Analysis of Gene Regulatory Networks – An Overview –

Ana Carvalho

University of Minho - NASONI

July 30, 2014

Discrete Models of GRN

- State transition graph;
- Vertexes are genes and arcs encode the activation/inhibition;
- Time occurs in synchronous discrete steps.

Thomas' formalism

- Multi-valued concentration values with discrete variables.

Boolean networks

- Genes are either active or inactive.

Discrete Models of GRN

Probabilistic boolean networks

- Expresses the possible regulatory functions for an entity.

Petri Nets

- Non-deterministic models;

- Can express Boolean networks as well as uncertainty in regulatory functions.

Discrete Models of GRN

- Less detailed model good for small nets when only qualitative information is available;
- Allow the use of model checking techniques (but state explosion problem);
- Neglects the time delay in the change between genes levels of expression.

Continuous Models of GRN - ODE

- Description of the change in each entity as a function of other entities;
- Detailed information about the dynamics but requires data on kinetic parameters.

Piecewise Affine (PWA) Systems

- Continuous evolution + boolean-valued regulation;
- $\flat \ \dot{x}_i = f_i(x) \gamma_i x_i;$
- $f_i(x)$ is the production rate regulated by a boolean value;
- $\gamma_i x_i$ is the loss/transformation rate.

Continuous Models of GRN

- Pure analytical approaches represent a more realistic model;
- Allow simulations but no verifications (only with abstractions like Thomas' model);
- Needs parameter values which there are not always available.

Modeling considerations

- Some continuous models allow parameter uncertainty;
- Best of both worlds: Hybrid Systems!

BUT...

- Model checking approaches require linear dynamics in the discrete transitions and various forms of linear approximations in the continuous dynamics;
- Even in the simpler timed automata, in which clocks are the only source of continuous dynamics, parameters immediately make the model checking problem undecidable;

Available tools

System/Work	Model(s)	Logic(s)	Model Checker(s)
SMBioNet	Thomas	CTL	NuSMV
Biocham	ODEs, stochastic, discrete	CTL,LTL+ constraints, PLTL	NuSMV, PLTL
GNA	pw-linear eq., Bool	CTL, μ -calculus, CTRL	NuSMV, CADP, CTRL
Pathway logic	rewrite rules, Petri, Bool	LTL	LoLA
Antelope	Boolean	Hybrid CTL	Antelope's
Simpathica, XSSYS	ODEs	variant LTL	XSSYS
Fisher et al. (2007)	reactive modules	Alterntime temp. logic	Mocha
Ahmad et al. (2006)	Linear Hybrid Automata	"while" language	HyTech
Calder et al. (2006)	conttime Markov chains	CSL	PRISM
Heath et al. (2006)	conttime Markov chains	CSL	PRISM
Ciocchetta et al. (2006)	conttime Markov chains	CSL	PRISM

Table: Summary of modeling tools using model checking [5].

Formal reasoning in biological queries

Advantages of reasoning capabilities

- Info about open problems (possible behaviours, refutation of hypotheses, missing variables, missing interactions..) that may help improve the model;
- Suggestion of new bio experiments when proving previously unknown properties.

Biological queries

About reachability

- Given an initial state, is there a series of reactions that will produce some compound P?
- Which are the states from which a series of products P1,...,Pn can be produced simultaneously?

About pathways

- Given an initial state, can the cell reach a state s while passing by another state s2?
- Is state s2 a necessary checkpoint for reaching s?
- Is it possible to produce P without creating nor using some Q?
- More generally, is a state s reachable under a certain constraint c from a set of initial states?

Biological queries

About stability properties

- Is a certain state s of the system a stable state?
- Can/Must a system reach a given stable state s from the initial state?
- What are the stable states?
- Can the system exhibit a cyclic behaviour w.r.t the presence of a product P?

About durations

- How long does it take for a molecule to become activated?
- ▶ In a given time, how many Cyclins A can be accumulated?
- What is the duration of a given cell-cycle's phase?

Biological queries

About correctness of the model

Can we detect the inaccuracies of the model and correct them?

The previous queries were taken from [6].

New approach - Logical Analysis of Hybrid Systems

Differential dynamic logic d ${\mathscr L}$

- Supports dynamical evolution + discrete control;
- Accounts for delayed controller reactions to bridge the gap of continuous-time models and discrete control;
- Parametric extraction techniques allow the identification of the requirement for verifying a certain property.

Differential Algebraic Logic (DAL)

- Complements dl in a way that allows systems with disturbances and non linear constraints;
- DAL programs can be verified by exploiting their differential constraints algebraically without having to solve them.

New tool - KeYmaera

KeYmaera is a hybrid verification tool for hybrid systems that **combines deductive, real algebraic, and computer algebraic** prover technologies.

- Supports dL, nonlinear discrete jumps, nonlinear differential equations, differential-algebraic equations, differential inequalities, and systems with non-deterministic discrete or continuous input;
- Has a compositional verification principle helps scaling up verification;
- Implements procedures for automatically generating invariants and differential invariants.

Next

- Formulation of case studies in KeYmaera and proof of useful properties;
- Extension of the biological queries list for the case of differential analysis;
- Documentation of the developments.

Jamil Ahmad, Gilles Bernot, J-P Comet, Didier Lime, and Olivier Roux.

Hybrid modelling and dynamical analysis of gene regulatory networks with delays.

ComPlexUs, 3(4):231–251, 2007.

Grégory Batt, Calin Belta, and Ron Weiss. Model checking genetic regulatory networks with parameter uncertainty.

Hybrid systems: computation and control, pages 61–75, 2007.

 Gilles Bernot, Jean-Paul Comet, Adrien Richard, Madalena Chaves, Jean-Luc Gouz, and Frdric Dayan.
 Modeling and analysis of gene regulatory networks.
 Modeling in Computational Biology and Biomedicine, page 4780, 2013.

Gilles Bernot, Jean-Paul Comet, Adrien Richard, and Janine Guespin.

Application of formal methods to biological regulatory networks: extending thomas asynchronous logical approach with temporal logic.

Journal of theoretical biology, 229(3):339–347, 2004.

- Miguel Carrillo, Pedro A Góngora, and David A Rosenblueth. An overview of existing modeling tools making use of model checking in the analysis of biochemical networks. *Frontiers in plant science*, 3, 2012.
- Nathalie Chabrier-Rivier, Marc Chiaverini, Vincent Danos, Franois Fages, and Vincent Schchter.
 Modeling and querying biomolecular interaction networks. *Theoretical Computer Science*, 325(1):25 – 44, 2004.
 Computational Systems Biology.
- Hidde De Jong, Jean-Luc Gouzé, Céline Hernandez, Michel Page, Tewfik Sari, and Johannes Geiselmann.

Qualitative simulation of genetic regulatory networks using piecewise-linear models.

Bulletin of mathematical biology, 66(2):301–340, 2004.

- Hidde De Jong and Michel Page.
 Search for steady states of piecewise-linear differential equation models of genetic regulatory networks.
 Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 5(2):208–222, 2008.
- Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
 Hytech: A model checker for hybrid systems.
 In Computer aided verification, pages 460–463. Springer, 1997.
- François Jacob and Jacques Monod.
 Genetic regulatory mechanisms in the synthesis of proteins.
 Journal of molecular biology, 3(3):318–356, 1961.
- PT Monteiro, W Abou-Jaoudé, D Thieffry, and C Chaouiya. Model checking logical regulatory networks.

Ana Carvalho (Nasoni)

BioKeYmaera