕr(r)

;
y ∈ XΣ, M1y = M′

ϕx(y)
;

|M1| = |M′|;
M1x = M′x.

⇔ {inclusion morphism x, definition }

There is exactly one model expansion of M2 by xϕ, denoted as M′, such that, for
any: s ∈ (SΣ1)All, M1s = M′

ϕs(s)
;

r ∈ (RΣ1)w, M1r = M′
ϕr(r)

;
y ∈ XΣ, M1y = M′

ϕx(y)
;

|M1| = |M′|;
M1x = M′x.

⇔ {ϕ′ definition }

There is exactly one model expansion of M2 by xϕ, denoted as M′, such that for
any : s ∈ (SΣ1)All, M1s = M′

ϕs(s)
;

r ∈ (RΣ1)w, M1r = M′
ϕr(r)

;
y ∈ XΣ1 , M1y = M′

ϕx(y)
;

|M1| = |M′|.
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⇔ {reduct definition }

There is exactly one model expansion of M2 by xϕ, denoted as M′, such that
M1 = ModA(ϕ′)(M′)

Lemma 5.1.2. For any signature morphism, ϕ : Σ → Σ′, an expression e in Σ,
and a Σ′–model, (M′ �ϕ)e = M′ExpA(ϕ)(e).

Proof.

When e := r, r ∈ (RΣ)w :

(M′ �ϕ)r

⇔ {Reduct definition }

M′
ϕr(r)

⇔ {ExpA definition }

M′ExpA(ϕ)(r)

The case for when e = p, for p ∈ (SΣ)All ∪ XΣ, is analogous.

When e := e + e′ :

(M′ �ϕ)e+e′

⇔ {Expression evaluation }

(M′ �ϕ)e + (M′ �ϕ)e′

⇔ {Induction hypothesis }
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M′Exp(ϕ)(e) + M′Exp(ϕ)(e′)

⇔ {Expression evaluation }

M′Exp(ϕ)(e)+Exp(ϕ)(e′)

⇔ {Exp(ϕ) definition }

M′Exp(ϕ)(e+e′)

For the remaining operators the proof is analogous.

Satisfaction condition. Given any SignA morphism ϕ : Σ → Σ′, a Σ–
sentence ρ, and a Σ′–model:

When ρ := e in e′,

M′ �ϕ|=AΣ e in e′

⇔ {Satisfaction definition }

(M′ �ϕ)e ⊆ (M′ �ϕ)e′

⇔ {Lemma 5.1.2, 2× }

M′Exp(ϕ)(e) ⊆ M′Exp(ϕ)(e′)

⇔ {Satisfaction definition }

M′ |=AΣ′ ExpA(ϕ)(e) in ExpA(ϕ)(e′)

⇔ {SenA definition }

M′ |=AΣ′ SenA(ϕ)(e in e′)
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The cases of negation and implication are analogous to the ones presented
in the satisfaction condition proof concerning FOL.

When ρ := (all x : e) ρ,

M′ �ϕ|=AΣ (all x : e) ρ

⇔ {Satisfaction definition }

For all model expansions (M′ �ϕ)′ of M′ �ϕ, along the inclusion
morphism x previously defined in SenA, (M′ �ϕ)′ |=AΣx (x in e) implies ρ

⇔ {Lemma 5.1.1; I.H. }

For all model expansions M′′ of M′, along the inclusion morphism x
previously defined in SenA, M′′ |=AΣ′x SenA(ϕ′)((x in e) implies ρ)

⇔ {Satisfaction definition }

M′ |=AΣ′ (all x : SenA(ϕ)(e)) SenA(ϕ′)(ρ)

⇔ {SenA definition }

M′ |=AΣ′ SenA(ϕ)((all x : e) ρ)

5.1.2 From Alloy to CASL

This section characterises a conservative comorphism from Alloy to a pre-
sentation of CASL. The latter needs to be a presentation to deal appropri-
ately with Alloy implicit rules over kinds and the transitive closure. Both
features will be encoded into Γ, therefore restricting the models available.
Recall that an object in the category SignC of CASL signatures is a tuple
(S, TF, PF, P) where S is the set of sorts, TF a family of function symbols
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indexed by their arity; PF a family of partial function symbols indexed
by their arity; and finally P is a family of relational symbols also indexed
by their arity. Then, we define

Signature functor. For any signature (S, m, R, X) ∈ |SignA|, Φ gives a
tuple ((S′, TF, PF, P), Γ) where

S′ = {U, Nat}
TF = {{0}Nat, {suc}Nat→Nat, {x|x ∈ X}→U}
PF = ∅
P = {s ⊆ U|s ∈ SAll} ∪

{r ⊆ U1 × · · · ×Un|r ∈ Rs1,...,sn} ∪
{tr ⊆ Nat×U ×U| r ∈ Rs1,s2}

and Γ is the least set containing the following axioms:

1. {(∀u : U) s(u)⇒ s′(u)|s ∈ S, s′ = m(s)}

2. {(∃u : U) s(u)|s ∈ (SOne ∪ SSom)}

3. {(∀u, u′ : U) (s(u) ∧ s(u′))⇒ u = u′|s ∈ SOne}

4. {(∀u : U) s(u)⇒ (
∨

s′∈m◦(s) s′(u))|s ∈ SAbs}

5. {(¬(∃u : U) s(u) ∧ s′(u))|s, s′ ∈ SAll ∧ ¬m+(s, s′)}
where m+ is the transitive closure of m

6. {(∀u1, · · · , un : U) r(u1, · · · , un) ⇒ ∧n
i=1 si(ui)|r ∈ Rs1,...,sn}

7. { free type Nat ::= (0 | suc(Nat)) }

8. {(∀u, v : U) tr(0, u, v)⇔ r(u, v) ∧
(∀n : Nat) tr(suc(n), u, v) ⇔ (∃x : U) tr(0, u, x) ∧ tr(n, x, v)|r ∈
Rs1,s2}

Sentence transformation. Given any signature Σ ∈ |SignA|, where Σ =

(SΣ, mΣ, RΣ, XΣ), function αΣ : SenA(Σ)→ SenC(Φ(Σ)) is defined by
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αΣ(e in e′) = (∀V : U) ηV(e)⇒ ηV(e′),
such that V = (v1, . . . , vn),
and n = |e|

αΣ(not ρ) = ¬αΣ(ρ)

αΣ(ρ implies ρ′) = αΣ(ρ) implies αΣ(ρ
′)

αΣ((all x : e) ρ) = (∀x : U) αΣ′ ((x in e) implies ρ)

where η is defined as follows :

ηV(p) = p(V), p ∈ ((SΣ)All ∪ (RΣ)w)

ηV(x) = x = V, x ∈ XΣ

ηV(^r) = (∃n : Nat) tr(n, V)

ηV(∼ e) = ηV′(e), such that V′ = (vn, . . . , v1) for V = (v1, . . . , vn)

ηV(e + e′) = ηV(e) ∨ ηV(e′)
ηV(e - e′) = ηV(e) ∧ ¬ηV(e′)
ηV(e & e′) = ηV(e) ∧ ηV(e′)
ηV(e −> e′) = ηV′(e) ∧ ηV′′(e′), such that V′ = (v1, . . . , vn) is a prefix of V

where n = |e|, and V′′ = (vn+1, . . . , vm) is a suffix of V
where (m− n) = |e′|

ηV(e . e′) = (∃y : U)η(V′,y)(e) ∧ η(y,V′′)(e′), such that V′ = (v1, . . . , vn)

is a prefix of V where n + 1 = |e|, and V′′ = (vn+1, . . . , vm)

is a suffix of V, where (m− n + 1) = |e′|

Model transformation. Given a signature Σ ∈ |SignA|, where Σ =

(SΣ, mΣ, RΣ, XΣ), function βΣ : ModC(Φ(Σ))→ ModA(Σ) is defined as

|βΣ(M)| = |MU|, where |MU| the carrier of U in M
βΣ(M)p = Mp, for p ∈ ((SΣ)All ∪ (RΣ)w ∪ XΣ)

Lemma 3. For any Σ ∈ |SignA|, the following diagram commutes:

Φ(Σ)

Φ(Σ)x

x

Σ

Σx

xβ

βΣ

βΣx
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Stating that, given a Σx–model Mx and a Φ(Σ)–model N, such that ModA(xβ)(Mx) =

βΣ(N), there is exactly one model Nx such that ModC(x)(Nx) = N and
Mx = βΣx(Nx).

Proof.

For any p ∈ ((SΣ)All ∪ (RΣ)All ∪ XΣ), Np = Mx
p and |N| = |Mx|

⇒ {N is the x reduct of Nx; transitivity }

For all model expansions Nx by x, for any p ∈ ((SΣ)All ∪ (RΣ)All ∪ XΣ),
Nx

p = Mx
p and |Nx| = |Mx|

⇒ {|Mx| = |Nx|; definition of the inclusion morphism x }

There is exactly one model Nx such that Nx
x = Mx

x , entailing that :
|Nx| = |Mx|, for any p ∈ ((SΣ)All ∪ (RΣ)All ∪ XΣ), Nx

p = Mx
p and

Nx
x = Mx

x

⇔ {Definition of the inclusion morphism xβ }

|Nx| = |Mx|, for any p ∈ ((SΣx)All ∪ (RΣx)All ∪ XΣx), Nx
p = Mx

p

⇔ {β definition }

Mx = βΣx(Nx)

Lemma 4. Given any Φ(Σ)-model M′, where Σ = (SΣ, mΣ, RΣ, XΣ),
and expression e:

M′ |=CΦ(Σ) η(v1,...,vn)(e) iff βΣ(M′) |=AΣ (v1−> . . . −>vn) in e

When e := p, p ∈ ((RΣ)w ∪ (SΣ)All) :
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M′ |=CΦ(Σ) η(v1,...,vn)(p)

⇔ {α definition }

M′ |=CΦ(Σ) p(v1, . . . , vn)

⇔ {Satisfaction definition }

M′(v1,...,vn)
∈ M′p

⇔ {vi elements are constants }

M′(v1×···×vn)
⊆ M′p

⇔ {β definition }

βΣ(M′)(v1×···×vn) ⊆ βΣ(M′)p

⇔ {Expression evaluation and satisfaction definition }

βΣ(M′) |=AΣ (v1−> . . . −>vn) in p

When e := x, x ∈ XΣ :

M′ |=CΦ(Σ) ηv(x)

⇔ {α definition }

M′ |=CΦ(Σ) v = x

⇔ {Satisfaction definition }

M′v = M′x
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⇔ {v and x are constants }

M′v ⊆ M′x

⇔ {β definition }

βΣ(M′)v ⊆ βΣ(M′)x

⇔ {Satisfaction definition }

βΣ(M′) |=AΣ v in x

When e := ^r, r ∈ Rw, such that |w| = 2 :

M′ |=CΦ(Σ) η(v1,v2)(^r)

⇔ {α definition }

M′ |=CΦ(Σ) (∃n : Nat) tr(n, v1, v2)

⇔ {Satisfaction definition and definition of tr by Γ }

M′(v1,v2)
∈ M′(r+)

⇔ {v1, v2 are constants and β definition }

βΣ(M′)(v1×v2) ⊆ βΣ(M′)(r+)

⇔ {Expression evaluation and satisfaction definition }

βΣ(M′) |=AΣ (v1−>v2) in ^r

When e := ∼ e :
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M′ |=CΦ(Σ) η(v1,...,vn)(∼ e)

⇔ {α definition }

M′ |=CΦ(Σ) η(vn,...,v1)
(e)

⇔ {I.H }

βΣ(M′) |=AΣ (vn−> . . . −>v1) in e

⇔ {Galois connection }

β(M′) |=AΣ (v1−> . . . −>vn) in (∼ e)

When e := e + e′ :

M′ |=CΦ(Σ) η(v1,...,vn)(e + e′)

⇔ {α definition, satisfaction definition }

M′ |=CΦ(Σ) η(v1,...,vn)(e) or M′ |=CΦ(Σ) η(v1,...,vn)(e
′)

⇔ {I.H }

βΣ(M′) |=AΣ (v1−> . . . −>vn) in e or βΣ(M′) |=AΣ (v1−> . . . −>vn) in e′

⇔ {Satisfaction and sum definition }

βΣ(M′) |=AΣ (v1−> . . . −>vn) in e + e′

Proof of the remaining cases is analogous.

Satisfaction condition. For any signature Σ ∈ |SignA| a Φ(Σ)-model
M′ a Σ-sentence ρ :
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M′ |=CΦ(Σ) αΣ(ρ) iff βΣ(M′) |=AΣ ρ

When ρ := e in e′:

M′ |=CΦ(Σ) αΣ(e in e′)

⇔ {α definition }

M′ |=CΦ(Σ) (∀(v1, . . . , vn) : U)η(v1,...,vn)(e)⇒ η(v1,...,vn)(e
′)

⇔ {Satisfaction definition, 2× }

for all model expansions M′′ of M′ defined in the expected way,
M′′ |=AΦ(Σ)′ η(v1,...,vn)(e

′) whenever M′′ |=AΦ(Σ)′ η(v1,...,vn)(e)

⇔ {Lemma 4 and satisfaction definiton }

for all model expansions M′′ of M′ defined in the expected way,
βΣ′(M′′) |=AΣx (v1−> . . . −>vn) in e⇒ (v1−> . . . −>vn) in e′

⇔ {Inclusion definition, lemma 3 }

βΣ(M′) |=AΣ e in e′

When ρ := ¬ρ:

M′ |=CΦ(Σ) αΣ(¬ρ)

⇔ {α definition }

M′ |=CΦ(Σ) ¬αΣ(ρ)

⇔ {Satisfaction definition }

M′ 6|=CΦ(Σ) αΣ(ρ)
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⇔ {I.H. }

βΣ(M′) 6|=AΣ ρ

⇔ {Satisfaction definition }

βΣ(M′) |=AΣ ¬ρ

The implication case is analogous to the one above.

When ρ := (all x : e) ρ:

M′ |=CΦ(Σ) αΣ((all x : e) ρ)

⇔ {α definition }

M′ |=CΦ(Σ) (∀x : U)αΣ((x in e) implies ρ)

⇔ {Satisfaction definition }

for all model expansions M′′ of M′, defined in the expected way,
M′′ |=CΦ(Σ)x αΣx((x in e) implies ρ)

⇔ {I.H. }

for all model expansions M′′ of M′, defined in the expected way,
βΣx(M′′) |=AΣx (x in e) implies ρ

⇔ {Lemma 3 }

for all model expansions βΣx(M′′) of βΣ(M′), defined in the expected
way, βΣx(M′′) |=AΣx (x in e) implies ρ
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⇔ {Satisfaction definition }

βΣ(M′) |=AΣ (all x : e) ρ

Lemma 5.1.3. The above comorphism is conservative.

Proof.The proof that the above comorphism is conservative may be achieved
in the following way : Given a (S, m, R, X)-model M, build a Φ((S, m, R, X))-
model M′ such that, β(S,m,R,X)(M′) = M. One way to build such model
may be :

(a) M′ has a carrier set, |M′U|, such that |M′U| = |M|;

(b) M′p = Mp, for any p ∈ (SAll ∪ Rw ∪ X);

(c) M′Nat = Nat;

(d) For any r in Rs1,s2 , M′ has a relation, tr, defining the transitive closure
of r.

M′ satisfies the rules 1 to 6 in Γ, due to (b). The rules 7,8 are satisfied by
(c) and (d) respectively.

5.2 DCR graphs with (H)Alloy

5.2.1 DCR graphs – Introductory concepts

DCR graphs, short for Distributed Condition Response Graphs, were
introduced in [HM10] to specify workflow models in an implicit way,
through a number of conditions. A functional style and precise semantics
make DCR graphs excellent candidates for modelling critical workflows.
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Formally, a DCR graph consists of a set E of events and two relations,
condition, response ⊆ E× E which restrict control flow regarded as a se-
quence of event executions. In detail,

• (e, e′) ∈ condition iff e′ can only be executed after e;

• (e, e′) ∈ response iff whenever e is executed the control flow may
only come to a terminal configuration after the execution of e′.

A mark or execution state, in a DCR graph G, is a tuple (Ex, Res) ∈
P(E)×P(E), where Ex is the set of the events that have already occurred
and Res the set of events scheduled for execution. A valid execution step
in G is a triple (M, M′, e) where M, M′ ∈ P(E) × P(E) and e ∈ E such
that, for M = (Ex, Res), M′ = (Ex′, Res′),

1. {e′ | condition(e′, e)} ⊆ Ex,

2. Ex′ = Ex ∪ {e},

3. Res′ = (Res\{e}) ∪ {e′ | response(e, e′)}.

Proof support for DCR graphs is discussed by Mukkamala [Muk12]
who suggests a translation to PROMELA so that the specification of
workflows can be checked with the SPIN [Hol03] model checker. The
encoding, however, is not easy. For example, the target language has
only arrays as a basic data structure, thus events and relations have to
be encoded as arrays, with relations becoming two-dimensional bit ar-
rays. Moreover, SPIN based verification is limited by possible state explo-
sion, an inevitability in model checking. An encoding into Alloy on the
other hand, seems an attractive alternative. Not only it comes out rather
straightforwardly due to the original relational definition of DCR graphs,
but also the Alloy analyser is eager to avoid potential state space explo-
sion by restricting itself to bounded domains. This restricts of course, the
scope of what can be verified in a specification. However, as mentioned
above, Alloy plugged into the HETS family offers sundry unbounded
verifiers that complement the Alloy analyser.



100 CHAPTER 5. CASE STUDY: HYBRIDISING ALLOY

To demonstrate our proposal for proof support for DCR graphs, let us
encode their canonical definition into Alloy:

abstract sig Event {

condition : set Event,
response : set Event

}

sig Mark {

executed : set Event,
toBeExecuted : set Event,
action : set Mark −> set Event

}

f act {

all m, m′ : Mark, e : Event |
(m −> m′ −> e) in action ⇔

(condition.e in m.executed ∧ m′.executed = m.executed + e ∧
m′.toBeExecuted = (m.toBeExecuted − e) + e.response )

}

Such encoding includes the declaration of two kinds (denoted as sig),
one of events and another one to define markings. Relations are declared
in an object oriented style as fields of kinds (objects). For example, what
the declaration of action entails is, as expected, a subset of the product
Mark×Mark× Event. Finally note how the invariant for valid execution
steps is directly captured in the f act statement above.

The formalisation of DCR graphs in Alloy already provides the con-
ditions to see instances of them with the Alloy analyser. Figure 5.2 gives
one such instance.

Properties regarding generic DCR graphs can also be directly checked
in Alloy. For example,

all m, m′ : Mark, e : Event |
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Figure 5.2: An instance of a generic DCR graph

(m −> m′ −> e) in action ∧ e in m′.toBeExecuted ⇒ e in e.response

formalises the claim that after executing an event e, if in the next mark e is
still to be executed, then response contains a reflexive pair at e. Of course, this
property cannot be proved in Alloy for an arbitrary domain. To do it,
one can resort to HETS, provided that Alloy is already plugged into the
respective wider network. The comorphism defined in this chapter, may
thus be employed by translating the latter sentence into the following one
(after a few reduction steps),

∀m, m′, e : U . Mark(m) ∧Mark(m′) ∧ Event(e)⇒
action(m, m′, e) ∧ toBeExecuted(m′, e)⇒ response(e, e))

which, can be verified with a theorem prover connected to HETS, such as
SPASS or Vampire. This approach allows us to have a viable alternative
for verification in Alloy.

5.2.2 The oncology workflow – A (small) case study

One interesting case study explored by Mukkamala in his P.h.D thesis
[Muk12], concerns medicine administration in an oncological context. In
this study DCR graphs are employed in order to define valid medicine
administration workflows. Such is established in the expected way, i.e.,
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Figure 5.3: A medical workflow

by stating conditions that all valid workflows must follow. For instance,
no medicine can be given without being prescribed first.

To illustrate our approach regarding tool support for DCR graphs (but
also more generally, for unbounded proof support for Alloy), a fragment
of this case study was encoded into Alloy, generating the graphical rep-
resentation of the encoded specification, show in figure 5.3.

The next sensible step is thus to check for interesting properties. How-
ever, recall that Alloy may give a false sense of security as the scope set
for a simulated session may not be wide enough to produce a counter
example. For instance, consider the following property in which we as-
sume that transRun = ^(action.Event). In English it reads: starting with
an empty mark (∅, ∅), if by continuously executing events a mark is reached
where SecEffect was executed and no further events are to be executed, then this
mark has no executed events. In Alloy,

all m, m′ : Mark | ( no m.(executed + toBeExecuted) ∧m′ in m.transRun∧
SecE f f ect in m′.executed ∧ no m′.toBeExecuted)⇒ no m′.executed
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A quick analysis of the workflow diagram shows that the property is
false. Actually, if the left side of the implication is true, it must happen
that the right hand side is false: the former says there are executed events
while the latter contradicts it. The Alloy analyser, however, is unable to
find a counter-example within a scope below 15 (the default scope is 3).
The problem is that with a scope smaller than 15 (10 marks + 5 events)
the Alloy analyser can never reach a mark where the left side of the
implication is true and therefore no counter–examples are found. On the
other hand, after encoding into CASL and calling a reasoner in the HETS
network (e.g. Vampire), the result pops out in a few seconds.

Let us now focus (again) on the characteristics of DCR graphs. They
are known to be a flexible way of specifying workflows, due to their
declarative nature. Actually, they are much more flexible than the more
conventional approaches (namely the ones based on UML) for this kind
of specifications, as they allow many possible workflows. However, no-
tice that the conditions imposed by them are made "once and for all"
situations, which may be considered an over restriction. Taking as an ex-
ample the condition stating that a signature of a doctor is needed to give
a medicine, it may be true that such does not apply in the context of an
emergency.

The hybridisation of Alloy may then be used for the example just
described, by considering nominals as the possible contexts and modali-
ties as the events changing between them. In this situation, the example
above should be extended in order to contemplate the different contexts
and events:

Noms = { Normal, Emergency }

λ = { EmergencyHappens }

Then, we use HAlloy as the typical hybrid logic. I.e., we state that
from a normal situation we can transit into an emergency,

@Normal〈EmergencyHappens〉Emergency
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and after that, the conditions relative to the different contexts are speci-
fied:

@Normal condition.GiveMed = SignDoc + PrepMed
@Emergency condition.GiveMed = PrepMed

In summary, this chapter has shown how Alloy (and its connection
to HETS) may be a viable option for giving tool support to DCR graphs.
Furthermore, through this last example, it also illustrated a logic (with
proof support) for specifying reconfigurable workflows.



Chapter 6

On empowering the
hybridisation method

This chapter contains two contributions of a more theoretical flavour.
Both propose extensions to the hybridisation process discussed along the
previous chapters. In particular,

• the first one extends the hybridisation process to morphisms be-
tween institutions, and characterises it as a functor;

• while the second is a (partial) solution for the problem of fixed inter-
faces mentioned before as a limitation of the hybridisation method.
This contribution was recently published in [MNMB13].

6.1 Hybridisation is an (endo)functor

Despite being often criticized ("too abstract", some say), it is a fact that
category theory has been a particularly good "friend" to computer science.
Notably, many aspects of the latter rely on and can be represented in
categorical terms at a great extent – examples range from programming
languages to type and proof theories, along with many others. Ironically,
this impressive reach of category theory, is partially explained by the
"criticism" that is too abstract as a field.

105
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Joseph Goguen, in the paper titled "A Categorical Manifesto" ([Gog91]),
summarises the many ways in which category theory may contribute to
computer science. We recall here the following ones, as they are signifi-
cantly relevant to the work presented in this chapter:

1. "Dealing with abstraction and representation independence",

2. "Formulating conjectures and research directions".

In the light of the above, when one switches to the categorical perspec-
tive, the typical case is that theories are in some way empowered, turned
more general and elegant. Actually, such was the case of institutions
themselves.

Accordingly, the natural research direction for when a theory akin to
the hybridisation appears, is to ascertain in what ways is related to cate-
gorical terms, or rather, in which categorical concepts may fit. The objec-
tive of this section is to do just this kind of research. More concretely we
aim at exploring hybridisation as a functor between suitable categories.

In section 2.2.3 the hybridisation method was defined as a function on the
category of institutions, one that given an object of this category, returns
the respective hybridised version (also an institution). Therefore in its
essence, is just an incomplete mapping between two (equal) categories,
as objects are mapped but not morphisms. The question that naturally
emerges, is if the hybridisation process can be extended to morphisms;
and if so, then does the extension preserves (co)domains, identity and
composition. If indeed they are preserved, then one may call the enriched
mapping a functor (or more precisely, an endofunctor).

We answer these questions in the following order: Firstly the hybridi-
sation is endowed with the ability to map morphisms1. Again the interest
of this theoretical research is to grant new forms of proof support to hy-
bridised logics, as we will see further on.

1Since we are interested in the category of institutions with reversed arrows, mor-
phisms here, are in fact the comorphisms between institutions, defined in the last chap-
ter.



6.1. HYBRIDISATION IS AN (ENDO)FUNCTOR 107

Secondly, conservation with respect to (co)domains, identity and com-
position is proved. Once proved, the enriched version of the hybridisation
meets the properties needed to be called an (endo)functor. Consequently,
all theory developed around the concept of functor, may be used upon
the hybridisation method.

Let us start by recalling definition of functor :

Definition 6.1.1. Let C, D be categories. A functor F is a mapping, associating
to each object O ∈ |C|, an object F(O) ∈ |D|. In addition, F maps each mor-
phism f : A → B in C, to a morphism F( f ) : F(A) → F(B) in D, such that
the following rules hold:

1. Given any object O ∈ |C|, F(idO) = idF(O);

2. For all morphisms f : A→ A′, g : A′ → B in C
F( f . g) = F( f ) . F(g).

Definition 6.1.2. Let C, D be categories. A functor F : C → D, is an endofunc-
tor whenever the categories being mapped, are the same, i.e., C = D.

We have previously mentioned that the first step in the quest to explore
hybridisation as a functor, is to enrich it with morphism mapping. Fur-
thermore, the definition of functor asserts that such map must preserve
(co)domains, as presented by the following commuting square :

I

HI

I ′

HI ′
H

f

H( f )

H

where I , I ′ are institutions, f a morphism, and H the mapping corre-
sponding to the hybridisation method.

Let f = (Φ, α, β), H((Φ, α, β)) be defined as follows:

Definition 6.1.3. Let H((Φ, α, β)) = (Φ′, α′, β′).



108 CHAPTER 6. ON EMPOWERING THE HYBRIDISATION METHOD

• Φ′ = Φ× id;

• For any (Σ, ∆) ∈ |SignHI |, given a (Σ, ∆)–sentence ρ:
α′(Σ,∆)(n) = n, n ∈ ∆Noms

α′(Σ,∆)(ρ) = αΣ(ρ), ρ ∈ SenI(Σ)

α′(Σ,∆)(ρ⇒ ρ′) = α′(Σ,∆)(ρ)⇒ α′(Σ,∆)(ρ
′), ρ, ρ′ ∈ SenHI((Σ, ∆))

α′(Σ,∆)(¬ρ) = ¬α′(Σ,∆)(ρ), ρ ∈ SenHI((Σ, ∆))

α′(Σ,∆)(@iρ) = @iα
′
(Σ,∆)(ρ), i ∈ ∆Noms and ρ ∈ SenHI((Σ, ∆))

α′(Σ,∆)([m]ρ) = [m]α′(Σ,∆)(ρ), m ∈ ∆Mods and ρ ∈ SenHI((Σ, ∆))

α′(Σ,∆)( ∀©x ρ) = ∀©x α′(Σ,∆′)(ρ), ∆′ = (Noms∆ ] {x}, Mods∆)

and ρ ∈ SenHI((Σ, ∆′))

• For any signature object (Σ, ∆) ∈ |SignHI |, and a Φ′((Σ, ∆))–model
( f , R), β′(Σ,∆)(( f , R)) = (βΣ . f , R)

Lemma 6.1.1. Recall definition 2.2.4. For any signature (Σ, ∆) ∈ |SignHI |,
the following diagram defines a strong amalgamation square,

ModHI((Σ, ∆))

ModHI((Σ, ∆′))

ModHI((Φ(Σ), ∆))

ModHI
′
((Φ(Σ), ∆′))

ModHI
′
((id, x))

β′(Σ,∆)

β′(Σ,∆′)

ModHI((id, x))

where (id, x),(id, x) are inclusion morphisms adding a nominal x to the corre-
sponding signatures.

Proof. Let M′ = ( f ′, R′) and MΦ = ( fΦ, RΦ).

β′(Σ,∆)(MΦ) = ModHI((id, x))(M′)

⇔ {ModH,ModI
′

definitions }
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(βΣ . fΦ, RΦ) = ( f ′, ModH(x)(R′))

⇔ {inclusion morphism (id, x) definition }

For all model expansions ( f ′Φ, R′Φ) of MΦ along the inclusion morphism
(id, x) : f ′Φ = fΦ and ModH(x)(R′Φ) = RΦ.

⇒ {Transitivity }

For all model expansions ( f ′Φ, R′Φ) of MΦ along the inclusion morphism
(id, x) : (βΣ . f ′Φ, ModH(x)(R′Φ)) = ( f ′, ModH(x)(R′))

⇒ {|R′Φ| = |R′|, by reduct definition }

There is exactly one model expansion ( f ′Φ, R′Φ) of MΦ along the inclusion
morphism (id, x), such that R′Φn(x) = R′n(x). Consequently for that

expansion, (βΣ . f ′Φ, R′Φ) = ( f ′, R′), and therefore β′(Σ,∆′)((R′Φ, f ′Φ)) = M′.

Follows the proof that (co)domains are preserved, with respect to mor-
phism mapping. I.e that the comorphism is valid:

Satisfaction condition. For any (Σ, ∆) ∈ |SignHI |, a Φ′((Σ, ∆))–model
M′ (M′ = ( f , R)), a world w ∈ |R|, and a (Σ, ∆)–sentence ρ :

When ρ := n, for n ∈ ∆Noms,

β′(Σ,∆)(M′), w |=HI(Σ,∆) n

⇔ {Satisfaction, and β′(Σ,∆) definitions }

Rn(n) = w

⇔ {α′(Σ,∆) definition }

Rn(α′
(Σ,∆)(n))

= w
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⇔ {Satisfaction definition }

M′, w |=HI ′Φ′((Σ,∆)) α′(Σ,∆)(n)

When ρ ∈ SenI(Σ),

β′(Σ,∆)(M′), w |=HI(Σ,∆) ρ

⇔ {Satisfaction, and β′(Σ,∆) definitions }

βΣ. f (w) |=IΣ ρ

⇔ {(Φ, α, β) : I → I ′, is a morphism }

f (w) |=I ′Φ(Σ) αΣ(ρ)

⇔ {Satisfaction definition }

M′, w |=HI ′Φ′((Σ,∆)) αΣ(ρ)

⇔ {α′(Σ,∆) definition }

M′, w |=HI ′Φ′((Σ,∆)) α′(Σ,∆)(ρ)

The implication case,

β′(Σ,∆)(M′), w |=HI(Σ,∆) ρ⇒ ρ′

⇔ {Satisfaction definition }

β′(Σ,∆)(M′), w |=HI(Σ,∆) ρ′ whenever β′(Σ,∆)(M′), w |=HI(Σ,∆) ρ

⇔ {Induction hypothesis }
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M′, w |=HI ′Φ′((Σ,∆)) α′(Σ,∆)(ρ
′) whenever M′, w |=HIΦ′((Σ,∆)) α′(Σ,∆)(ρ)

⇔ {Satisfaction definition }

M′, w |=HI ′Φ′((Σ,∆)) α′(Σ,∆)(ρ)⇒ α′(Σ,∆)(ρ
′)

⇔ {α′(Σ,∆) definition }

M′, w |=HI ′Φ′((Σ,∆)) α′(Σ,∆)(ρ⇒ ρ′)

The negation case is analogous to the above.

When ρ := @iρ,

β′(Σ,∆)(M′), w |=HI(Σ,∆) @iρ

⇔ {Satisfaction, and β′(Σ,∆) definitions }

β′(Σ,∆)(M′), Rn(i) |=HI(Σ,∆) ρ

⇔ {Induction hypothesis }

M′, Rn(i) |=HI
′

Φ′((Σ,∆)) α′(Σ,∆)(ρ)

⇔ {Satisfaction definition }

M′, w |=HI ′Φ′((Σ,∆)) @iα
′
(Σ,∆)(ρ)

⇔ {α′(Σ,∆) definition }

M′, w |=HI ′Φ′((Σ,∆)) α′(Σ,∆)(@iρ)

The modality case is analogous to the above.

The universal quantification case,
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β′(Σ,∆)(M′), w |=HI(Σ,∆) ∀x ρ

⇔ {Satisfaction definition }

For all model expansions (β′(Σ,∆)(M′))′ of β′(Σ,∆)(M′), by the previously
defined inclusion morphism (id, x),

(β′(Σ,∆)(M′))′, w |=HI(Σ,∆′) ρ

⇔ {lemma 6.1.1 }

For all model expansions M′′ of M′, by the previously defined inclusion
morphism (id, x), M′′, w |=HI ′Φ′((Σ,∆′)) α′(Σ,∆′)(ρ)

⇔ {Satisfaction definition }

M′, w |=HI ′Φ′((Σ,∆)) ∀x α′(Σ,∆′)(ρ)

⇔ {α′(Σ,∆) definition }

M′, w |=HI ′Φ′((Σ,∆)) α′(Σ,∆)(∀x ρ)

Theorem 6.1.1. Given a morphism (Φ, α, β), let H((Φ, α, β)) = (Φ′, α′, β′).
The latter is a conservative morphism if and only if (Φ, α, β) is a conservative
morphism.

Proof. We want to prove that for any signature (Σ, ∆) ∈ |SignHI |, β′(Σ,∆)
is surjective. In other words, that for any model ( f , R) ∈ |ModHI((Σ, ∆))|
there is a model ( f ′, R′) ∈ |ModHI

′
(Φ′((Σ, ∆)))|, such that β′(Σ,∆)(( f ′, R′)) =

( f , R),where β′(Σ,∆) = (βΣ . )× id.

A model ( f ′, R′) ∈ |ModHI
′
(Φ′((Σ, ∆)))|, is a tuple with two compo-

nents, hence this proof is divided also in two parts, one relative to the left
component and the other to the right one.
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1. By β′ definition f = βΣ . f ′, thus in the "worst" case, img( f ) =

|ModI((Σ, ∆))|, entailing that img(βΣ) = |ModI((Σ, ∆))|. The latter
is the definition of surjectivity on βΣ.

2. The id function, is surjective.

We have enriched the hybridisation with the ability to map morphisms,
and proved that (co)domains are preserved. The next step is to prove that
identity is also preserved :

Proof. Consider a morphism (id, id, id) : I → I ,
H((id, id, id)) : HI → HI , preserves identity, i.e.,H((id, id, id)) = (id, id, id).

Let H((id, id, id)) = (Φ′, α′, β′).

• We know that : Φ′ = (Φ, id).

Φ′ = (Φ, id)

⇔ {Φ = id }

Φ′ = (id, id)

• The proof that for any (Σ, ∆) ∈ |SignHI | and (Σ, ∆)–sentence ρ,
α′(Σ,∆)(ρ) = ρ, follows from induction. With the base cases:

– When ρ := n, n ∈ ∆Noms; α′(Σ,∆)(ρ) = ρ, by α′(Σ,∆) definition.

– When ρ ∈ SenHI(Σ); α′(Σ∆)(ρ) = αΣ(ρ), by α′(Σ,∆) definition.
But αΣ = id, and therefore α′(Σ,∆)(ρ) = ρ.

The proof for the other cases is a trivial application of the induction
hypothesis.
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• Recall β′ definition : For any signature object (Σ, ∆) ∈ |SignHI |, and
a Φ′((Σ, ∆))–model ( f , R), β′(Σ,∆)(( f , R)) = (βΣ . f , R).

Thus β′(Σ,∆) = (βΣ . )× id.

β′(Σ,∆) = (βΣ . )× id

⇔ {βΣ = id }

β′(Σ,∆) = (id . )× id

⇔ {For any relation R, (id .) R = R }

β′(Σ,∆) = id× id

We have proved that identity is preserved, the next step is to prove that
composition is also preserved.

Proof. For any morphism (Φ, α, β), let H((Φ α, β)) = (ϕ(Φ), ϕ(α), ϕ(β))

(*). We want prove that for any composable morphisms (Φa, αa, βa) and
(Φb, αb, βb),H((Φa, αa, βa) . (Φb, αb, βb)) = H((Φa, αa, βa)) .H((Φb, αb, βb))

H((Φa, αa, βa) . (Φb, αb, βb)) = H((Φa, αa, βa)) .H((Φb, αb, βb))

⇔ {Functor definition }

H((Φa . Φb, αa . αb, βa . βb)) = H((Φa, αa, βa)) .H((Φb, αb, βb))

⇔ {(*), 2× }

(ϕ(Φa . Φb), ϕ(αa . αb), ϕ(βa . βb)) =
(ϕ(Φa), ϕ(αa), ϕ(βa)) . (ϕ(Φb), ϕ(αb), ϕ(βb))
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⇔ {Functor definition }

(ϕ(Φa . Φb), ϕ(αa . αb), ϕ(βa . βb)) =
(ϕ(Φa) . ϕ(Φb), ϕ(αa) . ϕ(αb), ϕ(βa) . ϕ(βb))

⇔ {pointwise tuple equality }


ϕ(Φa . Φb) = ϕ(Φa) . ϕ(Φb) (1)
ϕ(αa . αb) = ϕ(αa) . ϕ(αb) (2)
ϕ(βa . βb) = ϕ(βa) . ϕ(βb) (3)

• Proving (1) :

ϕ((Φa . Φb))

⇔ {H definition }

(Φa . Φb, id)

⇔ {id . id = id }

(Φa . Φb, id . id)

⇔ {Tuple definition }

(Φa, id) . (Φb, id)

⇔ {H definition }

ϕ(Φa) . ϕ(Φb)
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• Proving (2) : Proof for this case relies on induction, with the ex-
pected base cases. For any signature object (Σ, ∆) ∈ |SignHI |, and
any (Σ, ∆)–sentence ρ; let ϕ((αa . αb))(Σ,∆) = ϕ((ηa . ηb)),
ϕ(αa)ϕ(Φb)(Σ) = ϕ(ηa), ϕ(αb)Σ = ϕ(ηb), αaΦb(Σ) = ηa and αbΣ = ηb.
Then :

– When ρ := n, n ∈ ∆Noms,

ϕ((ηa . ηb))(n) = n

⇔ {H definition }

ϕ((ηa . ηb))(n) = ϕ(ηa)(n)

⇔ {H definition }

ϕ((ηa . ηb))(n) = ϕ(ηa)(ϕ(ηb)(n))

⇔ {Function composition }

ϕ((ηa . ηb))(n) = (ϕ(ηa) . ϕ(η))(n)

– When ρ ∈ SenHI(Σ),

ϕ((ηa . ηb))(ρ) = (ηa . ηb)(ρ)

⇔ {H definition }

ϕ((ηa . ηb))(ρ) = (ϕ(ηa) . ηb)(ρ)

⇔ {H definition }

ϕ((ηa . ηb))(ρ) = (ϕ(ηa) . ϕ(ηb))(ρ)

Proof for the other cases is given by the induction hypothesis.
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• Proving (3) : For any signature object (Σ, ∆) ∈ |SignHI | ;
let ϕ((βa . βb))(Σ,∆) = ϕ((ηa . ηb)), ϕ(βa)H(Φb)(Σ) = ϕ(ηa),
ϕ(βb)Σ = ϕ(ηb), βaΦb(Σ)

= ηa and βbΣ = ηb. Then :

ϕ((ηa . ηb))

⇔ {H definition }

((ηa . ηb) . )× id

⇔ {((g . f ) . ) ≡ (g .) . ( f .) }

((ηa . ) . (ηb . ))× id

⇔ {id = id . id }

((ηa . ) . (ηb . ))× (id . id)

⇔ {Product definition }

((ηa .)× id) . ((ηb .)× id)

⇔ {H definition, 2× }

ϕ(ηa) . ϕ(ηb)

We have proved that composition is preserved, and thus completed the
last step in classifying the hybridisation process as an (endo)functor.

The current method for obtaining proof support for hybridised logics,
relies on the lifting targeting FOL (c.f. section 2.3.2). The enrichment of
the hybridisation with morphism mapping, points to a direction where
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a broader proof support for hybridised logics may be achieved: Given
an embedding morphism (ΦE , αE , βE ) : HI ′ → I ′, any morphism of the
type I → I ′ may be systematically lifted into one with type HI → I ′2

as presented by the following commuting square:

I

HI

I ′

HI ′

H

(Φ, α, β)

H((Φ, α, β))

H (ΦE , αE , βE )

Notice that in the above diagram, the classical method (the lifting as
recalled in section 2.3.2) seems to be a particular instance which "com-
presses" the mapped and embedding morphisms into a single one.

The process of classifying the enriched version of the hybridisation pro-
cess as an (endo)functor, also brings to light new research directions that
should be considered for future work. In detail,

1. such method may equally be applied to operations akin to the hy-
bridisation, potentially bringing to them some of the results ob-
tained in the present section, namely in what concerns extra proof
support.

2. Then, common features between these operations (the ones that are
found to be functors) should be singled out, and from them, a gen-
eral technique for adding new features to logics, envisaged. This
may act like a boilerplate aiming at accommodating any new simi-
lar operation that may come up. Thus, the process of creating them
and adding the respective proof support may become systematic.

3. Finally, category theory points to yet another research direction:

". . . if you have found an interesting functor, you might be well advised to
investigate its adjoints." [Gog91].

2Note that I ′ is no more restricted to the FOL, which broads the scope of application
of the method.
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6.2 Evolving interfaces

The approach to the specification of reconfigurable systems discussed up
to now in this dissertation, assumes that all configurations share the same
signature, i.e., that the interface provided at any local state is fixed. Or,
to put it in yet another way, that the system’s interface is invariant with
respect to the reconfiguration process. In practice, however, this may be
a too strong assumption. Actually, not only the realisation of a service
may change from a configuration to another, but also the set of services
provided may itself vary. In other words, sometimes in reconfigurable
systems, local interfaces may evolve as well.

Although taking up this challenge in a completely general setting
would require a substantial review of the method, a partial answer can
be obtained by exploring the generated (hybrid) languages. This section
proposes a technique, published in [MNMB13], to deal with interface
reconfiguration whenever the local specifications are given in equational
logic (EQ). We want to allow not only a possibly different algebra in
each state, but also different algebras over different signatures. Techni-
cally, this is achieved through the introduction of (hybrid) partial algebra-
specifications to “simulate” the intended, independent (hybrid) equational
ones. Note, however, that, even resorting to partial specifications, mod-
els will always be (total) algebras with respect to the corresponding local
interface.

Switching to a more technical perspective, let us consider

• a set of relevant configurations named by the set of nominals Nom;

• and a family of modalities λ to trigger reconfigurations.

Suppose, however, that in the place of a unique (static) interface (S, F),
we consider

• a family (Si, Fi)i∈Nom of local signatures, indexed by the set of nom-
inals.
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The technique proceeds by building a presentation

((
(S, TF, PF), Nom, λ

)
, Γ
)
∈ |SignHFP pres|

in the institution HFP pres of presentations over HFP , where all this
information can be considered, and the hybridisation applied.

The first step is to define a signature (S, TF, PF) in FP able to capture
all the possible interfaces. Thus, services are split into the ones which are
globally defined (i.e., present in any (Si, Fi), for i ∈ Nom) and those only
concerning a specific state. These two sets of operations define a (global)
HFP-signature :

S =
⋃

i∈Nom Si

TFar→s =
{

σ|σ ∈ ⋂i∈Nom Fi
ar→s

}
PFar→s =

{
σ|σ ∈ (

⋃
i∈Nom Fi

ar→s) \ TFar→s
}

Hence, recovering an unique base signature to proceed with the specifica-
tion. However, the information about the definition of those operations,
respective to specific states, has yet to be considered. Such is put by the
following axioms:

Γ = (
⋃

i∈Nom
{

@i(∀X) d f (σ(X))|σ ∈ PFar→s ∩ Fi
ar→s

}
) ∪

(
⋃

i∈Nom
{
¬@i(∃X) d f (σ(X))|σ ∈ PFar→s \ Fi

ar→s
}
)

Consequently, one ends up with a presentation

((
(S, TF, PF), Nom, λ

)
, Γ
)

collecting all the intended information on the interfaces. The specification
method can be safely applied from this point on.

In broad terms, we are going to simulate local, total functions with
global, partial ones. This entails the need for adopting strong equality
to specify the “global properties” of a given operation, defined in (but,
not all) specific configurations. Conversely, using the existential equation
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t e
= t′, would necessarily bring inconsistency, since it fails on configura-

tions where the involved operations are not defined. Of course, when
existential equations are prefixed by reference operators, i.e., sentences of
the form @i(t

e
= t′), the same does not apply.

Example 6.2.1. Suppose that, in the context of a client server architecture, a
buffering component is required to store and manage incoming messages from
different clients. Depending on the server’s execution mode, i.e., on its current
configuration, issues like the order in which calls have arrived or the number of
repeated messages may, or may not, be relevant.

A model for this component comprises four kinds of configurations en-
dowed with, respectively,

1. an algebra of sequences (for configurations where both order and
multiplicities are relevant issues),

2. an algebra of multi sets (when the order may be left out),

3. an algebra of sets (when the application may abstract over order and
repetitions), and finally

4. an algebra of repetition free sequences (to cater only for the messages’
order).

Going from one configuration to another involves not only a change in
the way a service is realised (e.g., insertion clearly differs from one state
to the other), but also a change at the interface level. For instance, an
operation to count the number of replicated messages, does not make
sense if sets are used as a local model.

We start by defining a set Nom = {OM, Om, oM, om} of nominals,
where the capitalised letters correspond to the relevance of order and
multiplicity issues (e.g., Om refers to a configuration where order, but not
multiplicity, is relevant). Then, follows the definition of reconfiguration
events :

Mod = {goto_OM, goto_Om, goto_oM, goto_om}.
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Consider now the local interfaces. For (Som, Fom) choose the usual sig-
nature of Sets comprising the set of sorts Som = {Elem, Store, Bool} and
operation symbols Fom

Store = {empty}, Fom
Elem×Store→Bool = {is_in},

Fom
Elem×Store→Store = {insert} and Fom

ar→s = ∅ for the other arities.
Clearly, (SOm, FOm) = (Som, Fom). The remaining cases need to deal with
multiplicities, and therefore signatures have to be enriched with new op-
erations. Hence, (SoM, FoM) can be defined as SoM = Som ] {Nat},
FoM

Elem×Store→Nat = {mult} and FoM
ar→s = Fom

ar→s for the other arities.
Again, (SOM, FOM) = (SoM, FoM).

On the conditions above, the following "global" partial signature is
defined as :

((
(S, TF, PF), Nom, Mod

)
, Γ
)

taking,

S =
⋃

i∈Nom Si = SOM

TF = Fom

PFElem×Store→Nat = {mult}, and PFar→s = ∅ for the other arities.

On its turn, Γ is equal to the union of the sentences :

@i(∀s)(∀e) d f (mult(e, s)), for i ∈ {oM, OM}

¬@i(∀s)(∀e) d f (mult(e, s)), for i ∈ {om, Om}.

In this setting, we may now proceed with the specification of the global
properties, say,

(∀e : elem) is_in(e, empty) = False

For the local properties one resorts to the hybrid reference operator. This
allows, for instance, to record the fact that ordering and the multiple
insertion are irrelevant for the configuration om :

@om(∀e, e′)(∀s)insert(e′, insert(e, s)) = insert(e, insert(e′, s))

@om(∀e)(∀s) insert(e, insert(e, s)) = insert(e, s)

On the other hand, the specification of mult in configuration oM is intro-
duced as :

@oM(∀e, e′)(∀s)¬e = e′ ⇒ mult(e, insert(e′, s)) = mult(e, s)
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@oM(∀e)mult(e, empty) = 0.

Finally, we have to specify the possible reconfigurations. For this, one
may use sentences as direct as,

@om〈goto_OM〉OM

stating that a reconfiguration from om to OM is possible, or opt for more
elaborated forms :

(∀e, e′)(∀s) insert(e′, insert(e, s)) = insert(e, insert(e′, s))⇒ 〈goto_Om〉Om.

The latter states the system can evolve to configuration Om (through the
event goto_Om) from any other configuration where the order of insertion
is irrelevant.

We conclude here the illustration of the specification method extended
to accommodate the presence of different interfaces (i.e., algebraic signa-
tures) in different configuration states. Notice, however, that a number of
details were not considered; for example, a definition of the natural num-
bers and the booleans should be included (and all signatures extended
accordingly).
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Chapter 7

Conclusions

7.1 What was achieved

The widening of the class of software systems which are simultaneously
reconfigurable and critical, is leading to the research of formal verification
techniques that in one way or another may avoid incorrect or unexpected
behaviour. This is important, because in such class of systems, a potential
fault is a potential tragedy.

In the context of the research group in which this dissertation was
made, a methodology was proposed in [MFMB11] and its theoretical
foundations established in [MMDB11]. The idea is to build an hybrid
ad-hoc logic by taking into account the particular characteristics of each
reconfigurable system to be specified. Thus we referred this construction
technique as the hybridisation process.

Throughout the present dissertation, we were devoted on bringing the
hybridisation to the working software engineer, supporting the motto build
the right tool for each job. This was accomplished at some extent, by incor-
porating it into HETS, hence providing hybridised versions of logics inte-
grated in the HETS network. Furthermore, we illustrated the methodol-
ogy at work by exploring a case study of a critical medical device (the in-
sulin infusion pump) where several hybridised logics were employed. These
two lines of work correspond to what was defined as the goal of this
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dissertation from the outset.
As additional contributions, we extended the theory supporting the

hybridisation method, and in the process paved the way for broader means
of validating specifications in hybridised logics, than the one proposed in
[MMDB11]. In addition, we introduced a technique to tackle one of the
limitations of the hybridisation process – the lack of machinery to cap-
ture systems whose interface also evolves. Finally, we extended the hy-
bridisation to lightweight formal methods by providing the theory needed to
hybridise one of the most famous of those (Alloy), but also to validate
specifications written in its hybridised or original version.

Another extra contribution, namely the comparison between HCASL
and HPL provers, lead to extra (small) contributions that may be useful
in related work. They are:

1. The refactoring of HyLoRes (detailed in section 2.3.3) in order to be
compatible with the most recent versions of the respective compiler,
i.e., Glasgow Haskell Compiler. The new version of HyLoRes is
available online 1.

2. The creation of a MacOS package (detailed in section 2.3.3) that
provides an easy way to install several dedicated HPL provers. It
is also available online 2.

3. The development of an application (used in section 3.2.3) that changes
the format of a specification written in HTab or HyLoRes, to the for-
mat of HCASL. Once again, it is available online3.

As a final note we would like to stress that most of the contributions
of this dissertation have already been submitted and validated by the
international scientific community. In detail,

1. the incorporation of the hybridisation method in the HETS frame-
work (chapter 3), which was published in [NMMB13b].

1http://github.com/nevrenato/HyLoRes_Source
2https://github.com/nevrenato/Hybrid_package
3https://github.com/nevrenato/HTab2HCASL
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2. The hybridisation of Alloy and its coordination with HETS (chap-
ter 5) published in [NMMB13a], with an invited extended journal
version to appear in [NMMBar].

3. The extension for evolving interfaces (chapter 6) published in
[MNMB13].

7.2 Future work

In the overall, this dissertation promotes a rigorous but flexible method
for specifying reconfigurable systems, by giving contributions both in the
theoretical and in the practical side. However, several lines of work are
yet to be pursued, and furthermore new ones have emerged:

• Generic proof support in HETS. The implementation of the hybridi-
sation method into HETS provides means to hybridise logics already
integrated there. The next sensible step is thus to give proof support
to arbitrary hybridised logics by implementing the lifting defined in
reference [MMDB11].

• A framework for combining logics. The implementation of the hy-
bridisation method into HETS provided knowledge and experience.
These may be put to use in order to achieve in HETS a framework
harbouring operations akin to hybridisation. The benefit of this is
obvious: the end user gains means to combine logics in more ways
than just the hybridisation.

• Industrial assessment. Although explored through several case
studies in this dissertation, the methodology needs yet to be as-
sessed in an industrial context.

• Generalizing the hybridisation process. Even though hybridised
logics can capture automata whose states can take different forms,
their underlying transition structure (i.e. the Kripke frame) is restricted
to one specific class of automata. Therefore, many interesting classes
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of automata are missed. An example is the class of probabilistic
transition systems (c.f. [Paz71]), which have recently emerged as a
main challenge in software engineering.

From noticing that many kind of automata can be generalised into
coalgebras (as pointed out by [C0̂6]), one way to approach this boils
down to replacing Kripke frames, by coalgebras for suitable endo-
functors that can be instantiated into different classes of automata.

• Exploration of other logic combiners. The research of the hybridi-
sation process was intensive. From this resulted knowledge and
experience that can be recycled for improving similar combiners.
Naturally, new ones are also in order.
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Appendix A

Reconfigurable Calculator – Full
specification

spec ReconfCalc =

HNat

then modality Shift {}
nominal Sum;

Mult
{}
op __#__ : Nat × Nat→ Nat

%% global axioms

∀ n, m, p : Nat
• n # m = m # n
• (n # m) # p = n # (m # p)

%% axioms specific to Sum and Mult

∀ n, m : Nat
• @Sum n # 0 = n
• @Sum n # suc(m) = suc(n # m)
• @Mult n # 0 = 0
• ∃ p, q : Nat

137
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• @Mult n # suc(m) = p ∧ @Sum n # q = p
∧ @Mult n # m = q

%% axioms specific to the Kripke frame

• Here Sum ∨ Here Mult
• @Sum (< Shift > Here Mult ∧ [Shift] Here Mult)
• @Mult (< Shift > Here Sum ∧ [Shift] Here Sum)

%% lt relation definition, using # op

∀ n, m, r : Nat • n <= m⇒ n # r <= m # r

%% lemmas

∀ n, m, r : Nat
• @Sum (n < m⇒ n < m # r) %implied

%(lemma1)%

• @Sum n # m >= n %implied

%(lemma2)%

• @Sum n # suc(0) = suc(n) %implied

%(lemma3)%

• @Mult n # suc(0) = n %implied

%(lemma4)%

• @Mult n # 0 <= n %implied

%(lemma5)%

• @Mult (m = 0 ∨ m = suc(0)⇒ n # m <= n) %implied

%(lemma6)%

• ∃ p : Nat • @Sum n # 0 = p ∧ @Mult n # suc(0) = p
%implied

%(lemma7)%

%% verified properties

• @Sum [Shift] [Shift] Here Sum %implied

%(Cyclicity1)%

∀ n, m, r : Nat
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• n # 0 = 0⇒ < Shift > n # 0 = n %implied

%(StateExclusion)%

• ∃ p : Nat
• @Sum n # m = p ∧ @Sum < Shift > < Shift > n # m = p

%implied

%(Cyclicity2)%

• ∃ p : Nat • @Sum n # n = p⇒ @Mult n # suc(suc(0)) = p
%implied

%(DoubleDef)%

• ∃ p, q : Nat
• m <= suc(0)
⇒ @Sum n # m = p ∧ @Mult n # m = q⇒ p >= q

%implied

%(CasesSumBiggerMult)%

end
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Appendix B

Requirements for the infusion
pump
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Number Title Description
1 Modes The pump can be on, off or in test mode.
2 Diagnostic When off the pump can be turned on, but

first it must go through a series of diag-
nostics tests. Only if all are ok, the pump is
turned on.

3 Going off Only from mode on, the pump can be
turned off.

4 Suspension When on, the pump can be in two modes:
Suspension or Normal.

5 Resuming When running normally the pump may be
suspended. Conversely, when suspended, re-
suming it is an option.

6 Default mode When diagnosing, if all tests go ok, the
pump goes by default to Normal mode

Table B.1: Requirements list for HPL, H2PL

number title description
1 Modes of operation The modes of insulin infusion are basal and

temporary basal.
2 Bolus In either of the infusion modes, a bolus can

be given. The latter can be instantaneous or
extended.

3 Bolus extended An extended bolus cannot be given while
other is active.

4 Suspension When on the pump can be suspended.
5 Resume If the pump is suspended while a bolus is be-

ing given, when resumed, that same bolus
should be forgotten.

6 Disjointness The pump cannot be in temporary basal and
normal basal at the same time.

Table B.2: Requirements list for HPL
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number title description
1 Max flow When the pump is suspended the maximum

flow must be 0. In all others modes the
maximum flow is defined by the user.

2 Basal rates When in the basal normal mode, the current
flow must be equal to the value given by
the basal profile.

3 Temporary basal rates When in the temporary basal mode, the cur-
rent flow must be equal to the value given
by the temporary basal profile.

4 Bolus rates When in a state where the bolus is active,
the respective value must be added to the
current flow.

5 Extended bolus The insulin infusion rate for a particular
extended bolus session, must be constant.

6 Static profiles The basal, temporary basal and extended bo-
lus profiles, cannot be changed while the
pump is active.

Table B.3: Requirements list for HFEQ

number title description
1 Max flow Indepedently of the mode of operation,

the flow rate cannot surpass the maximum
flow established.

Table B.4: Requirements list for HFOL
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Appendix C

Infusion Pump – Full
specification

library Source_models/IIP

logic Hybrid

spec IIP_fst =

nominal On;
Off ;
Test

{}
modality Turn_on;

Turn_off ;
AllOK

{}

%% the states are different from each other

• @On (¬ (Here Off ∨ Here Test))
• @Off (¬ (Here On ∨ Here Test))
• @Test (¬ (Here On ∨ Here Off ))
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• Here On ∨ Here Off ∨ Here Test
%% Restricing the relations between states

• @On < Turn_off > Here Off ∧ [Turn_off ] Here Off
• @Off < Turn_on > Here Test ∧ [Turn_on] Here Test
• @Test < AllOK > Here On ∧ [AllOK] Here On

%% Giving to each modality the corresponding state

• < Turn_off > true⇒ Here On
• < Turn_on > true⇒ Here Off
• < AllOK > true⇒ Here Test

%% properties

• @On < Turn_off > < Turn_on > < AllOK > Here On
%implied

%(cyclic)%

• @On [Turn_off ] [Turn_on] [AllOK] Here On %implied

%(deterministic)%

%% The On state is ONLY reachable when ALL diagnostic tests sucessfully passed

• (< AllOK > Here On⇒ Here Test)
∧ ¬ (< Turn_off > Here On ∨ < Turn_on > Here On)

%implied

%(OnOnlybyTest)%

end

spec IIP_low_KripkeF =

nominal BnBo;
BtBo;
Su1;
Su2;
Bn;
Bt

{}
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modality Sus;
Res;
Go_Bo;
Go_Bt

{}

%% the states are different from each other, and are the only in the universe

• @BnBo
(¬ (Here BtBo ∨ Here Su1 ∨ Here Su2 ∨ Here Bn ∨ Here Bt))
• @BtBo (¬ (Here Su1 ∨ Here Su2 ∨ Here Bn ∨ Here Bt))
• @Su1 (¬ (Here Su2 ∨ Here Bn ∨ Here Bt))
• @Su2 (¬ (Here Bn ∨ Here Bt))
• @Bn (¬ Here Bt)
• Here BnBo ∨ Here BtBo ∨ Here Su1 ∨ Here Su2 ∨ Here Bn
∨ Here Bt

%% specifying relations between states

• @BnBo (< Sus > Here Su1 ∧ < Res > Here Bn)
• @BtBo (< Sus > Here Su2 ∧ < Res > Here Bt)
• @Su1 < Res > Here Bn ∧ @Su2 < Res > Here Bt
• @Bn

(< Sus > Here Su1 ∧ < Go_Bo > Here BnBo
∧ < Go_Bt > Here Bt)

• @Bt
(< Sus > Here Su2 ∧ < Res > Here Bn
∧ < Go_Bo > Here BtBo)

%% Restrict origin.

• < Go_Bt > true⇒ Here Bn
%% From the origin restrict the destination

• @Bn [Go_Bt] Here Bt

%% Folows an example, with shared modalities
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%% Restricting the origin the destination in one sentence

• (< Go_Bo > true⇒ Here Bn ∨ Here Bt)
∧ @Bn [Go_Bo] Here BnBo ∧ @Bt [Go_Bo] Here BtBo

%% Because they share a modality we also need to restrict the modality among them

• (< Go_Bo > Here BnBo⇒ Here Bn)
∧ (< Go_Bo > Here BtBo⇒ Here Bt)

• < Sus > true
⇒ Here Bn ∨ Here BnBo ∨ Here Bt ∨ Here BtBo
• @Bn [Sus] Here Su1 ∧ @BnBo [Sus] Here Su1
∧ @Bt [Sus] Here Su2 ∧ @BtBo [Sus] Here Su2
• (< Sus > Here Su1⇒ Here Bn ∨ Here BnBo)
∧ (< Sus > Here Su2⇒ Here Bt ∨ Here BtBo)
• < Res > true
⇒ Here Su1 ∨ Here Su2 ∨ Here BtBo ∨ Here Bt ∨ Here BnBo
• @Su1 [Res] Here Bn ∧ @Su2 [Res] Here Bt
∧ @BtBo [Res] Here Bt ∧ @Bt [Res] Here Bn
∧ @BnBo [Res] Here Bn
• (< Res > Here Bt⇒ Here Su2 ∨ Here BtBo)
∧ (< Res > Here Bn⇒ Here Bt ∨ Here BnBo ∨ Here Su1)

%% Properties (relations between states)

• ¬ (Here Su1 ∨ Here Su2)⇒ < Sus > (Here Su1 ∨ Here Su2)
%implied

%(alwaysSuspendable)%

• Here Su1 ∨ Here Su2⇒ < Res > (Here Bn ∨ Here Bt)
%implied

%(afterAnySuspensionBolusAreLost)%

• Here BnBo ∨ Here BtBo⇒ ¬ < Go_Bo > true %implied

%(beingInBolusModeIsNotPossibleToActivateBolus)%

• < Go_Bo > true⇒ < Go_Bo > (Here BnBo ∨ Here BtBo)
%implied

%(BolusModeIsOnlyAchiveableByRequestOfTheUser)%
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spec IIP_low =

HNat

then IIP_low_KripkeF
then rigid ops

max_flow : Nat;
%% max flow of insulin permitted

basal : Nat→ Nat;
%% The basal application, in later instances we could turn it in a pred

tbasal : Nat→ Nat;
%% The basal temporary, in later instances we could turn it in a pred

ext_bolus : Nat→ Nat;
%% The extended bolus profile

ins_bolus : Nat→ Nat
%% The instant bolus profile

op cur_flow : Nat→ Nat
%% the current flow of insulin

∀ t : Nat
• @Bn cur_flow(t) = basal(t)
• @BnBo cur_flow(t) = basal(t) + ext_bolus(t)
• @Bt cur_flow(t) = tbasal(t)
• @BtBo cur_flow(t) = tbasal(t) + ext_bolus(t)
• @Su1 cur_flow(t) = 0
• @Su2 cur_flow(t) = 0
• ∀ t : Nat • cur_flow(t) <= max_flow

%% Properties

∀ t : Nat
• @Bn cur_flow(t) <= max_flow %implied

%(helper1)%

• @Bn basal(t) <= max_flow %implied

%(onlyBasal)%

• @Bn cur_flow(t) >= basal(t) %implied
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%(atleastbasal)%

• ∃ n, n’ : Nat
• @Su1

(cur_flow(t) = n ∧ < Res > cur_flow(t) = n’ ∧ n’ >= n)
%implied

%(afterSus)%

• ∀ n : Nat • @Su1 cur_flow(t) = n⇒ cur_flow(t) >= n
%implied

%(theflowistheleastpossible)%

• Here Bn ∨ Here BnBo⇒ cur_flow(t) >= basal(t)
%(helper2)%

• Here Bt ∨ Here BtBo⇒ cur_flow(t) >= tbasal(t)
%(helper2a)%

• @BnBo cur_flow(t) >= basal(t) %implied

%(helper3)%

• @Bt cur_flow(t) >= tbasal(t) %implied

%(helper4)%

• @BtBo cur_flow(t) >= tbasal(t) %implied

%(helper5)%

• ¬ (Here Su1 ∨ Here Su2)
⇒ cur_flow(t) >= basal(t) ∨ cur_flow(t) >= tbasal(t)

%implied

%(mustbeworking)%

• ¬ cur_flow(t) = basal(t)⇒ ¬ Here Bn %implied

%(contradiction)%

• (∀ t : Nat • ext_bolus(t) = 0)
⇒ @Bn cur_flow(t) = basal(t)
∧ @BnBo cur_flow(t) = basal(t)

%implied

%(helper6)%

• (∀ t : Nat • ext_bolus(t) = 0)
⇒ ∀ t : Nat
• ∃ n : Nat
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• @Bn cur_flow(t) = n ∧ @BnBo cur_flow(t) = n
%implied

%(states_same_flow)%

• ∀ t : Nat
• ∃ n, n’ : Nat
• @Bn cur_flow(t) = n ∧ @BnBo cur_flow(t) = n’
∧ n’ >= n

%implied

%(curflow_betw_states)%

end

spec IIP_lowPar =

HNat

then IIP_low_KripkeF
then ops cur_flow : Nat→ Nat;

basal : Nat→? Nat;
tbasal : Nat→? Nat;
ext_bolus : Nat→? Nat

%% presentation the axioms of defininig partiality

∀ t : Nat
• Here BnBo
⇒ basal(t) e

= basal(t) ∧ ext_bolus(t) e
= ext_bolus(t)

• Here BtBo
⇒ tbasal(t) e

= tbasal(t) ∧ ext_bolus(t) e
= ext_bolus(t)

• ¬ (Here BnBo ∨ Here BtBo)⇒ ¬ ext_bolus(t) e
= ext_bolus(t)

• Here Bn⇒ basal(t) e
= basal(t)

• Here Bt⇒ tbasal(t) e
= tbasal(t)

• ¬ (Here Bn ∨ Here BnBo)⇒ ¬ basal(t) e
= basal(t)

• ¬ (Here Bt ∨ Here BtBo)⇒ ¬ tbasal(t) e
= tbasal(t)

%% applying existential rigidification manually

∀ t : Nat
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• ∃ n : Nat • @Bn basal(t) = n ∧ @BnBo basal(t) = n
• ∃ n : Nat
• @BnBo ext_bolus(t) = n ∧ @BtBo ext_bolus(t) = n
• ∃ n : Nat • @Bt tbasal(t) = n ∧ @BtBo tbasal(t) = n

%% characterising the cur_flow

∀ t : Nat
• ¬ ext_bolus(t) e

= ext_bolus(t) ∧ def basal(t)
⇒ cur_flow(t) = basal(t)
• ¬ ext_bolus(t) e

= ext_bolus(t) ∧ def tbasal(t)
⇒ cur_flow(t) = tbasal(t)
• def basal(t) ∧ def ext_bolus(t)
⇒ cur_flow(t) = basal(t) + ext_bolus(t)
• def tbasal(t) ∧ def ext_bolus(t)
⇒ cur_flow(t) = tbasal(t) + ext_bolus(t)

%% properties to prove

• ∀ t : Nat • def ext_bolus(t)⇒ ext_bolus(t) > 0
• (¬ ∀ t : Nat • cur_flow(t) e

= basal(t))⇔ ¬ Here Bn %implied

%(state equiv)%

• ∀ t : Nat • basal(t) e
= basal(t)⇔ Here Bn ∨ Here BnBo

%implied

%(state equiv2)%

• Here Bn ∧ Here Bt %implied

%(incon)%

• ∀ t : Nat
• ¬ ext_bolus(t) e

= ext_bolus(t) ∧ def basal(t)⇔ Here Bn
%implied

%(test)%

end

library IIPDuplHyb
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logic Hybridize

spec IIP_Dupl =

Nominals On, Off,
Modalities TurnOn, TurnOff, Ok
Under Spec {

Nominals Test, Off, Nor, Sus,
Modalities Sus, Res, NotOk, Activate
Under Spec { p }
%% The possible sub states

Test ∨ Off ∨ Nor ∨ Sus
}
%% The possible super states

On ∨ Off

%% Defining and restricting relations between the sub states in the super state On

@ On { @ Nor ( <Sus> Sus ∧ [Sus] Sus ) ∧ @ Sus ( <Res> Nor ∧ [Res] Nor ) },
@ On { ( <Sus> True⇒ Nor ∧ <Res> True⇒ Sus ) ∧

¬ ( <NotOk> True ∨ <Activate> True ) }

%% Defining and restricting relations between the sub states in the super state Off

@ Off { @ Test ( <NotOk> Off ∧ [NotOk] Off ) ∧
@ Off ( <Activate> Test ∧ [Activate] Test ) }

@ Off { ( <NotOk> True⇒ Test ∧ <Activate> True⇒ Off ) ∧
¬ ( <Res> True ∨ <Sus> True ) }

%% Defining and restricting relations between the super and sub states

Off ∧ { Test }⇔ ( ( <TurnOn> ( On ∧ { Nor } ) ∧ [TurnOn] ( On ∧ { Nor } ) ) )
<TurnOn> True⇒ Off ∧ { Test }
On ∧ { Nor }⇔ ( ( <TurnOff > ( Off ∧ { Off } ) ∧ [TurnOff ] ( Off ∧ { Off } ) ) )
<TurnOn> True⇒ Off ∧ { Off },

%% properties that may be proved
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{ @ Nor <Sus> <Res> Nor }⇔ On
@On {Nor}⇒ < TurnOff> ({<TurnOn> Test} ∧ ( {Test}⇒ <Ok> On))

end
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