
Multifocal: A Strategic Bidirectional
Transformation Language for XML Schemas

Hugo Pacheco and Alcino Cunha

HASLab / INESC TEC & Universidade do Minho, Braga, Portugal
{hpacheco,alcino}@di.uminho.pt

Abstract. Lenses are one of the most popular approaches to define
bidirectional transformations between data models. However, writing a
lens transformation typically implies describing the concrete steps that
convert values in a source schema to values in a target schema. In con-
trast, many XML-based languages allow writing structure-shy programs
that manipulate only specific parts of XML documents without having
to specify the behavior for the remaining structure. In this paper, we
propose a structure-shy bidirectional two-level transformation language
for XML Schemas, that describes generic type-level transformations over
schema representations coupled with value-level bidirectional lenses for
document migration. When applying these two-level programs to partic-
ular schemas, we employ an existing algebraic rewrite system to optimize
the automatically-generated lens transformations, and compile them into
Haskell bidirectional executables. We discuss particular examples involv-
ing the generic evolution of recursive XML Schemas, and compare their
performance gains over non-optimized definitions.

Keywords: coupled transformations, bidirectional transformations, two-
level transformations, strategic programming, XML

1 Introduction

Data transformations are often coupled [16], encompassing software transfor-
mation scenarios that involve the modification of multiple artifacts such that
changes to one of the artifacts induce the reconciliation of the remaining ones
in order to maintain global consistency. A particularly interesting instance of
this class are two-level transformations [18, 5], that concern the type-level trans-
formation of schemas coupled with the value-level transformation of documents
that conform to those schemas. A typical example of two-level transformations
are format evolution scenarios [18, 11], such as schema changes occurring during
maintenance operations or imposed by the natural evolution of the applications.
These schema evolutions call for the coupled evolution of the underlying docu-
ments and related artifacts so that they remain consistent with the new schema.

Most existing XML transformation and querying languages, such as XSLT,
XQuery or XPath, allow writing structure-shy programs that provide specific be-
havior only for the interesting bits of a (possibly huge) XML document without
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having to specify how to traverse the remaining structure. Due to their generic
form, such programs are easier to write and can be applied to documents satis-
fying different schemas. Nevertheless, they are not two-level. For example, using
XSLT we can separately specify a transformation between XML schemas (since
these can be represented as regular XML documents) and between XML docu-
ments, but the second is not a byproduct of the first. Thus, consistency between
both levels must be manually verified, while a two-level transformation provides
both transformations such that they are consistent by construction.

Another prominent instance of coupling are bidirectional transformations, as
a “mechanism for maintaining the consistency of two (or more) related sources of
information” [9]. For example, after a format evolution both old and new docu-
ments may co-exist and evolve independently. In a bidirectional transformation,
the coupling occurs between forward and backward value transformations such
that changes made to one of the data instances can be propagated to its con-
nected pair in order to recover consistency.

Similarly to two-level transformations, a good approach is to design intrinsic
bidirectional languages in which a program can be read both as a forward or a
backward transformation, so that these are correct for the respective semantic
space. Following this notion, many bidirectional languages have emerged in the
most diverse computing domains, including many focused on the transformation
of tree-structured data and with a particular application to XML documents [15,
3, 10, 21, 20, 14]. Among these, one of the most successful approaches are the so-
called lenses, introduced by Foster et al [10] to solve the classical view-update
problem: if a source model is abstracted into a view, how can updates made
to the view be propagated back to the original model? They propose the Focal
tree transformation language that allows users to build lenses with sophisticated
synchronization behavior in a compositional way.

Still, the aforementioned bidirectional languages are at best typed but not
two-level. On top of that, the programming style that grants them bidirection-
ality is usually more biased towards structure-sensitive constructs, to be able to
identify precisely the concrete steps required to translate between source and
target documents.

In this paper, we propose Multifocal, a generic structure-shy two-level trans-
formation language for XML Schema evolution whose underlying value-level
functions are bidirectional lens transformations that translate XML documents
conforming to the old and new schemas. In comparison to a Focal lens trans-
formation, that describes a bidirectional view between two particular tree struc-
tures, a Multifocal transformation describes a general type-level transformation
(over XML Schemas) that provides multiple focus points, in the sense that it
produces a different view schema and a corresponding bidirectional lens for each
XML Schema to which it is applied successfully.

To describe such two-level transformations, we will use a generic style familiar
of strategic rewriting languages [24, 19, 17], where the combination of a standard
set of basic rules allows the design of flexible rewrite strategies in a compositional
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Fig. 1: Representation of a movie database schema inspired by IMDb (http:
//www.imdb.com). Grey boxes denote elements and white ones model attributes.

way, such as generic traversals that apply type-level transformations at arbitrary
levels inside schema representations.

A known disadvantage of generic programs is their worse performance in com-
parison to analogous non-generic ones, since they must undergo runtime checks
and blindly traverse whole input structures. In our framework, we mitigate this
issue by encoding the underlying bidirectional lens transformations in a point-
free1 language with powerful algebraic laws and allowing automatic optimization
by calculation [23], so that the optimized lens programs are able to efficiently
propagate updates on XML documents.

In Section 2 we motivate our framework with an example. Section 3 presents
the Multifocal language and discusses the design of our framework for the specifi-
cation, optimization and execution of Multifocal transformations. The implemen-
tation of the framework (using the functional programming language Haskell)
is shown in Section 4. Section 5 illustrates by example how our framework can
tackle various application scenarios involving the generic evolution of recursive
XML schemas, and compares the speedups achieved by an automatic optimiza-
tion phase. In Section 6 we survey related work and Section 7 concludes the
paper with a synthesis of the main contributions and directions for future work.

2 Motivating Example

Consider the XML Schema from Figure 1 representing an IMDb-like database for
storing information about movies and actors. Imagine that we want to summarize
this schema according to the following steps:

1. Delete all series elements.
2. For each movie, replace its reviews by a popularity attribute counting

the number of comments and replace its boxoffice elements with a profit

attribute summing the total value elements.
3. For each actor, keep its name and a list of award names renamed to awname.

1 The point-free style is characterized by the lack of explicit “points” or variables.
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Fig. 2: A view of the movie database
schema from Figure 1.

The resulting schema is shown in Fig-
ure 2. However, not only do we want to
transform the XML schema, but also to
migrate conforming XML documents and
propagate updates in both directions: if a
source document is modified, then a new
view document must be computed; and if
a view document is modified, then those
changes shall be translated back into a
modified source document. Consider, for
example, the source XML document from
Figure 3(a) containing one movie, one se-
ries and one actor. The forward transformation of our running example would
produce the XML view shown in Figure 3(b). If we modify the view by cor-
recting Uma Thurman’s name and award information, and add an entry for the
new Sherlock Holmes movie before the single actor element (Figure 3(c)), then
the backward transformation shall correct the actress’ name at the appropriate
location and insert a new movie element with default review and boxoffice

elements that are consistent with the modified view (Figure 3(d)).
In the remainder of this paper, we will propose a generic XML transformation

language for XML schemas in which we can express the above transformation
in a concise way close to its informal definition. Plus, the transformations for
XML documents will come for free as conforming bidirectional lenses, satisfying
strong round-tripping properties and supporting automatic optimization.

3 The Multifocal Framework

We now provide an overview of the Multifocal language and the respective frame-
work for strategic two-level bidirectional transformation. We start with a formal
definition of the bidirectional lenses at the core of our framework:

Definition 1 (Lens [10]). A lens l :S Q V comprises two total transformations
get : S → V and put : V × S → S, satisfying the following properties:

get (put (v , s)) = v PutGet put (get (s), s) = s GetPut

To give an idea of the bidirectional programs we are considering, these round-
tripping properties guarantee that a lens is indeed an abstraction, i.e., the source
schema S contains more information than the view schema V , and that backward
propagation without modifications preserves the original documents.

Our two-level language over XML schemas is defined by instantiating a well-
known suite of combinators for strategic programming [24, 19], together with
specific XML transformers. The full syntax of Multifocal is defined as follows:

strat ::= nop | strat >> strat | strat || strat | many strat | try strat
| all strat | once strat | everywhere strat | outermost strat
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<imdb>
<movie>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
<review user="emma">
<comment>Gorgeous!</comment></review>

<director>Quentin Tarantino</director>
<boxoffice country="USA" value="22089322"/>
<boxoffice country="Japan" value="3521628"/>

</movie>
<series><year>2011</year>
<title>Game of Thrones</title>
<season><year>2011</year>
<episode>Winter is Coming</episode>

</season></series>
<actor name="Umma Thurman">
<played><year>2003</year>
<title>Kill Bill: Vol. 1</title>
<role>The Bride</role>
<award name="Saturn" result="Won"/>

</played></actor>
</imdb>

(a) Source XML document

<imdb>
<movie> ... </movie>
<series> ... </series>
<movie><year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<review user=”” comment=””/>
<review user=”” comment=””/>
<director>Guy Ritchie</director>
<boxoffice country=”” value=”15”/>

</movie>
<actor name=”Uma Thurman”>
<played><year>2003</year>
<title>Kill Bill: Vol. 1</title>
<role>The Bride</role>
<award name=”Saturn Best Actress” result="Won"/>

</played></actor>
</imdb>

(d) Modified source XML document

<imdb>
<movie popularity="1" profit="25610950">
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
<director>Quentin Tarantino</director>

</movie>
<actor name="Umma Thurman">
<awname>Saturn</awname>

</actor>
</imdb>

(b) View XML document

<imdb>
<movie> ... </movie>
<movie popularity=”2” profit=”15”>
<year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<director>Guy Ritchie</director>

</movie>
<actor name=”Uma Thurman”>
<awname>Saturn Best Actress</awname>

</actor>
</imdb>

(c) Modified view XML document

Fig. 3: Example of a bidirectional transformation between XML documents.

| at ’"’ tag ’"’ strat | when ’"’ tag ’"’ strat
| hoist | plunge ’"’ tag ’"’ | rename ’"’ tag ’"’

| erase | select ’"’ xpath ’"’

The set of strategic combinators allows to apply transformations sequentially
(>>), alternatively (||), repetitively (many) or, more challengingly, at arbitrary
depths inside schema representations. It also includes combinators for identity
(nop) and optional rule application (try). Likewise [17] and other generic pro-
gramming languages, instead of defining generic traversals by induction on the
structure of types, we define a small set of traversal combinators. The all com-
binator applies a transformation to all immediate children of the current schema
element (for the imdb element from Figure 1, these would be all movie, series
and actor elements). The once traversal applies a given transformation exactly
once somewhere inside a schema representation at an arbitrary depth, by travers-
ing the schema in a top-down approach. Using all, we can define the everywhere
combinator that traverses a schema representation in a bottom-up fashion and
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applies the given transformation to all its descendants. The outermost traversal
performs top-down exhaustive rule application and can be defined at the cost of
once.

To control the application of certain rules, it is useful to identify locations
inside schemas. The at combinator applies a given rule if the name of the current
element matches a given XML element tag2. On the other hand, when takes the
name of an XML Schema element and performs the following pattern matching:
if the given element name is defined as a top-level element in the source schema,
it converts its structure into a type-level predicate; then, if the predicate suc-
ceeds when applied to the current top-level element in the input schema (such
that its structure matches the structure of the pattern element) it applies the
argument rule, otherwise rule application fails. Other local combinators inspired
in Focal [10] are: hoist that untags the current element, plunge that names a
new XML element and rename that renames the current element.

As a language for defining views of schemas, Multifocal also supports specific
abstraction combinators. To delete part of a schema, we simply call erase at
the appropriate location. So far, our language builds generic transformations
that describe the explicit changes that are performed on the source schema. An
alternative way to specify generic programs is to perform queries that traverse
arbitrary structures to collect values of a specific type, as in for example the
XPath language for selecting particular nodes from XML documents. To apply
an XPath query to a schema, we invoke the select combinator that attempts to
bidirectionalize the XPath expression by converting it into a lens transformation
that abstracts the schema into the desired result type.

As an example, the evolution scenario from Section 2 can be encoded as the
following Multifocal transformation:

everywhere (try (at "series" erase))

>> everywhere (try (at "movie" (

outermost (when "reviews" (

select "count(//comment)" >> plunge "@popularity"))

>> outermost (when "boxoffices" (

select "sum(//@value)" >> plunge "@profit")))))

>> everywhere (try (at "actor" (

outermost (at "played" (select "award/@name" >> all (rename "awname"))))))

This transformation deletes series elements by applying an erase (constrained
by at) everywhere in the source schema, and the popularity and profit at-
tributes are calculated using XPath queries (constrained by when) and tagged
with plunge. The list of award names of an actor are selected with another
XPath query, and such resulting name elements are renamed to awname by ap-
plying rename within the all traversal. In this transformation, the reviews and
boxoffices tags used by the when combinator denote top-level XML Schema el-
ements (Figure 4) that must be defined in the source XML Schema. They match
lists of elements named review and boxoffice (using the schema representa-

2 As in XPath, XML node names preceded by an ampersat “@” denote attributes.
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<xs:group name="reviews"><xs:sequence>

<xs:element name="review" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence></xsd:group>

<xs:group name="boxoffices"><xs:sequence>

<xs:element name="boxoffice" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence></xs:group>

Fig. 4: XML Schema top-level elements modeling specific type patterns.

tions introduced in Section 4, they denote the types [µreview F ] and [µboxofficeG ],
for arbitrary functors F and G), respectively.

XML File
(.xml)

XML Schema
(.xsd)

XML File
(.xml)

Multifocal File
(.2lt)

XML Schema
(.xsd)Evaluate

XML File
(.xml)

Bidirectional Lens 
Executable

Forward

Backward XML File
(.xml)

Fig. 5: Architecture of the Multifocal
framework.

The general architecture of our
framework is illustrated in Figure 5.
A two-level transformation defined as
a Multifocal expression is executed in
two stages: first, it is evaluated as a
type-level transformation by applying
it to a source XML Schema, produc-
ing a target XML Schema and a bidi-
rectional lens; second, the lens is com-
piled into an executable file that can
be used to propagate updates between
XML documents conforming to the
source and target schemas. In our sce-
nario, optimization is done at the sec-
ond stage: we optimize the value-level
lenses once for each input schema and generate optimized executables that effi-
ciently propagate updates between XML documents.

4 Implementation

This section unveils the implementation of the Multifocal framework in Haskell.
Haskell is a general-purpose functional programming language with strong static
typing, where structures are modeled by algebraic data types and programs are
written as well-typed functions through pattern matching on their input values.
This embedding is supported by front-ends that translate XML Schemas and
XML documents into Haskell types and values, and vice-versa. A more technical
description of similar XML-Haskell front-ends can be found in previous work [2].

Two-level transformations written in Multifocal are translated into a core
library of Haskell combinators that operate on Haskell type representations.
After translating the source XML Schema into an Haskell type, the framework
applies the type-level transformation to produce as output a target type and
a lens representation as Haskell values. From these, it generates a target XML
Schema and an Haskell executable file containing the lens transformation and the
data type declarations that represent all the source and target XML elements.
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◦ : (B Q C )→ (A Q B)→ (A Q C ) id : A Q A
× :(A Q C )→ (B Q D)→ (A × B) Q (C × D) π1 : A × B Q A
+ :(A Q C )→ (B Q D)→ (A + B) Q (C + D) π2 : A × B Q A
O :(A Q C )→ (B Q C )→ (A + B) Q C ! :A Q 1
(|g |)F : (F A Q A)→ (µF Q A) outF : µF Q F (µF )
bd(g)ceF : (A Q F A)→ (A Q µF ) inF : F (µF ) Q µF
map : (A Q B)→ ([A] Q [B ]) concat : [ [A] ] Q [A] length : [A] Q Int
filter l : [A + B ] Q [A ] filter r : [A + B ] Q [B ]

Fig. 6: Point-free lens combinators.

The main function of this file parses XML documents complying to the schemas,
converts them into internal Haskell values, runs the lens transformation either
in the forward or backward direction to propagate source-to-target or target-to-
source updates, and finishes by pretty-printing an updated XML document.

Encoding of schemas and lenses In Haskell, sums + and products × correspond
to xs:sequence and xs:choice elements in XML Schema notation. Primitives
include base types, such as the unit type 1, integers Int or strings String , and lists
[A ] of values of type A that model XML sequences. To accommodate recursive
schemas, we represent user-defined types (denoting XML elements) as fixpoints
µtagF of a polynomial functor F , for a given name tag3. A polynomial functor
is either the identity Id (for recursive invocation), the constant A, the lifting of
sums ⊕ , products ⊗ and lists [ ] or the composition of functors � . For example,
the top-level element of the non-recursive schema from Figure 1 is represented
as µimdb(([ ]� (µmovieM ⊕µseriesS ))⊗ ([ ]�µactor A)), where M ,S and A are the
functors of the movie, series and actor elements. Application of a polynomial
functor F to a type A yields an isomorphic sum-of-products type F A.

In our framework, bidirectionality is achieved by defining the value-level se-
mantics of our two-level programs according to the point-free lens language de-
veloped in [22] and summarized in Figure 6. Each of these lens combinators
possesses a get and a put function satisfying the bidirectional properties from
Definition 14. Fundamental lenses are identity (id) and composition (◦). The
!,π1 and π2 combinators project away parts of a source type, while O applies two
lenses alternatively to distinct sides of a sum. The × and + combinators map
two lenses to both sides of a pair or a sum, respectively. The outF and inF iso-
morphisms expose and encapsulate the top-level structure of an inductive type
with functor F . The well-known fold (| · |)F and unfold bd(·)ceF recursion patterns
recursively consume and produce values of an inductive type. In this paper, we
treat some typical operations over lists such as mapping, concatenation, length
and filtering as primitive lenses. Their recursive definitions can be found in [23].

3 This is actually one of many possible representations of algebraic data types for use
in generic programming. For a detailed discussion see [13].

4 In [22], some of the lens combinators admit additional parameters to control value
generation. In this paper, we substitute such parameters with suitable defaults.
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nop, erase :: Rule
nop a = return (id , a)
erase a = return (!, 1)

at :: String → Rule → Rule
at name r a@(µtag f ) | name ≡ tag = r a
at name r a = mzero

all :: Rule → Rule
all r Int = return (id , Int)
all r [a ] = do (l , b)← r a

return (map l , [b ])
all r µtag f = do (l , g)← allF r f

return ((|ing ◦ l |)f , µtagg)

...
allF :: Rule → RuleF
allF r Id = return (id , Id)
allF r [ ] = return (id , [ ])
allF r a = do (l , b)← r a

return (l , b)
allF r (f ⊗ g) = do (l1 , h)← allF r f

(l2 , i)← allF r g
return (l1×l2 , h ⊗ i)

...
everywhere r = all (everywhere r) >> r

once :: Rule → Rule
once r Int = r Int
once r [a ] = r [a ] ‘mplus‘

do (l , b)← once r a
return (map l , [b ])

once r a@(µtag f ) = r a ‘mplus‘
do (l , g)← onceF r f

return (bd(l ◦ out f )ceg , µtagg)

...

type RuleF = Fctr → Maybe (Lens,Fctr)

onceF :: Rule → RuleF
onceF r Id = mzero
onceF r [ ] = do (l , g •)← r [•]

return (l , g)
onceF r (f ⊗ g) =

do (l , h •)← r ((f ⊗ g) •)
return (l , h)

‘mplus‘ do (l , h)← onceF r f
return (l×id , h ⊗ g)

‘mplus‘ do (l , i)← onceF r g
return (id×l , f ⊗ i)

...
outermost r = many (once r)

Fig. 7: Encoding of some strategic combinators as Haskell rewrite rules.

Two-level lens transformations Multifocal combinators can be encoded as rewrite
rules that, given a source type representation, yield a lens representation and a
target type representation:5:

type Rule = Type → Maybe (Lens,Type)

In our implementation, types and lenses are represented as values of type Type
and Lens (a grammar for lenses built using the combinators from Figure 6).
The Maybe Haskell type models partiality of rule application: return denotes
successful application, failure is signaled with mzero and mplus implements left-
biased choice. Figure 7 presents the encoding of some combinators, namely the
fundamental all and once that traverse inside the functorial structure of types.

The all traversal applies an argument rule to all children of the current
type and has the most interesting behavior for user-defined types: it invokes the
auxiliary rule allF that propagates a rule application down to the constants,
where it applies the argument rule, and returns a lens transformation (wrapped

5 For a clearer presentation, we encode types and transformations with unconstrained
data representations. Our actual implementation follows a type-safe encoding in-
spired in [5], such that the conformity between all the artifacts (schemas,documents
and transformations) is enforced by the Haskell type system.
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as a rewrite rule RuleF on functor representations Fctr); then, it constructs
a bottom-up lens (fold) that recursively applies the lens transformation to all
values of the recursive type. The once traversal applies an argument rule exactly
once at an arbitrary depth in a top-down approach, and stops as soon as the
argument rule can be successfully applied. To be able to apply normal type rules
inside a functor, the auxiliary rule onceF flattens the functor by applying it to a
special type mark •. When the argument rule can be successfully applied, it infers
a new functor representation using • to remember the recursive invocations6. For
recursive types, the resulting lens performs a top-down traversal (unfold) that
applies the value-level transformations of the argument rule to each recursive.

Other combinators for processing user-defined types are: hoist that unpacks
an user-defined type by applying out at the value-level; plunge that constructs
a new (non-recursive) user-defined type by applying in at the value-level; and
rename that renames an existing user-defined type and is coupled to the id lens.
Notice that rename n is different from hoist >> plunge n, since rename works
for all data types, and plunge can only create non-recursive ones.

The erase combinator deletes the current top-level type, by replacing it with
the unit type and applying ! at the value-level. In order to bundle a XPath query
as a two-level transformation, the select combinator specializes it for the input
type and then tries to lift the specialized expression into a lens. We specialize
XPath expressions by translating them into generic point-free programs than can
be optimized to non-generic point-free functions using the techniques from [8, 6].
To lift the resulting functions into lenses, we check if their point-free expressions
are defined using only the point-free lens combinators from Figure 6, otherwise
rule application fails.

Schema normalization To keep a minimal suite of combinators, our language
supports abstractions through the erase combinator, that deletes elements lo-
cally and thus leaves “dangling” unit types in the target schema. However, these
empty unnamed types are unintended and may yield XML Schemas that are
deemed ambiguous by many XML processors. For example, when applying our
running Multifocal transformation to the IMDb schema from Figure 1, deleting
series inside imdb elements will result in a list [µmovieM + 1]. Such dangling
unit types have no representation in the XML side and must be deleted from
the target schema representation. Such deletion is performed by a normalize
procedure that removes these and other ambiguities, by exhaustively applying
the rules from Figure 87. Normalization is silently applied by extending the all

and once traversals so that they apply normalize after rewriting.

Lens optimization Although the lens transformations generated by our frame-
work are instantiated for particular source and target schemas, they still contain
many redundant computations and traverse the whole structures, as a conse-
quence of being a two-level transformation. To improve their efficiency, we reuse

6 Unlike in the pseudo-code from Figure 7, in our implementation functor inference
must be performed as a separate procedure and not simply via pattern matching.

7 The exact lens definitions of idOnil and nilOid can be found in [23].
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π1 : A × 1 Q A π2 : 1 × A Q A -- Products
idOnil : [A] + 1 Q [A] nilOid : 1 + [A] Q [A] -- Sums
filter l : [A + 1] Q [A] filter r : [1 + A] Q [A] -- Lists
idOid : A + A Q A concat : [ [A] ] Q [A] -- Ambiguous types

Fig. 8: Rules for normalization of XML Schema representations.

company
*

name

dept

employee

+*

person salary

name address

manager

Fig. 9: A company hierarchized payroll
XML schema inspired in [17].

*

*

company

name managername

dept

branch

Fig. 10: A view of the company
schema.

a rewrite system for the optimization of point-free lenses [23] (similar to the one
for the optimization of XPath queries) that employs powerful algebraic point-free
laws for fusing and cutting redundant traversals. After rewriting, the resulting
transformations work directly between the source and target types and are sig-
nificantly more efficient, as demonstrated in Section 5. In our framework, we
provide users with the option to optimize the generated bidirectional programs
at the time of generation of the Haskell bidirectional executable, if they intend to
repeatedly propagate updates between XML documents conforming to the same
schemas. This could be the case, for example, when the schemas represent the
configuration of a live system that replies to frequent requests. In such cases, the
once-a-time penalty of an additional optimization phase for a specific schema is
amortized by a larger number of executions.

5 Application Scenarios

We now demonstrate two XML evolution scenarios (the IMDb example from
Section 3 and another example for the evolution of a recursive XML Schema),
and compare the performance of the lenses resulting from the execution of the
two-level transformations with their automatically optimized definitions.

A classical schema used to demonstrate strategic programming systems is the
so called “paradise benchmark” [17]. Suppose one has a recursive XML Schema
to model a company with several departments, each having a name, a manager
and a collection of employees or sub-departments, illustrated in Figure 9. Our
second evolution example consists in creating a view of this schema according
to the following transformation:
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Fig. 11: Benchmark results for the IMDb example.

Fig. 12: Benchmark results for the paradise example.

everywhere (try (at "manager" (

all (select "(//name)[1]") >> rename "managername")))

>> everywhere (try (at "employee" erase))

>> once (at "dept" (hoist >> outermost (at "dept" (

select "name" >> rename "branch")) >> plunge "dept"))

For each top-level department, this transformations keeps only the names of
managers (renamed to managername), deletes all employees and collects the
names of direct sub-departments renamed to branch. The resulting non-recursive
schema is depicted in Figure 10. There are some details worth noticing. First, it is
easier to keep only manager names using a generic query instead of a transforma-
tion that would need to specify how to drop the remaining structure. The XPath
filter “[1]” guarantees a sole result if multiple names existed under managers.
Second, since dept is a recursive type, we unfold its top-level recursive struc-
ture once using hoist to be able to process sub-branches, and create a new
non-recursive dept element with plunge.

Performance Analysis Unfortunately, the lenses resulting from the above trans-
formations are not very efficient. For instance, in the IMdb example the traversals
over series’ movies and actors are independent and can be done in parallel.
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Also, the transformations of reviews and boxoffices and the extra normaliz-
ing step that filters out unit types (resulting from erased series elements) can
be fused into a single traversal. For the paradise example, all the three steps
and the extra normalization step (for erased employee elements) can be fused
into a single traversal. Also, the first two steps, that traverse all departments
recursively due to the semantics of all (invoked by everywhere) for recursive
types, are deemed redundant for sub-departments by the last step.

All these optimizations can be performed by our lens optimization phase.
We have measured space and time consumption of the lenses generated by our
two examples, and the results are presented in Figures 11 and 12. To quantify
the speedup achieved by the optimizations, we have compared the runtime be-
havior of their backward transformations for non-optimized (specification) and
optimized lens definitions (optimized)8. To factor out the cost of parsing and
pretty-printing XML documents, we have tested the put functions of the lenses
with pre-compiled input databases of increasing size (measured in kBytes needed
to store their Haskell definitions), randomly generated with the QuickCheck test-
ing suite [4]. We compiled each function using GHC 7.2.2 with optimization flag
O2. As expected, the original specification performs much worse than the opti-
mized lens, and the loss factor grows with the database size. Considering the
biggest sample, the loss factors are of 3.7 in time and 4.1 in space for the IMDb
example and of 9.4 in time and 13.4 in space for the paradise example. The more
significant results (and the worse overall performance) for the paradise example
are justified by the elimination of the recursive traversals over sub-departments.

6 Related Work

In [18], Lämmel et al propose a systematic approach to XML schema evolu-
tion, where the XML-based formats are transformed in a step-wise fashion and
the transformation of coupled XML documents can be largely induced from the
schema transformations. They study the properties of such transformations and
identify categories of XML schema evolution steps, taking into account many
XML-specific issues, but do not propose a formalization or implementation of
such a general framework for two-level transformation. The X-Evolution sys-
tem [11] provides a graphical interface for the evolution of XML Schemas coupled
with the adaptation of conforming XML documents. Document migration is au-
tomated for the cases when minimal document changes can be inferred from the
schema evolution steps, while user intervention through query-based adaptation
techniques is required to appropriately handle more complex schema changes.

Two famous bidirectional languages for XML are XSugar [3] and biXid [15],
that describe XML-to-ASCII and XML-to-XML mappings, respectively. In both,
bidirectional transformations are specified using pairs of intertwined grammars
describing the source and target formats, from which a forward transformation
is obtained by parsing according to the rules in one grammar and a backward

8 Note that parsed XPath expressions are already optimized in the non-optimized lens,
since their successful “lensification” depends on their specialization.
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transformation by pretty printing according to the rules in the other. However,
while the emphasis of XSugar is on bijective transformations, biXid admits am-
biguity in the transformations and only postulates that translated documents
shall be consistent up to the grammar specification.

The Focal lens language [10] provides a rich set of lens combinators, from
general functional programming features (composition, mapping, recursion) to
tree-specific operations (splitting, pruning, merging) for the transformation of
tree-structured data. In [20], Liu et al propose Bi-X, a functional lens language
closely resembling the XQuery Core language that can serve as the host lan-
guage for the bidirectionalization of XQuery. The main feature of Bi-X is its
support for variable binding, allowing lenses that perform implicit duplication.
Using variable referencing, structure-shy combinators such as XPath’s descen-
dant axis can also be translated into equivalent Bi-X programs. Although their
development is done in an untyped setting, they define a type system of regular
expressions that is used to refine backward behavior.

In previous work [2], we proposed a two-level bidirectional transformation
framework (2LT) implemented in Haskell for the strategic refinement of XML
Schemas into SQL databases. Later [7], we showed how point-free program cal-
culation can be used to optimize such bidirectional programs and how these can
be combined to provide structure-shy query migration. In this paper, we tackle
the dual problem of XML schema abstraction, supporting the execution and
optimization of coupled bidirectional lenses. While refinement scenarios are in-
herent to strategic rewriting techniques, like the automatic mapping of abstract
schemas to more concrete ones [2], view definition scenarios typically involve
more surgical steps that abstract or preserve specific pieces of information and
motivate a different language of primitive evolution steps. Contrarily to the 2LT
framework, where two-level transformations are written within Haskell using a
combinator library, we propose the Multifocal XML transformation language,
mixing strategic and specific XML transformers, to write “out of the box” views
of XML Schemas. Another new feature of our approach is the specification and
optimization of generic two-level transformations over recursive XML Schemas.

7 Conclusion

In this paper we have proposed Multifocal, a generic two-level bidirectional trans-
formation language for XML Schema evolution with document-level migrations
based on the bidirectional framework of lenses. By using strategic program-
ming techniques, these coupled transformations can be specified in a concise
and generic way, mimicking the typical coding pattern of XML transformation
languages such as XSLT, that allow to easily specify how to modify only selected
nodes via specific templates. When applied to input schemas, our schema-level
transformations produce new schemas, as well as bidirectional lens transforma-
tions that propagate updates between old and new documents. In our framework,
we release such bidirectional transformations as independent programs that can
be used to translate updates for particular source and target schemas. We also
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provide users with an optional optimization phase that improves the efficiency
of the generated lens programs for intensive usage scenarios.

Our framework has been fully implemented in Haskell, and is available through
the Hackage package repository (http://hackage.haskell.org) under the name
multifocal. It can be used both as a stand-alone tool for XML Schema evo-
lution and as a combinator library for the two-level bidirectional evolution of
arbitrary inductive data type representations.

Although our language already supports combinators in the style of XSLT
transformations and XPath queries, the expressiveness of the underlying bidirec-
tional transformations is naturally limited by the language of point-free lenses
in use. That said, the translation of some XPath features that are not perfect
abstractions, such as value-level filtering, is not considered in our approach. In
future work, we plan to extend this language to support more XPath features.
This would require, however, to loosen either the round-tripping laws or the re-
quirement that lens functions must be totally defined for documents conforming
to the schemas. Other directions for future work that we are investigating are:
(i) the processing of annotations in the input XML Schemas such as xs:key to
identify reorderable chunks in the source document and provide extra alignment
information to guide the translation of view updates in the style of [1]; (ii) the
leveraging of the underlying bidirectional framework from asymmetric lenses to
other symmetric formulations such as [12] that guarantee weaker properties but
do not impose a particular abstract-or-refine data flow.

In this work, we propose a way of replacing three unidirectional XML trans-
formations (a schema-level transformation and two transformations between
XML documents) with a single two-level bidirectional Multifocal transforma-
tion. In order to bring Multifocal closer to standard XML transformation tools,
we plan to develop translations from XSLT-like idioms to Multifocal. For a suc-
cessful integration, a comparative study on the usefulness, expressiveness and
efficiency of Multifocal transformations would be needed.
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