Deforestation in the presence
of effects

ALBERTO PARDO

Instituto de Computacién
Universidad de la Repdblica
Montevideo - Uruguay

http://www.fing.edu.uy/ pardo

Program construction in FP

In functional programming one often uses a compositional
style of programming.

Programs are constructed as the composition of simple and
easy to wrtite functions

As a result, programs tend to be more modular and easier to
understand

General purpose operators (like fold, map, filter, zip, etc) play
an important role in this design.

Example: count

count :: Word — Text — Integer
count w = length o filter (== w) o words

words :: Text — [Words]
words t = case drop While isSpace t of
LRI H
t' — let (w, t") = break isSpace t'
in w: words t”

filter :: (a — Bool) — [a] — [a]

filter p [] =]

filter p (a: as) = if p a then a: filter p as
else filter p as

A drawback

e Functions may not have a well performance when defined
using a compositional style.

e Information is passed from one function to another through
an intermediate data structure.

A > T » B

e It often happens that the nodes of the intermediate data
structure are generated/allocated by f, and immediately con-
sumed/deallocated by g.

e The allocation/deallocation loop leads to repeated invoca-
tions of the garbage collector.

Deforestation

Deforestation is a program transformation technique for the
elimination of intermediate data structures.

Deforestation of count

count w = length o filter (== w) o words

count w t = case drop While isSpace t of
nn — 0
t' — let (w', t"") = break isSpace t’
inif w' ==w
then 1+ count w t”
else count w "

How deforestation proceeds

In the body of the first function,

e replace every occurrence of the constructors used to build the
intermediate data structure by the corresponding operations
in the second function used to calculate the final result.

e replace recursive calls by calls to the new function

Example

lenfil p = length o filter p

length [] =0
length (z: xs) = h x (length xs)
wherehzn=1+n

filter p [] =]
filter p (a: as) =if p a then a : filler p as
else filter p as

The result:

lenfilp[]=0
lenfil p (a: as) =1if p a then h a (lenfil p as)
else lenfil p as
where hzn=1+n

Programs with effects

The compositional style of programming is also useful in the pres-
ence of effects.

For example,

lenline :: IO Int
lenLine = do xs « getLine
return (length xs)

where

getLine :: IO String
getLine = do ¢ «+— getChar
if ¢ == ’\n’ then return []
else do cs < getLine
return (c: cs)

Deforestation with effects

The same considerations about the intermediate data structure

apply in this case.

lenline = do xs < getLine; return (length xs)

lenLine = do c¢ « getChar
if ¢ == "\n’
then return 0
else do n « lenLine; return (1 + n)

Deforestation with effects

length [] =0
length (z : xs) = h z (length xs)
where
hxn=1+n

getLine :: IO String
getLine = do ¢ «— getChar
if ¢ == ’\n’ then return [|
else do cs « getLine
return (¢ : cs)

lenLine = do ¢ «— getChar
if ¢ == ’\n’ then return 0
else do n < lenLine
return (h ¢ n)

Our approach to deforestation

e We adopt an approach based on recursion program schemes
(like fold, map).

e They capture general patterns of computation commonly used
in practice.

e Each recursion scheme has associated a set of algebraic laws.

e Some of these laws —called fusion laws— correspond to defor-
estation.

Capturing the structure of functions

fact :: Int — Int
factn|n<l=1
| otherwise = n * fact (n — 1)

Capturing the structure of functions (2)

Let us define,

Yn|n<l=Left ()
| otherwise = Right (n,n — 1)

Jmap f (Left () = Left ()
fmap f (Right (m,n)) = Right (m,f n)

@ (Left () =1
@ (Right (m,n)) =mx*n

Then,

fact = p o fmap fact oY

Capturing the structure of functions (3)

Jmap f (Left () = Left ()
fmap f (Right (m,n)) = Right (m,f n)

Therefore,

fact

Int > Int

-

O+ Int x Int

G

+ Int x Int
O+ fn " fmap fact

Capturing the structure of functions (4)

Let us define,
Fa=(0)+1Int x a
Therefore,

fact

Int ——— Int

(0 ®

F Int F Int

fmap fact

Hylomorphism

hylo:: (Fb—b)—(a— Fa)—a—b
hylo h g = ho fmap (hylo h g) o g

hylo h g

Fa— +Fb
¢ fmap (hylo h g)

h is called an algebra and g a coalgebra.

Data types

Functors describe the top level structure of data types.
Given a data type declaration
datar=Cim1-Tig || CoToti - Tk,
the derivation of the corresp. functor F' proceeds as follows:
e pack the arguments to constructors in tuples;
e for constant constructors place the empty tuple ();
e regard alternatives as sums (replace | by +);

e substitute the occurrences of 7 by a type variable a in every

Ti,j-

Example: Lists

List a = Nil | Cons a (List a)

Lab=(+a x b

fmap :: (b — ¢) — (Lg b — Ly ©)
Jmap | (Left () = Left ()
fmap f (Right (a, b)) = Right (a,f b)

Example: Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

B,b=a+b x b

fmap :: (b — ¢) — (By b — B, ¢)
Jmap f (Left a) = (Left a)
fmap f (Right (b1,b2)) = Right (f b1,f b2)

Data type constructors / destructors

Given a functor (F', fmap) there exists an isomorphism

inF
FufF 3 > uF
outp

where

e inp packs the constructors of the data type uF'

e outp packs the destructors of pF

Fold / Unfold

Fold

fold: (F a— a)— uF —a
fold h = hylo h outp

Unfold

unfold :: (a = F a) — a — pF
unfold g = hylo ing g

Factorisation

hylo h g = fold h o unfold g

Examples of unfold

Lists

unfoldy :: (b — Lo b) — b — List a
unfold; g b = case (g b) of
Left () — Nil
Right (a,b’) — Cons a (unfoldy, g b')

Leaf-labelled binary trees

unfoldg :: (b — B, b) — b — Btree a
unfoldg g b = case (g b) of
Left a — Leaf a
Right (b1,b2) — Join (unfoldg g b1)
(unfoldg g b2)

Fusion laws

Factorisation

hylo h g = hylo h outp o hylo ing g

Hylo-Fold Fusion
7uVa.(Fa—a)—(Ga— a)

fold h o hylo (T ing) g = hylo (T h) g

Unfold-Hylo Fusion

c:(a— Fa)—(a— Ga)

hylo h (o outg) o unfold g = hylo h (o g)

Factorisation

fact = prod o upto

prod :: List Int — Int
prod Nil =1
prod (Cons n ns) = n * prod ns

upto :: Int — Int
upto n | n <1= Nil
| otherwise = Cons n (upto (n — 1))

Hylo-Fold Fusion

data Maybe a = Nothing | Just a

mapcoll :: (a — b) — List (Maybe a) — List b
mapcoll = map [o collect

map f Nil = Nil
map f (Cons a as) = Cons (f a) (map f as)

collect :: List (Maybe Int) — List Int
collect Nil = Nil
collect (Cons m ms) = case m of
Nothing — collect ms
Just a — Cons a (collect ms)

Hylo-Fold Fusion

7 (b,a = b—b) — (b, Maybe a — b — b)
T (hl,hg) = (hl,
Am b — case m of
Nothing — b
Just a — ha a b)

Monads

A monad is a triple (m, return, >=), where

e m is a type constructor,

e return::a — m a

is a polymorphic function

e (>=)ima—(a—mb)—mb

is a polymorphic operator, often pronounced bind.

plus some monad laws.

do notation

Translation rules:
do{z—mm'} = m>=XIz —do{m'}

do{m} = m

Recursion with effects

hylo h g

Fa

fmap (hylo h g)

Fb

Monadic hylomorphism

mhylo h g = h e fmapM (mhylo h g) e ¢

mhylo h g

a »mb
g h*
m (F a) = m (F b)

(fmapM (mhylo h g))*

Ff dist p

fmapM | = F a F (m b)

m (F b)

Lists

mhylo; (h1,h2) g = mhp,

where
mhy, b=doxz <« gb
case z of
Left () — ha
Right (a,b") — do ¢ — mh b’
hs ac
Example

msump, :: Monad m = List (m Int) — m Int
msumy, Nil = return 0
msumy, (Cons m ms) = do y «— msumyp, ms
T e—m
return (z + y)

A more practical approach

mhylo h g = h e mmap (frmap (mhylo h g)) o g

mhylo h g
a >~ m b
g h*
m (F a) > m (F (m b))

mmap (fmap (mhylo h g))

Now A :: F' (m b) — m b is an algebra with monadic carrier.

mmap :: (a — b) — (m a — m b)

Examples

sequence :: Monad m = List (m a) — m (List a)
sequence Nil = return Nil
sequence (Cons m ms) =do a «— m
as «— sequence ms
return (Cons a as)

msump, :: Monad m = List (m Int) — m Int
msumy, Nil = return 0
msumpy, (Cons m ms) =do z «— m
Y — msump, ms
return (z + y)

Properties

MHylo-Fold Fusion

7uVa.(Fa—a)— (G(ma)— ma)

mmap (fold h) o mhylo (7 ing) g = mhylo (T h) g

Unfold-MHylo Fusion

c:xVa.(a— Fa)—(a—m(Ga))

mhylo h (o outp) o unfold g = mhylo h (o g)

MHylo-Fold Fusion

msumyp, :: List (m Int) — m Int
MSUMy, = Mmap SUMmip, o sequence

sumy, :: List Int — Int
sumy, Nil =0
sump, (Cons a as) = a + sumy, as

sequence :: Monad m = List (m a) — m (List a)
sequence Nil = return []
sequence (Cons m ms) =do a «— m
as — sequence ms
return (Cons a as)

MHpylo-Fold Fusion

Tu(byInt 5 b—b)— (mbmInt—mb— mb)
7 (h1, he) = (return hq,
Am mb — do a «— m
b« mb
return (he a b))

msump, :: Monad m = List (m Int) — m Int
msumy, Nil = return 0
msump, (Cons m ms) =do z — m
Y «— msump, ms
return (x + y)

