
Deforestation in the presence
of effects

Alberto Pardo

Instituto de Computación

Universidad de la República

Montevideo - Uruguay

http://www.fing.edu.uy/~pardo

Program construction in FP

• In functional programming one often uses a compositional
style of programming.

• Programs are constructed as the composition of simple and
easy to wrtite functions

• As a result, programs tend to be more modular and easier to
understand

• General purpose operators (like fold, map, filter, zip, etc) play
an important role in this design.

1

Example: count

count :: Word → Text → Integer
count w = length ◦ filter (== w) ◦ words

words :: Text → [Words]
words t = case dropWhile isSpace t of

""→ []
t ′ → let (w , t ′′) = break isSpace t ′

in w : words t ′′

filter :: (a → Bool)→ [a]→ [a]
filter p [] = []
filter p (a : as) = if p a then a : filter p as

else filter p as

2

A drawback
• Functions may not have a well performance when defined

using a compositional style.

• Information is passed from one function to another through
an intermediate data structure.

A
f - T

g - B

• It often happens that the nodes of the intermediate data
structure are generated/allocated by f , and immediately con-
sumed/deallocated by g.

• The allocation/deallocation loop leads to repeated invoca-
tions of the garbage collector.

3

Deforestation

Deforestation is a program transformation technique for the
elimination of intermediate data structures.

A
f - T

g - B ; A
h - B

4

Deforestation of count

count w = length ◦ filter (== w) ◦ words

�
wwwwwwwwww

count w t = case dropWhile isSpace t of
""→ 0
t ′ → let (w ′, t ′′) = break isSpace t ′

in if w ′ == w
then 1 + count w t ′′

else count w t ′′

5

How deforestation proceeds

In the body of the first function,

• replace every occurrence of the constructors used to build the
intermediate data structure by the corresponding operations
in the second function used to calculate the final result.

• replace recursive calls by calls to the new function

6

Example

lenfil p = length ◦ filter p

length [] = 0
length (x : xs) = h x (length xs)

where h x n = 1 + n

filter p [] = []
filter p (a : as) = if p a then a : filter p as

else filter p as

The result:

lenfil p [] = 0
lenfil p (a : as) = if p a then h a (lenfil p as)

else lenfil p as
where h x n = 1 + n

7

Programs with effects

The compositional style of programming is also useful in the pres-
ence of effects.

For example,

lenline :: IO Int
lenLine = do xs ← getLine

return (length xs)

where

getLine :: IO String
getLine = do c ← getChar

if c == ’\n’ then return []
else do cs ← getLine

return (c : cs)

8

Deforestation with effects

The same considerations about the intermediate data structure
apply in this case.

lenline = do xs ← getLine; return (length xs)

lenLine = do c ← getChar
if c == ’\n’
then return 0
else do n ← lenLine; return (1 + n)

�
wwwwwwwwww

9

Deforestation with effects

length [] = 0
length (x : xs) = h x (length xs)

where
h x n = 1 + n

getLine :: IO String
getLine = do c ← getChar

if c == ’\n’ then return []
else do cs ← getLine

return (c : cs)

lenLine = do c ← getChar
if c == ’\n’ then return 0

else do n ← lenLine
return (h c n)

10

Our approach to deforestation

• We adopt an approach based on recursion program schemes
(like fold, map).

• They capture general patterns of computation commonly used
in practice.

• Each recursion scheme has associated a set of algebraic laws.

• Some of these laws –called fusion laws– correspond to defor-
estation.

11

Capturing the structure of functions

fact :: Int → Int
fact n | n < 1 = 1

| otherwise = n ∗ fact (n − 1)

12

Capturing the structure of functions (2)

Let us define,

ψ n | n < 1 = Left ()
| otherwise = Right (n,n − 1)

fmap f (Left ()) = Left ()
fmap f (Right (m,n)) = Right (m, f n)

ϕ (Left ()) = 1
ϕ (Right (m,n)) = m ∗ n

Then,

fact = ϕ ◦ fmap fact ◦ ψ

13

Capturing the structure of functions (3)

fmap f (Left ()) = Left ()
fmap f (Right (m,n)) = Right (m, f n)

Therefore,

Int
fact - Int

() + Int × Int

ψ

?

fmap fact
- () + Int × Int

ϕ

6

14

Capturing the structure of functions (4)

Let us define,

F a = () + Int × a

Therefore,

Int
fact - Int

F Int

ψ

?

fmap fact
- F Int

ϕ

6

15

Hylomorphism

hylo :: (F b → b)→ (a → F a)→ a → b
hylo h g = h ◦ fmap (hylo h g) ◦ g

a
hylo h g - b

F a

g

?

fmap (hylo h g)
- F b

h

6

h is called an algebra and g a coalgebra.

16

Data types

Functors describe the top level structure of data types.

Given a data type declaration

data τ = C1 τ1,1 · · · τ1,k1 | · · · | Cn τn,1 · · · τn,kn

the derivation of the corresp. functor F proceeds as follows:

• pack the arguments to constructors in tuples;

• for constant constructors place the empty tuple ();

• regard alternatives as sums (replace | by +);

• substitute the occurrences of τ by a type variable a in every
τi,j .

17

Example: Lists

List a = Nil | Cons a (List a)

La b = () + a × b

fmap :: (b → c)→ (La b → La c)
fmap f (Left ()) = Left ()
fmap f (Right (a, b)) = Right (a, f b)

18

Example: Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

Ba b = a + b × b

fmap :: (b → c)→ (Ba b → Ba c)
fmap f (Left a) = (Left a)
fmap f (Right (b1 , b2)) = Right (f b1 , f b2)

19

Data type constructors / destructors

Given a functor (F , fmap) there exists an isomorphism

FµF
inF -

�
outF

µF

where

• inF packs the constructors of the data type µF

• outF packs the destructors of µF

20

Fold / Unfold

Fold

fold :: (F a → a)→ µF → a
fold h = hylo h outF

Unfold

unfold :: (a → F a)→ a → µF
unfold g = hylo inF g

Factorisation

hylo h g = fold h ◦ unfold g

21

Examples of unfold

Lists

unfoldL :: (b → La b)→ b → List a
unfoldL g b = case (g b) of

Left ()→ Nil
Right (a, b′)→ Cons a (unfoldL g b′)

Leaf-labelled binary trees

unfoldB :: (b → Ba b)→ b → Btree a
unfoldB g b = case (g b) of

Left a → Leaf a
Right (b1 , b2)→ Join (unfoldB g b1)

(unfoldB g b2)

22

Fusion laws
Factorisation

hylo h g = hylo h outF ◦ hylo inF g

Hylo-Fold Fusion

τ :: ∀ a . (F a → a)→ (G a → a)
⇒

fold h ◦ hylo (τ inF) g = hylo (τ h) g

Unfold-Hylo Fusion

σ :: (a → F a)→ (a → G a)
⇒

hylo h (σ outF) ◦ unfold g = hylo h (σ g)

23

Factorisation

fact = prod ◦ upto

prod :: List Int → Int
prod Nil = 1
prod (Cons n ns) = n ∗ prod ns

upto :: Int → Int
upto n | n < 1 = Nil

| otherwise = Cons n (upto (n − 1))

24

Hylo-Fold Fusion

data Maybe a = Nothing | Just a

mapcoll :: (a → b)→ List (Maybe a)→ List b
mapcoll = map f ◦ collect

map f Nil = Nil
map f (Cons a as) = Cons (f a) (map f as)

collect :: List (Maybe Int)→ List Int
collect Nil = Nil
collect (Cons m ms) = case m of

Nothing → collect ms
Just a → Cons a (collect ms)

25

Hylo-Fold Fusion

τ :: (b, a → b → b)→ (b,Maybe a → b → b)
τ (h1, h2) = (h1,

λm b → case m of
Nothing → b
Just a → h2 a b)

26

Monads

A monad is a triple (m, return, >>=), where

• m is a type constructor,

• return :: a → m a

is a polymorphic function

• (>>=) :: m a → (a → m b)→ m b

is a polymorphic operator, often pronounced bind.

plus some monad laws.

27

do notation

Translation rules:

do {x ← m;m ′} = m >>= λx → do {m ′}

do {m } = m

28

Recursion with effects

a
hylo h g - b

F a

g

?

fmap (hylo h g)
- F b

h

6

29

Monadic hylomorphism

mhylo h g = h • fmapM (mhylo h g) • g

a
mhylo h g - m b

m (F a)

g

?

(fmapM (mhylo h g))?
- m (F b)

h?

6

fmapM f = F a
F f- F (m b)

distF- m (F b)

30

Lists

mhyloL (h1, h2) g = mhL

where
mhL b = do x ← g b

case x of
Left ()→ h1

Right (a, b′)→ do c ← mhL b′

h2 a c

Example

msumL :: Monad m ⇒ List (m Int)→ m Int
msumL Nil = return 0
msumL (Cons m ms) = do y ← msumL ms

x ← m
return (x + y)

31

A more practical approach

mhylo h g = h • mmap (fmap (mhylo h g)) ◦ g

a
mhylo h g - m b

m (F a)

g

?

mmap (fmap (mhylo h g))
- m (F (m b))

h?

6

Now h :: F (m b)→ m b is an algebra with monadic carrier.

mmap :: (a → b)→ (m a → m b)

32

Examples

sequence :: Monad m ⇒ List (m a)→ m (List a)
sequence Nil = return Nil
sequence (Cons m ms) = do a ← m

as ← sequence ms
return (Cons a as)

msumL :: Monad m ⇒ List (m Int)→ m Int
msumL Nil = return 0
msumL (Cons m ms) = do x ← m

y ← msumL ms
return (x + y)

33

Properties

MHylo-Fold Fusion

τ :: ∀ a . (F a → a)→ (G (m a)→ m a)

⇒
mmap (fold h) ◦mhylo (τ inF) g = mhylo (τ h) g

Unfold-MHylo Fusion

σ :: ∀ a . (a → F a)→ (a → m (G a))

⇒
mhylo h (σ outF) ◦ unfold g = mhylo h (σ g)

34

MHylo-Fold Fusion

msumL :: List (m Int)→ m Int
msumL = mmap sumL ◦ sequence

sumL :: List Int → Int
sumL Nil = 0
sumL (Cons a as) = a + sumL as

sequence :: Monad m ⇒ List (m a)→ m (List a)
sequence Nil = return []
sequence (Cons m ms) = do a ← m

as ← sequence ms
return (Cons a as)

35

MHylo-Fold Fusion

τ :: (b, Int → b → b)→ (m b,m Int → m b → m b)
τ (h1, h2) = (return h1,

λm mb → do a ← m
b ← mb
return (h2 a b))

msumL :: Monad m ⇒ List (m Int)→ m Int
msumL Nil = return 0
msumL (Cons m ms) = do x ← m

y ← msumL ms
return (x + y)

36

