Deforestation in the presence of effects

Alberto Pardo

Instituto de Computación
Universidad de la República
Montevideo - Uruguay

http://www.fing.edu.uy/~pardo

Program construction in FP

- In functional programming one often uses a compositional style of programming.
- Programs are constructed as the composition of simple and easy to wrtite functions
- As a result, programs tend to be more modular and easier to understand
- General purpose operators (like fold, map, filter, zip, etc) play an important role in this design.

Example: count

count $::$ Word \rightarrow Text \rightarrow Integer
count $w=$ length \circ filter $(==w) \circ$ words
words $::$ Text \rightarrow [Words]
words $t=$ case drop While isSpace t of
" " \rightarrow []
$t^{\prime} \rightarrow$ let $\left(w, t^{\prime \prime}\right)=$ break isSpace t^{\prime} in $w:$ words $t^{\prime \prime}$
filter $::(a \rightarrow$ Bool $) \rightarrow[a] \rightarrow[a]$
filter p [] = []
filter $p(a: a s)=$ if p a then $a:$ filter p as
else filter p as

A drawback

- Functions may not have a well performance when defined using a compositional style.
- Information is passed from one function to another through an intermediate data structure.

$$
A \xrightarrow{f} T \xrightarrow{g} B
$$

- It often happens that the nodes of the intermediate data structure are generated/allocated by f, and immediately consumed/deallocated by g.
- The allocation/deallocation loop leads to repeated invocations of the garbage collector.

Deforestation

Deforestation is a program transformation technique for the elimination of intermediate data structures.

Deforestation of count

count $w=$ length \circ filter $(==w) \circ$ words

count $w t=$ case drop While isSpace t of
" " $\rightarrow 0$
$t^{\prime} \rightarrow \operatorname{let}\left(w^{\prime}, t^{\prime \prime}\right)=$ break isSpace t^{\prime}
in if $w^{\prime}==w$
then $1+$ count $w t^{\prime \prime}$
else count $w t^{\prime \prime}$

How deforestation proceeds

In the body of the first function,

- replace every occurrence of the constructors used to build the intermediate data structure by the corresponding operations in the second function used to calculate the final result.
- replace recursive calls by calls to the new function

Example

$$
\begin{gathered}
\text { lenfil } p=\text { length } \circ \text { filter } p \\
\text { length }[]=0 \\
\text { length }(x: x s)=h x(\text { length } x s) \\
\quad \text { where } h x n=1+n
\end{gathered}
$$

```
filter \(p[]=[]\)
filter \(p(a: a s)=\) if \(p a\) then \(a:\) filter \(p\) as
                                    else filter \(p\) as
```

The result:

$$
\begin{aligned}
& \text { lenfil } p[]=0 \\
& \text { lenfil } p(a: a s)=\text { if } p \text { a } \begin{array}{l}
\text { then } h a(\text { lenfil } p \text { as) } \\
\\
\text { else lenfil } p \text { as }
\end{array} \\
& \qquad \begin{array}{l}
\text { where } h x n=1+n
\end{array}
\end{aligned}
$$

Programs with effects

The compositional style of programming is also useful in the presence of effects.

For example,

$$
\begin{aligned}
& \text { lenline }:: \text { IO Int } \\
& \text { lenLine }=\text { do } x s \leftarrow \text { getLine } \\
& \qquad \text { return (length } x s)
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { getLine :: IO String } \\
& \text { getLine }=\text { do } c \leftarrow \text { getChar } \\
& \text { if } c==\text { ' } \backslash \mathrm{n} \text { ' then return [] } \\
& \text { else do } c s \leftarrow \text { getLine } \\
& \text { return (} c: c s \text {) }
\end{aligned}
$$

Deforestation with effects

The same considerations about the intermediate data structure apply in this case.

$$
\begin{gathered}
\text { lenline }=\text { do } x s \leftarrow \text { getLine; return (length } x s) \\
\text { lenLine }=\text { do } \begin{aligned}
& c \leftarrow \text { getChar } \\
& \text { if } c==' \backslash \mathrm{n} \\
& \text { then return } 0 \\
& \text { else do } n \leftarrow \text { lenLine } ; \text { return }(1+n)
\end{aligned}
\end{gathered}
$$

Deforestation with effects

$$
\begin{gathered}
\text { length }[]=0 \\
\text { length }(x: x s)=h x \text { (length } x s) \\
\text { where } \\
h x n=1+n \\
\text { getLine }:: \text { IO String } \\
\text { getLine }=\text { do } c \leftarrow \text { getChar } \\
\text { if } c==, \backslash n ' \text { then return }[] \\
\text { else do } c s \leftarrow \text { getLine } \\
\text { return }(c: c s)
\end{gathered}
$$

Our approach to deforestation

- We adopt an approach based on recursion program schemes (like fold, map).
- They capture general patterns of computation commonly used in practice.
- Each recursion scheme has associated a set of algebraic laws.
- Some of these laws -called fusion laws- correspond to deforestation.

Capturing the structure of functions

$$
\begin{aligned}
& \text { fact }:: \text { Int } \rightarrow \text { Int } \\
& \text { fact } n \mid n<1=1 \\
& \quad \mid \text { otherwise }=n * \text { fact }(n-1)
\end{aligned}
$$

Capturing the structure of functions (2)

Let us define,

$$
\begin{aligned}
& \psi n \mid n<1=\text { Left }() \\
& \quad \mid \text { otherwise }=\operatorname{Right}(n, n-1) \\
& \text { fmap } f(\operatorname{Left}())=\operatorname{Left}() \\
& \operatorname{fmap} f(\operatorname{Right}(m, n))=\operatorname{Right}(m, f n) \\
& \varphi(\operatorname{Left}())=1 \\
& \varphi(\operatorname{Right}(m, n))=m * n
\end{aligned}
$$

Then,

$$
\text { fact }=\varphi \circ \text { fmap fact } \circ \psi
$$

Capturing the structure of functions (3)

$$
\begin{aligned}
& \text { fmap } f(\text { Left }())=\text { Left }() \\
& \text { fmap } f(\operatorname{Right}(m, n))=\operatorname{Right}(m, f n)
\end{aligned}
$$

Therefore,

Capturing the structure of functions (4)

Let us define,

$$
F a=()+\text { Int } \times a
$$

Therefore,

Hylomorphism

$$
\begin{aligned}
& \text { hylo }::(F b \rightarrow b) \rightarrow(a \rightarrow F a) \rightarrow a \rightarrow b \\
& \text { hylo } h g=h \circ \text { fmap }(\text { hylo } h g) \circ g
\end{aligned}
$$

h is called an algebra and g a coalgebra.

Data types

Functors describe the top level structure of data types.
Given a data type declaration

$$
\text { data } \tau=C_{1} \tau_{1,1} \cdots \tau_{1, k_{1}}|\cdots| C_{n} \tau_{n, 1} \cdots \tau_{n, k_{n}}
$$

the derivation of the corresp. functor F proceeds as follows:

- pack the arguments to constructors in tuples;
- for constant constructors place the empty tuple ();
- regard alternatives as sums (replace | by +);
- substitute the occurrences of τ by a type variable a in every $\tau_{i, j}$.

Example: Lists

$$
\begin{aligned}
& \text { List } a=\text { Nil } \mid \text { Cons } a(\text { List a) } \\
& L_{a} b=()+a \times b \\
& \text { fmap }::(b \rightarrow c) \rightarrow\left(L_{a} b \rightarrow L_{a} c\right) \\
& \text { fmap } f(\operatorname{Left}())=\operatorname{Left}() \\
& \text { fmap } f(\operatorname{Right}(a, b))=\operatorname{Right}(a, f b)
\end{aligned}
$$

Example: Leaf-labelled binary trees

data Btree $a=$ Leaf $a \mid \operatorname{Join}($ Btree $a)($ Btree $a)$
$B_{a} b=a+b \times b$
fmap $::(b \rightarrow c) \rightarrow\left(B_{a} b \rightarrow B_{a} c\right)$
fmap $f($ Left $a)=($ Left a)
fmap $f(\operatorname{Right}(b 1, b 2))=\operatorname{Right}(f b 1, f$ b2 $)$

Data type constructors / destructors

Given a functor (F, fmap) there exists an isomorphism

$$
F \mu F \underset{\text { out }_{F}}{\stackrel{i n_{F}}{\rightleftarrows}} \mu F
$$

where

- $i n_{F}$ packs the constructors of the data type μF
- out $_{F}$ packs the destructors of μF

Fold / Unfold

Fold

$$
\begin{aligned}
& \text { fold }::(F a \rightarrow a) \rightarrow \mu F \rightarrow a \\
& \text { fold } h=\text { hylo } h \text { out }_{F}
\end{aligned}
$$

Unfold

$$
\begin{aligned}
& \text { unfold }::(a \rightarrow F a) \rightarrow a \rightarrow \mu F \\
& \text { unfold } g=\text { hylo in } n_{F} g
\end{aligned}
$$

Factorisation
hylo $h g=$ fold $h \circ$ unfold g

Examples of unfold

Lists

$$
\begin{aligned}
& \text { unfold }_{L}::\left(b \rightarrow L_{a} b\right) \rightarrow b \rightarrow \text { List } a \\
& \text { unfold }_{L} g b=\mathbf{c a s e}(g b) \text { of } \\
& \text { Left () } \rightarrow \text { Nil } \\
& \text { Right }\left(a, b^{\prime}\right) \rightarrow \text { Cons } a\left(\text { unfold }_{L} g b^{\prime}\right)
\end{aligned}
$$

Leaf-labelled binary trees

$$
\begin{aligned}
& \text { unfold }_{B}::\left(b \rightarrow B_{a} b\right) \rightarrow b \rightarrow \text { Btree } a \\
& \text { unfold }_{B} g b=\mathbf{c a s e}(g b) \text { of } \\
& \qquad \begin{array}{l}
\text { Left } a \rightarrow \text { Leaf } a \\
\text { Right }(b 1, \text { b2 }) \rightarrow \text { Join }\left(\text { unfold }_{B} g b 1\right) \\
\left(\text { unfold }_{B} g \text { b2) }\right)
\end{array}
\end{aligned}
$$

Fusion laws

Factorisation

$$
\text { hylo } h g=\text { hylo } \text { out }_{F} \circ \text { hylo in }{ }_{F} g
$$

Hylo-Fold Fusion

$$
\begin{array}{ll}
& \tau:: \forall a \cdot(F a \rightarrow a) \rightarrow(G a \rightarrow a) \\
\Rightarrow & \\
& \text { fold } h \circ \text { hylo }\left(\tau i n_{F}\right) g=\text { hylo }(\tau h) g
\end{array}
$$

Unfold-Hylo Fusion

$$
\begin{aligned}
& \sigma::(a \rightarrow F a) \rightarrow(a \rightarrow G a) \\
\Rightarrow \quad & \text { hyloh }\left(\sigma \text { out }_{F}\right) \circ \text { unfold } g=\text { hylo } h(\sigma g)
\end{aligned}
$$

Factorisation

$$
\begin{aligned}
& \text { fact }=\text { prod } \circ \text { upto } \\
& \text { prod }:: \text { List Int } \rightarrow \text { Int } \\
& \text { prod Nil }=1 \\
& \text { prod }(\text { Cons } n \text { ns })=n * \text { prod ns } \\
& \text { upto }:: \text { Int } \rightarrow \text { Int } \\
& \text { upto } n \mid n<1=\text { Nil } \\
& \\
& \\
& \mid \text { otherwise }=\text { Cons } n(\text { upto }(n-1))
\end{aligned}
$$

Hylo-Fold Fusion

data Maybe $a=$ Nothing \mid Just a

$$
\begin{aligned}
& \text { mapcoll }::(a \rightarrow b) \rightarrow \text { List }(\text { Maybe } a) \rightarrow \text { List } b \\
& \text { mapcoll }=\operatorname{map} f \circ \text { collect }
\end{aligned}
$$

$$
\operatorname{map} f N i l=N i l
$$

$$
\operatorname{map} f(\text { Cons a as })=\text { Cons }(f a)(\text { map } f \text { as })
$$

collect :: List (Maybe Int) \rightarrow List Int
collect Nil $=$ Nil
collect (Cons m ms) = case m of
Nothing \rightarrow collect ms
Just $a \rightarrow$ Cons $a($ collect $m s)$

Hylo-Fold Fusion

$$
\begin{aligned}
\tau::(b, a \rightarrow b \rightarrow b) \rightarrow & (b, \text { Maybe } a \rightarrow b \rightarrow b) \\
\tau\left(h_{1}, h_{2}\right)=\left(h_{1},\right. & \text { case } m \text { of } \\
& \quad \text { Nothing } \rightarrow b \\
& \text { Just } \left.a \rightarrow h_{2} a b\right)
\end{aligned}
$$

Monads

A monad is a triple (m, return, >>), where

- m is a type constructor,
- return $:: a \rightarrow m a$
is a polymorphic function
- $(\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b$
is a polymorphic operator, often pronounced bind.
plus some monad laws.

do notation

Translation rules:

$$
\text { do }\left\{x \leftarrow m ; m^{\prime}\right\}=m \ggg \lambda x \rightarrow \text { do }\left\{m^{\prime}\right\}
$$

$$
\text { do }\{m\}=m
$$

Recursion with effects

Monadic hylomorphism

$$
\text { fmapM } f=F a \xrightarrow{F f} F\left(\begin{array}{ll}
m b
\end{array}\right) \xrightarrow{\text { dist }_{F}} m\left(\begin{array}{ll}
F & b
\end{array}\right)
$$

$$
\begin{aligned}
& \text { mhylo } h g=h \bullet f m a p M(m h y l o h g) \bullet g \\
& m\left(\begin{array} { l l }
{ F } & { a) \longrightarrow } \\
{ (\text { fmapM } (\text { mhylo } h g)) ^ { \star } }
\end{array} m \left(\begin{array}{ll}
F & b)
\end{array}\right.\right.
\end{aligned}
$$

Lists

$$
\begin{aligned}
& \operatorname{mhylo}_{L}\left(h_{1}, h_{2}\right) g=m h_{L} \\
& \text { where } \\
& m h_{L} b=\text { do } x \leftarrow g b \\
& \text { case } x \text { of } \\
& \quad \operatorname{Left}() \rightarrow h_{1} \\
& \quad \operatorname{Right}\left(a, b^{\prime}\right) \rightarrow \text { do } c \leftarrow m h_{L} b^{\prime} \\
& \quad h_{2} a c
\end{aligned}
$$

Example

$$
\begin{array}{r}
\text { msum }_{L}:: \text { Monad } m \Rightarrow \text { List }(m \text { Int }) \rightarrow m \text { Int } \\
\text { msum }_{L} \text { Nil }=\text { return } 0 \\
\text { msum }_{L}(\text { Cons } m m s)=\text { do } y \leftarrow \text { msum }_{L} m s \\
x \leftarrow m \\
\\
\quad \operatorname{return}(x+y)
\end{array}
$$

A more practical approach

$$
\text { mhylo } h g=h \bullet \operatorname{mmap}(f m a p(\text { mhylo } h g)) \circ g
$$

Now $h:: F(m b) \rightarrow m b$ is an algebra with monadic carrier. mmap $::(a \rightarrow b) \rightarrow(m a \rightarrow m b)$

Examples

```
sequence :: Monad \(m \Rightarrow\) List \((m a) \rightarrow m(\) List \(a)\)
sequence Nil = return Nil
sequence (Cons \(m \mathrm{~ms}\) ) \(=\) do \(a \leftarrow m\)
                                    \(a s \longleftarrow\) sequence \(m s\)
                                    return (Cons a as)
```

```
msum \(_{L}::\) Monad \(m \Rightarrow\) List ( \(m\) Int ) \(\rightarrow m\) Int
\(\operatorname{msum}_{L}\) Nil \(=\) return 0
\(\operatorname{msum}_{L}(\) Cons \(m m s)=\) do \(x \leftarrow m\)
    \(y \leftarrow \operatorname{msum}_{L} \mathrm{~ms}\)
    return \((x+y)\)
```


Properties

MHylo-Fold Fusion

$$
\begin{aligned}
& \tau:: \forall a \cdot(F a \rightarrow a) \rightarrow(G(m a) \rightarrow m a) \\
\Rightarrow &
\end{aligned}
$$

$$
\text { mmap }(\text { fold } h) \circ \text { mhylo }\left(\tau \text { in } n_{F}\right) g=\text { mhylo }(\tau h) g
$$

Unfold-MHylo Fusion

$$
\begin{aligned}
& \sigma:: \forall a \cdot(a \rightarrow F a) \rightarrow(a \rightarrow m(G a)) \\
\Rightarrow & \\
& \text { mhylo } h\left(\sigma \text { out }_{F}\right) \circ \text { unfold } g=\text { mhylo } h(\sigma g)
\end{aligned}
$$

MHylo-Fold Fusion

```
msum
msum
```

$\operatorname{sum}_{L}::$ List Int \rightarrow Int
sum_{L} Nil $=0$
$\operatorname{sum}_{L}($ Cons a as $)=a+\operatorname{sum}_{L}$ as
sequence $::$ Monad $m \Rightarrow \operatorname{List}(m a) \rightarrow m($ List $a)$
sequence Nil $=$ return []
sequence (Cons $m \mathrm{~ms}$) $=$ do $a \leftarrow m$
$a s \leftarrow$ sequence $m s$
return (Cons a as)

MHylo-Fold Fusion

$$
\begin{aligned}
& \tau::(b, \text { Int } \rightarrow b \rightarrow b) \rightarrow(m b, m \text { Int } \rightarrow m b \rightarrow m b) \\
& \tau\left(h_{1}, h_{2}\right)=\left(\text { return } h_{1},\right. \\
& \quad \lambda m m b \rightarrow \text { do } a \leftarrow m \\
& \quad b \leftarrow m b \\
& \left.\quad \text { return }\left(h_{2} a b\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{msum}_{L}:: \text { Monad } m \Rightarrow \text { List }(m \text { Int }) \rightarrow m \text { Int } \\
& m_{\text {sum }}^{L} \text { Nil }=\text { return } 0 \\
& \operatorname{msum}_{L}(\text { Cons } m m s)=\text { do } x \leftarrow m \\
& \\
& \quad y \leftarrow m s u m_{L} m s \\
& \\
& \quad r e t u r n ~ \\
& r+y)
\end{aligned}
$$

