
Bidirectional Transformation of

Model-Driven Spreadsheets

?

Jácome Cunha1, João P. Fernandes12, Jorge Mendes1,
Hugo Pacheco1, and João Saraiva1

1 HASLab / INESC TEC, Universidade do Minho, Portugal
2 Universidade do Porto, Portugal

{jacome,jpaulo,jorgemendes,hpacheco,jas}@di.uminho.pt

Abstract. Spreadsheets play an important role in software organiza-
tions. Indeed, in large software organizations, spreadsheets are not only
used to define sheets containing data and formulas, but also to collect
information from di↵erent systems, to adapt data coming from one sys-
tem to the format required by another, to perform operations to enrich
or simplify data, etc. In fact, over time many spreadsheets turn out to
be used for storing and processing increasing amounts of data and sup-
porting increasing numbers of users. Unfortunately, spreadsheet systems
provide poor support for modularity, abstraction, and transformation,
thus, making the maintenance, update and evolution of spreadsheets a
very complex and error-prone task.
We present techniques for model-driven spreadsheet engineering where
we employ bidirectional transformations to maintain spreadsheet models
and instances synchronized. In our setting, the business logic of spread-
sheets is defined by ClassSheet models to which the spreadsheet data
conforms, and spreadsheet users may evolve both the model and the
data instances. Our techniques are implemented as part of the MDSheet
framework: an extension for a traditional spreadsheet system.

Keywords: Software Evolution, Data Evolution, Bidirectional Trans-
formation, Model Synchronization, Spreadsheets

1 Introduction

Spreadsheets are widely used in the development of business applications. Spread-
sheet systems o↵er end users a high level of flexibility, making initiation easier
for new users. This freedom, however, comes at a price: spreadsheets are noto-
riously error prone as shown by numerous studies reporting that up to 90% of
real-world spreadsheets contain errors [21].

? This work is funded by the ERDF through the Programme COMPETE and by
the Portuguese Government through FCT - Foundation for Science and Tech-
nology, projects ref. PTDC/EIA-CCO/108613/2008 and PTDC/EIA-CCO/120838/2010.
The three first authors were also supported by FCT grants SFRH/BPD/73358/2010,
SFRH/BPD/46987/2008 and BI4-2011PTDC/EIA-CCO/108613/2008, respectively.

2

In recent years, the spreadsheet research community has recognized the need
to support end-user model-driven spreadsheet development (MDSD), and to pro-
vide spreadsheet developers and end users with methodologies, techniques and
the necessary tool support to improve their productivity. Along these lines, sev-
eral techniques have been proposed, namely the use of templates [1], ClassSheet
models [10] and class diagrams [14]. These proposals guarantee that end users
can safely edit their spreadsheets and introduce a form of model-driven software
development: they allow to define a spreadsheet business model from which a
customized spreadsheet application holding the actual data is generated. The
consistency of the spreadsheet data with the overlying model is guaranteed, of-
ten by limiting the editing options on the data side to ensure that the structure
of the spreadsheet remains unchanged.

A significant drawback of such approaches lies in the fact that the evolution
of both spreadsheet models and the instances generated from them is considered
in isolation. That is to say that, after obtaining a spreadsheet instance from
a particular model, a simple evolution step on the model side may break the
conformity with its instance, and vice versa. A first attempt to overcome this
limitation was proposed in [7], where it was shown how to co-evolve spreadsheet
instances upon a model evolution defined according to a well-behaved set of
possible transformations. The approach presented in [7], however, has two im-
portant drawbacks: i) the evolutions that are permitted at the model level can
only be refinement steps: it is not possible to perform model evolutions that are
frequent in spreadsheets such as removing a column, for example; and ii) it does
not allow users to directly evolve spreadsheet instances having the corresponding
model automatically co-evolved.

The goal of this paper is to study a more general setting where editing opera-
tions on models can be translated into conforming editing operations on spread-
sheets and editing operations on spreadsheets can be translated into respective
editing operations on models. For this purpose, we develop independent edit-
ing languages for both models and spreadsheets and bind them together using
a symmetric bidirectional framework [9, 16] that handles the edit propagation.
Among other properties, the fundamental laws governing the behavior of such
bidirectional transformations guarantee that the conformity of spreadsheet in-
stances and models can always be restored after a modification. Both the model
and instance evolution steps are available as an extension of OpenO�ce.

2 ClassSheets as Spreadsheet Models

Erwig et al. [10] introduced the language of ClassSheets to model spreadsheets
at a higher abstraction level, thus allowing for spreadsheet reasoning to be per-
formed at the conceptual level. ClassSheets have a visual representation very
similar to spreadsheets themselves: in Figure 1, we present a possible model for
a Budget spreadsheet, which we adapted from [10].3

3 We assume colors are visible in the digital version of this paper.

3

Fig. 1: Budget spreadsheet model.

This model holds two classes where data is to be inserted by end users: i)
Year, with a default value of 2010, for the budget to accommodate multi-year
information and ii) Category, for assigning a label to each expense. The actual
spreadsheet may hold several repetitions of any of these elements, as indicated
by the ellipsis. For each expense we record its quantity and its cost (with 0 as
default value), and we calculate the total amount associated with it. Finally,
(simple) summation formulas are used to calculate the global amount spent per
year (cell D5), the amount spent per expense type in all years (cell F3) and the
total amount spent in all years (cell F5) are also calculated.

Erwig et al. not only introduced ClassSheets, but they also developed a tool
- the Gencel tool [12] - that given a ClassSheet model generates an instance (i.e.
a concrete spreadsheet) that conforms to the model. Figure 2 presents a possible
spreadsheet as generated by Gencel given the ClassSheet shown in Figure 1 (and
after the end user manually introduced soma data). In this particular case, the
spreadsheet is used to record the annual budget for travel and accommodation
expenses of an institution.

Fig. 2: Budget spreadsheet instance.

Since the spreadsheet is generated using all the information in the model, it is
able of providing some correctness guarantees: formulas are kept consistent while
new years are added, for example. Note also that, throughout the years, cost and
quantity are registered for two types of expenses: travel and accommodation, and
that formulas are used to calculate the total expense amounts.

Spreadsheet Evolution. At the end of 2011, the spreadsheet of Figure 2 needs to
be modified to accommodate 2012 data. Most spreadsheet users would typically
take four steps to perform this task: i) insert three new columns; ii) copy all
the labels (”Year”, ”Qnty”, ”Cost” and ”Total”); iii) copy all the formulas (to
compute the total amount spent per expense type in 2012, and the total expense
for that same year) and iv) update all the necessary formulas in the last column
to account for the new year information. More experienced users would possibly
shortcut these steps by copy-inserting, for example, the 3-column block of 2011
and changing the label “2011” to “2012” in the copied block. Still, the range
of the multi-year totals must be manually extended to include the new year
information. In any (combination) of these situations, a conceptually unitary
edition, add year, needs to be executed via an error-prone combination of steps.

This is precisely the main advantage of model-driven spreadsheet develop-
ment: it is possible to provide unitary transformations such as the addition of

4

class instances (e.g., a year or a category) as one-step procedures, while all the
structural impacts of such transformations are handled automatically (e.g., the
involved formulas being automatically updated). This advantage is exploited to
its maximum when the model and the instance are part of the same spreadsheet
development environment, as it was proposed for OpenO�ce in [5].4 Besides
automation, it is also guaranteed that this type of instance level operations does
not a↵ect the model-instance conformity binding.

There are, however, several situations in which the user prefers to change
a spreadsheet instance (or a particular model) in such a way that, after the
edit, it will no longer conform to the previously defined model (or the respective
instance). For example, if the user wants to add a column containing a possible
expense discount for a particular year only, this is a trivial operation to perform
at the data level which is actually not simple to perform at the model level.
Therefore choosing to evolve the original spreadsheet, we may obtain the one
given in Figure 3, which no longer conforms to the model of Figure 1 (the discount
was added in column K).

Fig. 3: Budget spreadsheet instance with an extra column.

One possible model evolution that regains conformity is shown in Figure 4: a
class for years with 3 columns is kept, while a new class for years with an extra
discount column is introduced.

Fig. 4: Budget spreadsheet model with an extra column.

In the remainder of this paper, we study the evolution of spreadsheet mod-
els and instances in a systematic way. As a result of our work, we present a
bidirectional framework that maintains the consistency between a model and
its instance. By being bidirectional, it supports either manually evolving the
spreadsheet instances, as we have described in this section, or editing the model
instead. In any case, the correlated artifact is automatically co-evolved, so that
their conformity relationship is always preserved.

3 Spreadsheet Evolution Environment

This section presents a bidirectional spreadsheet evolution environment. This
environment combines the following techniques:
4 Actually, Figure 1 and Figure 2 present a ClassSheet model and a spreadsheet in-
stance as defined in the embedding of ClassSheets in spreadsheets [5].

5

– firstly, we embed ClassSheet models in a spreadsheet system. Since the visual
representation of ClassSheets very much resembles spreadsheets themselves,
we have followed the traditional embedding of a domain specific language
(ClassSheets) in a general purpose programming language (spreadsheet sys-
tem). In this way, we can interact with both the models and the instances
in the same environment as described in [4, 7].

– secondly, we construct a framework of bidirectional transformations for Class-
Sheets and spreadsheet instances, so that a change in an artifact is auto-
matically reflected to its correlated one. This framework provides the usual
end-user operations on spreadsheets like adding a column/row or deleting a
column/row, for example. These operations can be realized in either a model
or an instance, and the framework guarantees the automatic synchronization
of the two. This bidirectional engine, that we describe in detail in the next
section, is defined in the functional programming language Haskell [18].

– finally, we extend the widely used spreadsheet system Calc, which is part of
OpenO�ce, in order to provide a bidirectional model-driven environment to
end-users. Evolution steps at the model and the instance level are available as
new buttons that extend the functionalities originally built-in the system. A
script in OpenO�ce Basic was developed to interpret the evolution steps and
to make the bridge with theHaskell framework. An OpenO�ce extension is
available at the SSaaPP project web page: http://ssaapp.di.uminho.pt/.

In Figure 5, we present an overview of the bidirectional spreadsheet envi-
ronment that we propose. On the left, the embedded ClassSheet is presented in
a Model worksheet while the data instance that conforms to it is given on the
right, in a Data worksheet. Both worksheets contain buttons that perform the
evolution steps at the model and instance levels.

Fig. 5: A bidirectional model-driven environment for the budget spreadsheet.

Every time a (model or instance) spreadsheet evolution button is pressed,
the system responds automatically. Indeed, it was built to propagate one update

6

at a time and to be highly interactive by immediately giving feedback to users.
A global overview of the system’s architecture is given in Figure 6.

MDSheet

ClassSheet Spreadsheet

ClassSheet' Spreadsheet'

OpM OpD

OpenOffice

Fig. 6: Architecture of the MDSheet addon for OpenO�ce.

Also, our bidirectional spreadsheet engine makes some natural assumptions
on the models it is able to manipulate and restricts the number of operations
that are allowed on the instance side.

Model evolution steps. On the model side, we assume the ClassSheet on which an
editing operation is going to be performed is well-formed. By being well-formed
we mean a model respecting the original definition of ClassSheets [10], where
all references made in all formulas are correctly bound. Also, a concrete model
evolution operation is only actually synchronized if it can be applied to the initial
model and the evolved model remains well-formed; otherwise, the operation is
rejected and the original model remains unchanged. The intuition behind this
is that operations which cannot be applied to one side should not be put to the
other side, but rejected by the environment. A similar postulate is made in [16].

For example, an operation that would produce an ill-formed ClassSheet model
occurs when removing the cost column in Figure 1. In this case, the formula that
computes the total expense amount per year would point to a non-existing cost
value. This is precisely one of the cases that our system rejects.

Data evolution steps. The success of spreadsheets comes from the simplicity and
freedom that they provide to end-users. This freedom, however, is also one of the
main causes of errors in spreadsheets. In our evolution environment, we need to
restrict the number of operations that a user may request. The reason for this
is the following: for any supported operation, we guarantee that there exists a
concrete model that the evolved instance will conform to; and for this we need to
reduce the huge number of operations that is available in a spreadsheet system
such as Calc, so that we can ensure model-instance conformity at all times.

7

As an example of an operation on an instance that we are not able to propa-
gate to its conforming model is the random addition of data rows and columns.
Indeed, if such an edit disrespects the structure of the original spreadsheet, we
will often be unable to infer a new model to which the data conforms. Therefore,
the operations (such as addColumn) that may a↵ect the structure of a spread-
sheet instance need to be performed explicitly using the corresponding button
of our framework. The remaining editing operations are performed as usually.

4 The MDSheet Framework

In this section, we present our framework for bidirectional transformations of
spreadsheets. The implementation is done using the functional programming
language Haskell and we will use some of its notation to introduce the main
components of our framework. After defining the data types that encode mod-
els and instances, we present two distinct sets of operations over models and
instances. We then encode a bidirectional system providing two unidirectional
transformations to and from that map operations on models into operations
on instances, and operations on instances to operations on models, respectively.
Figure 7 illustrates our bidirectional system:

conforms to conforms to

Op

Op

to
from

M

D

ClassSheet

Spreadsheet

ClassSheet'

Spreadsheet'

Fig. 7: Diagram of our spreadsheet bidirectional transformational system.

Given a spreadsheet that conforms to a ClassSheet model, the user can evolve
the model through an operation of the set OpM , or the instance through an
operation of the set OpD. The performed operation on the model (data) is then
transformed into the corresponding operation on the data (model) using the to

and from transformations, respectively. A new model and data are obtained with
the new data conforming to the new model.

4.1 Specification of Spreadsheets and Models

The operations defined in the next sections operate on two distinct, but similar,
data types. The first data type, named Model , is used to store information about
a model. It includes the list of classes that form the model and a grid (a matrix)
that contains the definition of the ClassSheet cells. The second type, Data, is
used to store information about model instances, i.e., the spreadsheet data. It

8

also stores a list of classes and a matrix with the cell contents. The definition of
these data types is as follows:

data Model = Model {classes :: [ModelClass], grid ::Grid }
data Data = Data {classes :: [DataClass], grid ::Grid }

The di↵erence between the two data types lies in the kind of classes used.
Models define classes with repetitions, but do not have repetitions per se. How-
ever, the data can have several instances, and that information is stored within
the class. For a class, we store its name, the position of its top-left and bottom-
right points (respectively tl and br in the data structure below) and the kind of
expansion of the class.

data ModelClass = ModelClass {
classname :: String
, tl :: (Int , Int)
, br :: (Int , Int)
, expansion :: Expansion ()}

data DataClass = DataClass {
classname :: String
, tl :: (Int , Int)
, br :: (Int , Int)
, expansion :: Expansion Int }

In DataClass, the number of instances is stored in the expansion field. In
ModelClass, the expansion is used to indicate the kind of expansion of a class.
It is possible to store the number of instances for horizontal and for vertical
expansions, and for classes that expand both horizontally and vertically. It is
also possible to represent static classes (i.e., that do not expand).

Having introduced data types for ClassSheet models and spreadsheet in-
stances, we may now define operations on them. The next two sections present
such operations.

4.2 Operations on Spreadsheet Instances

The first step in the design of our transformational system is to define the op-
erations available to evolve the spreadsheets. The grammar shown next defines
the operations the MDSheet framework o↵ers.

data OpD :Data ! Data =
addColumnD Where Index -- add a column

| delColumnD Index -- delete a column
| addRowD Where Index -- add a row
| delRowD Index -- delete a row
| AddColumnD Where Index -- add a column to all instances
| DelColumnD Index -- delete a column from all instances
| AddRowD Where Index -- add a row to all instances
| DelRowD Index -- delete a row from all instances
| replicateD ClassName Direction Int Int -- replicate a class
| addInstanceD ClassName Direction Model -- add a class instance
| setLabelD (Index , Index) Label -- set a label
| setV alueD (Index , Index) Value -- set a cell value
| SetLabelD (Index , Index) Label -- set a label in all instances
| SetV alueD (Index , Index) Value -- set a cell value in all instances

9

To each entry in the grammar corresponds a particular function with the same
arguments. The application of an update opD :OpD to a data instance d :Data

is denoted by opD d :Data.

The first operation, addColumnD, adds a column in a particular place in
the spreadsheet. The Where argument specifies the relative location (Before
or After) and the given Index defines the position where to insert the new
column. This solves ambiguous situations, like for example when inserting a
column between two columns from distinct classes. The behavior of addColumnD

is illustrated in Figure 8.

 Before 8

A B C D E F G H I

=>addColumn D =>

A B C D E F G H I A B C D E F G ◊ H I

Fig. 8: Application of the data operation addColumnD.

In an analogous way, the second operation, delColumnD, deletes a given
column of the spreadsheet. The operations addRowD and delRowD behave as
addColumnD and delColumnD, but work on rows instead of on columns. An
operation in all similar to addColumnD (delColumnD, addRowD and delRowD)
is AddColumnD (DelColumnD, AddRowD and DelRowD). This operation is in
fact a mapping of addColumnD over all instances of a class: it adds a column
to each instance of an expandable class. The operation replicateD allows to
replicate (or duplicate) a class, with the two last integer arguments being the
number of instances of the class provided as first argument and the number
of the instance to replicate, respectively. This operation will be useful for our
bidirectional transformation functions, and will be explained in more detail later.
The operation addInstanceD performs a more complex evolution step: it adds a
new instance of a given class to the spreadsheet. For the example illustrated in
Figure 2, it could be used to add a new instance of the year class. The operations
described so far work on sets of cells (e.g. rows and columns), whereas the last
two OpD operations, setLabelD and setV alueD, work on a single cell. The former
allows to set a new label to a given cell while the latter allows to update the
value of a cell. Versions of these last two operations that operate on all instances
are also available: SetLabelD and SetV alueD, respectively.

When adding a single column to a particular instance with several columns,
the chosen instance becomes di↵erent than the others. Therefore, this operation
is based on two steps: firstly, the chosen instance is separated from the others
(note that the second dashed line becomes a continuous line); secondly, a new
column, indicated by ⌃, is inserted in the specified index. This operation can
be used to evolve the data of the budget example as suggested at the end of
Section 2 (and illustrated in Figure 3).

10

4.3 Operations on Models

In this section we present the operations that allow transformations on the model
side. The grammar shown next declares the existing operations:

data OpM :Model ! Model =
addColumnM Where Index -- add a new column

| delColumnM Index -- delete a column
| addRowM Where Index -- add a new row
| delRowM Index -- delete a row
| setLabelM (Index , Index) Label -- set a label
| setFormulaM (Index , Index) Formula -- set a formula
| replicateM ClassName Direction Int Int -- replicate a class
| addClassM ClassName (Index , Index) (Index , Index) -- add a static class
| addClassExpM ClassName Direction (Index , Index) (Index , Index)

-- add an expandable class

As it occurred with OpD for instances, the OpM grammar represents the func-
tions operating on models. The application of an update opM :OpM to a model
m :Model is denoted by opM m :Model .

The first five operations are analogous to the data operations with the same
name. New operations include setFormulaM which allows to define a formula
on a particular cell. On the model side, a formula may be represented by an
empty cell, by a default plain value (e.g., an integer or a date) or by a function
application (e.g., cell F5 in Figure 2 is defined as the result of SUM(Year.total)).
The operation replicateM allows to replicate (or duplicate) a class. This will be
useful for our bidirectional transformation functions. The last two operations
allow the addition of a new class to a model: addClassM adds a new static
(non-expandable) class and addClassExpM creates a new expandable class. The
Direction parameter specifies if it expands horizontally or vertically.

To explain the operations on models, we present in Figure 9 an illustration
of the execution of the composition of two operations: firstly, we execute an
addition of a row, addRowM (where the new row is denoted by ⌃); secondly, we
add a new expandable class (addClassExpM) constituted by columns B and C
(denoted by the blue rectangle and the grey column labeled with the ellipsis).

 Before 3addRowM

A B C D
1
2
3

A B C D
1
2
◊
3

=> =>

A B C D
1
2
◊
3

...

 ; addClassExpM "BlueClass" Horizontal (2,1) (3,4)

Fig. 9: Application of the model operations addRowM and addClassExpM .

The first operation, addRowM , adds a new row to the model between rows 2
and 3. The second operation, addClassExpM , adds a new class to the model. As

11

a first argument, this operation receives the name of the class, which is ”Blue-
Class” in this case. Its second argument specifies if the class expands vertically
or horizontally (the latter in this case). The next two arguments represent the
upper-left and the right-bottom indexes limiting the class, respectively. The last
argument is the model itself.

These operations allow to evolve models like the one presented in Figure 1.
However, the problem suggested in Figures 3 and 4, where the data evolves as
a result of an end-user operation and the model automatically co-evolves, is not
yet handled by transformations we presented so far. In the next section, we give
a bidirectional setting where co-evolution is automatic.

4.4 Bidirectional Transformation Functions

In this section, we present the bidirectional core of our spreadsheet transforma-
tion framework. In our context, a bidirectional transformation is defined as a
pair of unidirectional transformations with the following signature:

to :Model ⇥ OpM ! Op?D
from :Data ⇥ OpD ! Op?M

Since these transformations are used in an online setting, in which the system
reacts immediately to each user modification, the general scheme of our trans-
formations is to transform a single update into a sequence of updates. That said,
the forward transformation to propagates an operation on models to a sequence
of operations on underlying spreadsheets, and the backward transformation from

propagates an operation on spreadsheets to a sequence of operations on overlying
models. We denote a sequence of operations on models op

? as being either the
empty sequence ;, an unary operation op, or a sequence of operations op?1; op

?
2.

Our transformations take an additional model or instance to which the origi-
nal modifications are applied. This is necessary because most of the operations
calculate the indexes of the cells to be updated based on the operation itself,
but also based on the previous model or spreadsheets, depending on the kind of
operation.

We now instantiate the to and from transformations for the operations on
models and instances defined in the previous two sections. We start by presenting
the to transformation: it receives an operation on models and returns a sequence
of operations on data. Although, at least currently, the translation of model
operations returns an empty or singleton sequence of data operations, we keep
its signature consistent with from to facilitate its understanding and evidence
the symmetry of the framework.

to :OpM ! Op?D
to (addColumnM w i) = AddColumnD w (columnIndexD i)
to (delColumnM w i) = DelColumnD (columnIndexD i)
to (addRowM w i) = AddRowD w (rowIndexD i)
to (delRowM w i) = DelRowD (rowIndexD i)
to (setLabelM (i , j) l) = SetLabelD (positionD (i , j)) l
to (setFormulaM (i , j) f) = SetV alueD (positionD (i , j)) f

12

to (replicateM cn dir n inst) = replicateD dir cn n inst
to (addClassM cn p1 p2) = ;
to (addClassExpM cn dir p1 p2) = ;

The first five model operations have a direct data transformation, that is, a
transformation with the same name which does the analogous operation. An in-
teresting transformation is perfomed by replicateM : it duplicates a given class,
but not the data. Instead, a new empty instance is added to the newly cre-
ated class. Another interesting case is the transformation of the model operation
addClassM . This model transformation does not have any impact on data in-
stances. Thus, to returns an empty set of data transformations. In fact, the same
happens with the addClassExpM operation.

We now present the from transformation, which maps data operations into
model operations:

from :OpD ! Op?M
from (addColumnD w i) =

replicateM className Horizontal classInstances instanceIndexM

; addColumnM w columnO↵setIndexM
from (delColumnD i) =

replicateM className Horizontal classInstances instanceIndexM

; delColumnM columnO↵setIndexM
from (addRowD w i) =

replicateM className Vertical classInstances rowIndexM

; addRowM w rowO↵setIndexM
from (delRowD i) =

replicateM className Vertical classInstances rowIndexM

; delRowM rowO↵setIndexM
from (setLabelD (i , j) l) =

replicateM className Horizontal classInstances columnIndexM

; replicateM className Vertical classInstances rowIndexM

; setLabelM positionO↵setM l
from (setV alueD (i , j) l) = ;
from (addInstanceD cn dir m) = ;

The transformations in this case are more complex than the model-to-data ones.
In fact, most of them produce a sequence of model operations. For instance, the
first transformation (addColumnD) results in the replication of a class followed
by the addition of a new column. The argument classInstances is actually a
function that calculates the number of data class instances based on the data to
be evolved. On the other hand, the operation to set a value of a particular cell,
setV alueD, does not have any impact on the model. The same happens to the
operation addInstanceD which adds a new instance of an expandable class. The
definition of from for the (non-empty) data operations in the range of to (e.g.,
AddColumnD, DelRowD) is simply the inverse of to.

4.5 Bidirectional Transformation Properties

Since the aim of our bidirectional transformations is to restore the conformity
between instances and models, a basic requirement is that they satisfy correct-

13

ness [22] properties entailing that propagating edits on spreadsheets or on models
leads to consistent states:

d ::m

(to m opM) d :: opM m

to-Correct

d ::m

opD d :: (from d opD) m
from-Correct

Here, we say that a data instance d conforms to a model m if d :: m, for a
binary consistency relation (::) ✓ Data ⇥ Model .

As most interesting bidirectional transformation scenarios, spreadsheet in-
stances and models are not in bijective correspondence, since multiple spread-
sheet instances may conform to the same model, or vice versa. Another bidi-
rectional property, hippocraticness [22], postulates that transformations are not
allowed to modify already consistent pairs, as defined for from:

d ::m opD d ::m

from d opD = ; from-Hippocratic

Reading the above law, if an operation on data opD preserves conformity
with the existing model, then from produces an empty sequence of operations
on models ;. Operationally, such a property is desired in our framework. For
example, if a user adds a new instance to an expandable class, preserving con-
formity, the original model is expected to be preserved because it still reflects
the structure of the data. However, hippocracticness for to is deemed too strong
because even if the updated model is still consistent with the old data, we still
want to update the data to reflect a change in the structure, making a better
match with the model [8]. For example, if the user adds a column to the model,
the intuition is to insert also a new column to the data, even if the old data
remains consistent.

Usually, bidirectional transformations are required to satisfy “round-tripping”
laws that ensure a certain degree of invertibility [9, 13]. In our application,
spreadsheet instances refine spreadsheet models, such that we can undo the
translation of an operation on models with an application of from (except when
the operation on models only concerns layout, such as addClassM , and is not
reflexible on the data):

to m opM = op?D op?D 6= ; d ::m

from

?
d op?D = opM

to-Invertible

However, the reverse implication is not true. For example, the transforma-
tion steps from addColumnD = replicateM ; addColumnM and to

? (replicateM ;
addColumnM) = replicateD;AddColumnD do not give equal data operation.

Since an operation on data may issue a sequence of operations on models,
we introduce the transformation to

? which applies to to a sequence of operations:

to

? ; = ; to

? opM = to opM

to

? opM
?
1 = opM

?
1 to

? opM
?
2 = opM

?
2

to

? (opM ?
1; opM

?
2) = to

? opM ?
1; to

? opM ?
2

14

A dual definition can be given for from?. As common for incremental trans-
formations (that translate edits rather than whole states), our sequential trans-
formations naturally satisfy an history ignorance [8] property meaning that the
translation of consecutive updates does not depend on the update history.

5 Related Work

Our bidirectional approach is inspired in the state-based bidirectional framework
of (constraint) maintainers [20, 22], where (correct and hippocratic) forward and
backward transformations propagate modifications from source to target models,
and vice-versa, while preserving a consistency relation that establishes a relation-
ship between them. However, our formulation is closer to operation-based sym-
metric bidirectional frameworks [9, 16]. The framework of symmetric delta lenses
from [9] generalizes maintainers to transformations that operate over deltas as
high-level representations of updates. Like [16], our transformations carry a more
operational feeling as they transform the actual operations on data and models.
Our bidirectional transformations also satisfy a similar totality law guaranteeing
that if an operation does not fail on the initiating side, then the transformed
sequence of operations also succeeds. For example, given a consistent state d ::m,
propagating a data operation over d always generates operations on ClassSheet

models that can be applied to the original model m.
A group of researchers from Tokyo developed a series of bidirectional ap-

proaches for the interactive development of XML documents [17, 23]. Similarly
to our OpenO�ce assisted environment, they assume an online setting where the
editor reacts immediately to one operation at a time. In their setting, instead of
preserving an explicit consistency relation, transformations obey one-and-a-half
round-tripping laws (in the style of to � from � to = to) to ensure that after
each modification the editor converges into a consistent state, i.e., a further
transformation does not alter the related documents.

The coupled evolution of metamodels (let it be grammars, schemas, formats,
etc) and conforming models is a typical problem in MDE. Works such as [15,
19] assess the degree of automation of metamodel-model evolution scenarios by
studying categories of metamodel modifications that are model-independent or
support the co-evolution of underlying models which need to be transformed in
order to become conforming to an updated version of their original metamodel.
Existing tools for automated coupled metamodel-model evolution may either re-
quire users to specify sequences of simple that describe how to evolve a source
metamodel into a new version [24], or assume that a new metamodel is provided
externally so that the system must user model di↵erence approaches to identify
the concrete metamodel changes [3]. Both [24] and [3] support typical meta-
model operations such as renaming, addition and deletion and many others to
manipulate particular object-oriented features. The to transformation proposed
in this paper tackles an instance of this problem (concerned with translating
a single modification at a time), with metamodels as classsheets and models

15

as spreadsheets. In our bidirectional setting, the from transformation tackles
another dual but less common coupled model-metamodel evolution problem.

In [4–7], the authors introduced tools to transform spreadsheets into rela-
tional databases, and more generically, to evolve a model and automatically
co-evolve the underlying data. This work, however, has some limitations: first, it
does not allow users to perform non-refinement evolutions, i.e., it is not possible
to remove data from spreadsheets. In our work we created a more general setting
where all kinds of evolutions are possible, including the deletion of data. Second,
it is not possible to evolve the structure of the spreadsheet through changes to
the data, i.e., it is only possible to edit the data in such a way that it always con-
forms to the model. We have solved this problem by allowing users to change the
data and infer a new model whenever necessary. Third, the previous work prop-
agates modified states into new states. This work propagates editing operations
themselves, and thus allows for more e�cient incremental transformations.

The first approach to deliver model-driven engineering to spreadsheet users,
Gencel [11], generates a new spreadsheet respecting a previously defined model.
In this approach, however, there is no connection between the stand alone model
development environment and the spreadsheet system. As a result, it is not
possible to (automatically) synchronize the model and the spreadsheet data,
that is, the co-evolution of the model (instance) and its instance (model) is
not possible, unless it is done by hand, which is very error prone and thus not
desirable. In our work we present a solution for this problem.

6 Conclusions and Future Work

In this paper we have presented a bidirectional model-driven spreadsheet en-
vironment. We constructed a bidirectional framework defining usual end-user
operations on spreadsheet data and on ClassSheet models that always guaran-
tee synchronization after an evolution step at the data or model level. We have
created an extension to the OpenO�ce Calc spreadsheet system so that it o↵ers
a model-driven software development environment. The developed spreadsheet
evolution environment allows: the generation of a spreadsheet instance from a
ClassSheet model; the evolution of the model and the automatic co-evolution of
the data; the evolution of the data and the automatic co-evolution of the model.

The techniques we present propose the first bidirectional setting for the evo-
lution of spreadsheet models and instances. Our research e↵orts, however, have
thus far considered standalone, non-concurrent spreadsheet development only.
In a computing world that is growingly distributed, developing spreadsheets is
often performed in a collaborative way, by many actors. As part of our plans for
future research, we have already engaged in trying to extend our work in this
paper to a distributed environment.

Although there exists some empirical evidence that an approach to spread-
sheet development based on models can sometimes be e↵ective in practice [2],
the global environment envisioned in this paper still lacks a concrete empirical
analysis. In this line, a study with real spreadsheet users is under preparation.

16

References

1. Abraham, R., Erwig, M., Kollmansberger, S., Seifert, E.: Visual specifications of
correct spreadsheets. In: VL/HCC. pp. 189–196. IEEE Computer Society (2005)

2. Beckwith, L., Cunha, J., Fernandes, J.P., Saraiva, J.: End-users productivity in
model-based spreadsheets: An empirical study. In: IS-EUD. pp. 282–288 (2011)

3. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: EDOC. pp. 222–231. IEEE CS (2008)

4. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A Framework for
Model-driven Spreadsheet Engineering. In: ICSE. pp. 1412–1415. ACM (2012)

5. Cunha, J., Mendes, J., Fernandes, J.P., Saraiva, J.: Embedding and evolution of
spreadsheet models in spreadsheet systems. In: VL/HCC ’11. pp. 179–186. IEEE

6. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and
back. In: PEPM. pp. 179–188. ACM, New York, USA (2009)

7. Cunha, J., Visser, J., Alves, T., Saraiva, J.: Type-safe evolution of spreadsheets.
In: FASE. pp. 186–201. Springer-Verlag, Berlin, Heidelberg (2011)

8. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: MoDELS
2008. pp. 21–36. Springer (2008)

9. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: the symmetric case. In:
MODELS. pp. 304–318. Springer-Verlag, Berlin, Heidelberg (2011)

10. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: ASE. pp. 124–133. ACM (2005)

11. Erwig, M., Abraham, R., Cooperstein, I., Kollmansberger, S.: Automatic genera-
tion and maintenance of correct spreadsheets. In: ICSE. pp. 136–145. ACM (2005)

12. Erwig, M., Abraham, R., Kollmansberger, S., Cooperstein, I.: Gencel: a program
generator for correct spreadsheets. J. Funct. Program 16(3), 293–325 (2006)

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: a linguistic approach to the view update
problem. In: POPL. pp. 233–246. ACM (2005)

14. Hermans, F., Pinzger, M., van Deursen, A.: Automatically extracting class dia-
grams from spreadsheets. In: ECOOP. pp. 52–75. Springer-Verlag (2010)

15. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In: MoDELS, LNCS, vol. 5301, pp. 645–659.
Springer (2008)

16. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: POPL. to appear (2012)
17. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured

documents based on bidirectional transformations. HOSC 21(1–2), 89–118 (2008)
18. Jones, S.P., Hughes, J., Augustsson, L., et al.: Report on the programming language

haskell 98. Tech. rep. (February 1999)
19. Lämmel, R., Lohmann, W.: Format Evolution. In: RETIS 2001. vol. 155, pp. 113–

134. OCG (2001)
20. Meertens, L.: Designing constraint maintainers for user interaction (1998),

manuscript available at http://www.kestrel.edu/home/people/meertens
21. Panko, R.: Spreadsheet errors: What we know. what we think we can do. EuSpRIG

(2000)
22. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and

Open Questions. In: MoDELS 2007, LNCS, vol. 4735, pp. 1–15. Springer (2007)
23. Takeichi, M.: Configuring bidirectional programs with functions. In: IFL (2009)
24. Vermolen, S., Visser, E.: Heterogeneous coupled evolution of software languages.

In: MoDELS 2008, LNCS, vol. 5301, pp. 630–644. Springer (2008)

