
Zipper-based Attribute Grammars and their
Extensions?

Pedro Martins1, João Paulo Fernandes1,2, and João Saraiva1

1 High-Assurance Software Laboratory (HASLAB/INESC TEC),
Universidade do Minho, Portugal

2 Reliable and Secure Computation Group ((rel)ease),
Universidade da Beira Interior, Portugal
{prmartins,jpaulo,jas}@di.uminho.pt

Abstract. Attribute grammars are a suitable formalism to express com-
plex software language analysis and manipulation algorithms, which rely
on multiple traversals of the underlying syntax tree. Recently, Attribute
Grammars have been extended with mechanisms such as references and
high-order and circular attributes. Such extensions provide a powerful
modular mechanism and allow the specification of complex fix-point com-
putations. This paper defines an elegant and simple, zipper-based embed-
ding of attribute grammars and their extensions as first class citizens. In
this setting, language specifications are defined as a set of independent,
off-the-shelf components that can easily be composed into a powerful,
executable language processor. Several real examples of language speci-
fication and processing programs have been implemented in this setting.

1 Introduction

Attribute Grammars (AGs) [1] are a well-known and convenient formalism not
only for specifying the semantic analysis phase of a compiler but also to model
complex multiple traversal algorithms. Indeed, AGs have been used not only
to specify real programming languages, like for example Haskell [2], but also to
specify powerful pretty printing algorithms [3], deforestation techniques [4] and
powerful type systems [5], for example.

All these attribute grammars specify complex and large algorithms that rely
on multiple traversals over large tree-like data structures. To express these algo-
rithms in regular programming languages is difficult because they rely in complex
recursive patterns, and, most importantly, because there are dependencies be-
tween values computed in one traversal and used in following ones. In such cases,
an explicit data structure has to be used to glue different traversal functions. In
an imperative setting those values are stored in the tree nodes (which work as a

?
This work is funded by ERDF - European Regional Development Fund through the COMPETE

Programme (operational programme for competitiveness) and by National Funds through the FCT

- Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)

within projects FCOMP-01-0124-FEDER-020532 and FCOMP-01-0124-FEDER-022701.

2 Zipper-based Attribute Grammars and their Extensions

gluing data structure), while in a declarative setting such data structures have to
be defined and constructed. In an AG setting, the programmer does not have to
concern himself on scheduling traversals, nor on defining gluing data structures.

Recent research in attribute grammars is working in two main directions.
Firstly, AG-based systems are supporting new extensions to the standard AG
formalism that improve the AG expressiveness. Higher-order AGs (HOAGs) [6,
7] provide a modular extension to AGs. Reference AGs (RAGs) [8] allow the
definition of references to remote parts of the tree, and, thus, extending the
traditional tree-based algorithms to graphs. Finally, Circular AGs (CAGs) allow
the definition of fix-point based algorithms. AG systems like Silver [9], JastAdd
[10], and Kiama [11] all support such extensions. Secondly, attribute grammars
are embedded in regular programming languages and AG fragments are first-
class citizens: they can be analyzed, reused and compiled independently.

First class AGs provide: i) a full component-based approach to AGs where a
language is specified/implemented as a set of reusable off-the-shelf components,
and ii) semantic-based modularity, while traditional AG specifications use a (re-
strict) syntax modular approach. Moreover, by using an embedding approach
there is no need to construct a large AG (software) system to process, analyse
and execute AG specifications: first class AGs reuse for free the mechanisms
provided by the host language as much as possible, while increasing abstraction
on the host language. Although this option may also entail some disadvantages,
e.g. error messages relating to complex features of the host language instead of
specificities of the embedded language, the fact is that an entire infrastructure,
including libraries and language extensions, is readily available at a minimum
cost. Also, the support and evolution of such infrastructure is not a concern.

This paper presents a novel technique combining these two AG advances.
First, we propose a concise embedding of AGs in Haskell. This embedding

relies on the extremely simple mechanism of functional zippers. Zippers were
originally conceived by Huet [12] to represent a tree together with a subtree
that is the focus of attention, where that focus may move within the tree. By
providing access to any element of a tree, zippers are very convenient in our
setting: attributes may be defined by accessing other attributes in other nodes.
Moreover, they do not rely on any advanced feature of Haskell. Thus, our em-
bedding can be straightforwardly re-used in any other functional environment.

Second, we extend our embedding with the main AG extensions proposed to
the AG formalism. In fact, we present the first embedding of HOAGs, RAGs and
CAGs as first class attribute grammars. By this we are able to express powerful
algorithms as the composition of AG reusable components. An approach that
we have been using, e.g., in developing techniques for a language processor to
implement bidirectional AG specifications and to construct a software portal.

2 Motivation

In this section we introduce the Desk language, that was proposed in [13], and
that we will use as our running example throughout the paper. This language is

Zipper-based Attribute Grammars and their Extensions 3

small enough to be completely defined here while still holding central character-
istics of real programming languages, such as mandatory but unique declaration
of all name entities that are used. The Desk language allows the definition of
simple arithmetic expressions whose single operator is addition and that uses
globally scoped variables. A concrete sentence in this language defines the sum
of variables x and y with the value 1, where x and y are set to 2 and 3, respectively:

PRINT x + y + 1 WHERE x = 2, y = 3

Our goal here is similar to the one of [13]: we want to define a mapping from
Desk sentences to assembly code for a simple machine with one register only. For
the sentence above, we want to transform it into the following assembly program:

{ LOAD 2 (the value of x); ADD 3 (the value of y); ADD 1; PRINT 0; HALT 0 }

Implementing this transformation introduces typical language processing chal-
lenges such as lexical and syntactical analysis, name analysis through symbol
table management, verification of static conditions, right-to-left processing and
interpretation and code generation. Since declaration of entities may come after
their usage, a traditional approach to solve this problem relies on complex, multi-
ple traversal algorithms. In his original paper [13], Paaki proposed to implement
this mapping using an AG with the following set of attributes:

code - synthesized target code

name - synthesized name of a constant

value - synthesized value of a constant or a number

ok - synthesized attribute that indicates correcteness

envs - synthesized environment (symbol table)

envi - inherited environment (symbol table)

Attributes envs and envi both have the form of a list with (name, value)

pairs representing a symbol table. Attribute code is the actual meaning of the
grammar, i.e., the final result of processing a sentence, and it has the form of
a list of pairs (instruction, value). An important thing to notice is that an
incorrect Desk phrase also yields a meaning. For example,

PRINT z WHERE x = 2, y = 3

produces the resulting code (i.e., has the following meaning):

{ HALT 0; PRINT 0; HALT 0 }

Next, we present the implementation of the Desk AG, as proposed in [13]:

(p1) Prog -> PRINT Exp Cons

{ Prog.code = if Cons.ok then Exp.code + (PRINT, 0) + (HALT, 0)

else (HALT, 0)

, Exp.envi = Cons.envs }
(p2) Exp1 -> Exp2 ’+’ Fact

{ Exp1.code = if Fact.ok then Exp2.code + (ADD, Fact.value)

else (HALT, 0)

, Exp2.envi = Exp1.envi

, Fact.envi = Exp1.envi }
(p3) Exp -> Fact

{ Exp.code = if Fact.ok then (LOAD, Fact.value) else (HALT, 0)

4 Zipper-based Attribute Grammars and their Extensions

, Fact.envi = Exp.envi }
(p4) Fact -> Name

{ Fact.ok = isin (Name.name, Fact.envi)

, Fact.value = getvalue (Name.name, Fact.envi) }
(p5) Fact -> Number

{ Fact.ok = true, Fact.value = Number.value }
(p6) Name -> Id

{ Name.name = Id.name }
(p7) Cons -> empty

{ Cons.ok = true, Cons.envs = () }
(p8) Cons -> WHERE DefList

{ Cons.ok = DefList.ok, Cons.envs = DefList.envs }
(p9) DefList1 -> DefList2 ’,’ Def

{ DefList1.ok = DefList2.ok and not isin (Def.name, DefList2.envs)

, DefList1.envs = DefList2.envs + (Def.name, Def.value) }
(p10) DefList -> Def

{ DefList.ok = true, DefList.envs = (Def.name, Def.value) }
(p11) Def -> Name ’=’ Number

{ Def.name = Name.name, Def.value = Name.value }

A definition (p n) production {semantic rules} is used to associate concrete
semantics (using semantic rules to define attribute values) to the syntax (de-
fined by context-free grammar productions) of a language. In a production, when
the same non-terminal symbol occurs more than once, each occurrence is denoted
by a subscript (starting from 1 and counting left to right).

In this particular case, it is assumed that the values of attributes name and
value are externally provided, e.g., by a lexical analyzer. Also, we use construc-
tions if then else, and and not assuming their standard interpretation; + is used
for list consing, isin to check wether a value is contained within a symbol table
and getvalue to extract a value from a symbol table, returning 0 if it does not
exist3. Conventional constant functions are also used, such as the integer 0, the
Boolean true and the empty list ().

3 Zipper-based Attribute Grammars

In this section we show how we can implement Desk as an AG embedded in
Haskell relying on the concept of functional zippers, that we start by revising.

3.1 Functional Zippers

In our work we have used the generic zipper library of [14]. It works for both
homogeneous and heterogeneous datatypes, and data-types for which an instance
of the Data and Typeable type classes [15] are available can be traversed.

In order to illustrate how we may use zippers, we consider the following
Haskell data-type straightforwardly obtain from the syntax of the Desk language.
3 The traditional definition of AGs only permits semantic rules of the form X.a =

f(...), forcing the use of identity functions for constants. For clarity and simplicity,
we allow their direct usage in attribute definitions.

Zipper-based Attribute Grammars and their Extensions 5

data Root = Root Prog

data Prog = PRINT Exp Cons

data Exp = Add Exp Fact | Fact Fact

data Fact = Name Name | Number String

data Name = Id Constant

data Cons = EmptyCons | WHERE DefList

data DefList = Comma DefList Def | Def Def

data Def = Equal Name Value

type Constant = String

type Value = Int

type SymbolTable = [(String,String)]

We may use this data-type to represent PRINT x + y + 1 WHERE x = 2, y = 3 as
the following program:

exp = Add (Add (Fact (Name (Id "x")))

(Name (Id "y")))

(Number 1)

deflst = WHERE (Comma (Def (Equal (Id "y") 5))

(Equal (Id "x") 3))

program = PRINT exp deflst

In order to navigate on program, we start by wrapping it up using the library-
provided function toZipper :: Data a => a -> Zipper a:

program’ = toZipper (Root program)

We end up with an aggregate data structure which is easy to traverse and
update. For example, we may move the focus of attention on program’ from the
topmost node to the exp node as follows:4

exp’ = (getHole . down . down) program’

The library function down goes down to the leftmost (immediate) child of a
node whereas function getHole extracts the node under focus from a zipper.

3.2 Desk as an Embedded Attribute Grammar

On top of the zipper library of [14], we have implemented several simple com-
binators that facilitate the embedding of attribute grammars. In particular, we
have defined: (.$) :: Zipper a -> Int -> Zipper a for accessing any child of a
structure given by its index starting in 1; parent :: Zipper a -> Zipper a to
move the focus to the parent of a concrete node, and, to check whether the
current location is a sibling of a tree node, (.|) :: Zipper a -> Int -> Bool.

We may now define each attribute of the Desk attribute grammar. For syn-
thesizing the name of a constant, as defined in the semantics of production (p6)

and (part of) production (p11) we define an attribute name as follows5.
4 For totality, the results of functions down :: Zipper a -> Maybe (Zipper a) and

getHole :: Zipper a -> Maybe b are within Maybe. As the analysis of their results

is provided by our combinators, we simplify the example by abstracting this analysis.
5 Function constructor exposes the type of the node under focus, and function lexeme

simulates a standard lexer, and both can be automatically generated.

6 Zipper-based Attribute Grammars and their Extensions

name :: Zipper Root -> String

name ag = case (constructor ag) of "Id" -> lexeme ag

"Equal" -> name (ag.$1)

where Zipper Root is the type of an instance of Root embedded inside the Zipper.
The purpose of the attributes envs and envi is, respectively, to compute and

to appropriately pass around an environment mapping constant names to values
in accordance with the bindings in DefList. For a node being a Prog, the inherited
environment envi is given by the synthesized environment envs of its Cons child,
as defined in (p1). For any other node, envi is accessed in its parent node:

envi :: Zipper Root -> SymbolTable

envi ag = case (constructor ag) of "PRINT" -> envs (ag.$2)

otherwise -> envi (parent ag)

Attribute envi is copied from the root node where it is computed to any
other node. There is usually a primitive that allows the programmer to define
this type of attributes without having to specify them throughout the grammar:
in Silver [9], for example, this is called autocopy. Our solution relies on Haskell ’s
case/otherwise construction to implement a similar feature.

The synthesized environment envs goes down a sentence in search for the
constants defined in it. When one such definition is found, a pair (c, v), where c

is the constant name and v the value being set for it, is added to the environment:

envs :: Zipper Root -> SymbolTable

envs ag = case (constructor ag) of

"EmptyCons" -> []

"WHERE" -> envs (ag.$1)

"Comma" -> (name (ag.$2), value (ag.$2)) : envs (ag.$1)

"Def" -> [(name (ag.$1), value (ag.$1))]

The value of a constant or a number is given by attribute value as follows:

value :: Zipper Root -> String

value ag = case (constructor ag) of

"Name" -> getValue (name (ag.$1)) (envi ag)

"Number" -> lexeme ag

"Equal" -> lexeme ag

The value of a constant Name c occurring in the Expression part of a sentence
must be searched for in the environment, which is precisely what getValue does.
The value of Number v or the constant definition Equal c v is simply v.

The attribute ok checks if a variable is defined once and only once:

ok :: Zipper Root -> Bool

ok ag = case (constructor ag) of

"Name" -> isIn (name (ag.$1)) (envi ag)

"Number" -> True

"EmptyCons" -> True

"WHERE" -> ok (ag.$1)

"Comma" -> ok (ag.$1) && not isIn (name (ag.$2)) (envs (ag.$1))

"Def" -> True

The synthesized attribute code reuses the defined attributes to generate code.

Zipper-based Attribute Grammars and their Extensions 7

code :: Zipper Root -> String

code ag = case (constructor ag) of

"Root" -> code (ag.$1)

"PRINT" -> if ok (ag.$2)

then code (ag.$1) ++ "PRINT, 0" ++ "HALT, 0"

else "HALT, 0"

"Add" -> if (ok (ag.$2))

then code (ag.$1) ++ "ADD, " ++ value (ag.$2)

else "HALT, 0"

"Fact" -> if (ok (ag.$1))

then "LOAD, " ++ value (ag.$1)

else "HALT, 0"

In this section, we have embedded the Desk analysis as an AG in Haskell. Our
solution is simple and elegant, easy to implement, to analyze and to extend.

A difference between our embedding and the traditional definition of AGs is
that in the former, an attribute is defined as a semantic function on tree nodes,
while in the latter the programmer defines on one production exactly how many
and how attributes are computed. Nevertheless, we argue that this difference
does not impose increasing implementation costs as the main advantages of the
attribute grammar setting still hold: attributes are modular, their implemen-
tation can be sectioned by sites in the tree and as we will see inter-attribute
definitions work exactly the same way. What is more, our embedding might pro-
vide an easier setting for debugging as the entire definition of one attribute is
localized in one semantic function. Furthermore, we believe that the individual
attribute definitions in our embedding can straightforwardly be understood and
derived from their traditional definition on an attribute grammar system, as can
be observed comparing the attribute definitions in the previous section with the
ones in this section.

A traditional advantage of the embedding of domain-specific languages in a
host language is the use of target language features as native. In our case, this
applies, e.g., to the Haskell functions && for Boolean conjunction, not for Boolean
negation and ++ for list concatenation, whereas on specific AG systems the set
of functions is usually limited and pre-defined. Also, regarding distribution of
language features for dynamical load and separate compilation, it is posible to
divide an AG in modules that, e.g., may contain contain data types (representing
the grammar) and functions (representing the attributes).

4 Zipper-based Attribute Grammar Extensions

After showing first class attribute grammars embedded in a zipper framework,
we present the embedding of three well known AG extensions.

4.1 Referenced Attribute Grammars

Referenced Attribute Grammars [8] allow references to arbitrary nodes in the
tree, and attributes attached to those nodes to be accessed via the referenced

8 Zipper-based Attribute Grammars and their Extensions

attributes. Because RAGs allow nodes to reference any node in the tree (not
only their children), they allow the expression of graph-based algorithms.

In the original Desk AG, the inherited attribute envi is used to collect and
pass context information to the expression part of a sentence. However, if this
language evolves to allow, e.g., type definitions, then a complete re-write of the
symbol table with the respective attributes and semantics may be needed. By
using RAGs, the symbol table is promoted to contain references to locations in
the tree. As a result, if the definition part evolves, then the attribute references
still point to the evolved tree, and changes are much easier to carry.

In our embedding, references are represented by zippers whose focus points
to relevant tree locations. This implies changes on the symbol table’s data type,
its construction and the lookup semantic function that uses it:

type SymbolTable = [(String, Zipper Root)]

envs :: Zipper Root -> SymbolTable

envs ag = case (constructor ag) of

"EmptyCons" -> []

"WHERE" -> envs (ag.$1)

"Comma" -> envs (ag.$1) ++ [(name (ag.$2), ag.$2)]

"Def" -> [(name (ag.$1), ag.$1)]

isIn :: String -> SymbolTable -> Bool

isIn _ [] = False

isIn name ((a,b):xs) = if (name == a) then True else isIn name xs

getValue :: String -> SymbolTable -> Bool

getValue name ((a,b):xs) = if (name == a) then (value b)

else (getValue name xs)

This definition is very similar to the AG in Section 3, with the main differ-
ence being the fact that, since the symbol table is composed by references, the
semantic function getValue has to use the attribute value to extract the actual
assigned values, where it only had to return information contained in the list.
This is the general approach in RAGs.

4.2 Higher-Order Attribute Grammars

Higher-order attribute grammars [6] are an important extension of AGs because
they allow both tree changes during attribute evaluation, and the definition of
any (first-order) recursive functions as AG computations. Moreover, they also
provide a component-based (modular) approach to AG specifications [7].

In our running example the functions getValue and isIn are semantically
expressed, contrary to the AG, while on a HOAG setting those computations
are promoted to higher-order attributes.

We start by creating a new data type for the symbol table:

data Rootho = Rootho SymbolTable

data SymbolTable = NilST | ConsST Tuple SymbolTable

type Tuple = (String, String)

Zipper-based Attribute Grammars and their Extensions 9

The symbol table becomes a tree-based structure with clear constructors and
names for tree nodes. Having defined these data types, we only need to express
the lookup operations as attribute computations.

isIn :: String -> Zipper Rootho -> Bool

isIn name ag = case (constructorho ag) of

"Rootho" -> isIn name (ag.$1)

"NilST" -> False

"ConsST" -> isIn name (ag.$1) || isIn name (ag.$2)

"Tuple" -> lexemeho z == name

getValue :: String -> Zipper Rootho -> String

getValue name ag = case (constructorho ag) of

"Rootho" -> getValue (ag.$1)

"ConsST" -> if (lexemeho (ag.$1) == name)

then (lexemeho (ag.$1))

else (getValue name (ag.$2))

Having modelled the two lookup functions, we now need to focus on the part
of the specification where those functions are called. Instead of a function call,
in a HOAG setting we need to instantiate the higher-order tree as a zipper, as
shown next (we include the relevant productions only):

value :: Zipper Root -> String

value ag = case (constructor ag) of

"Name" -> getValue (name ag.$1) (toZipper (Rootho (envi ag)))

ok :: Zipper Root -> String

ok ag = case (constructor ag) of

"Name" -> isIn (name ag.$1) (toZipper (Rootho (envi ag)))

"Comma" -> (ok ag.$1) && not

isIn (name ag.$2) (toZipper (Rootho (envs ag.$1)))

Like in standard HOAG specifications, as supported by LRC [16], a call
to a semantic function (in a classical AG) is transformed into a higher-order
tree/attribute. In our embedding the function toZipper is used to model this.

4.3 Circular Attribute Grammars

HOAGs allow expressing first-order computations but several algorithms, such
as type inference, rely on fix-point computations. In order to express these algo-
rithms in a AG setting, we need to consider Circular Attribute Grammars [17].

As an example, lets imagine the revised version of Desk as considered by [13],
where assignments can be symbolical and their order is not relevant:

PRINT x + y + 1 WHERE x = y, z = 1, y = z

To process this Desk expression, we need a fixed-point evaluation strategy.
The general idea is to start with a bottom value, ⊥, and compute approximations

10 Zipper-based Attribute Grammars and their Extensions

of the final result until it is not changed anymore, that is, the least fixed point
is reached: x = ⊥; x = f(x); x = f(f(x));

To guarantee the termination of this computation, it must be possible to
test the equality of the result (with ⊥ being its smallest value). With this, the
sequence x = ⊥; x = f(x); x = f(f(x)); ... will return the final result, in the
form f(f(...f(⊥)...)).

Of course, this solution might produce an infinite loop in cases such as:

PRINT x + y + 1 WHERE x = y, y = x

While this is undesired, this assignment is actually impossible to solve (be-
sidesm it corresponds to an invalid Desk phrase).

Next, we present the Haskell function that implements this definition:

fixed-point :: Eq a => (a -> a) -> a -> a

fixed-point f s | s == next = s

| otherwise = fixed-point f next

where next = f s

This is a standard Haskell solution, that takes as argument f, an input s and
applies the function indefinitely until it can not perform more changes to the
input, i.e., until f(s) == s. It is easy to imagine in Desk a call such as fixed-point
solver symbol-table, where solver solves as much assignments as possible in
one traverse, and is applied until no more assignments can be resolved. Such
improvement to Desk would successfully update the original implementation of
the language to solve a new class of circular dependencies. Despite successful,
this solution is not preferable since it forces standard semantic approaches and
we loose part of the expressive power of AGs. Therefore, our approach is to
define a new attribute, isSolved, that terminates the fixed-point computation.
This is a more desirable way of controlling the fixed-point process since we are
not constrained to function equality and we can do so in an AG fashion, by
modularly creating definitions per tree node, as shown next.

isSolved :: Zipper Rootho -> Bool

isSolved ag = case (constructorho ag) of

"Rootho" -> auxIsSolved (ag.$1)

otherwise -> isSolved (parent ag)

auxIsSolved :: Zipper Rootho -> Bool

auxIsSolved ag = case (constructorho ag) of

"Rootho" -> auxIsSolved (ag.$1)

"ConsST" -> (auxIsSolved ag.$1) &&

(auxIsSolved ag.$2)

"NilST" -> True

"TupleInt" -> True

"TupleString" -> False

The attribute isSolved exists only to ensure that this test is performed on the
whole HOAG, and not only on a subpart of it. Therefore, it goes all the way to
the top where it calls another attribute, auxIsSolved. The attribute auxIsSolved

Zipper-based Attribute Grammars and their Extensions 11

goes through the tree and checks if any of the position contains an assignment
to another variable. If it does, the symbol table is not ”complete”, i.e., there are
assignments still left to solve.

Secondly, to make the example more interesting, we shall implement this
using a high-order AG. HOAG is being constantly calculated until a certain con-
dition is met (remember, in the traditional fixed-point approach, this condition
would be that two subsequent computations produce the same output). It is a
good idea to use an HOAG because, as we have seen in Section 4.2, this type of
grammars are much more easier to handle, to manage and to reason about.

Next, we present the attributes responsible for solving as much assignments
as possible of the high-order symbol table in one traverse:

solve :: Zipper Rootho -> Zipper Rootho
solve ag = case (constructorho ag) of

"Rootho" -> solve (ag.$1)

"NilST" -> NilST

"ConsST" -> ConsST (check ag.$1) (solve ag.$2)

check :: Zipper Rootho -> Bool

check ag = case (constructorho ag) of

"TupleInt" -> lexemeho ag

"TupleString" -> substitute (solvedSymbols ag)

(lexemeho ag)

The attribute solve goes recursively through the tree and calls the attribute
check on every tree node. If this node contains an assignment to a number, check
does not do anything. On the other hand, if the assignment is to a variable,
check uses a supporting semantic function, substitute, that takes as argument
the unresolved assignment and a list of all the resolved assignments that exist in
the symbol table and sees if any of this information can be used. The attribute
that creates the list of resolved assignments is presented next.

solvedSymbols :: Zipper Rootho -> [(String, Int)]

solvedSymbols ag = case (constructorho ag) of

"Rootho" -> auxSolvedSymbols (ag.$1)

otherwise -> solvedSymbols (parent ag)

auxSolvedSymbols :: Zipper Rootho -> [(String, Int)]

auxSolvedSymbols ag = case (constructorho ag) of

"ConsST" -> auxSolvedSymbols (ag.$1) ++

auxSolvedSymbols (ag.$2)

"NilST" -> []

"TupleInt" -> [(lexeme z, lexeme z)]

"TupleString" -> []

With all the necessary attributes implemented, we only have to define the
attribute that applies this fixed-point strategy on the HOAG. As stated earlier,
the idea of this fixed-point computation is to indefinitely apply a computation
(solve) until a stop condition is reached (isSolved).

12 Zipper-based Attribute Grammars and their Extensions

fixed-point ag = case (constructorho ag) of

"Rootho" -> if (isSolved ag) then ag

else fixed-point (toZipper (Rootho (solve ag.$1)))

otherwise -> fixed-point (parent ag)

This way, we solved the cyclic dependencies imposed by a new version of Desk
without loosing the modularity and expressiveness of AGs in our embedding.
What is left to do is to call this fixed-point attribute immediately after the
symbol table is created, namely in the original attribute envi.

5 Related Work

In this paper, we have proposed a zippers-based embedding of attribute gram-
mars in a functional language. The implementations we obtain are modular and
do not rely on laziness. We believe that our approach is the first that deals
with arbitrary tree structures while being applicable in both lazy and strict set-
tings. Furthermore, we have been able to implement in our environment all the
standard examples that have been proposed in the attribute grammar literature.
This is the case of repmin [18], HTML table formatting [7], and smart parentesis,
an illustrative example of [9], that are available from the first author’s webpage
and that we will include in an extended version of the paper.

Moreover, the navigation via a generic zipper that we envison here has ap-
plications in other domains: i) our setting is being used to create combinator
languages for process management [19] which themselves are fundamental to a
platform for open source software analysis and certification [20, 21]; and ii), the
setting that we propose was applied on a prototype for bidirectional transfor-
mations applied to programming environments for scientific computing.

Below we survey only works most closely related to ours: works in the realm
of functional languages and attribute grammar embeddings.

Zipper-based approaches. Uustalu and Vene have shown how to embed at-
tribute computations using comonadic structures, where each tree node is paired
with its attribute values [22]. This approach is notable for its use of a zipper as
in our work. However, it appears that this zipper is not generic and must be
instantiated for each tree structure. Laziness is used to avoid static scheduling.
Moreover, their example is restricted to a grammar with a single non-terminal
and extension to arbitrary grammars is speculative.

Badouel et al. define attribute evaluation as zipper transformers [23]. While
their encoding is simpler than that of Uustalu and Vene, they also use laziness
as a key aspect and the zipper representation is similarly not generic. This is
also the case of [24], that also requires laziness and forces the programmer to be
aware of a cyclic representation of zippers.

Yakushev et al. describe a fixed point method for defining operations on
mutually recursive data types, with which they build a generic zipper [25]. Their
approach is to translate data structures into a generic representation on which
traversals and updates can be performed, then to translate back. Even though
their zipper is generic, the implementation is more complex than ours and incurs

Zipper-based Attribute Grammars and their Extensions 13

the extra overhead of translation. It also uses more advanced features of Haskell
such as type families and rank-2 types.

Non-zipper-based approaches. Circular programs have been used in the past
to straightforwardly implement AGs in a lazy functional language [26, 27]. These
works, in contrast to our own, rely on the target language to be lazy, and their
goal is not to embed AGs: instead they show that there exists a direct corre-
spondence between an attribute grammar and a circular program.

Regarding other notable embeddings of AGs in functional languages [28–30],
they do not offer the modern AG extensions that we provided, with the exception
of [30] that uses macros to allow the definition of higher-order attributes. Also,
these embeddings are not based on zippers, rely on laziness and use extensible
records [28] or heterogeneous collections [29, 30]. The use of heterogeneous lists in
the second of these approaches replaces the use in the first approach of extensible
records, which are no longer supported by the main Haskell compilers. In our
framework, attributes do not need to be collected in a data structure at all: they
are regular functions upon which correctness checks are statically performed by
the compiler. The result is a simpler and more modular embedding. On the other
hand, the use of these data structures ensures that an attribute is computed
only once, being then updated to a data structure and later found there when
necessary. In order to guarantee such a claim in our setting we need to rely on
memoization strategies, often costly in terms of performance.

Our embedding does not require the programmer to explicitly combine dif-
ferent attributes nor does it require combination of the semantic rules for a
particular node in the syntax tree, as is the case in the work of Viera et al. [29,
30]. In this sense, our implementation requires less effort from the programmer.

The Kiama library embeds attribute grammars in Scala [11]. This embedding
is not purely functional, but uses generic ’parent’ and similar operations to access
the structure, instead of having more traditional inherited attribute definitions.

In general, when designing a Domain Specific Language (DSL), it is often
the case that “syntax is not quite right” [31]. With this observation, the author
claims that DSLs must be as close to the language being embedded as possible.
Our DSL for AGs closely resembles custom AG languages, so we have the nota-
tional power without incurring the implementation cost of a custom language.

6 Conclusions and Future Work

In this paper we have presented the first embedding of modern AG extensions
using a concise and elegant zipper-based implementation. We have presented how
reference, higher-order and circular attribute grammars can be expressed as first
class AGs in this setting. As a result, complex multiple traversal algorithms can
be expressed in this setting in an off-the-shelf set of reusable components.

We have presented our embedding in the Haskell programming language, de-
spite not relying on any advanced feature of Haskell (namely on lazy evaluation).
Thus, similar concise embeddings can be defined in other declarative languages.

14 Zipper-based Attribute Grammars and their Extensions

As we have shown both by the example presented and by the ones available
online, our simple embedding provides the same expressiveness of modern, large
and more complex attribute grammar based systems.

As part of our future research, we plan to: i) improve attribute definition by
referencing non-terminals instead of (numeric) positions on the right-hand side
of productions; and ii) wherever possible, benchmark our embedding against
other AG embeddings and systems.

References

1. Knuth, D.: Semantics of Context-free Languages. Mathematical Systems Theory
2(2) (June 1968) Correction: Mathematical Systems Theory 5 (1), March 1971.

2. Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the utrecht haskell
compiler. In Weirich, S., ed.: Haskell, ACM (2009) 93–104

3. Swierstra, D., Azero, P., Saraiva, J.: Designing and Implementing Combinator
Languages. In Swierstra, D., Henriques, P., Oliveira, J., eds.: 3rd Summer School
on Adv. Funct. Programming. Volume 1608 of LNCS Tutorial. (1999) 150–206

4. Fernandes, J.P., Saraiva, J.: Tools and Libraries to Model and Manipulate Circular
Programs. In: PEPM’07: Proceedings of the ACM SIGPLAN 2007 Symposium on
Partial Evaluation and Program Manipulation, ACM Press (2007) 102–111

5. Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Iterative type inference with at-
tribute grammars. In Visser, E., Järvi, J., eds.: GPCE, ACM (2010) 43–52

6. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. SIG-
PLAN Not. 24(7) (June 1989) 131–145

7. Saraiva, J., Swierstra, S.D.: Generating spreadsheet-like tools from strong attribute
grammars. In Pfenning, F., Smaragdakis, Y., eds.: GPCE. Volume 2830 of LNCS.,
Springer (2003) 307–323

8. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1) (2007) 21–37

9. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Electron. Notes Theor. Comput. Sci. 203(2) (2008) 103–116

10. Ekman, T., Hedin, G.: The jastadd extensible java compiler. SIGPLAN Not.
42(10) (October 2007) 1–18

11. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. Electron. Notes Theor. Comput. Sci. 253(7) (2010) 205–219

12. Huet, G.: The zipper. Journal of Functional Programming 7(5) (1997) 549–554
13. Paakki, J.: Attribute grammar paradigms a high-level methodology in language

implementation. ACM Comput. Surv. 27(2) (June 1995) 196–255
14. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:

Proceedings of the 6th ACM SIGPLAN workshop on Generic programming. WGP
’10, New York, NY, USA, ACM (2010) 13–24

15. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Procs. of the 2003 ACM SIGPLAN Inter. WorkShop on
Types in Language Design and Implementation. (TLDI ’03), ACM (2003) 26–37

16. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In Koskimies, K., ed.: 7th International Conference on Compiler Construc-
tion. Volume 1383 of LNCS., Springer-Verlag (1998) 298–301

17. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1) (August 2007) 21–37

Zipper-based Attribute Grammars and their Extensions 15

18. Bird, R.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21 (1984) 239–250

19. Martins, P., Fernandes, J.P., Saraiva, J.: A purely functional combinator language
for software quality assessment. In: Symposium on Languages, Applications and
Technologies (SLATE ’12). Volume 21 of OASICS., Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012) 51–69

20. Martins, P., Fernandes, J.P., Saraiva, J.: A web portal for the certification of open
source software. In: 6th International Workshop on Foundations and Techniques for
Open Source Software Certification (OPENCERT ’12) (to appear), LNCS (2012)

21. Martins, P., Carvalho, N., Fernandes, J.P., Almeida, J.J., Saraiva, J.: A framework
for modular and customizable software analysis. In: 13th Int. Conf. on Computa-
tional Science and Its Applications (ICCSA 2013). LNCS (7972) (2012) 443–458

22. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. Trends in
Functional Programming, Intellect Books (10) (2005) 145–162

23. Badouel, E., Fotsing, B., Tchougong, R.: Yet another implementation of attribute
evaluation. Research Report RR-6315, INRIA (2007)

24. Badouel, E., Fotsing, B., Tchougong, R.: Attribute grammars as recursion schemes
over cyclic representations of zippers. Electronic Notes Theory Computer Science
229(5) (2011) 39–56

25. Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic programming with
fixed points for mutually recursive datatypes. In: Procs. of the 14th ACM SIG-
PLAN International Conference on Functional programming. (2009) 233–244

26. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Functional Programming Languages and Computer Architecture. (1987)

27. Kuiper, M., Swierstra, D.: Using attribute grammars to derive efficient functional
programs. In: Computing Science in the Netherlands. (November 1987)

28. de Moor, O., Backhouse, K., Swierstra, S.D.: First-class attribute grammars. In-
formatica (Slovenia) 24(3) (2000)

29. Viera, M., Swierstra, D., Swierstra, W.: Attribute Grammars Fly First-class: how
to do Aspect Oriented Programming in Haskell. In: Procs. of the 14th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP’09). (2009) 245–256

30. Viera, M.: First Class Syntax, Semantics, and Their Composition. PhD thesis,
Utrecht University, The Netherlands (2013)

31. Siek, J.: General purpose languages should be metalanguages. In: Procs. of ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation. (2010) 3–4

