
Embedding Attribute Grammars and their
Extensions using Functional Zippers

Pedro Martins1?, João Paulo Fernandes1,2, João Saraiva1, Eric Van Wyk3, and
Anthony Sloane4

1 High-Assurance Software Laboratory (HASLAB/INESC TEC),
Universidade do Minho, Braga, Portugal

2 Reliable and Secure Computation Group ((rel)ease),
Universidade da Beira Interior, Covilhã, Portugal

3 Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, USA

4 Department of Computing,
Macquarie University, Sydney, Australia
{prmartins,jpaulo,jas}@di.uminho.pt,

evw@cs.umn.edu, anthony.sloane@mq.edu.au

Abstract. Attribute grammars are a suitable formalism to express com-
plex software language analysis and manipulation algorithms, which rely
on multiple traversals of the underlying syntax tree. Attribute Gram-
mars have been extended with mechanisms such as references and high-
order and circular attributes. Such extensions provide a powerful modu-
lar mechanism and allow the specification of complex computations. This
paper defines an elegant and simple, zipper-based embedding of attribute
grammars and their extensions as first class citizens. In this setting,
language specifications are defined as a set of independent, o↵-the-shelf
components that can easily be composed into a powerful, executable lan-
guage processor. Techniques to describe automatic bidirectional trans-
formations between grammars in this setting are also described. Several
real examples of language specification and processing programs have
been implemented.

Keywords: Atribute Grammars, Functional Programming, Functional
Zippers, Bidirectional Transformations

1 Introduction

Attribute Grammars (AGs) [1] are a well-known and convenient formalism not
only for specifying the semantic analysis phase of a compiler but also to model

? This author is funded by ERDF - European Regional Development Fund through
the COMPETE Programme (operational programme for competitiveness) and by
National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Por-
tuguese Foundation for Science and Technology) within project ON.2 IC&DT Pro-
grama Integrado BEST CASE - Better Science Through Cooperative Advanced Syn-
ergetic E↵orts, Ref. BIM-2013 BestCase RL3.2 UMINHO and project FATBIT, Ref.
FCOMP-01-0124-FEDER-020532.

2 Embedding Attribute Grammars

complex multiple traversal algorithms. Indeed, AGs have been used not only
to specify real programming languages, for example Haskell [2], but also to
specify sophisticated pretty printing algorithms [3], deforestation techniques [4]
and powerful type systems [5].

All these attribute grammars specify complex and large algorithms that rely
on multiple traversals over large tree-like data structures. To express these al-
gorithms in regular programming languages is di�cult because they rely on
complex recursive patterns, and, most importantly, because there are dependen-
cies between values computed in one traversal and used in following ones. In
such cases, an explicit data structure has to be used to glue together di↵erent
traversal functions. In an imperative setting those values are stored in the tree
nodes (which work as a gluing data structure), while in a declarative setting such
data structures have to be defined and constructed. In an AG setting, the pro-
grammer does not have to concern himself or herself with scheduling traversals,
nor on defining gluing data structures.

Recent research in attribute grammars has proceeded primarily in two di-
rections. Firstly, AG-based systems have extended the standard AG formalism
that improve the AG expressiveness. Higher-order AGs (HOAGs) [6, 7] provide
a modular extension to AGs in which syntax trees can be stored as attribute val-
ues. Reference AGs (RAGs) [8] allow the definition of references to remote parts
of the tree, and, thus, extend the traditional tree-based algorithms to graphs.
Finally, Circular AGs (CAGs) allow the definition of fix-point based algorithms.
AG systems like Silver [9], JastAdd [10], and Kiama [11] all support such ex-
tensions. Secondly, attribute grammars are embedded in regular programming
languages with AG fragments as first-class values in the language: they can be
analyzed, reused and compiled independently [12–14].

First class AGs provide:

i A full component-based approach to AGs where a language is specified/im-
plemented as a set of reusable o↵-the-shelf components;

ii Semantic-based modularity, while some traditional AG systems use a (re-
stricted) syntactic approach to modularity.

Moreover, by using an embedding approach there is no need to construct a
large AG (software) system to process, analyse and execute AG specifications.
First class AGs reuse for free the mechanisms provided by the host language as
much as possible, while increasing abstraction in the host language. Although
this option may also entail some disadvantages, e.g. error messages relating to
complex features of the host language instead of specificities of the embedded
language, the fact is that an entire infrastructure, including libraries and lan-
guage extensions, is readily available at a minimum cost. Also, the support and
evolution of such infrastructure is not a concern.

This paper presents a novel technique combining these two AG advances.
First, we propose a concise embedding of AGs in Haskell. This embedding

relies on the extremely simple mechanism of functional zippers. Zippers were
originally conceived by Huet [15] for a purely functional environment and repre-
sent a tree together with a subtree that is the focus of attention, where that focus

Embedding Attribute Grammars 3

may move within the tree. By providing access to any element of a tree, zippers
are very convenient in our setting: attributes may be defined by accessing other
attributes in other nodes. Moreover, they do not rely on any advanced feature
of Haskell such as lazy evaluation or type classes. Thus, our embedding can be
straightforwardly re-used in any other functional environment.

Second, we extend our embedding with the primary AG extensions proposed
to the AG formalism and with novel techniques for AG-based bidirectionalization
systems.

Attribute grammars, and their modern extensions, only provide support for
specifying unidirectional transformations, despite bidirectional transformations
being common in AG applications. Bidirectional transformations are especially
common between abstract/concrete syntax. For example, when reporting errors
discovered on the abstract syntax we want error messages to refer to the original
code, not a possible de-sugared version of it. Or when refactoring source code,
programmers should be able to evolve the refactored code, and have the change
propagated back to the original source code.

In this work, we present the first embedding of HOAGs, RAGs and CAGs
as first class attribute grammars together with a bidirectionalization system.
By this we are able to express powerful algorithms as the composition of AG
reusable components. We have used this approach in a number of applications,
e.g., in developing techniques for a language processor to implement bidirectional
AG specifications and to construct a software portal.

This paper is organized as follows: in Section 2 we motivate our approach with
the introduction of both our running example and AGs. In Section 3 we introduce
Zippers and explain how they can be used to embed AGs in a functional setting,
and implement an AG in our setting.

Section 4 extends our running example and defines an AG implementing the
scope rules for the newly defined language, with the aid of AG references. Section
5 describes the embedding of higher-order attributes as an extension to AGs and
presents an example of an AG that uses this extension. In Section 6 we describe
another AG extension, circularity, showing how it can be implemented with our
technique, and give practical examples that build on the previous section.

In Section 7 a technique for defining a bidirectionalization system for AGs
is presented, with an example providing automatic transformations between a
concrete and an abstract version of our running example.

In Section 8 the reader is presented with works that relate to ours, either by
having similar techniques or domains. Section 9 concludes this paper and Section
10 shows possible future research work.

2 Motivation

As a running example throughout this paper, we will describe and use the LET

language, that could for example be used to define let expressions as incorpo-
rated in the functional languages Haskell [16] or ML [17].

4 Embedding Attribute Grammars

While being a concise example, the LET language holds central characteristics
of widely-used programming languages, such as a structured layout and manda-
tory but unique declarations of names. In addition, the semantics of LET does
not force a declare-before-use discipline, meaning that a variable can be declared
after its first use.

Below is an example of a program in the LET language, which corresponds to
correct Haskell code5.

program = let a = b + 3
c = 8
b = (c ⇤ 3)� c

in (a + 7) ⇤ c

We observe that the value of program is (a +7) ⇤ c, and that a depends on b
which itself depends on c. It is important to notice that a is declared before b,
a variable on which it depends. Finally, the meaning of program, i.e. its value, is
208.

Our goal here is precisely to compute the semantics (i.e., the value) of a LET

program. Implementing this computation introduces typical language processing
challenges:

1. Name/scope analysis in order to verify whether or not all the variables that
are used are indeed declared;

2. Semantic analysis in order to calculate the meaning of the program; this
analysis incorporates name analysis through symbol table management and
processing of the algebraic expressions that compose a program.

Since LET does not enforce a declare-before-use discipline, a straightforward
definition of the scope analysis relies on a two traversals strategy over the ab-
stract tree: first, to collect the declarations of variables, while at the same time
searching for multiple declarations with the same variable; second, knowing the
declared variables, to check whether all used identifiers have been declared.

We follow a top down strategy as we want to detect double variable decla-
rations of the same variable during the first traversal. A top-down solution will
identify the second time a variable is declared as the place where the error is
located, whereas other strategies may regard other declaration to be faulty (for
example, the first one).

In the following sections of the paper, we describe how the analysis of the
LET language can be implemented in Haskell using our zipper-based AG em-
bedding techniques together with the extensions we provide. For now, we start
by demonstrating how to implement the scope analysis of a LET program as a
regular AG.

The syntax of the LET language can be described by the following context-free
grammar (CFG):

5 To simplify our initial example, we do not consider nested let sub-expressions, but

this extension to LET will be considered later in this paper.

Embedding Attribute Grammars 5

(p1: Root) Root ! Let

(p2: Let) Let ! Dcls Expr

(p3: Cons) Dcls ! Name Expr Dcls

(p4: Empty) Dcls ! ✏
(p5: Plus) Expr ! Expr Expr

(p6: Minus) Expr ! Expr Expr

(p7: Times) Expr ! Expr Expr

(p8: Divide) Expr ! Expr Expr

(p9: Variable) Expr ! Name

(p10: Constant) Expr ! Number

This grammar contains a Root non-terminal which is the start symbol of the
grammar, a Let non-terminal that contains a list of declarations (Dcls) and an
expression that corresponds to the meaning of the program (Expr). Dcls can have
two forms: can be composed of a variable name (Name), an expression (Expr) and
another declaration (Dcls) or can represent an empty list.

AGs themselves consist of an extension to CFGs, in the sense that they use
the same formalism that is used to define the syntax of a language, CFGs, but
semantics are introduced to define computations. Therefore, attributes are a set
of intermingled computations implemented throughout the grammar.

There are two types of attributes in an AG: inherited and synthesized at-
tributes. The di↵erence between them is the way they traverse the tree: while
the former perform computations from the top to the bottom of the tree, the
semantics of the latter traverse a tree from the bottom to the top. As we will
see, typically the meaning of an AG, i.e., its final result, is a combination of
interconnected synthesized and inherited attributes.

The AG that we will construct in order to specify the name analysis task of
the LET language can be split into the following semantic groups of operations,
which are intermingled:

1. Capture all variable declarations before the current node is considered, which
we will implement in the attribute dcli (declarations in). In the program
above, if dcli was to be computed in the node for b = (c ⇤3)� c, it will be a
list containing a and c, because these are the variables declared before this
declaration. The attribute dclo (declarations out), returns all the declared
variables in the program. Both these attributes are lists of identifiers.

2. Distribute all the declared variables in a program throughout the tree, which
we will implement in the attribute env (environment). This will always pro-
duce the list of declared variables, regardless of the position on the tree where
the attribute is accessed. env is a list of identifiers.

3. Calculate the list of invalid declarations, i.e., variables that have been de-
clared twice and variables that are being used in an expression but have not
been declared. For the AG that performs the scope/name analysis this at-
tribute will constitute the meaning of the grammar, its final result, and will
be called errs (errors). The returning type of errs will be a list of identifiers.

For example, for the program faulty that we can see below:

6 Embedding Attribute Grammars

faulty = let a = z + 3
c = 8
a = (c ⇤ 3)� c

in (a + 7) ⇤ c

the AG that performs the name analyis will yield as result a list containing the
variables a and z , in this order. The former because is being declared twice and
the latter because it is being used but was never declared. This result will be
produced by the attribute errs with the aid of the other three.

In the definition of an AG, we use a syntax similar to the one in [18], where
a definition (p n) production {semantic rules} is used to associate semantics
with the syntax of a language. Syntax is defined by context-free grammar pro-
ductions and semantics is defined by semantic rules that define attribute values.
In a production, when the same non-terminal symbol occurs more than once,
each occurrence is denoted by a subscript (starting from 1 and counting left to
right)6.

It is assumed that the value of the attribute lexeme is externally provided by
a lexical analyzer to give values to terminal symbols. Also, we use the follow-
ing constructions and auxiliary functions, whose syntax is taken directly from
Haskell but have general constructions in most programming languages:

– ++ for lists concatenation
– [] represents an empty list
– : for the addition of an element to a list
– mBIn (mustBeIn), which returns a list with an element in case the element is

not in a list, returns an empty list otherwise
– mNBIn (mustNotBeIn), which returns a list with an element in case the element

is in the list, returns an empty list otherwise

2.1 Capturing Variable Declarations

In order to capture variable declarations, a typical solution in functional settings
is to implement a recursive function that starts with an empty list and accu-
mulates each declaration in a list while traversing it. Such function returns the
accumulated list of declaration as its final result. This technique is known as ac-
cumulating parameters [19]. In AGs, accumulators are typically implemented as
a pair of inherited and synthesized attributes, representing the usual argumen-
t/result pair in a functional setting. This pattern can be seen in the attributes
dcli and dclo that we present next.

Capturing variable declarations is performed using a top-down strategy with
the attribute dcli, as can be seen below:

6 The traditional definition of AGs only permits semantic rules of the form X.a =

f(...), forcing the use of identity functions for constants. For clarity and
simplicity, we allow their direct usage in attribute definitions.

Embedding Attribute Grammars 7

(p1: Root) Root ! Let

{ Let.dcli = [] }
(p2: Let) Let ! Dcls Expr

{ Dcls.dcli = Let.dcli }
(p3: Cons) Dcls1 ! Name Expr Dcls2

{ Dcls2.dcli = Name.lexeme : Dcls1.dcli }

At the topmost node of a LET tree no variable declaration is visible. This is
denoted by dcli being assigned the empty list on production p1. A Cons node
inherits the same dcli that is computed for its Let parent, as can be seen in
production p2. Finally, p3 defines that when a variable is being declared, its
name should be added/accumulated to the so far computed dcli attribute, and
it is the resulting list that should be passed down.

Note that the value of the attribute dcli that is inherited by a Cons node
excludes the declaration that is being made on it. As we will see below, this will
help us detect double variable declarations of the same variable.

The attribute dclo works botton-up, and its function is to call dcli on the last
element of the list of variable declarations. Since dcli returns a list of variables
that are visible at the position where it is called, calling it at the bottom of
the list will e↵ectively produce the total list of variables. Similarly to dcli,
this attribute is not present throughout the entire grammar, but only on the
productions p1-p5. Its implementation is:

(p1: Root) Root ! Let

{ Root.dclo = Let.dclo }
(p2: Let) Let ! Dcls Expr

{ Let.dclo = Dcls.dclo }
(p3: Cons) Dcls1 ! Name Expr Dcls2

{ Dcls1.dclo = Dcls2.dclo }
(p4: Empty) Dcls ! ✏

{ Dcls.dclo = Dcls.dcli }

Another important remark about the attributes dcli and dclo is that they
are only declared for the productions p1-p3 (and p4, in the case of dclo), and not
for the entire CFG. This is typical of AGs as sometimes, as is the case, specific
semantics depend only on specific parts of the tree/language. The full pattern
of attribute calculation can be seen for a simple tree in Figure 1.

2.2 Distributing Variable Declarations

One important part of the semantics of analysing the scope rules of a LET program
is distributing the information regarding variable declarations throughout the
entire tree. This is important because it will allow us, when searching for the
usage of undeclared identifiers, to use an attribute that we are sure carries all
the variable declarations in the entire program.

Distributing variable declarations is performed by the inherited attribute env,
whose definition is:

8 Embedding Attribute Grammars

Root

Let

Cons

Empty

dcli

dcli

dclo

dclo

dclo

dclo
Name

[]

: dcli
Expr

Fig. 1. The relation between the inherited attribute dcli and the synthesized at-
tribute dclo, implementing an accumulation pattern.

(p1: Root) Root ! Let

{ Let.env = Let.dclo }
(p2: Let) Let ! Dcls Expr

{ Dcls.env = Let.env

, Expr.env = Let.env }
(p3: Cons) Dcls1 ! Name Expr Dcls2

{ Expr.env = Dcls1.env

, Dcls2.env = Dcls2.env }
(p5: Plus) Expr1 ! Expr2 Expr3 // Productions p5-p8

(p6: Minus) Expr1 ! Expr2 Expr3 // have the same

(p7: Times) Expr1 ! Expr2 Expr3 // semantic equations

(p8: Divide) Expr1 ! Expr2 Expr3
{ Expr2.env = Expr1.env

, Expr3.env = Expr1.env }

The attribute env is present everywhere in the tree with the same value. The
equations go all the way up the tree to obtain the dclo attribute of the root.
The inherited attribute env and its relation with dclo can be seen in Figure 2.

2.3 Calculating Invalid Identifiers

The meaning of an AG is typically given as the value of one of its synthesized
attributes. When implementing scope analysis for the LET language, we want to
derive a list of invalid identifiers, where by invalid we mean identifiers that are
either declared twice, or are used but not declared.

This list represents the meaning of the grammar and is calculated by the
attribute errs whose definition is:

(p1: Root) Root ! Let

{ Root.errs = Let.errs }
(p2: Let) Let ! Dcls Expr

Embedding Attribute Grammars 9

Root

Let

Cons

Empty

env

env

env

dclo

env

Aenv

Expr
Name

AAenv env

Fig. 2. The inherited attribute env, distributing the environment throughout the
tree.

{ Let.errs = Dcls.errs ++ Expr.errs }
(p3: Cons) Dcls1 ! Name Expr Dcls2

{ Dcls1.errs = (mNBIn Name.lexeme Dcls1.dcli)

++ Expr.errs ++ Dcls2.errs }
(p4: Empty) Dcls ! ✏

{ Dcls.errs = [] }
(p5: Plus) Expr1 ! Expr2 Expr3 // Productions p5-p8

(p6: Minus) Expr1 ! Expr2 Expr3 // have the same

(p7: Times) Expr1 ! Expr2 Expr3 // semantic equations

(p8: Divide) Expr1 ! Expr2 Expr3
{ Expr1.errs = (Expr2.errs) ++ (Expr3.errs) }

(p9: Variable) Expr ! Name

{ Expr.errs = mBIn Name.lexeme Expr.env }
(p10: Constant) Expr ! Number

{ Expr.errs = [] }

This attribute is propagated up the tree and its semantics are only relevant
for the productions p3 and p9 where the equations use the attributes dcli and
env to check for double variable declarations and use of undeclared identifiers,
respectively.

In the production p3, errs checks if a variable has been declared before. This
is easily done with the attribute dcli. Recall that this attribute returns a list of
variable declarations up to a certain tree node, which means that errs uses the
auxiliary function mNBIn to see if the current variable is not present in the list
produced by dcli.

Whenever variables are used inside expressions we have to see if they have
been declared before. This means that the semantics for errs in the production
p9 checks the list produced by env (containing all the variables of the program)
and to see if the variable is present.

In Figure 3 we can see how this attribute is defined throughout the abstract
tree of LET and how it relates to the attributes dcli and env.

Sumarizing the AG formalism, attribute occurrences are calculated by invo-
cations of small semantic functions that depend on the values of other attribute

10 Embedding Attribute Grammars

Root

Let

Cons

Empty

errs

errs

errs

Name

mNBIn

[]

dcli

errs

++

A

Constant

Variable

errs

errs

errs
++

[] env

++

mBInExpr

Fig. 3. The synthesized attribute errs.

occurrences. The calculations are specified by simple semantic equations associ-
ated with the grammar productions of the language. This approach makes the
programmer’s work easier as it decomposes complex computations into smaller
parts that are easier to implement and to reason about than if the full compu-
tation was considered.

This is the kind of behavior we aim to add to a functional setting by embed-
ding AGs. In the next section we will see how zippers can be used to embed this
AG in the functional language Haskell.

3 Embedding Attribute Grammars

Our approach to the definition of attribute grammars envisions their implemen-
tation directly in Haskell. In this section we use the LET language in order to
demonstrate how this embedding is achieved. Our approach relies on the concept
of functional zippers, that we present next.

3.1 Functional Zippers

Zippers were originally conceived by Huet [15] to represent a tree together with
a subtree that is the focus of attention. During a computation the focus may
move left, up, down or right within the tree. Generic manipulation of a zipper
is provided through a set of predefined functions that allow access to all of the
nodes of the tree for inspection or modification.

Moreover, conceptually, the idea of a functional zipper is applicable in (at
least) other functional programming language besides Haskell, which means that
our embedding can be achieved in other functional environments as well.

In our work we have used the generic zipper Haskell library of Adams [20].
This library works for both homogeneous and heterogeneous data ypes. The

Embedding Attribute Grammars 11

library can traverse any data type that has an instance of the Data and Typeable

type classes [21].
In order to illustrate how we may use zippers, we consider the following

Haskell data type straightforwardly obtained from the abstract syntax of the
LET language:

data Root = Root Let

data Let = Let Dcls Expr

data Dcls = Cons String Expr Dcls
| Empty

data Expr = Plus Expr Expr
| Minus Expr Expr
| Times Expr Expr
| Divide Expr Expr
| Variable String
| Constant Int

A LET program can be expressed as an element of Root . For example, the LET

program presented in the previous section is represented as:

Root (Let
(Cons "a" (Plus (Variable "b") (Constant 5))
Cons "c" (Constant 8)
Cons "b" (Minus (Times (Variable "c") (Constant 3))

(Variable "c"))
Empty)
(Times (Plus (Variable "a") (Constant 7)) (Variable "c"))

)

Typical of Zipper libraries, the one we use provides a set of functions, such as up,
down, left and right that allow the programmer to easily navigate throughout a
structure. The function getHole returns the subtree which is the current focus
of attention.

In our setting, on top of the zipper library of Adams [20] we have implemented
several simple abstractions that facilitate the embedding of attribute grammars.
In particular, we have defined:

– (.$) :: Zipper a ! Int ! Zipper a, for accessing any child of a structure
given by its index starting at 1

– parent :: Zipper a ! Zipper a, to move the focus to the parent of a con-
crete node

– (.|) :: Zipper a ! Int ! Bool, to check whether the current location is a
sibling of a tree node

– constructor :: Zipper a ! String, which returns a textual representation
of the data constructor which is the current focus of the zipper.

12 Embedding Attribute Grammars

With these functions defined, we can easily wrap a structure in a Zipper
to navigate through it. Recall that we are using a generic zipper library, so no
additional coding is necessary to accommodate a particular structure.

In order to see the Zippers in action, we may use the algebraic expression
which represents the meaning of the previously defined program:

expr = Times (Plus (Variable "a") (Constant 7)) (Constant 8)

and easily wrap it in a zipper,

expr zipper = toZipper expr

check if the constructor of the current node is Times,

constructor expr zipper ⌘ "Times"

go to the first child and check the constructor name,

second child = expr zipper .$ 1
constructor second child ⌘ "Plus"

and do the same with the parent,

constructor (parent second child) ⌘ "Times"

Finally, we can define functions such as lexeme Constructor 1 :: Zipper a ->

Int, where

lexeme Constructor 1 (second child .$ 2) ⌘ 7

extracts information from the zipper, simulating a standard lexer. Through-
out this paper, the name of these lexeme functions will always have the form
lexeme constructor child, where constructor corresponds to the current data con-
structor and child corresponds to the number of the child whose lexeme we want
to obtain.

As we will see in the next section, despite their simplicity the mechanisms
provided by the zippers to navigate through structures and the abstractions
we have created on top of them are su�ciently expressive to embed AGs in a
functional setting.

3.2 as an Embedded Attribute Grammar

With zippers introduced, we now show how the AG presented in Section 2 can
be implemented in the functional language Haskell, starting with the attribute
dcli. This is an inherited attribute that goes top-down in the tree, collecting
declarations. We can define it in Haskell as:

dcli :: Zipper Root ! [String]
dcli ag = case (constructor ag) of

Embedding Attribute Grammars 13

"Root" ! []
! case (constructor (parent ag)) of

"Cons" ! (dcli (parent ag))
++ [lexeme Cons 1 (parent ag)]

"Empty" ! dcli (parent ag)

The value of dcli in the top-most position, Root, corresponds to the empty
list. For all the other positions of the tree, we have to test if the parent is a
declaration, indicated by a Cons parent, in which case we add the value of the
declared variable, or if it is anything else, in which case we just return whatever
the value of dcli is in the parent node.

Note that the usage of the means that we are declaring dcli for all the
tree nodes, whereas in the AG defined in Section 2 it is only declared for a few
productions. This is not a problem, as even if dcli is only defined for a few
production, which we can always do in our setting, it behaves exactly the same
everywhere, so we are simplifying its definition.

Next, we present the attribute dclo:

dclo :: Zipper Root ! [String]
dclo ag = case (constructor ag) of
"Root" ! dclo (ag .$ 1)
"Let" ! dclo (ag .$ 1)
"Cons" ! dclo (ag .$ 3)
"Empty" ! dcli ag

This attribute collects the whole list of declared variables. Therefore, it goes
down the tree until the bottom-most position where it is equal to the attribute
dcli. Recall that dcli produces a list with all the declared identifiers up to the
position where it is being called, which in the bottom-most position will equal
the entire list of declared variables.

A similar approach is used when defining env:

env :: Zipper Root ! [String]
env ag = case (constructor ag) of
"Root" ! dclo ag

! env (parent ag)

where we defined the attribute for the top most production and then instruct
it to go up as far as possible. These types of attributes are very common in
AG specifications as a method of distributing information everywhere in the
tree, with some AG systems providing specific constructs to allow this type of
simpler implementations (such as autocopy in Silver [9] and references to remote
attributes in LRC [22]). In this embedding, we can elegantly implement this
feature using standard primitives from the hosting languague.

The last attribute we define is the one that represents the actual meaning of
the AG, errs:

14 Embedding Attribute Grammars

errs :: Zipper Root ! [String]
errs ag = case (constructor ag) of
"Root" ! errs (ag .$ 1)
"Let" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Cons" ! mNBIn (lexeme Cons 1 ag) (dcli ag)

++ errs (ag .$ 2) ++ errs (ag .$ 3)
"Empty" ! []
"Plus" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Divide" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Minus" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Time" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Variable" ! mBIn (lexeme Variable 1 ag) (env ag)
"Constant" ! []

The only really interesting parts of the definition of this attribute are in Cons,
where we test if a declaration is unique, i.e., if it has not been declared so far,
and Variable, where we test if a variable that is currently being used has been
declared somewhere in the program. The other parts of errs either go down the
tree checking for errors, or immediatly say there are no errors in that specific
position, as happens in Empty and Constant.

The semantic functions mNBIn and mBIn are easily defined in Haskell:

mBIn :: String ! [String] ! [String]
mBIn name [] = [name]
mBIn name (n : es) = if (n ⌘ name) then [] else mBIn name es

mNBIn :: String ! [String] ! [String]
mNBIn tuple [] = []
mNBIn a1 (a2 : es) = if (a1 ⌘ a2) then [a1] else mNBIn a1 es

A di↵erence between our embedding and the traditional definition of AG is
that in the former, an attribute is defined as a semantic function on tree nodes,
while in the latter the programmer defines on one production exactly how many
and how attributes are computed. Nevertheless, we argue that this di↵erence
does not impose increasing implementation costs as the main advantages of the
attribute grammar setting still hold: attributes are modular, their implemen-
tation can be sectioned by sites in the tree and as we will see inter-attribute
definitions work exactly the same way.

The structured nature of our embedding might provide an easier setting for
debugging as the entire definition of one attribute is localized in one semantic
function. Furthermore, we believe that the individual attribute definitions in our
embedding can straightforwardly be understood and derived from their tradi-
tional definition on an attribute grammar system, as can be observed comparing
the attribute definitions in the previous section with the ones in this section.

An advantage of the embedding of domain-specific languages in a host lan-
guage is the use of target language features as native. In our case, this ap-
plies, e.g., to the Haskell functions ++ and : for list concatenation and addition,

Embedding Attribute Grammars 15

whereas in specific AG systems the set of functions is usually limited and pre-
defined. Also, regarding distribution of language features for dynamic loading
and separate compilation, it is posible to divide an AG in modules that, e.g.,
may contain contain data types (representing the grammar) and functions (rep-
resenting the attributes).

4 References in Attribute Grammars

In the last section we have seen how zipper-based constructs can be used to
implement AG in a functional setting. Here we will show how an AG extension,
References, can be embedded as well.

Reference Attribute Grammars (RAGs) were first introduced by Magnus-
son and Hedin [23]. They allow attribute values to be references to arbitrary
nodes in the tree and attributes of the referenced nodes to be accessed via the
references. Apart from providing access to non-local attribute occurrences, this
extension is also important for adding extensibility to AGs and simplifying the
implementation of future improvements to it.

We shall start by extending the LET programming language with nested ex-
pressions, allowing multiple-scoped declarations of all name entities that are used
in a program. Having a hierarchy with multiple scopes is very common in real
programming languages, such as in try blocks in Java and nested procedures in
Pascal, and the example we present next is compilable Haskell code:

program = let a = b + 3
c = 8
w = let c = a ⇤ b

in c ⇤ b
b = (c ⇤ 3)� c

in c ⇤ w � a

This example works similarly to those in previous sections, but this time the
variable w contrasts with the others as it is defined by a nested block. Because
we have a nested definition, we have to be careful: as the variable b is not defined
in this inner block, its value will come from the outer block expression (c ⇤3)�c,
but c is defined both in the inner and in the outer block. This means that we
must use the inner c (defined to be a ⇤ b) when calculating c ⇤ b but the outer
c (defined to be 8) when calculating (c ⇤ 3)� c.

Syntactically, the language does not change much. We only need to add a
new construct to the data type Dcls:

data Dcls = ConsLet String Let Dcls
| Cons String Expr Dcls
| Empty

with ConsLet representing nested blocks of code. The rest remains exactly as we
presented it in Section 3.

16 Embedding Attribute Grammars

Semantically however, this adds complications to defining the scope rules of a
LET program. Nested blocks prioritize variable usage on declarations in the same
block, only defaulting to outer blocks when no information is found. Furthermore,
variables names are not exclusive throughout an entire LET program: they can
be defined with the same name as long as they exist in di↵erent blocks.

Typical solutions to this problem involve a complex algorithm where each
block is traversed twice. This implies that for each inner block, a full traversal of
the outer block is necessary to capture variable declarations. These are then used
in the inner block together with a first traversal of the inner block to capture
the total number of variables that are needed to check for scope/name rules.
Only after the inner block is checked can the second traversal of the outer block
be performed and only then can wrong declarations and use of identifiers be
detected. The idiosyncrasies of implementing the analysis for nested blocks is
further explained in previous work [24].

In order to be able to detect multiple declarations, we will need to know the
level in which a variable is declared. We will therefore start with a new attribute,
lev :

lev :: Zipper a ! Int
lev ag = case (constructor ag) of
"Root" ! 0
"Let" ! case (constructor (parent ag)) of

"ConsLet" ! lev (parent ag) + 1
! lev (parent ag)

! lev (parent ag)

The top of the tree and the main block will be at level 0. For Let , we have to
inspect the parent node. If it is a ConsLet , we are in a nested block and we have
to increment the level value. For all the other cases, we use a strategy that we
have seen before: we use the wildcard matching construct to define lev to be
equal to its value in the parent node. Again, we could define lev independently
for every tree node, but using this feature of the hosting language simplifies the
implementation and makes our work easier.

Next we present the attribute dcli which has the same aim as the attribute
with the same name presented in the previous section. Because we need to access
the level of declarations to check for scope errors in a program, the new dcli holds
a list with both the variable names and references to the declaration sites of those
variables.

dcli :: Zipper Root ! [(String ,Zipper Root)]
dcli ag = case (constructor ag) of
"Root" ! []
"Let" ! case (constructor (parent ag)) of

"Root" ! dcli (parent ag)
"ConsLet" ! env (parent ag)

! case (constructor (parent ag)) of
"Cons" ! dcli (parent ag)

Embedding Attribute Grammars 17

++ [(lexeme Cons 1 (parent ag), parent ag)]
"ConsLet" ! dcli (parent ag)

++ [(lexeme ConsLet 1 (parent ag), parent ag)]
"Empty" ! dcli (parent ag)

The semantics are very similar to the previous version with two big di↵er-
ences: first, the return type of dcli is now [(String ,Zipper Root)] and second,
the initial list of declarations in a nested block is the total environment of the
outer one (see attribute env in the previous code).

Thus, references are implemented as zippers whose current focus is the site
of the tree we want to reference. What this means in practice is that we can now
use another characteristic of our embedding, which is attributes being first-class
citizens in the target language, to re-define the semantic function MNBIn as:

mNBIn :: (String ,Zipper Root) ! [(String ,Zipper Root)] ! [String]
mNBIn tuple [] = []
mNBIn (a1 , r1) ((a2 , r2) : es) = if (a1 ⌘ a2) ^ (lev r1 ⌘ lev r2)

then [a1]
else mNBIn (a1 , r1) es

Now mNBIn checks the both is the variable name and if the declaration level
match, extending scope rules to check for declarations only in the same scope,
as double declarations in di↵erent blocks are allowed.

In this example, references are also important to support extensibility of the
AG. If all we wanted to do was check scope rules then it would be enough to
carry declaration levels in the environment. However, carrying references makes
it possible to easily extend to checking that the use of a variable conforms to other
properties of its declaration. For example, if we were to extend LET to include
type information, the declared type could be made available as an attribute
of the declaration reference. Similarly, an interactive facility that displays the
defining expression for a variable use could be implemented easily by following
the reference.

The attribute errs follows the same semantics as we have seen in the previous
sections, with the addition of a new case to support nested blocks.

errs :: Zipper Root ! [String]
errs ag = case (constructor ag) of
"Root" ! errs (ag .$ 1)
"Let" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Cons" ! mNBIn (lexeme Cons 1 ag , ag) (dcli ag)

++ errs (ag .$ 2) ++ errs (ag .$ 3)
"ConsLet" ! mNBIn (lexeme ConsLet 1 ag , ag) (dcli ag)

++ errs (ag .$ 2) ++ errs (ag .$ 3)
"Empty" ! []
"Plus" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Divide" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Minus" ! errs (ag .$ 1) ++ errs (ag .$ 2)

18 Embedding Attribute Grammars

"Time" ! errs (ag .$ 1) ++ errs (ag .$ 2)
"Variable" ! mBIn (lexeme Variable 1 ag) (env ag)
"Constant" ! []

The attributes env and dclo remain unchanged, with the former distributing
the environment throughout the tree and the latter forcing dcli to compute the
complete list of declared variables.

To summarize this section, references to non-local sites in the tree are repre-
sented by zippers whose focus is on the respective site. This capability together
with attributes being first-class citizens in the embededing language provides
the user with multiple ways to use AGs when developing programs in a func-
tional setting. In the next section we will see how another important extension,
Higher-order AGs (HOAGs), is implemented in our setting.

5 Higher-Order Attribute Grammars

Higher-Order Attribute Grammars (HOAGs) were first introduced by Vogt et al.
and introduce a setting where the structure tree can be expanded as the result
of attribute computations [6]. The new parts of the tree can themselves have
semantics defined using attributes.

Comparing with traditional AGs, HOAGs provide a setting where:

– attributes define new trees whose semantics are defined as a new set of
attributes occurrences, and

– computations in the original tree can depend on attributes from the new
trees.

We have already defined the scope rules of LET in our setting with the help
of references. These aid in analysing the level of variable declarations and detect
errors in the declaration and use of these identifiers. In this section we will
continue defining semantics for LET, but this time we will define an auxiliary
structure, more precisely a symbol table, which will be an HOAG where certain
semantics will be defined as attributes.

Since we have already defined and implemented the scope rules for LET, we
can relax when defining and implementing the semantics of the symbol table
(and when solving it, as we will see in the next section) and rely on the fact that
our scope rules ensure the program is semantically correct. For example, we can
freely search for a variable being used in an expression with the assurance that
it is well declared and we will find it somewhere.

We choose to use nested symbol tables whose structure closely resembles
the scoping structure of LET programs. The following data types define that
structure:

data RootHO = RootHO DclsHO Expr

data DclsHO = ConsHO String IsSolved Expr DclsHO
| ConsLetHO String IsSolved DclsHO DclsHO

Embedding Attribute Grammars 19

| NestedDclsHO DclsHO Expr
| EmptyHO

data IsSolved = IsSolved Int | NotSolved

These three data types have the following functionality:

– RootHO contains the list of declarations and the final expression to be solved.
– DclsHO has two data constructors, ConsHO and ConsLetHO , for variable

declarations and nested blocks respectively. These constructors both carry
the variable name as a String , and both recursively define DclsHO . However,
whereas the former has an expression, the latter carries nested information.
The data constructor NestedDclsHO carries information that corresponds to
nested blocks: an expression which is the meaning of the block, and a list
with the nested declarations.

– IsSolved is added to avoid continuous checks of completion of nested blocks
and to facilitate accessing their meaning: once a nested block or an expression
is solved we change this constructor from NotSolved to IsSolved and add its
value.

Next, we present the attributes that create the higher order symbol table from
an abstract tree of LET. We will need two attributes to do so: one that creates
the whole list with type DclsHO , and another that creates the root of the higher
order tree that constitutes the symbol table. We shall start by presenting the
latter first:

createSTRoot :: Zipper Root ! RootHO
createSTRoot ag = case (constructor ag) of
"Root" ! RootHO (createST ag) (lexeme Let 2 (ag .$ 1))

Here, the first argument of RootHO is the attribute that creates the symbol table
and lexeme Let 2 (ag .$ 1) lexes the expression that constitutes the meaning of
this program. Please recall that the abstract tree for LET has the form:

Root
|
Let
/ \

/ \
Dcls Expr
|

...

and therefore to lexe top level expression we have to go to the first child of Root ,
a Let , and then we can apply the lexe function to the second child, Expr , which
is why we write lexeme Let 2 (ag .$ 1).

The second attribute needed to construct the symbol table goes through the
whole program and captures declarations and nested blocks:

20 Embedding Attribute Grammars

createST :: Zipper Root ! DclsHO
createST ag = case (constructor ag) of
"Root" ! createST (ag .$ 1)
"Let" ! createST (ag .$ 1)
"Cons" ! let var = lexeme Cons 1 ag

expr = lexeme Cons 2 ag
in ConsHO var NotSolved expr (createST (ag .$ 3))

"ConsLet" ! let var = lexeme ConsLet 1 ag
nested = let nested = createST (ag .$ 2)

expr = lexeme In 1 ((ag .$ 2) .$ 2)
in NestedDclsHO nested expr

in ConsLetHO var NotSolved nested (createST (ag .$ 3))
"Empty" ! EmptyHO

The most interesting parts of this attribute are the semantics for Cons and
ConsLet . For these we extract the necessary information to construct the symbol
table, declare all the elements as NotSolved and recursively call createST where
needed, i.e., always in the tail of the program, following the recursive structure
of the language, and when nested blocks are found.

With createSTRoot and createST defined we have now created a new tree
on which attributes can be defined. The new higher order tree can be easily
transformed into an HOAG in our setting by wrapping it inside a zipper, after
which we can define attribute computations such as the ones we have seen in the
previous sections. For example, we can define semantics that check if a variable
is solved in the symbol tree, starting with the attribute isVarSolved .

isVarSolved :: String ! Zipper RootHO ! Bool
isVarSolved name ag = case (constructor ag) of
"RootHO" ! auxIsVarSolved name ag
"NestedDclsHO" ! auxIsVarSolved name ag

! isVarSolved name (parent ag)

isVarSolved is an inherited attribute that takes as argument the variable name
as a string and a zipper for the current focus. The equations search upwards
either to the root of the tree (RootHO) or to the root of the nearest nested block
(NestedDclsHO). We do so to ensure that when the auxIsVarSolved attribute is
called we are searching in the whole block, starting in its top most position:

auxIsVarSolved :: String ! Zipper RootHO ! Bool
auxIsVarSolved name ag = case (constructor ag) of
"RootHO" ! auxIsVarSolved name (ag .$ 1)
"NestedDclsHO" ! auxIsVarSolved name (ag .$ 1)
"ConsHO" ! if lexeme ConsHO Var 1 ag ⌘ name

then auxIsVarSolved name (ag .$ 2)
else auxIsVarSolved name (ag .$ 4)

"ConsLetHO" ! if lexeme ConsLetHO Var 1 ag ⌘ name
then auxIsVarSolved name (ag .$ 2)

Embedding Attribute Grammars 21

else auxIsVarSolved name (ag .$ 4)
"IsSolved" ! True
"NotSolved" ! False
"EmptyHO" ! oneUpIsVarSolved name ag

The synthesized auxIsVarSolved attribute goes down the tree and searches for
the declaration of the specified variable. Here, the fact that the variables are
defined as a nested block or as an expression is not important, as in either cases
we can use the constructor isSolved . At the bottom we encounter the production
EmptyHO and the oneUpIsVarSolved attribute is called.

oneUpIsVarSolved :: String ! Zipper RootHO ! Bool
oneUpIsVarSolved name ag = case (constructor ag) of
"NestedDclsHO" ! isVarSolved name (parent ag)

! oneUpIsVarSolved name (parent ag)

The only function of oneUpIsVarSolved is to go up as far as possible, jump to a
parent block, and restart the whole process again with isVarSolved .

Because we have already defined the scope rules analysis for LET in Section 4,
the semantics for the symbol table can be simplified because we know we are
dealing with a valid program. For example, the attribute oneUpIsVarSolved is
never defined for RootHO , because we don’t know how many nested blocks we
have to search to find a variable declaration but we are sure that we will find
one at least in the main block of the program.

One important note about the three attributes isVarSolved , auxIsVarSolved
and oneUpIsVarSolved is their interdependence. The first two, isVarSolved and
auxIsVarSolved , search for a variable in a block, with the former going to the
topmost position of a block and the latter going top-down in search of the vari-
able. In case nothing is found, oneUpIsVarSolved goes up one block. The relation
between these three attributes is illustrated in Figure 4.

NestedDclsHO

ConsHO

EmptyHOName

auxIsVarSolved

auxIsVarSolved

isSolved

isVarSolved

Expr

isVarSolved

isVarSolved
if

else

oneUpIsVarSolved

oneUpIsVarSolved

oneUpIsVarSolved

then
Expr

…

Fig. 4. Dependency between isVarSolved , auxIsVarSolved and oneUpIsVarSolved .

22 Embedding Attribute Grammars

We have defined these attributes for a tree created by an AG in the first
place, thereby creating an HOAG. In a traditional approach we would define
computations on the symbol table using semantic functions that sit outside the
AG. By using an HOAG we make it possible to define those computations them-
selves using attributes. For example, the following attributes calculate the value
of a solved variable given a resolved symbol table.

getVarValue :: String ! Zipper RootHO ! Int
getVarValue name ag = case (constructor ag) of
"RootHO" ! auxGetVarValue name ag
"NestedDclsHO" ! auxGetVarValue name ag

! getVarValue name (parent ag)

auxGetVarValue :: String ! Zipper RootHO ! Int
auxGetVarValue name ag = case (constructor ag) of
"RootHO" ! auxGetVarValue name (ag .$ 1)
"NestedDclsHO" ! auxGetVarValue name (ag .$ 1)
"ConsHO" ! if lexeme ConsHO Var 1 ag ⌘ name

then auxGetVarValue name (ag .$ 2)
else auxGetVarValue name (ag .$ 4)

"ConsLetHO" ! if lexeme ConsLetHO Var 1 ag ⌘ name
then auxGetVarValue name (ag .$ 2)
else auxGetVarValue name (ag .$ 4)

"IsSolved" ! lexeme IsSolved 1 ag
"EmptyHO" ! oneUpGetVarValue name ag

oneUpGetVarValue :: String ! Zipper RootHO ! Int
oneUpGetVarValue name ag = case (constructor ag) of
"NestedDclsHO" ! getVarValue name (parent ag)

! oneUpGetVarValue name (parent ag)

These definitions operate in a similar manner to the attributes we have already
seen to check is a variable is solved, with the same type of interdependence and
semantics between the three.

We have shown that we can create an HOAG representing a symbol table
of a LET program, and how semantics can be defined for it. However, from this
symbol table we can not directly calculate the meaning of a LET program. We
still need to resolve the symbol table and find the exact meaning of each variable.

In the next section we will see how an extension that allows circular compu-
tations of attributes can be used to gracefully implement the resolution of the
symbol table and finally calculate the meaning of a program.

6 Circular Attribute Grammars

An Attribute Grammar is called circular (CAG) if it has an attribute that de-
pends transitively on itself. CAGs allow circular dependencies between attributes

Embedding Attribute Grammars 23

on the condition that a fixed-point can necessarily be reached for all possible
attribute trees. This is guaranteed if the circular dependencies between the at-
tribute(s) are defined by a monotonic computation that necessarily reaches a
stopping condition.

Previous work has shown practical, well-known applications of AGs with cir-
cular definitions of attributes, including applications in di↵erent domains such as
data-flow analysis or code optimizations [25–27]. Another example where CAGs
are useful is analysing variable declarations such as the ones in the following LET

program.

program = let x = y
z = 1
y = z

in x + y + 1

In program, the textual order in which variables are declared is di↵erent to the
order implied by their data dependence and by which variable evaluation is
defined. If these orders were the same then evaluation of a LET program would
be much simpler and would require only an algorithm that analyses the variables
in textual order.

One way to solve this “out of order” problem is to first construct a symbol
table as in Section 5 and then define attributes that circularly iterate over that
structure. In other words, repeatedly calculate attributes on the symbol table
until all of the variables are solved.7

Therefore, to process this LET program we need a circular, fixed-point evalu-
ation strategy. The general idea is to start with a bottom value, ?, and compute
approximations of the final result until it is not changed anymore, that is, the
least fixed point: x = ?; x = f(x); x = f(f(x)); ... is reached. To guarantee
the termination of this computation, it must be possible to test the equality
of the result (with ? being its smallest value). All in all, the computation will
return a final result of the form f(f(...f(?)...)).

Of course, this solution might produce an infinite loop in cases where circular
variable declarations are present, such as in this program:

program = let x = y
y = x

in x + y + 1

There is no fixed point in this case. Fortunately, this kind of program is invalid
so our computations do not take them into account.

In order to implement fixed point computations in our embedding we use the
following fixed point function.

7 In this particular case, we do not necessarily need to reach a state where all the
variables are solved. We can stop it, for example, whenever the top expression of a
program has only values and no variables. As we will see, our setting allows custu-
misation of the fixed point calculation to stop the circular attribute evaluation for
cases like this.

24 Embedding Attribute Grammars

fixed point :: Zipper a ! (Zipper a ! Bool) ! (Zipper a ! b)
! (Zipper a ! Zipper a) ! b

fixed point ag cond calc incre = if cond ag
then calc ag
else fixed point (incre ag) cond calc incre

The arguments of this function are as follows:

– ag :: Zipper a : the tree on which we want to compute the fixed point com-
putation. In the case of the symbol table HOAG presented in the previous
section ag would be a value of type Zipper RootHO .

– cond ::Zipper a ! Bool : a function that takes a tree and returns a Boolean
value that signals when the fixed point has been achieved.

As we have seen above, the traditional definition of the fixed point states
that computation stops when equality is achieved, i.e., when the result of a
computation is equal to its input. Here we have extended this definition to
use any user-defined Boolean-value attribute to define the stopping condition
as it can allow more powerful and/or e�cient computations to be defined.

In the case of LET, the user can define an attribute that not only checks
for the total resolution of all variables but also checks if the expression that
represents the meaning of a program does not require symbol table resolu-
tion, for example, because it only contains values.

– calc :: Zipper a ! b : a computation that is performed after the fixed point
has been reached. For example, the computation might calculate the value
of the top expression of the symbol table after all declarations have been re-
solved. The identity function can be passed as calc if the user does not want
an additional computation to be applied after the circular computation.

– incre :: Zipper a ! Zipper a : an attribute that performs an iteration of the
circular computation. It returns a new structure that is checked using cond
and, if a fixed point is not reached, is used as the input for the next iteration.

The type b is the type of the final result of the circular computation, provided
by calc. If the identity function is used, b will be Zipper a.

Returning to the running example of the previous section, we have created a
symbol table as an HOAG and defined a semantics for it that can be applied to
obtain a value assuming that all symbols have been solved. We now show how
a symbol table can be resolved using circular, fixed-point based computation.
To do so, we have to define the attributes that will be used as arguments of
fixed point , starting with the attribute that ends the circular computation by
defining the fixed point (cond):

isSolved :: Zipper RootHO ! Bool
isSolved ag = case (constructor ag) of
"RootHO" ! isSolved (ag .$ 1) _ isSolved (ag .$ 2)

Embedding Attribute Grammars 25

"NestedDclsHO" ! isSolved (ag .$ 1)
"ConsHO" ! isSolved (ag .$ 2) ^ isSolved (ag .$ 4)
"ConsLetHO" ! isSolved (ag .$ 2) ^ isSolved (ag .$ 4)
"EmptyHO" ! True
"IsSolved" ! True
"NotSolved" ! False
"Plus" ! isSolved (ag .$ 1) ^ isSolved (ag .$ 2)
"Divide" ! isSolved (ag .$ 1) ^ isSolved (ag .$ 2)
"Minus" ! isSolved (ag .$ 1) ^ isSolved (ag .$ 2)
"Time" ! isSolved (ag .$ 1) ^ isSolved (ag .$ 2)
"Variable" ! isVarSolved (lexeme Variable 1 ag) ag
"Constant" ! True

This attribute has very simple semantics: it just goes through the tree and
checks if either all variables are solved, or the topmost expression representing
the meaning of the program is already solved without reference to variables
(RootHO case). From this point on, the attribute tries to check if all variables
are solved, through the constructor IsSolved , or if an expression contains only
constants or solved variables.

The next attribute to be defined is solveSTRoot , which together with solveST
performs one iteration of the fixed point computation, solving as many variables
as possible.

solveSTRoot :: Zipper RootHO ! Zipper RootHO
solveSTRoot ag = let solved decl = solveST (ag .$ 1)

top expr = lexeme RootHO ag
in toZipper (RootHO solved decl top expr)

In this definition the topmost expression is ignored and solveST tries to solve
the declarations. (If the meaning expression only contains constants isSolved will
notice and terminate the fixed point computation before solveSTRoot is called.)

The attribute solveST considers a list of declarations and solves as many as
can be solved in a single pass.

solveST :: Zipper RootHO ! DclsHO
solveST ag = case (constructor ag) of
"ConsHO" !
if (¬ isSolved (ag .$ 2) ^ isSolved (ag .$ 3))
then let var = lexeme ConsHO 1 ag

res = IsSolved (calculate (ag .$ 3))
expr = lexeme ConsHO A ag

in ConsHO var res expr (solveST (ag .$ 4))
else let var = lexeme ConsHO 1 ag

res = lexeme ConsHO 2 ag
expr = lexeme ConsHO 3 ag

in ConsHO var res expr (solveST (ag .$ 4)
"ConsLetHO" !

26 Embedding Attribute Grammars

if (¬ isSolved (ag .$ 2) ^ isSolved (ag .$ 3))
then let var = lexeme ConsLetHO 1 ag

res = IsSolved (calculate (ag .$ 3))
expr = lexeme ConsLetHO 3 ag

in ConsLetHO var res expr (solveST (ag .$ 4))
else let var = lexeme ConsLetHO 1 ag

solved = lexeme ConsLetHO 2 ag
newST = let newST = solveST (ag .$ 3)

expr = lexeme NestedDclsHO 2 (ag .$ 3)
in NestedDclsHO newST expr

in ConsLetHO var solved newST (solveST (ag .$ 4))
"EmptyHO" ! EmptyHO
"NestedDclsHO" ! solveST (ag .$ 1)

solveST attribute uses the same idea to solve variables if they are defined as an
expression or as a nested block (for the constructors ConsHO and ConsLetHO ,
respectively). Recall the structure of part of the abstract tree for a LET program:

...
|
ConsHO

/ | \ \
var | \ ...

/ \
iSolved Expr

For the ConsLetHO the list has the same structure but instead of an expression
it contains a nested block.

solveST works as follows:

1. First check if the variable is not solved but if its expression/nested block is
solved (all the variables it uses are solved). This is performed with the line
¬ isSolved (ag .$ 2) ^ isSolved (ag .$ 3).

2. If the condition holds, we can solve the variable, which means we calculate
(defined below) the value of either the expression or the nested block and
update the constructor to isSolved .

3. If the condition does not hold, we cannot do anything yet, so we will recon-
struct this part of tree exactly as we read it.

– If we are dealing with a variable defined by a nest block, we will try
to see if any nested definitions can be solved, by calling solveST in the
nested block: solveST (ag .$ 3)

4. The attribute always ends by going to the next declaration, which corre-
sponds to the fourth child: solveST (ag .$ 4)

With the attributes isSolved and solveSTRoot defined, we only have to define
an attribute that calculates both the meaning of the program through the symbol

Embedding Attribute Grammars 27

tree and of the expressions that define the value of variables throughout each
iteration:

calculate :: Zipper RootHO ! Int
calculate ag = case (constructor ag) of
"RootHO" ! calculate (ag .$ 2)
"NestedDclsHO" ! calculate (ag .$ 2)
"Plus" ! calculate (ag .$ 1) + calculate (ag .$ 2)
"Divide" ! calculate (ag .$ 1) / calculate (ag .$ 2)
"Minus" ! calculate (ag .$ 1)� calculate (ag .$ 2)
"Time" ! calculate (ag .$ 1) ⇤ calculate (ag .$ 2)
"Variable" ! getVarValue (lexeme Variable 1 ag) ag
"Constant" ! lexeme Constant 1 ag

With these attributes defined, we are now in position to use the generic
fixed point function and solve the symbol table. Please recall that this function
takes four arguments: our AG in the form of a zipper, a function that checks for
termination, a function that is applied whenever the fixed point is reached, and
a function that performs one iteration.

In our case, we use fixed point as follows to successfully resolves the symbol
table and provides a meaning for a valid LET program.

solve :: Zipper Root ! Int
solve ag = let ho st = toZipper (createSTRoot ag)

in fixed point ho st isSolved calculate solveSTRoot

As well as illustrating how circular computations can be defined to iterate
over a structure, this example also shows that circularity can easily be combined
with other AG extensions, in this case higher-order attributes as used for the
ho st value.

7 Bidirectional Transformations

Bidirectional transformations are programs which express a transformation from
one input to an output together with the reverse transformation, carrying any
changes or modifications to the output, in a single specification.

In the context of grammars, a bidirectional transformation represents a trans-
formation from a phrase in one grammar to a phrase in the other, with the oppo-
site direction automatically derived from the first transformation specification.

AGs, and their modern extensions, only provide support for specifying unidi-
rectional transformations, despite bidirectional transformations being common
in AG applications, especially between abstract/concrete syntax. For example,
when reporting errors discovered on the abstract syntax we want error messages
to refer to the original program’s concrete syntax, not a possible de-sugared
version of it. Or when refactoring source code, programmers should be able to
evolve the refactored code, and have the change propagated back to the original
source code.

28 Embedding Attribute Grammars

Another application is in semantic editors generated by AGs [28, 22, 29]. Such
systems include a manually implemented bidirectional transformation engine to
synchronise the abstract tree and its pretty printed representation displayed
to users. This is a complex and specific bidirectional transformation that is
implemented as two hand-written unidirectional transformations that must be
manually synchronized when one of the transformations changes. This makes
maintenance complex and error prone. For example, in a transformation A ! B ,
a bidirectionalization system defines the B ! A transformation, which has to
carry any upgrades applied to B back to a new A0 which is as close as possible
to the original A.

In a previous paper [30] we describe a system for generating attribute gram-
mar implementations of bidirectional transformations given only a specification
of the forward transformation. This approach is applied here to the embedding
of AGs using zippers. Here we sketch the structure of the generated bidirectional
transformation while the full details can be found in the earlier paper.

Returning to our running example of the LET language in the previous sec-
tions, we have worked with its abstract syntax representation (AST) since the
abstract syntax is easier to handle and to reason about. However, a concrete
syntax representation (CST) is as important. If we want to construct a parser
for LET, and if we want to provide the programmer with a nice syntax for the
language, we will inevitably need a concrete syntax representation, which is what
we present next in the form of an Haskell data type:

data RootC = RootC LetC

data LetC = LetC DclsC InC

data DclsC = ConsLetC String LetC DclsC
| ConsAssignC String E DclsC
| EmptyDclsC

data E = Add E T
| Sub E T
| Et T

data T = Mul T F
| Div T F
| Tf F

data F = Nest E
| Neg F
| Var String
| Const Int

This representation is more complex than the one we have presented in Sec-
tion 2 (and extended with nested blocks in Section 3), because it has more
non-terminal symbols and more productions.

Nonterminals RootC, LetC and DclsC have a single corresponding nonterminal
in the abstract representation, Root, Let and Dcls respectively. The same is true
for their constructors/productions:

Embedding Attribute Grammars 29

RootC ! Root

LetC ! Let

ConsLetC ! ConsLet

ConsAssignC ! ConsAssign

EmptyDclsC ! EmptyDcls

Since these mappings represent a bijective relation between these construc-
tors, it is very easy have the backward transformation represented just by the
inversion of these mappings:

RootC Root

LetC Let

ConsLetC ConsLet

ConsAssignC ConsAssign

EmptyDclsC EmptyDcls

The expressions, on the other hand, are not so simple. In this concrete repre-
sentation we have three data types for expressions, E , T and F , whereas we have
only one in the abstract, Expr . An example of the possible mappings between
concrete and abstract types, with the former on the left side, is presented next8:

Add ! Plus

Sub ! Minus

Et ! -

Mul ! Times

Div ! Divide

Tf ! -

Var ! Variable

Const ! Constant

The constructors Et and Tf do not have corresponding constructors in the
abstract syntax. However, deriving the backward transformation from these map-
pings presents new challenges. Some decision must be made to determine if an
Expr on the abstract side is mapped to an E , T or F and this decision should
be made for each node in the AST. The simple, naive solution is to map every
Expr back to F and wrap everything in parenthesis, but this is far from ideal as
it unnecessarily produces a complicated concrete representation.

Another problem in defining a bidirectional system appears in cases as the
ones presented by the production Neg . This production is transformed according
to the mapping:

Neg (r) ! Minus (Constant(0),r)

where r represents the only child of Neg, which is carried out to a subtraction in
the abstract view. However, we want to map it back to a negation on the CST,
particularly if a negation was there in the first place (i.e., the user didn’t right
0-1 on the abstract tree on purpose).

8 The production Neg creates additional dificulties, therefore it is ommitted on purpose
and will be discussed below.

30 Embedding Attribute Grammars

The di↵erences between the concrete and abstract representations of LET add
di�culties when writing the transformations. In previous works [30] we have de-
veloped an automatic bidirectionalization system that can use two context free
grammars, for the target and for the source, and a representation of a forward
transformation and automatically derive AGs that implement such transforma-
tions. This system is capable of generating these transformations as AGs, making
use of the powerful features of the AG system Silver [9].

Despite our previous work generating code as an AG Domain Specific Lan-
guage (DSL) in Silver, our embedding provides su�cient expressiveness to sup-
port such transformations, as we shall show next.

When applying the backward transformation to a modified tree, it is help-
ful to have access to the original tree to which the forward transformation was
applied so that, at least, the unmodified parts map back to their original repre-
sentation. We begin by presenting the following data type:

data Link = IsRootC RootC | IsLetC LetC | IsInC InC
| IsDclsC DclsC | IsE E | IsT T | IsF F | Empty

which represents a link to the original node in the CST for which the AST node
was created. All the constructors of the abstract representation are upgraded to
have this link as their last child. This process changes the abstract data type,
but maintains all the AGs we have seen in the previous sections semantically
valid. Recall that in the embedding presented in this paper we call attributes by
their ordering number, which means that adding more children to the end of a
tree node does not change the order of the existing ones.

In our setting, the transformations are represented by a set of synthesized
attributes get that is named getFrom To, with From representing the type that
is being mapped to To. Next, we present an example of an attribute that imple-
ments the mapping from RootC to Root :

getRootC Root :: Zipper RootC ! Root
getRootC Root ag = case (constructor ag) of
"RootC" ! Root (getLetC Let (ag .$ 1)) (createLink ag)

where createLink is defined as the function that takes a zipper and creates an
instance of Link . This is the basis of our transformation: go through the concrete
tree and create nodes of the AST in an AG-fashion until we have gone through
all the nodes in the CST.

When defining the backward transformation we have to be more careful with
the problems we have seen previosly: now, abstract nonterminals (Expr) can
map to more than one in the concrete (E , T or F).

The put attribute (defining the backward transformation) for Add , for ex-
ample, will ask for putExpr E of its left child and putExpr T of its right since
these are the correct types for its left and right children, and in our system each
Expr knows how to translate itself back to any of the E , T , or F non-terminals.
By doing so we to avoid naively wrapping every sub-expression in parenthesis,
although our transformation still does this if it is required.

Embedding Attribute Grammars 31

Next we present the attribute that transforms parts of an abstract tree whose
node is of type Expr into nodes of the concrete tree whose type is F :

putExpr F :: Zipper Root ! F
putExpr F ag = case (getLink ag) of
IsE e ! Nest e
IsT t ! Nest (Et t)
IsF f ! f
Empty ! case (constructor ag) of
"Plus" ! let left = putExpr E (ag .$ 1)

right = putExpr T (ag .$ 2)
in Nest (Add left right)

"Minus" !
case (getHole ag ::Maybe Expr) of
Just (Minus (Constant 0)) ! Neg (putExpr F (ag .$ 2))
otherwise ! let left = putExpr E (ag .$ 1)

right = putExpr T (ag .$ 2)
in Nest (Sub left right)

"Times" ! let left = putExpr T (ag .$ 1)
right = putExpr F (ag .$ 2)

in Nest (Et (Mul left right))
"Divide" ! let left = putExpr T (ag .$ 1)

right = putExpr F (ag .$ 2)
in Nest (Et (Div left right))

"Constant" ! Const (lexeme Constant 1 ag)
"Variable" ! Var (lexeme Variable 1 ag)

There are a couple of important remarks regarding the implementation of
putExpr F :

– The first thing the attribute computation does is extract the link back in the
node. This is done with the function getLink . If this link exists, we can use
this information right away, and no other analysis or computations need to
be performed. This ensures that the transformation always transforms back
to a tree which is as similar as possible to the original one.

These links back satisfy the invariant that if a node has a link back then
all of its children have a link back and there were no transformations on that
AST from its original construction from the CST.

– Whenever the types do not match, the system automatically detects if any
special constructs can be used. Take for example the line IsE e ! Nest e.
The attribute detects there is a link to something of type E that can be
used, but the attribute itself must generate something of type F . Through
a completely automatic mechanism described in [30], the system finds that
the constructor Nest can be used to transform the link into a valid type, and
does so.

32 Embedding Attribute Grammars

– If there is no link back (i.e., the link is Empty), the attribute will transform
it into its equivalent in the concrete representation. Variable, for example,
is transformed into a Var .

– For the constructor Minus, the system is capable of detecting that this con-
structor came either from a Sub or from a Neg , specializing the transforma-
tion whenever possible, i.e., finding if the Minus has a zero on the left side,
in which case it maps to Neg .

The full implementation of the backwards transformation also has the func-
tions putExpr E and putExpr T and their definitions are very similar to putExpr F .

In this setting we create an environment where rewrite rules represent the
mappings shown above to specify the forward transformation. From these, we
generate the forward and backward AGs implementations, with links back to the
original CST. These are used in the transformation but, when not present, we
get back a tree without excessive use of parenthesis. In the end we end up with
AGs that implement the transformation in both ways and whose semantics are
much more complicated that the ones we would usually write by hand.

There are certain conditions on which transformations on the AST create an
input where a transformation cannot be applied. Our setting provides mecha-
nisms that detect such trees and advise the user to change the tree so it matches
the domain of the transformation. We call these tree repairs, and their semantics
are further explained in [30].

One last important remark about the bidirectionalization system is that we
are generating all these attributes that implement transformations automati-
cally from specific data types for the source, the view and rewrite rules for the
forward transformation. This code generation means we can also generate types
in Haskell directly from the source and view specifications, as well as the func-
tions constructor and lexeme that we have been using so far, making the the
boilerplate code that was until now implemented by the user into an automatic
process.

8 Related Work

In this paper, we have proposed a zippers-based embedding of attribute gram-
mars in a functional language. The implementations we obtain are modular and
do not rely on laziness. We believe that our approach is the first that deals with
arbitrary tree structures while being applicable in both lazy and strict settings.
Furthermore, we have been able to implement in our environment all the stan-
dard examples that have been proposed in the attribute grammar literature. This
is the case of repmin [31], HTML table formatting [7], and smart parentesis, an il-
lustrative example of [9], that are available through the cabal package ZipperAG9.

Moreover, the navigation via a generic zipper that we envison here has ap-
plications in other domains: i) our setting is being used to create combinator
languages for process management [32] which themselves are fundamental to a

9 http://hackage.haskell.org/package/ZipperAG

Embedding Attribute Grammars 33

platform for open source software analysis and certification [33, 34]; and ii), the
setting that we propose was applied on a prototype for bidirectional transfor-
mations applied to programming environments for scientific computing.

Below we survey only works most closely related to ours: works in the realm
of functional languages and attribute grammar embeddings.

8.1 Zipper-based approaches

Uustalu and Vene have shown how to embed attribute computations using
comonadic structures, where each tree node is paired with its attribute val-
ues [35]. This approach is notable for its use of a zipper as in our work. However,
it appears that this zipper is not generic and must be instantiated for each tree
structure. Laziness is used to avoid static scheduling. Moreover, their example
is restricted to a grammar with a single non-terminal and extension to arbitrary
grammars is speculative.

Badouel et al. define attribute evaluation as zipper transformers [36, 37].
While their encoding is simpler than that of Uustalu and Vene, they also use
laziness as a key aspect and the zipper representation is similarly not generic.
This is also the case of [38], that also requires laziness and forces the programmer
to be aware of a cyclic representation of zippers.

Yakushev et al. describe a fixed point method for defining operations on
mutually recursive data types, with which they build a generic zipper [39]. Their
approach is to translate data structures into a generic representation on which
traversals and updates can be performed, then to translate back. Even though
their zipper is generic, the implementation is more complex than ours and incurs
the extra overhead of translation. It also uses more advanced features of Haskell
such as type families and rank-2 types.

8.2 Non-zipper-based approaches

Circular programs have been used in the past to straightforwardly implement
AGs in a lazy functional language [40, 41]. These works, in contrast to our own,
rely on the target language to be lazy, and their goal is not to embed AGs:
instead they show that there exists a direct correspondence between an attribute
grammar and a circular program.

Regarding other notable embeddings of AGs in functional languages [12–14],
they do not o↵er the modern AG extensions that we provide, with the exception
of [14] that uses macros to allow the definition of higher-order attributes. Also,
these embeddings are not based on zippers, they rely on laziness and use exten-
sible records [12] or heterogeneous collections [13, 14]. The use of heterogeneous
lists in the second of these approaches replaces the use in the first approach of
extensible records, which are no longer supported by the main Haskell compilers.
In our framework, attributes do not need to be collected in a data structure at
all: they are regular functions upon which correctness checks are statically per-
formed by the compiler. The result is a simpler and more modular embedding.
On the other hand, the use of these data structures ensures that an attribute

34 Embedding Attribute Grammars

is computed only once, being then updated to a data structure and later found
there when necessary. In order to guarantee such a claim in our setting we need
to rely on memoization strategies, often costly in terms of performance.

Our embedding does not require the programmer to explicitly combine dif-
ferent attributes nor does it require combination of the semantic rules for a
particular node in the syntax tree, as is the case in the work of Viera et al. [13,
14]. In this sense, our implementation requires less e↵ort from the programmer.

The Kiama library embeds attribute grammars in Scala and supports exten-
sions such as higher-order attributes and circularity [11]. Kiama’s embedding is
not purely functional since the host language is not, but it is pure in the sense
that it adds no constructs to the Scala language like our Haskell embedding.
The role of the zippers in our approach is played by object references in Kiama.
In Kiama there is no need to maintain a zipper since a reference to a node is
su�cient to identify it, an approach that is not available in a value-based func-
tional language. Kiama uses in-structure references such as “parent” to access
the surrounding context of a node, instead of having more traditional inherited
attribute definitions.

In [42] the authors introduce ”Reference AGs ”, and show how these are a
special form of circular higher-order AGs, which are available in our setting and
are part of the running example on this paper.

8.3 Bidirectional Transformations

Data transformations are an active research topic with multiple strategies ap-
plied on various fields, some with a particular emphasis on rule-based approaches.
Czarnecki and Helsen [43] present a survey of such techniques, but while they
mention bidirectionality, they do not focus on it.

Bidirectional data transformations have been studied in di↵erent computing
disciplines, such as updatable views in relational databases [44], programmable
structure editors [45], model-driven development in software engineering [46],
among others. In [47] a detailed discussion and extensive citations on bidirec-
tional transformations are included.

The ATLAS Transformation Language is widely used and has good tool sup-
port, but bidirectional transformations must be manually written as a pair of
unidirectional transformations [48]. BOTL [49], an object-oriented transforma-
tion language, defines a relational approach to transformation of models con-
forming to metamodels. Despite discussing non bijective transformations, no
specification is given regarding how consistency should be restored when there
are multiple choices on either direction.

A well-regarded approach to bidirectionalization systems is through lens com-
binators [44, 50]. These define the semantic foundation and a core programming
language, for bidirectional transformations on tree-structured data, but it only
works well for surjective (information decreasing) transformations, our system
can cope with rather heterogeneous source and target data types.

The approach followed in [51] uses a language for specifying transformations
very similar to the one presented in this work, with automatic derivation of

Embedding Attribute Grammars 35

the backward transformation. Similar to our approach, this system statically
checks whether changes in views are valid without performing the backward
transformation, but they do not provide type-solving techniques such as the one
available on our setting, where decisions between mapping di↵erent sets of non
terminals are completely automated.

In the context of attribute grammars, Yellin’s early work on bidirectional
transformations in AGs defined attribute grammar inversion [52]. In attribute
grammars inversion, an inverse attribute grammar computes an input merely
from an output, but in our bidirectional definition of attribute grammars, a
backward transformation can use links to the original source to perform better
transformations. Thus, our approach can produce more realistic source trees
after a change to the target.

9 Conclusion

In this paper we have presented an embedding of modern AG extensions using a
concise and elegant zipper-based implementation. We have shown how reference
attributes, higher-order attributes and circular attributes can be expressed as
first class values in this setting. As a result, complex multiple traversal algorithms
can be expressed using an o↵-the-shelf set of reusable components.

In the particular case of circular attributes, we have presented a generalized
fixed point computation that provides the programmer with easy, AG-based im-
plemetations of complex circular attribute definitions.

We have presented our embedding in the Haskell programming language,
despite not relying on any advanced feature of Haskell such as lazy evaluation.
Thus, similar concise embeddings could be defined in other functional languages.

As we have shown both by the examples presented and by the ones available
online, our simple embedding provides the same expressiveness of modern, large
and more complex attribute grammar based systems.

We have also shown how rewrite rules can be used to specify forward trans-
formations, and be automatically inverted to specify backward transformations,
and then be implemented in ou zipper-based embedding of attribute grammars
with enforced quality on the transformation.

The features our bidirectionalization system supports are completely auto-
matic for many applications, freeing the programmer of having to write complex
attribute equations that have to perform multiple pattern matching, manage
both the links back and their types, prioritizing transformations, etc. As far as
we are aware, this is the first integration of a bidirectional transformation system
in a pure embedded AG framework.

10 Future Work

As part of our future research for our embedding, we plan to:

1. Improve attribute definition by referencing non-terminals instead of (nu-
meric) positions on the right-hand side of productions.

36 Embedding Attribute Grammars

2. Wherever possible, benchmark our embedding against other AG embeddings
and systems.

3. We would like to evaluate this embedding together with all the extensions
presented on a number of mainstream syntactically rich languages.

References

1. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2(2) (1968) 127–145 Corrections in 5(1971) pp. 95–96.

2. Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the utrecht haskell
compiler. In Weirich, S., ed.: Haskell, ACM (2009) 93–104

3. Swierstra, D., Azero, P., Saraiva, J.: Designing and Implementing Combinator Lan-
guages. In: Advanced Functional Programming. Number 1608 in LNCS, Springer-
Verlag (1999) 150–206

4. Fernandes, J.P., Saraiva, J.: Tools and Libraries to Model and Manipulate Circular
Programs. In: PEPM’07: Proceedings of the ACM SIGPLAN 2007 Symposium on
Partial Evaluation and Program Manipulation, ACM Press (2007) 102–111

5. Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Iterative type inference with at-
tribute grammars. In Visser, E., Järvi, J., eds.: GPCE, ACM (2010) 43–52

6. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. SIG-
PLAN Not. 24(7) (June 1989) 131–145

7. Saraiva, J., Swierstra, S.D.: Generating spreadsheet-like tools from strong attribute
grammars. In Pfenning, F., Smaragdakis, Y., eds.: GPCE. Volume 2830 of LNCS.,
Springer (2003) 307–323

8. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1) (2007) 21–37

9. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Science of Computer Programming 75(1–2) (January 2010) 39–
54

10. Ekman, T., Hedin, G.: The jastadd extensible java compiler. SIGPLAN Not.
42(10) (October 2007) 1–18

11. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure embedding of attribute grammars.
Science of Computer Programming 78 (2013) 1752–1769

12. de Moor, O., Backhouse, K., Swierstra, S.D.: First-class attribute grammars. In-
formatica (Slovenia) 24(3) (2000)

13. Viera, M., Swierstra, D., Swierstra, W.: Attribute Grammars Fly First-class: how
to do Aspect Oriented Programming in Haskell. In: Procs. of the 14th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP’09). (2009) 245–256

14. Viera, M.: First Class Syntax, Semantics, and Their Composition. PhD thesis,
Utrecht University, The Netherlands (2013)

15. Huet, G.: The zipper. Journal of Functional Programming 7(5) (1997) 549–554
16. Peyton Jones, S., Hughes, J., Augustsson, L., et al.: Report on the programming

language Haskell 98. Technical report (February 1999)
17. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,

Cambridge, MA, USA (1997)
18. Paakki, J.: Attribute grammar paradigms a high-level methodology in language

implementation. ACM Comput. Surv. 27(2) (June 1995) 196–255
19. Bird, R.: Introduction to Functional Programming using Haskell. 2 edn. Prentice

Hall PTR (May 1998)

Embedding Attribute Grammars 37

20. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:
Proceedings of the 6th ACM SIGPLAN workshop on Generic programming. WGP
’10, New York, NY, USA, ACM (2010) 13–24

21. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Procs. of the 2003 ACM SIGPLAN Inter. WorkShop on
Types in Language Design and Implementation. (TLDI ’03), ACM (2003) 26–37

22. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In: Procs. of Compiler Construction (CC). Number 1383 in LNCS, Springer-
Verlag (1998) 298–301

23. Magnusson, E., Hedin, G.: Circular reference attributed grammars: Their evalua-
tion and applications. Sci. Comput. Program. 68(1) (August 2007) 21–37

24. Saraiva, J.: Purely Functional Implementation of Attribute Grammars. PhD thesis,
Department of Computer Science, Utrecht University, The Netherlands (December
1999)

25. Farrow, R.: Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. SIGPLAN Not. 21(7) (July 1986) 85–98

26. Jones, L.G.: E�cient evaluation of circular attribute grammars. ACM Trans.
Program. Lang. Syst. 12(3) (July 1990) 429–462

27. Sasaki, A., Sassa, M.: Circular attribute grammars with remote attribute references
and their evaluators. New Generation Computing 22(1) (2004) 37–60

28. Reps, T., Teitelbaum, T.: The Synthesizer Generator. Springer-Verlag (1989)
29. Söderberg, E.: Contributions to the Construction of Extensible Semantic Editors.

PhD thesis, Lund University, Sweden (2012)
30. Martins, P., Saraiva, J.a., Fernandes, J.a.P., Van Wyk, E.: Generating attribute

grammar-based bidirectional transformations from rewrite rules. In: Proceedings
of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program Ma-
nipulation. PEPM ’14, New York, NY, USA, ACM (2014) 63–70

31. Bird, R.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21 (1984) 239–250

32. Martins, P., Fernandes, J.P., Saraiva, J.: A purely functional combinator language
for software quality assessment. In: Symposium on Languages, Applications and
Technologies (SLATE ’12). Volume 21 of OASICS., Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012) 51–69

33. Martins, P., Fernandes, J.P., Saraiva, J.: A Web Portal for the Certification of
Open Source Software. In Cerone, A., Persico, D., Fernandes, S., Garcia-Perez,
A., Katsaros, P., Shaikh, S.A., Stamelos, I., eds.: SEFM Satellite Events. Volume
7991 of Lecture Notes in Computer Science., Springer (2012) 244–260

34. Martins, P., Carvalho, N., Fernandes, J.P., Almeida, J.J., Saraiva, J.: A framework
for modular and customizable software analysis. In: 13th Int. Conf. on Computa-
tional Science and Its Applications (ICCSA 2013). LNCS (7972) (2012) 443–458

35. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. Trends in
Functional Programming, Intellect Books (10) (2005) 145–162

36. Badouel, E., Fotsing, B., Tchougong, R.: Yet another implementation of attribute
evaluation. Research Report RR-6315, INRIA (2007)

37. Badouel, E., Tchougong, R., Nkuimi-Jugnia, C., Fotsing, B.: Attribute grammars
as tree transducers over cyclic representations of infinite trees and their descrip-
tional composition. Theoretical Computer Science 480(0) (2013) 1 – 25

38. Badouel, E., Fotsing, B., Tchougong, R.: Attribute grammars as recursion schemes
over cyclic representations of zippers. Electronic Notes Theory Computer Science
229(5) (2011) 39–56

38 Embedding Attribute Grammars

39. Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic programming with
fixed points for mutually recursive datatypes. In: Procs. of the 14th ACM SIG-
PLAN International Conference on Functional programming. (2009) 233–244

40. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Functional Programming Languages and Computer Architecture. (1987)

41. Kuiper, M., Swierstra, D.: Using attribute grammars to derive e�cient functional
programs. In: Computing Science in the Netherlands. (November 1987)

42. Sderberg, E., Hedin, G.: Circular higher-order reference attribute grammars. In
Erwig, M., Paige, R., Wyk, E., eds.: Software Language Engineering. Volume 8225
of Lecture Notes in Computer Science. Springer International Publishing (2013)
302–321

43. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3) (2006) 621–645

44. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: A language for
updatable views. In: Procs. of ACM Principles of Database Systems (PODS),
ACM (2006) 338–347

45. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. In: Procs. of Partial Evaluation
and Program Manipulation (PEPM), ACM (2004) 178–189

46. Stevens, P.: A landscape of bidirectional model transformations. In: Generative and
Transformational Techniques in Software Engineering II. Number 5235 in LNCS.
Springer-Verlag (2008) 408–424

47. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: A cross-discipline perspective. In: Procs. of Theory and
Practice of Model Transformations (ICMT). Number 5563 in LNCS, Springer-
Verlag (2009) 260–283

48. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Procs. of Satellite
Events at the MoDELS. Number 3844 in LNCS, Springer-Verlag (2006) 128–138

49. Hibberd, M., Lawley, M., Raymond, K.: Forensic debugging of model transforma-
tions. In: Procs. of Model Driven Engineering Languages and Systems. Number
4735 in LNCS, Springer-Verlag (2007) 589–604

50. Foster, J., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems 29(3) (2007) 17

51. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
Procs. of ACM SIGPLAN International Conference on Functional Programming
(ICFP), ACM (2007) 47–58

52. Yellin, D.M.: Attribute Grammar Inversion and Source-to-source Translation.
Number 302 in LNCS. Springer-Verlag (1988)

