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Problem-solving strategy

Software technology is becoming a mature discipline in its
(however late) adoption of the universal problem solving
strategy (UPS) which one is taught at school:

understand your problem

build a mathematical model of it

reason in such a model

upgrade your model, if necessary

calculate a final solution and implement it.
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School maths UPS example

The problem:

My three children were born at a 3 year
interval rate. Altogether, they are as old as
me. I am 48. How old are they?

The model:

� � � � � � � � � � ��

The calculation:
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School maths UPS example

The calculation:

� � � � � ��

� �

“al-djabr” rule
	

� � � �� 
 �

� �

“al-hatt” rule

	

� � �� 
 �

The solution:

� � � �

� � � � ��

� � � � � �
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UPS sophistication

Only the underlying mathematics changes:

from simple arithmetics at primary school to

systems of linear equations, then to

differential/integral equations

eventually: software calculi

Useful calculation rules are forever, eg.:

� 
 � � � � � � � � �

cf. Al-Khowarizm’s al-jabr rule (9c)

Galois connections (19c), etc
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Formal methods and the UPS

Formal Methods are 40 years old

Formal specification languages, refinement calculi,
life-cycles,

problem!

Requirements

Formal Model GUI

Functional prototype

Implementation

costumer

team

team

costumer

calculation

upgrade

However: how much of all this is to be left for posterity?
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UPS challenges

A “notation problem”:

mathematical modelling requires descriptive notations,
therefore:

intuitive

domain-specific

calculations require elegant notations, therefore:

simple and compact

generic

cryptic, otherwise uneasy to manipulate

Recall Dijsktra’s definition : elegant � simple and remarkably

effective LERNET meeting — 06/15 – p.7/45



Why formal / elegant notations?

c

�

Cliff B. Jones 1980
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Trend for notation economy

Well-known throughout the history of maths — a kind of
“natural language implosion” — particularly visible in the
syncopated phase (16c), eg.

.40.p̃.2.ce. son yguales a .20.co

(P. Nunes, Coimbra, 1567) for nowadays

�� � � � � � � � �, or

B 3 in A quad - D plano in A + A cubo æquatur Z solido

(F. Viète, Paris, 1591) for nowadays

� � � �

 � � � � � � �
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Descriptive vs cryptic PLs

Attempts of the past:

COBOL - the natural language description
dream

PASCAL - almost there for algorithmic
description, not so good in recursive data
abstraction

APL - too cryptic for descriptive purposes

Backus’ FP - cryptic but pretty close on the
calculation side
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Currently

JAVA, C

�++,#, . . . �

- powerful but, how to we reason
about these?

HASKELL - elegant and powerful (if not misused)

VDM/Z - formal abstract modelling at last, but too
set-theoretic (proofs grow exponentially complex)

Not enough:

Maths notations often require transforms for
calculation purposes, eg. the Laplace transform:
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Laplace transform

�

-space �-space

Given problem

� � � � � � � � � � � �

� � � 	 � �

� � � � 	 � 


//

Subsidiary equation

� � � � � � � � � � � � � � 
 �

��

Solution of given problem

� � � 	 �  ��� � �� � ��� � �

Solution of subs. equation

� � � �
� � �

� �
� � �

oo
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A transform for set-theory

An old idea:

� �

sets, predicates

� � � pointfree binary relations

Calculus of binary relations
�

:

1860 - introduced by De Morgan, embryonic

1870 - Peirce finds interesting equational laws

1941 - Tarski’s school, cf. A Formalization of
Set Theory without Variables

1980’s - coreflexive models of sets (Freyd and
Scedrov, Eindhoven MPC group and others)
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Binary Relations

Arrow

�

denotes a binary relation to
(target) from (source).

� � means that pair

� �
� � �

is in .

“ at most

�

” ordering:� � �� � �
��� � � � � � � 	

Converse of —



such that � � 
 � �

iff

� �.

Composition —
� � � � �� wherever

�� � � � � � � � �� 	

Identity:
� �

such that � � � � � � � �
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Sets and predicates

The meaning of a predicate

�

is the coreflexive relation

� � � � � � � �

such that

� � � � � ��� � 	 � � � 
 � 	 � � 


.
Example:

� ���  � � � � � ?>=<89:;�





?>=<89:;�




The meaning of a set

� � �

is the meaning of its
characteristic predicate

� �� � �� � � � �

, that is,

� � � � � ��� � 	 � � � 
 � � � �

Uppercase

�

will abbreviate

�

. Of course,

�� � �

.
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Useful “al-djabr” rules

Most of them are Galois connections, eg.:

� � � � � � � � �� � �

� � �� � � � � � � � �

� � � � � � � � � � �

where

� � �

pointfree-transforms another kind of universally
quantified implication:

� 	 � � � 
� � �� �� � � � � � � � � �
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Illustration

Remainder of talk overviews recent work on the
pointfree-transform applied to two different problem domains:

Database theory — functional and multi-valued
dependences

Operation refinement — Groves factorization of the
satisfaction relation (joint work with Ph.D. student C.
Rodrigues)

Need to develop the extended composition and inclusion rules

which follow.
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“Guarded” composition

Given

binary relations

� �

�

and

� �

�
predicate

� �

�

(ie. coreflexive
�

)

� � �

and � � �

Then

�� � � � � � � � � � � � � �

pointfree-transforms to
� 	 � � � � � 
 �
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“Guarded ‘at most”’

Given

binary relations

��
�

�

predicates

�

�

and
�

�
(ie.,

coreflexives and , respectively)

Then

�� �
� � � � � � � � � �� � � � � � 	

pointfree-transforms to
� � 
 �
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Example 1: FDs in RDB theory

Given relational table

� �

� � � � � � � � � � �

� � � � � � �

�

� � �

� � �

�

� � �

�

� � �

� � � � � � � � � � � � � � �

this is said to satisfy functional dependency � � � iff all pairs
of tuples

�
�

� � � �

which “agree” on � also “agree” on �, that is,

�� �
�

� � � �
�

� � � �� � � � � � � � � � � � � � � � � � � � � � �
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Standard FD theory

Inference rules for FD reasoning based on

Armstrong axioms for computing the closure of a set of
FDs

However,

formula

�� �
�

� � � �
�

� � � �� � � � � � � � � � � � � � � � � � � � � � �

— with its logical implication inside a “two-dimensional”
universal quantification — is not particularly agile.

We want to write less and. . . “let the symbols work”!
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The role of functions

From Database Systems: The Complete Book by
Garcia-Molina, Ullman and Widom (2002), p. 87:

What Is “Functional” About Functional
Dependencies?

��� ��� � � � ��
� � �

is called a “functional dependency” because in
principle there is a function that takes a list of values [...] and produces
a unique value (or no value at all) for

�

[...] However, this function is
not the usual sort of function that we meet in mathematics, because
there is no way to compute it from first principles. [...] Rather, the
function is only computed by lookup in the relation [...]

However,

No advantage is taken of the rich calculus of functions

In fact, functions are everywhere in FD theory:

as attributes and as the FDs themselves
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Functions in one slide

A function

�

is a binary relation such that

Pointwise Pointfree

“Left” Uniqueness

� � � � � � � � � � � � �

img
� � � �

(

�

is simple)

Leibniz principle

� � � � � � � � � � � � � �

ker

�

(

�

is entire)

equivalent to GCs � � � � � � � � �� � �

� � �� � � � � � � � �

(NB: ker

� � img
�� � �� � �

measures

�

’s injectivity).
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Pointfree-transform

Since attribute sets are (projection) functions,

transform

	 � � 
 � 	 � � � 


into

� 	

ker � 
 � �

etc

thanks to the “guarded ‘at most´ rule”, for

� � � � � � � � �

,

� � ker �
�

� � ker � transform

�� �
�

� � � �
�

� � � �� 	 � � 
 � 	 � � � 
 � 	 � � 
 � 	 � � � 
 �

into

� � � � � � 	
ker � 
 � � � � � � �

ker �

and then to. . .
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Pointfree, generic FDs

. . . and then to

� � � � � � � � �

where

�

is the “injectivity” preorder:

� � � � ker
� �

ker

�

Going generic:

� �
� � � � � � � ��
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Reasoning

Pointfree “al-jabr” rules show the above to be equivalent to

� �
� � � projection �����

�
�

is simple,
where �����

�
� � � � � � ��

.

�
�

��

��

oo

�

��� �

���
	 � �oo

What is this useful for?

Armstrong axioms for free

Good cornerstone for RDB theory to follow, cf. eg. the
more general multi-valued dependences
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MVD standard definition

�-ary relation

�

is said to satisfy the multi-valued dependency

(MVD) � � �� iff, for any two tuples

��� � �	� �

which “agree” on �

there exists a tuple

� � �� �

which “agrees” with
�

on �� and “agrees”

with

� �

on


�� �� , that is,

� ��� � ��� ��� � ��� �� � � � � � � � � � �
�

� � � �� � � �� �� � � �� � � � � � � �� ���

� � � � 
�� �� � � � � � 
� �� �
�

�

� � 
�� ��

� � � �

� � � � � � �

� � � � � � �
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MVDs pointfree-transformed

Thanks to the “guarded rules” we obtain, in sequence:

�

�
� � � � ker

	 � � �� 
 � 	

ker � � 
 � � � ker � �

� 	 � � � � � �� 
 � 	 � � �� � � �� 
 � � � � � � � ��

� 	 ��� �� � � 
 � 	 ��� � � �

�� 
 � ��� �� � �

�

�

� �

��

�

,,ZZZZZZZZZZZZZZZZZZZZZZ

��

oo �

rreeeeeeeeeeeeeeeeeeee

� �

��

�

� � � � � � �
uujjjjjjjjjjjjjjjjjjjj

�

��� � �

� � � � � � � �oo

� � � � � � � �

iiSSSSSSSSSSSSSSSSSSSSS
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Lossless decomposition

We are pretty close to one of the main results in RDB theory,

the theorem of lossless decomposition of MVDs: �

�
� � �

holds iff

�

decomposes losslessly into two relations with
schemata � � and � � �, respectively:

�

�
� � � � 	 � �� � � 
 ��

	 � � � � � � 
 � � � � � � � �

Maier [4] proves this in “implication-first” logic style, in two parts

— if + only if — involving existential and universal quantifica-

tions over no less than six tuple variables

�
�

�

 �

� � �
� �


 �

� �
� �

� � :
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Lossless decomposition (Maier)

c

�

Cliff B. Jones 1980
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Our (pointfree) proof

A sequence of equivalences (for details see my draft paper
First Steps in Pointfree Functional Dependency Theory ) :

� � �� � � � �� � � � � � � � � � � � � � � � �

� �

unfold definitions

�

� � � � �� � � � � � � �� � � � � � � � � ��

� �

since

	 � 
 � � � 
 	 � �� 
 � � �

holds by monotonicity

�

� � � � �� � � � � � � �� � 
 � � � � � � ��

� �

“split twist” rule ; converses

�

� � � � �� � � � � � � � � �� �� �� � 
 � � � � �� � �� ��
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Pointfree proof

� �

difunctionality ( � � � � �� � �) �

� � � � �� � � � � � � � �� � � � �� �� �� 
 � � � � �� � �� ��

� � 	 � 
 � � � � 	 � 
 � � �

for

�� � � � �� and

�� � �� �

� � � � �� � � � �� � � � � �� �� �� 
 � � � � � �� �� ��

� � 	 � � � � �� � 	 � �� � � � �� �

; above rule for

� � � �

� � � � � � � � �� � � � � � �� �� �� � 
 � � � � � � �� ��

� �

definition
�

�
�

� ��
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Example 2: ASM refinement

ASM (=abstract state machines) refinement
ordering:

Machine

�

implements machine�

— written
� �

iff

�� � � � � � � � �� � � � � � � � � � 	

where

� � means the set of states
reachable (in machine

�

) from state �.
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Going pointfree

ASM machines above are power-transposes of state-transition
binary relations. Why not work with these directly? We obtain
alternative pointwise definition

�� � � �� � � � � dom

�� � � dom
� � 	 �� �� � � � � � �

the pointfree-transform of which is

�� � � dom
� �

dom

� � 	 � � � 


that is

�� � � 	
dom

� �

dom

� 
 � � � dom

� � �
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Generalization

Easy to see that the source
and target types of both

�
�

�

don’t need to be the same:

�
�

��@
@@

@@
@@

�dom �

oo

�

��~~
~~

~~
~

�
So, pointfree-transformed

�� �

covers other refinement
situations such that eg. a VDM implicit specification

�

refined
by some function

�

:

�� � � dom

� � �� � �

In fact, from this — back to points — we obtain, in classical
“VDM-speak”

� � �pre-

� 	� 
 � post-

� 	 � �
�

� 
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= “meet of opposites”

Although consensual, the

�

ordering hosts a kind of conflict in
its definition:

dom

� �

dom

�

(=

�

more defined than
�

) suggests

�

“larger” than

�

� � dom

� � �

(=

�

more deterministic than

�

) suggests

�

“smaller” than

�

Can

�

be “factored” into such two (kind of “anti-symmetric”)

sub-orderings?
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Funny shaped semi-lattice

� � � � �

�

AAAAAAAA

~~~~~~~~

�

}}}}}}}} �
AAAAAAAA

�
BBBBBBBB

}}}}}}}}

	 � � � 
� � � � 	 � � 
 � � � 	 � � 
 � � � ��� � �

� ��	 � 	 � � 
 
 	 � � 
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Guessing �� � and �� � �

Refine but do not increase definition:

� �
�� � �

� � � � � �

dom

� �
dom

�

Refine but do not increase determinism:

��
�� �

� � �� � � � � � � dom

�

Easy calculations simplify these to:

�
�� � � � � � �

ker dom

��
�� �

� � � � dom

� � �
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Relax / constrain rules

The following equivalences stem from the pointfree definitions:

Refine

�

by “relaxing” it:

��
�� �

� 
 � � � � dom
� � �

Refine

�

by “constraining” it:

��
�� � �

� � � � dom

� � dom

	 � � � 


LERNET meeting — 06/15 – p.39/45



�� � � � � � � calculation

� � �

� �

definition

�

� � dom

� � � �

dom

� �

dom

�

� � � �

� � dom

� � � � �

dom

� 	 � �
dom

� 	 � dom

�

� �

relax rule ; dom is a lower-adjoint

�

� � ��
� �	

� � � 	 �

dom
� � � � 	 � dom

�

� �

constrain rule, since

� � � 
 � � � � 	 �

� � � �
� �	

� � � 	 � � � � � 	 ��
� �� 

� 
 � � � � 	

� �

relax rule and

� � � 
 � � � � 	 �

� � ��
� �	

� � � 	 � � � � � 	 �
� �� 

�

� �

composition

�

� � �
� �	 � �
� �� 

	 �
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Groves factorization

Very straightforward. A similar calculation leads to

� � �
�� � � � �
�� �

and since

�
�� � � � �
�� �

� �

�
�� � � �
�� � �

� �

hold by monotonicity, we’ve altogether calculated Groves
factorization

�
�� � � �
�� � � � � � �
�� � � � �
�� �
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Calculating

Instead of “inventing”

	 � � � 
� � � � 	 � � 
 � � � 	 � � 
 � � � ��� � �

� ��	 � 	 � � 
 
 	 � � 

and proving that it satisfies (universal property) equation

�� � � � � � � � � �� �

at point-level, we calculate its unique solution

� � � � 	 � 
 � 
 � dom

� � dom

�

at pointfree-transform level:
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Calculating

� � �� �

� �

equation to be solved

�

� � � � � � �

� �

definition of

�

twice; composition of coreflexives
�

dom

� � � � � � 
 � � � 	 


dom

� � dom

�

� �

property of relational division

�

dom

� � � � � � 	 � � 


dom

� � dom
�

� � � � � � � � 	 
 � � � � � � 	 
 �

for

�
�

��� � � � �
� dom

� � dom

� �

dom

� � � � � � � 	 � dom
� � dom

� 	 � � 
 �

dom

� � dom

� 	

� �

dom

� � � � � 	 � dom

� � dom

� 	 � dom

� � dom

�

; definition

�

� � � � � � � 	 � dom
� � dom

� 	

� � �

indirect equality

�

� � � � � � � � 	 � dom

� � dom

�
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Related work

Boudriga et al [2] formulate

� � �

relationally but reason
at pointwise level

Lindsay Groves [3] postulates and then proves the above
decomposition in the context of the Z schema calculus,
requiring the extra notion of compatible relations, which
complicates proofs unnecessarily.

Our goal is to apply this factorization to the refinement of
“components as coalgebras” — eg. (monadic) machines

(=objects) of type
�� 	 � 
 � �

— cf. Barbosa
and Meng research [5] .
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Summary

Invest in perennial reasoning strategies

Shift from “implication first” maths to “let the symbols
work” maths

Rôle of transforms, abstract notation and abstract
patterns (easier to spot al-jabr rules)

Stimulate elegance in mathematics (it is effective!)

Learn with the other engineering disciplines

Recommended reading: Backhouse’s draft text book [1].
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