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Program construction in FP

• In functional programming one often uses a compositional
style of programming.

• Programs are constructed as the composition of simple and
easy to wrtite functions

• As a result, programs tend to be more modular and easier to
understand

• General purpose operators (like fold, map, filter, zip, etc) play
an important role in this design.
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Example: count

count :: Word → Text → Integer
count w = length ◦ filter (== w) ◦ words

words :: Text → [Words ]
words t = case dropWhile isSpace t of

""→ [ ]
t ′ → let (w , t ′′) = break isSpace t ′

in w : words t ′′

filter :: (a → Bool)→ [a ]→ [a ]
filter p [ ] = [ ]
filter p (a : as) = if p a then a : filter p as

else filter p as
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A drawback
• Functions may not have a well performance when defined

using a compositional style.

• Information is passed from one function to another through
an intermediate data structure.

A
f - T

g - B

• It often happens that the nodes of the intermediate data
structure are generated/allocated by f , and immediately con-
sumed/deallocated by g.

• The allocation/deallocation loop leads to repeated invoca-
tions of the garbage collector.
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Deforestation

Deforestation is a program transformation technique for the
elimination of intermediate data structures.

A
f - T

g - B ; A
h - B
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Deforestation of count

count w = length ◦ filter (== w) ◦ words

�
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count w t = case dropWhile isSpace t of
""→ 0
t ′ → let (w ′, t ′′) = break isSpace t ′

in if w ′ == w
then 1 + count w t ′′

else count w t ′′
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How deforestation proceeds

In the body of the first function,

• replace every occurrence of the constructors used to build the
intermediate data structure by the corresponding operations
in the second function used to calculate the final result.

• replace recursive calls by calls to the new function
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Example

lenfil p = length ◦ filter p

length [ ] = 0
length (x : xs) = h x (length xs)

where h x n = 1 + n

filter p [ ] = [ ]
filter p (a : as) = if p a then a : filter p as

else filter p as

The result:

lenfil p [ ] = 0
lenfil p (a : as) = if p a then h a (lenfil p as)

else lenfil p as
where h x n = 1 + n
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Programs with effects

The compositional style of programming is also useful in the pres-
ence of effects.

For example,

lenline :: IO Int
lenLine = do xs ← getLine

return (length xs)

where

getLine :: IO String
getLine = do c ← getChar

if c == ’\n’ then return [ ]
else do cs ← getLine

return (c : cs)
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Deforestation with effects

The same considerations about the intermediate data structure
apply in this case.

lenline = do xs ← getLine; return (length xs)

lenLine = do c ← getChar
if c == ’\n’
then return 0
else do n ← lenLine; return (1 + n)

�
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Deforestation with effects

length [ ] = 0
length (x : xs) = h x (length xs)

where
h x n = 1 + n

getLine :: IO String
getLine = do c ← getChar

if c == ’\n’ then return [ ]
else do cs ← getLine

return (c : cs)

lenLine = do c ← getChar
if c == ’\n’ then return 0

else do n ← lenLine
return (h c n)
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Our approach to deforestation

• We adopt an approach based on recursion program schemes
(like fold, map).

• They capture general patterns of computation commonly used
in practice.

• Each recursion scheme has associated a set of algebraic laws.

• Some of these laws –called fusion laws– correspond to defor-
estation.

11



Capturing the structure of functions

fact :: Int → Int
fact n | n < 1 = 1

| otherwise = n ∗ fact (n − 1)
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Capturing the structure of functions (2)

Let us define,

ψ n | n < 1 = Left ()
| otherwise = Right (n,n − 1)

fmap f (Left ()) = Left ()
fmap f (Right (m,n)) = Right (m, f n)

ϕ (Left ()) = 1
ϕ (Right (m,n)) = m ∗ n

Then,

fact = ϕ ◦ fmap fact ◦ ψ
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Capturing the structure of functions (3)

fmap f (Left ()) = Left ()
fmap f (Right (m,n)) = Right (m, f n)

Therefore,

Int
fact - Int

() + Int × Int

ψ

?

fmap fact
- () + Int × Int

ϕ

6
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Capturing the structure of functions (4)

Let us define,

F a = () + Int × a

Therefore,

Int
fact - Int

F Int

ψ

?

fmap fact
- F Int

ϕ

6
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Hylomorphism

hylo :: (F b → b)→ (a → F a)→ a → b
hylo h g = h ◦ fmap (hylo h g) ◦ g

a
hylo h g - b

F a

g

?

fmap (hylo h g)
- F b

h

6

h is called an algebra and g a coalgebra.
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Data types

Functors describe the top level structure of data types.

Given a data type declaration

data τ = C1 τ1,1 · · · τ1,k1 | · · · | Cn τn,1 · · · τn,kn

the derivation of the corresp. functor F proceeds as follows:

• pack the arguments to constructors in tuples;

• for constant constructors place the empty tuple ();

• regard alternatives as sums (replace | by +);

• substitute the occurrences of τ by a type variable a in every
τi,j .
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Example: Lists

List a = Nil | Cons a (List a)

La b = () + a × b

fmap :: (b → c)→ (La b → La c)
fmap f (Left ()) = Left ()
fmap f (Right (a, b)) = Right (a, f b)
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Example: Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

Ba b = a + b × b

fmap :: (b → c)→ (Ba b → Ba c)
fmap f (Left a) = (Left a)
fmap f (Right (b1 , b2 )) = Right (f b1 , f b2 )
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Data type constructors / destructors

Given a functor (F , fmap) there exists an isomorphism

FµF
inF -

�
outF

µF

where

• inF packs the constructors of the data type µF

• outF packs the destructors of µF
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Fold / Unfold

Fold

fold :: (F a → a)→ µF → a
fold h = hylo h outF

Unfold

unfold :: (a → F a)→ a → µF
unfold g = hylo inF g

Factorisation

hylo h g = fold h ◦ unfold g
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Examples of unfold

Lists

unfoldL :: (b → La b)→ b → List a
unfoldL g b = case (g b) of

Left ()→ Nil
Right (a, b′)→ Cons a (unfoldL g b′)

Leaf-labelled binary trees

unfoldB :: (b → Ba b)→ b → Btree a
unfoldB g b = case (g b) of

Left a → Leaf a
Right (b1 , b2 )→ Join (unfoldB g b1 )

(unfoldB g b2 )
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Fusion laws
Factorisation

hylo h g = hylo h outF ◦ hylo inF g

Hylo-Fold Fusion

τ :: ∀ a . (F a → a)→ (G a → a)
⇒

fold h ◦ hylo (τ inF ) g = hylo (τ h) g

Unfold-Hylo Fusion

σ :: (a → F a)→ (a → G a)
⇒

hylo h (σ outF ) ◦ unfold g = hylo h (σ g)
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Factorisation

fact = prod ◦ upto

prod :: List Int → Int
prod Nil = 1
prod (Cons n ns) = n ∗ prod ns

upto :: Int → Int
upto n | n < 1 = Nil

| otherwise = Cons n (upto (n − 1))
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Hylo-Fold Fusion

data Maybe a = Nothing | Just a

mapcoll :: (a → b)→ List (Maybe a)→ List b
mapcoll = map f ◦ collect

map f Nil = Nil
map f (Cons a as) = Cons (f a) (map f as)

collect :: List (Maybe Int)→ List Int
collect Nil = Nil
collect (Cons m ms) = case m of

Nothing → collect ms
Just a → Cons a (collect ms)
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Hylo-Fold Fusion

τ :: (b, a → b → b)→ (b,Maybe a → b → b)
τ (h1, h2) = (h1,

λm b → case m of
Nothing → b
Just a → h2 a b)
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Monads

A monad is a triple (m, return, >>=), where

• m is a type constructor,

• return :: a → m a

is a polymorphic function

• (>>=) :: m a → (a → m b)→ m b

is a polymorphic operator, often pronounced bind.

plus some monad laws.
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do notation

Translation rules:

do {x ← m;m ′} = m >>= λx → do {m ′}

do {m } = m
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Recursion with effects

a
hylo h g - b

F a

g

?

fmap (hylo h g)
- F b

h

6
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Monadic hylomorphism

mhylo h g = h • fmapM (mhylo h g) • g

a
mhylo h g - m b

m (F a)

g

?

(fmapM (mhylo h g))?
- m (F b)

h?

6

fmapM f = F a
F f- F (m b)

distF- m (F b)
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Lists

mhyloL (h1, h2) g = mhL

where
mhL b = do x ← g b

case x of
Left ()→ h1

Right (a, b′)→ do c ← mhL b′

h2 a c

Example

msumL :: Monad m ⇒ List (m Int)→ m Int
msumL Nil = return 0
msumL (Cons m ms) = do y ← msumL ms

x ← m
return (x + y)
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A more practical approach

mhylo h g = h • mmap (fmap (mhylo h g)) ◦ g

a
mhylo h g - m b

m (F a)

g

?

mmap (fmap (mhylo h g))
- m (F (m b))

h?

6

Now h :: F (m b)→ m b is an algebra with monadic carrier.

mmap :: (a → b)→ (m a → m b)
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Examples

sequence :: Monad m ⇒ List (m a)→ m (List a)
sequence Nil = return Nil
sequence (Cons m ms) = do a ← m

as ← sequence ms
return (Cons a as)

msumL :: Monad m ⇒ List (m Int)→ m Int
msumL Nil = return 0
msumL (Cons m ms) = do x ← m

y ← msumL ms
return (x + y)
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Properties

MHylo-Fold Fusion

τ :: ∀ a . (F a → a)→ (G (m a)→ m a)

⇒
mmap (fold h) ◦mhylo (τ inF ) g = mhylo (τ h) g

Unfold-MHylo Fusion

σ :: ∀ a . (a → F a)→ (a → m (G a))

⇒
mhylo h (σ outF ) ◦ unfold g = mhylo h (σ g)
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MHylo-Fold Fusion

msumL :: List (m Int)→ m Int
msumL = mmap sumL ◦ sequence

sumL :: List Int → Int
sumL Nil = 0
sumL (Cons a as) = a + sumL as

sequence :: Monad m ⇒ List (m a)→ m (List a)
sequence Nil = return [ ]
sequence (Cons m ms) = do a ← m

as ← sequence ms
return (Cons a as)
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MHylo-Fold Fusion

τ :: (b, Int → b → b)→ (m b,m Int → m b → m b)
τ (h1, h2) = (return h1,

λm mb → do a ← m
b ← mb
return (h2 a b))

msumL :: Monad m ⇒ List (m Int)→ m Int
msumL Nil = return 0
msumL (Cons m ms) = do x ← m

y ← msumL ms
return (x + y)
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