On the "pointfree transform": from description to calculation and back

ALFA LERNET kick-ff meeting, U. Minho, Braga

\author{

J.N. Oliveira		
DI/U.Minho	a Braga, Portugal	

}

Problem-solving strategy

Software technology is becoming a mature discipline in its (however late) adoption of the universal problem solving strategy (UPS) which one is taught at school:

- understand your problem
- build a mathematical model of it
- reason in such a model
- upgrade your model, if necessary
- calculate a final solution and implement it.

School maths UPS example

The problem:
My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?
The model:

$$
x+(x+3)+(x+6)=48
$$

The calculation:

School maths UPS example

The calculation:

$$
\begin{array}{ll}
& 3 x+9=48 \\
\equiv & \{\text { "al-djabr" rule }\} \\
& 3 x=48-9 \\
\equiv & \{\text { "al-hatt" rule }\} \\
& x=16-3
\end{array}
$$

The solution:

$$
\begin{aligned}
x & =13 \\
x+3 & =16 \\
x+6 & =19
\end{aligned}
$$

UPS sophistication

Only the underlying mathematics changes:

- from simple arithmetics at primary school to
- systems of linear equations, then to
- differential/integral equations
- eventually: software calculi

Useful calculation rules are forever, eg.:

$$
x-z \leq y \equiv x \leq z+y
$$

cf. Al-Khowarizm's al-jabr rule (9c)
Galois connections (19c), etc

Formal methods and the UPS

- Formal Methods are 40 years old
- Formal specification languages, refinement calculi, life-cycles,
upgrade

However: how much of all this is to be left for posterity?

UPS challenges

A "notation problem":

- mathematical modelling requires descriptive notations, therefore:
- intuitive
- domain-specific
- calculations require elegant notations, therefore:
- simple and compact
- generic
- cryptic, otherwise uneasy to manipulate

Recall Dijsktra's definition : elegant = simple and remarkably

Why formal / elegant notations?

Are you sure there isn't a simpler means of writing
'The Pharaoh had 10,000 soldiers?'
(C) Cliff B. Jones 1980

Trend for notation economy

Well-known throughout the history of maths - a kind of "natural language implosion" - particularly visible in the syncopated phase (16c), eg.
.40.p̃.2.ce. son yguales a .20.co
(P. Nunes, Coimbra, 1567) for nowadays $40+2 x^{2}=20 x$, or
$B 3$ in A quad - D plano in A + A cubo æquatur Z solido
(F. Viète, Paris, 1591) for nowadays $3 B A^{2}-D A+A^{3}=Z$

Descriptive vs cryptic PLs

Attempts of the past:

- COBOL - the natural language description dream
- PASCAL - almost there for algorithmic description, not so good in recursive data abstraction
- APL - too cryptic for descriptive purposes
- Backus' FP - cryptic but pretty close on the calculation side

Currently

- JAVA, C $\{++, \#, \ldots\}$ - powerful but, how to we reason about these?
- HASKELL - elegant and powerful (if not misused)
- VDM/Z - formal abstract modelling at last, but too set-theoretic (proofs grow exponentially complex)

Not enough:
Maths notations often require transforms for calculation purposes, eg. the Laplace transform:

Laplace transform

$$
t \text {-space } \quad s \text {-space }
$$

Given problem
Subsidiary equation
$y^{\prime \prime}+4 y^{\prime}+3 y=0$
$y(0)=3$
$s^{2} Y+4 s Y+3 Y=3 s+13$

Solution of given problem
Solution of subs. equation

$$
y(t)=-2 e^{-3 t}+5 e^{-t}
$$

$$
Y=\frac{-2}{s+3}+\frac{5}{s+1}
$$

A transform for set-theory

An old idea:
【sets, predicates】 = pointfree binary relations
Calculus of binary relations $B \quad \begin{aligned} & R \\ & \\ & \\ & \text { : }\end{aligned}$

- 1860 - introduced by De Morgan, embryonic

■ 1870 - Peirce fi nds interesting equational laws

- 1941 - Tarski's school, cf.
- 1980's - coreflexive models of sets (Freyd and Scedrov, Eindhoven MPC group and others)

Binary Relations

- Arrow $B{ }^{R} \quad A$ denotes a binary relation to B (target) from A (source).
- bRa means that pair (b, a) is in R.
- " R at most S " ordering:

$$
R \subseteq S \equiv\langle\forall a, b:: b R a \Rightarrow b S a\rangle
$$

- Converse of $R-R^{\circ}$ such that $a\left(R^{\circ}\right) b$ iff b Ra.
- Composition - $b(R \cdot S) c$ wherever

$$
\langle\exists a:: b R a \wedge a S c\rangle
$$

- Identity: $i d$ such that $R \cdot i d=i d \cdot R=R$

Sets and predicates

The meaning of a predicate ϕ is the coreflexive relation $\llbracket \phi] \subseteq i d$ such that $b \llbracket \phi \rrbracket a \equiv(b=a) \wedge(\phi a)$.

Example:

$$
\llbracket n!\leq 1 \rrbracket=
$$

The meaning of a set $S \subseteq A$ is the meaning of its
characteristic predicate $\llbracket \lambda a . a \in S \rrbracket$, that is,

$$
b \llbracket S \rrbracket a \equiv(b=a) \wedge a \in S
$$

Uppercase Φ will abbreviate ϕ. Of course, $\Phi^{\circ}=\Phi$.

Useful "al-djabr" rules

Most of them are Galois connections, eg.:

$$
\begin{aligned}
f \cdot R \subseteq S & \equiv R \subseteq f^{\circ} \cdot S \\
R \cdot f^{\circ} \subseteq S & \equiv R \subseteq S \cdot f \\
T \cdot R \subseteq S & \equiv R \subseteq T \backslash S
\end{aligned}
$$

where $T \backslash S$ pointiree-transforms another kind of universally quantified implication:

$$
b(T \backslash S) a \equiv\langle\forall x:: x T b \Rightarrow x S a\rangle
$$

Remainder of talk overviews recent work on the
pointfree-transform applied to two different problem domains:

- Database theory - functional and multi-valued dependences
- Operation refinement - Groves factorization of the satisfaction relation (joint work with Ph.D. student C. Rodrigues)

Need to develop the extended composition and inclusion rules which follow.

"Guarded" composition

Given
\square predicate $2 \quad A$ (ie. coreflexive Φ)
$\square b \in B$ and $c \in C$
Then

$$
\langle\exists a: \phi a: b R a \wedge a S c\rangle
$$

pointfree-transforms to

$$
b(R \cdot \Phi \cdot S) c
$$

"Guarded 'at most"'

Given

$$
R, S
$$

- binary relations $B \quad A$
- predicates $2 \quad A$ and $2 \quad B$ (ie., coreflexives Ψ and Φ, respectively)
Then

$$
\langle\forall b, a:(\phi b) \wedge(\psi a): b R a \Rightarrow b S a\rangle
$$

pointfree-transforms to

$$
\Phi \cdot R \cdot \Psi^{\circ} \subseteq S
$$

Example 1: FDs in RDB theory

Given relational table

$$
T=\begin{array}{|c|c|c|c|c|}
\hline \ldots & x & \ldots & y & \ldots \\
\hline \ldots & a & \ldots & b & \ldots \\
\ldots & b & \ldots & b & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\hline
\end{array}
$$

this is said to satisfy functional dependency $x \rightarrow y$ iff all pairs of tuples $t, t^{\prime} \in T$ which "agree" on x also "agree" on y, that is,

$$
\left\langle\forall t, t^{\prime}: t, t^{\prime} \in T: \quad t[x]=t^{\prime}[x] \Rightarrow t[y]=t^{\prime}[y]\right\rangle
$$

Standard FD theory

Inference rules for FD reasoning based on

- Armstrong axioms for computing the closure of a set of FDs

However,

- formula

$$
\left\langle\forall t, t^{\prime}: t, t^{\prime} \in T: \quad t[x]=t^{\prime}[x] \Rightarrow t[y]=t^{\prime}[y]\right\rangle
$$

— with its logical implication inside a "two-dimensional" universal quantification - is not particularly agile.

We want to write less and. . . "let the symbols work"!

The role of functions

From Database Systems: The Complete Book by

 Garcia-Molina, Ullman and Widom (2002), p. 87:What Is "Functional" About Functional
Dependencies?

$A_{1} A_{2} \cdots A_{n} \rightarrow B$ is called a "functional dependency" because in principle there is a function that takes a list of values [...] and produces a unique value (or no value at all) for B [...] However, this function is not the usual sort of function that we meet in mathematics, because there is no way to compute it from first principles. [...] Rather, the function is only computed by lookup in the relation [...]

However,
\square No advantage is taken of the rich calculus of functions
In fact, functions are everywhere in FD theory:
a as attributes and as the FDs themselves

Functions in one slide

A function f is a binary relation such that

Pointwise	Pointiree
"Left" Uniqueness	
$b f a \wedge b^{\prime} f a \Rightarrow b=b^{\prime}$	$i m g f \subseteq i d$
Leibniz principle	
$a=a^{\prime} \Rightarrow f a=f a^{\prime}$	$i d \subseteq \operatorname{ker} f$

equivalent to GCs

$$
\begin{aligned}
f \cdot R \subseteq S & \equiv R \subseteq f^{\circ} \cdot S \\
R \cdot f^{\circ} \subseteq S & \equiv R \subseteq S \cdot f
\end{aligned}
$$

(NB: ker $f=\operatorname{img} f^{\circ}=f^{\circ} \cdot f$ measures f^{\prime} s injectivity).

Pointfree-transform

Since attribute sets are (projection) functions,

- transform $(x t)=\left(x t^{\prime}\right)$ into $t($ ker $x) t^{\prime}$ etc
- thanks to the "guarded 'at most' rule", for $\Phi=\Psi=\llbracket T \rrbracket$, $R=$ ker $x, S=$ ker y transform

$$
\left\langle\forall t, t^{\prime}: t, t^{\prime} \in T: \quad(x t)=\left(x t^{\prime}\right) \Rightarrow(y t)=\left(y t^{\prime}\right)\right\rangle
$$

into

$$
\llbracket T \rrbracket \cdot(\operatorname{ker} x) \cdot \llbracket T \rrbracket \subseteq \operatorname{ker} y
$$

and then to...

Pointfree, generic FDs

. . . and then to

$$
y \leq x \cdot \llbracket T \rrbracket
$$

where \leq is the "injectivity" preorder:

$$
R \leq S \equiv \operatorname{ker} S \subseteq \operatorname{ker} R
$$

Going generic:

$$
f \xrightarrow{R} g \equiv g \leq f \cdot R^{\circ}
$$

Reasoning

Pointfree "al-jabr" rules show the above to be equivalent to
$f \xrightarrow{R} g \equiv$ projection $\pi_{g, f} R$ is simple, where $\pi_{g, f} R=g \cdot R \cdot f^{\circ}$.

What is this useful for?
[Armstrong axioms for free

- Good cornerstone for RDB theory to follow, cf. eg. the more general multi-valued dependences

MVD standard definition

n-ary relation T is said to satisfy the multi-valued dependency (MVD) $x \rightarrow y$ iff, for any two tuples $t, t^{\prime} \in T$ which "agree" on x there exists a tuple $t^{\prime \prime} \in T$ which "agrees" with t on $x y$ and "agrees" with t^{\prime} on $S-x y$, that is,

$\left\langle\forall t, t^{\prime} \quad: \quad t, t^{\prime} \in T:\right.$			
	x	y	$S-x y$
t			γ
$t^{\prime \prime}$			γ^{\prime}
t^{\prime}	α	β^{\prime}	γ^{\prime}

$$
t[x]=t^{\prime}[x]
$$

$$
\Downarrow
$$

$$
\begin{array}{ll}
\left\langle\exists t^{\prime \prime}: t^{\prime \prime} \in T:\right. & t[x y]=t^{\prime \prime}[x y] \wedge \\
& t^{\prime \prime}[S-x y]=t^{\prime}[S-x y]
\end{array}
$$

MVDs pointfree-transformed

Thanks to the "guarded rules" we obtain, in sequence:
$x \xrightarrow{R} y \equiv \operatorname{ker}\left(x \cdot R^{\circ}\right) \subseteq(\operatorname{ker} x y) \cdot R \cdot \operatorname{ker} \overline{x y}$

$$
\equiv\left(x y \cdot R \cdot x^{\circ}\right) \cdot\left(x \cdot R^{\circ} \cdot \overline{x y}^{\circ}\right) \subseteq x y \cdot R \cdot \overline{x y}{ }^{\circ}
$$

$$
\equiv\left(\pi_{x y, x} R\right) \cdot\left(\pi_{x, \overline{x y}} R^{\circ}\right) \subseteq \pi_{x y, \overline{x y}} R
$$

Lossless decomposition

We are pretty close to one of the main results in RDB theory, the theorem of lossless decomposition of MVDs: $x \xrightarrow{T} y$ holds iff T decomposes losslessly into two relations with schemata $x y$ and $x \overline{y x}$, respectively:

$$
x \xrightarrow{T} y \equiv \quad\left(\pi_{y, x} T\right) \bowtie\left(\pi_{\overline{y x}, x} T\right)=\pi_{y \overline{y \bar{x}, x}} T
$$

Maier [4] proves this in "implication-first" logic style, in two parts - if + only if — involving existential and universal quantifications over no less than six tuple variables $t, t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}, t_{3}$:

Lossless decomposition (Maier)

Theorem 7.1 Let r be a relation on scheme R, and let X, Y, and Z be subsets of R such that $Z=R-(X Y)$. Relation r satisfies the MVD $X \rightarrow Y$ if the, only if r decomposes losslessly onto the relation schemes $R_{1}=X Y$ and $R_{2}=X Z$.

Proof: Suppose the MVD holds. Let $r_{1}=\pi_{R_{1}}(r)$ and $r_{2}=\pi_{\mathrm{R}_{2}}(r)$. Let t be a tuple in $r_{1} \bowtie r_{2}$. There must be a tuple $t_{1} \in r_{1}$ and a tuple $t_{2} \in r_{2}$ such that $t(X)=t_{1}(X)=t_{2}(X), t(Y)=t_{1}(Y)$, and $t(Z)=t_{2}(Z)$. Since r_{1} and r_{2} are projections of r, there must be tuples t_{1}^{\prime} and t_{2}^{\prime} in r with $t_{1}(X Y)=t_{1}(X Y)$ and $t_{2}(X Z)=t_{2}^{\prime}(X Z)$. The MVD $X \rightarrow Y$ implies that t must be in r, since r must contain a tuple t_{3} with $t_{3}(X)=t_{1}^{\prime}(X), t_{3}(Y)=t_{1}^{\prime}(Y)$, and $t_{3}(Z)=$ $t_{2}^{\prime}(Z)$, which is a description of t.

Suppose now that r decomposes losslessly onto R_{1} and R_{2}. Let t_{1} and t_{2} be tuples in r such that $t_{1}(X)=t_{2}(X)$. Let r_{1} and r_{2} be defined as before. Relation r_{1} contains a tuple $t_{1}^{\prime}=t_{1}(X Y)$ and relation r_{2} contains a tuple $t_{2}^{\prime}=$ $t_{2}(X Z)$. Since $r=r_{1} \bowtie r_{2}, r$ contains a tuple t such that $t(X Y)=t_{1}(X Y)$ and $t(X Z)=t_{2}(X Z)$. Tuple t is the result of joining t_{1}^{\prime} and t_{2}^{\prime}. Hence t_{1} and t_{2} cannot be used in a counterexample to $X \rightarrow Y$, hence r satisfies $X \rightarrow Y$.

Our (pointfree) proof

A sequence of equivalences (for details see my draft paper First Steps in Pointfree Functional Dependency Theory) :

$$
\begin{aligned}
& \left(\pi_{y, x} T\right) \bowtie\left(\pi_{\overline{\bar{x} x}, x} T\right)=\pi_{y \overline{y x}, x} T \\
\equiv & \quad\{\text { unfold defi nitions \}} \\
& \left\langle y \cdot T \cdot x^{\circ}, \overline{y x} \cdot T \cdot x^{\circ}\right\rangle=y \overline{y x} \cdot T \cdot x^{\circ} \\
\equiv & \{\text { since }\langle R, S\rangle \cdot T \subseteq\langle R \cdot T, S \cdot T\rangle \text { holds by monotonicity \}} \\
& \left\langle y \cdot T \cdot x^{\circ}, \overline{y x} \cdot T \cdot x^{\circ}\right\rangle \subseteq y \overline{y x} \cdot T \cdot x^{\circ} \\
\equiv & \{\text { "split twist" rule ; converses \}} \\
& \left\langle y \cdot T \cdot x^{\circ}, i d\right\rangle \cdot\left(x \cdot T^{\circ} \cdot \overline{y x^{\circ}}\right) \subseteq\left\langle y, x \cdot T^{\circ}\right\rangle \cdot \overline{y x^{\circ}}
\end{aligned}
$$

Pointfree proof

$$
\begin{aligned}
& \equiv \quad\left\{\text { difunctionality }\left(x=x \cdot x^{\circ} \cdot x\right)\right\} \\
& \left\langle y \cdot T \cdot x^{\circ}, i d\right\rangle \cdot x \cdot x^{\circ} \cdot x \cdot T^{\circ} \cdot \overline{y x^{\circ}} \subseteq\left\langle y, x \cdot T^{\circ}\right\rangle \cdot \overline{y x^{\circ}} \\
& \equiv \quad\left\{\langle R, S\rangle \cdot \Phi=\langle R, S \cdot \Phi\rangle \text { for } \Phi:=x \cdot x^{\circ} \text { and } \Phi:=T^{\circ}\right\} \\
& \left\langle y \cdot T \cdot x^{\circ}, x \cdot x^{\circ}\right\rangle \cdot x \cdot T^{\circ} \cdot \overline{y x^{\circ}} \subseteq\langle y, x\rangle \cdot T^{\circ} \cdot \overline{y x^{\circ}} \\
& \equiv \quad\left\{\langle R, f\rangle \cdot f^{\circ}=\left\langle R \cdot f^{\circ}, f \cdot f^{\circ}\right\rangle \text {; above rule for } \Phi=T\right\} \\
& \left(\langle y, x\rangle \cdot T \cdot x^{\circ}\right) \cdot\left(x \cdot T^{\circ} \cdot \overline{y x}^{\circ}\right) \subseteq\langle y, x\rangle \cdot T \cdot \overline{y x^{\circ}} \\
& \equiv \quad\{\text { defi nition }\} \\
& \underset{\rightarrow}{T} y
\end{aligned}
$$

Example 2: ASM refinement

ASM (=abstract state machines) refi nement ordering:

Machine $\mathcal{P} A \quad{ }^{R} \quad A$ implements machine
$\mathcal{P} A \quad{ }^{S} \quad A$ —written $S \vdash R$ iff

$$
\langle\forall a:(S a) \supset \emptyset: \emptyset \subset(R a) \subseteq(S a)\rangle
$$

where S a means the set of states reachable (in machine S) from state a.

Going pointfree

ASM machines above are power-transposes of state-transition binary relations. Why not work with these directly? We obtain alternative pointwise definition

$$
S \vdash R \equiv\langle\forall a: a \in \operatorname{dom} S: a \in \operatorname{dom} R \wedge(\langle\forall b: b R a: b S
$$

the pointfree-transform of which is

$$
S \vdash R \equiv \operatorname{dom} S \subseteq \operatorname{dom} R \cap(R \backslash S)
$$

that is

$$
S \vdash R \equiv(\operatorname{dom} S \subseteq \operatorname{dom} R) \wedge R \cdot \operatorname{dom} S \subseteq S
$$

Generalization

Easy to see that the source and target types of both S, R don't need to be the same:

So, pointfree-transformed $S \vdash R$ covers other refinement situations such that eg. a VDM implicit specification S refined by some function f :

$$
S \vdash f \equiv \operatorname{dom} S \subseteq f^{\circ} \cdot S
$$

In fact, from this - back to points - we obtain, in classical "VDM-speak"

$$
\forall a . \text { pre- } S(a) \Rightarrow \text { post- } S(f a, a)
$$

$\vdash=$ "meet of opposites"

Although consensual, the \vdash ordering hosts a kind of conflict in its definition:

- dom $S \subseteq \operatorname{dom} R$ (= R more defined than S) suggests R "larger" than S
- $R \cdot$ dom $S \subseteq S$ (= R more deterministic than S) suggests R "smaller" than S

Can \vdash be "factored" into such two (kind of "anti-symmetric") sub-orderings?

Funny shaped semi-lattice

Guessing $\vdash_{\text {pre }}$ and $\vdash_{\text {post }}$

Refine but do not increase definition:

$$
S \vdash_{\text {post }} R \equiv S \vdash R \wedge \operatorname{dom} R \subseteq \operatorname{dom} S
$$

Refine but do not increase determinism:

$$
S \vdash_{\text {pre }} R \equiv S \vdash R \wedge S \subseteq R \cdot \operatorname{dom} S
$$

Easy calculations simplify these to:

$$
\begin{aligned}
\vdash_{\text {post }} & =\subseteq^{\circ} \cap \text { ker dom } \\
S \vdash_{\text {pre }} R & \equiv R \cdot \operatorname{dom} S=S
\end{aligned}
$$

Relax / constrain rules

The following equivalences stem from the pointfree definitions:

- Refine S by "relaxing" it:

$$
S \vdash_{p r e} S \cup R \equiv R \cdot \operatorname{dom} S \subseteq S
$$

- Refine S by "constraining" it:

$$
S \vdash_{\text {post }} S \cap R \equiv \operatorname{dom} S=\operatorname{dom}(R \cap S)
$$

Groves factorization

Very straightforward. A similar calculation leads to

$$
\vdash \subseteq \vdash_{p o s t} \cdot \vdash_{p r e}
$$

and since

$$
\begin{aligned}
& \vdash_{p o s t} \cdot \vdash_{p r e} \subseteq \vdash \\
& \vdash_{p r e} \cdot \vdash_{p o s t} \subseteq \vdash
\end{aligned}
$$

hold by monotonicity, we've altogether calculated Groves factorization

$$
\vdash_{p r e} \cdot \vdash_{p o s t}=\vdash=\vdash_{p o s t} \cdot \vdash_{p r e}
$$

Calculating $R \sqcap T$

Instead of "inventing"

$$
\begin{aligned}
(R \sqcap T) a= & \text { if }(R a)=\emptyset \vee(T a)=\emptyset \text { then } \emptyset \\
& \text { else }(R a) \cup(T a)
\end{aligned}
$$

and proving that it satisfies (universal property) equation

$$
S \vdash R \sqcap T \equiv S \vdash R \wedge S \vdash T
$$

at point-level, we calculate its unique solution

$$
R \sqcap T=(R \cup T) \cdot \operatorname{dom} R \cdot \operatorname{dom} T
$$

at pointfree-transform level:

Calculating $R \sqcap T$

```
    S\vdashR\sqcapT
\equiv { equation to be solved }
    S\vdashR^S\vdashT
\equiv { defi nition of }-\mathrm{ twice; composition of coreflexives }
    dom}S\subseteq(R\S\capT\S)\cap\operatorname{dom}R\cdot\operatorname{dom}
\equiv { property of relational division }
    dom}S\subseteq(R\cupT)\S\cap\operatorname{dom}R\cdot\operatorname{dom}
\equiv \mp@code { \{ ( R \cdot \Phi \ S ) \cap \Phi = ( R \ S ) \cap \Phi ~ f o r ~ R , \Phi : = R \cup T , ~ d o m ~ R ~ 吿 o m T ~ \} }
    domS\subseteq((R\cupT)\cdotdom R}\cdot\operatorname{dom}T)\S\cap(\operatorname{dom}R\cdot\operatorname{dom}T
\equiv \mp@code { \{ d o m } ( ( R \cup T ) \cdot \operatorname { d o m } R \cdot \operatorname { d o m } T ) = \operatorname { d o m } R \cdot \operatorname { d o m } T ; \text { defi nition \}}
    S\vdash((R\cupT)\cdotdom R}\cdot\operatorname{dom}T
    { indirect equality}
```

 \(R \sqcap T=(R \cup T) \cdot \operatorname{dom} R \cdot \operatorname{dom} T\)

Related work

- Boudriga et al [2] formulate $S \vdash R$ relationally but reason at pointwise level
- Lindsay Groves [3] postulates and then proves the above decomposition in the context of the Z schema calculus, requiring the extra notion of compatible relations, which complicates proofs unnecessarily.
- Our goal is to apply this factorization to the refinement of "components as coalgebras" - eg. (monadic) machines (=objects) of type $B \times(M A)^{I} \quad A$ - cf. Barbosa and Meng research [5] .

Summary

- Invest in perennial reasoning strategies
- Shift from "implication first" maths to "let the symbols work" maths
- Rôle of transforms, abstract notation and abstract patterns (easier to spot al-jabr rules)
- Stimulate elegance in mathematics (it is effective!)
- Learn with the other engineering disciplines
- Recommended reading: Backhouse's draft text book [1].

References

[1] R.C. Backhouse. Mathematics of Program Construction. Univ. of Nottingham, 2004. Draft of book in preparation. 608 pages.
[2] Noureddine Boudriga, Fathi Elloumi, and Ali Mili. On the lattice of specifications: Applications to a specification methodology. Formal Asp. Comput., 4(6):544-571, 1992.
[3] Lindsay Groves. Refinement and the Z schema calculus. ENTCS, 70(3), 2002. The BCS FACS Refinement Workshop, Denmark July 2002.
[4] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN 0-914894-420.
[5] Sun Meng and L.S. Barbosa. On refinement of generic state-based software components. In C. Rettray, S. Maharaj, and C. Shankland, editors, 10th Int. Conf. Algebraic Methods and Software Technology (AMAST), pages 506-520, Stirling, August 2004. Springer Lect. Notes Comp. Sci. (3116). Best Student Co-authored Paper Award.

