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Abstract. Model finders are becoming useful in many software engi-
neering problems. Kodkod [19] is one of the most popular, due to its
support for relational logic (a combination of first order logic with rela-
tional algebra operators and transitive closure), allowing a simpler spec-
ification of constraints, and support for partial instances, allowing the
specification of a priori (exact, but potentially partial) knowledge about
a problem’s solution. However, in some software engineering problems,
such as model repair or bidirectional model transformation, knowledge
about the solution is not exact, but instead there is a known target that
the solution should approximate. In this paper we extend Kodkod’s par-
tial instances to allow the specification of such targets, and show how
its model finding procedure can be adapted to support them (using both
PMax-SAT solvers or SAT solvers with cardinality constraints). Two case
studies are also presented, including a careful performance evaluation to
assess the effectiveness of the proposed extension.

1 Introduction

In the last decades SAT solvers have shown great potential in many areas. How-
ever, their applicability to software engineering problems is somehow hampered
by the low-level nature of SAT problems and the low expressiveness of proposi-
tional logic. Specifying high-level constraints in such solvers can be quite cum-
bersome, and using them to solve software engineering problems usually requires
a complex embedding. Recently, some higher-level solvers have been proposed
that are more suitable for such problems. Among those, Kodkod [19] is one of
the most popular, mainly due to its support for relational logic, an extension
of first-order logic with relational operators and transitive closure. The former
gives an object-oriented feeling to Kodkod specifications, making it accessible
to software engineering practitioners, and the latter allows the specification of
(many times essential) reachability properties.

The most well-known application of Kodkod is the automated analysis of
specifications written in Alloy [6], a lightweight formal specification language
also based on relational logic. The Alloy Analyzer supports model finding via an
embedding to Kodkod. Alloy has a type system that supports overloading and
sub-typing, and allows the detection of many erroneous expressions that could
render the specification trivially unsatisfiable [4]. This makes it more suitable



for the interactive development of specifications, while Kodkod is more suitable
as an engine for automated analysis. This is particularly true because, unlike
Alloy, Kodkod allows the specification of partial instances – a priori partial
(but exact) knowledge about a problem’s solution. This enables, for example,
the specification of expected examples to validate the problem constraints, to
bound (and speed-up) model finding within a particular class of instances, or to
use Kodkod as a configuration solver, in which the goal is no longer to check the
consistency of the constraints but to find an extension of a partial configuration
to a full and valid instance of the problem.

Albeit extremely useful, such partial instances are not expressive enough to
specify an interesting class of software engineering problems in which the a priori
knowledge is not exact, but just a description of an idealized (in the sense that
it may be unsatisfiable) instance one wishes to approximate. One such applica-
tion is model repair. While interactively developing models, users often introduce
inconsistencies. Manually repairing them to meet meta-model constraints is te-
dious and many times unfeasible due to model size or the complexity of the
constraints. As such, tools for automatic model repair abound, and they all at-
tempt to produce minimal repairs that yield valid models that are as close as
possible to the original. Closely related is data repair. Programs typically as-
sume the consistency of their data, but it can sometimes be corrupted by bugs
or erroneous/malicious inputs, leading to unpredictable behavior. A conservative
approach to tackle this problem is to regularly check data integrity and gracefully
terminate execution when problems are found. An alternative is to repair data on
the fly and allow the program to resume execution. Some data repair tools resort
to model finders to accommodate complex integrity constraints, needing ad hoc
procedures to achieve repair minimality. While model repair is concerned with
intra-model consistency, a bidirectional model transformation [3] tries to solve
the problem of inter-model consistency. Given a consistency relation between
two meta-models, the goal is to derive forward and backward transformations to
propagate updates between conforming models. Ideally they should satisfy the
principle of least change, meaning that the inconsistent target model must be
kept as intact as possible.

Model finders are excellent for scenario exploration, namely finding concrete
instances of a specification to help users understand and validate it. Any in-
teresting specification is likely to have many (or an infinite number of) possible
scenarios, and tools have been proposed to help users parameterize and guide the
search to yield interesting (namely, minimal) scenarios [12]. Even so, sometimes
it takes considerable manual work to produce an interesting and revealing sce-
nario, and it would be quite useful if such interesting scenarios could be reused
and automatically adjusted every time the specification is changed, to highlight
the consequences of such modifications. To do so, the model finder must have
the ability to specify a previous instance as a target to be approximated by the
next solving iteration.

The potential for such optimization extensions to solvers has long been recog-
nized in the SAT solving community, with a plethora of solvers now supporting



some sort of maximum satisfiability problem (Max-SAT). However, as argued
above, SAT solvers are not the ideal target for the described applications. The
contribution of this paper is precisely to show how such optimization features
can be seamlessly integrated in a higher-level model finder. In particular, we will
show how Kodkod partial instances can be extended to support the specification
of target instances, and how the analysis of Kodkod problems can be adapted to
effectively yield instances that are as close as possible to the specified targets.
With this extension, Kodkod can be used to directly implement the above appli-
cations, without having to resort to ad hoc procedures to constrain the desirable
optimal solutions.

In the next section, we present a brief overview of Kodkod. In Sect. 3 we
show how it can be extended to support targets in partial instances. Section 4
evaluates the effectiveness of the proposed extension, by resorting to two case
studies illustrative of the above applications. Section 5 presents some related
work and Sect. 6 points some conclusions and ideas for future work.

2 An overview of Kodkod

A Kodkod problem P consists of:

– A universe declaration U , which consists of a set of atoms.
– A set of relation declarations: given a relation r, its declaration r :k [rL, rU ]

consists of its arity k and two relational constants rL and rU , denoting its
lower- and upper-bounds, respectively. A relational constant of arity k is just
a set of tuples of size k, that is, sequences of atoms of length k drawn from
U .

– A relational logic formula whose free relational variables are part of the above
declarations. Relational logic is essentially first order logic with transitive
closure, extended with relational algebra operators (such as composition,
converse or union), allowing us to build complex relational expressions out
of simpler ones. These operators enable a navigational (OO-like) style that
simplifies property specification for non-logic experts, and transitive closure
is key to specify common reachability properties.

A solution to a problem is a model, or instance, of its formula – a binding to the
declared relations that makes the formula true. The lower-bounds specify tuples
that must be present in every solution, and thus can be used to express a priori
knowledge about the problem (with the positive side-effect of speeding up model
finding). The union of the lower-bounds is known as a partial instance.

Figure 1 presents a Kodkod problem, that will later be adapted to a simple
case study illustrative of data repair. Suppose we are given a directed graph with
nodes A, B, C, and D and edges A→ B,B→ C, and C→ B. Imagine that this is a
dependency graph between software services, and we wish to color the different
strongly connected components (SCCs) with different colors (Red,Green,Blue,
and Yellow), denoting for example the nodes in a distributed network on which
to deploy the services – the idea would be to map services in the same SCC to



{A,B,C,D,Red,Green,Blue,Yellow}

Node :1 [{A,B,C,D}, {A,B,C,D}]
adj :2 [{〈A,B〉, 〈B,C〉, 〈C,B〉}, {〈A,B〉, 〈B,C〉, 〈C,B〉}]
color :2 [∅, {〈A,Red〉, 〈A,Green〉, 〈A,Blue〉, 〈A,Yellow〉, 〈B,Red〉, . . .}]

all n : Node | one n.color
all n,m : Node | (n in m.∗adj and m in n.∗adj) iff (n.color = m.color)

Fig. 1: A Kodkod problem to color SCCs.

the same node in order to minimize the communication overload between them.
Of course, we could run Tarjan’s algorithm [17] to find such components in linear
time, but here we’ll resort to Kodkod instead, as this is a simple example that
illustrates well the need for partial instances and the usefulness of transitive
closure.

In the universe of the problem we declare atoms to represent each of the
nodes and the available colors. We then declare three relations: the set Node (in
Kodkod sets are just relations with arity 1) containing all the nodes of the graph,
the binary relation adj describing its vertices, and a binary relation color whose
value is unknown but is restricted by the upper bound to be a valid assignment
from nodes to colors. The value of Node and adj is known a priori (as signaled by
the equal lower- and upper-bounds). The problem does not declare a relation for
the available colors since there is no need to mention that set in the constraints.
The model finder will in this case act as a configuration solver, that is, extend
this partial instance to a complete one satisfying the problem constraints:

– The first states that every node must be assigned a color. Notice how rela-
tional composition is used to navigate the model structure: n.color is a set
containing all colors associated with node n. Kodkod syntax also provides
handy keywords to check the cardinality of sets. Here we use one to force
the set of colors associated with each node to be a singleton.

– The second states that nodes share the same color iff they are accessible
from each other (that is, they are in the same SCC). To compute the set of
all nodes accessible from n we compose it with the transitive and reflexive
closure of the relation adj, determined with the unary operator ∗.

Expressing this problem directly at the SAT level would be very cumbersome,
and it exposes very well the elegance and compactness provided by relational
algebra operators and transitive closure.

Kodkod problems are analyzed by translation to off-the-shelf SAT solvers.
Each relation r of arity k is represented by a k-dimensional matrix with capacity
for |U|k propositional variables. Given the relation declaration each entry of the



matrix is filled as follows:

r[i1, . . . , ik] =

> if 〈Ai1 , . . . , Aik〉 ∈ rL
ri1,...,ık if 〈Ai1 , . . . , Aik〉 ∈ rU \ rL
⊥ otherwise

Entries corresponding to tuples in the lower-bound are set to true; a propositional
variable is created for each entry denoting a tuple whose membership to the re-
lation is still unknown; the others are just set to false. Relational formulas are
translated to propositional formulas by interpreting relational operators as ma-
trix operations. For example, composition is the product, union is the sum, and
intersection is the Hadamard product. Existential quantifiers are skolemized to
yield witnesses to the quantified variables, and universal quantifiers are expanded
(note that every relational expression is bounded). Kodkod performs several op-
timizations to decrease SAT complexity. The most significant is symmetry break-
ing – since atoms are uninterpreted, many instances are isomorphic, and it is very
unlikely that the user wants to retrieve them all. For example, in the above prob-
lem a possible solution is to assign {〈A,Red〉, 〈B,Green〉, 〈C,Green〉, 〈D,Blue〉} to
color, and any permutation of the colors will yield another solution that is es-
sentially the same.

3 Extending partial instances with targets

We propose to extend Kodkod partial instances by allowing targets in the dec-
laration of relations. More specifically, a declaration can also take the form
r :k [rL, rU , rT ], where rT is a constant stating an a priori known goal for the
value of r. Obviously, such declarations must satisfy the constraint rL ⊆ rT ⊆ rU .
Besides making the respective formula true, a model of a problem with targets
is a binding that must also be as close as possible to the specified targets, that
is, that requires the fewest mutations (tuple deletions or insertions) to make the
target a satisfying binding. When seeing instances as graphs, a valid instance
should then minimize the graph edit distance (GED) to the target. Formally, a
binding B is an instance of a problem P with targets (denoted by B |= P) if it
satisfies the declared lower- and upper-bounds, makes its formula true, and, for
all possible bindings B′ that also satisfy the bounds and the formula, we have∑

r∈T
|B(r)	 rT | ≤

∑
r∈T
|B′(r)	 rT |

Here T denotes the set of relations that have targets declared, and B(r) 	 rT
denotes the symmetric difference between sets B(r) (the value of relation r
according to B) and rT , i.e., (B(r) − rT ) ∪ (rT − B(r)). This summation just
counts the number of mutations in all relations.

Going back to the example of the previous section, suppose that services
A,B,C and D were previously assigned to nodes Red,Green,Blue and Yellow, re-
spectively, and that we wish to reassign services to nodes taking into account



the problem constraints and minimizing node transfers. Such (re-)configuration
can be done using Kodkod with targets, by changing the declaration of color to1

color :2 [∅, {〈A,Red〉, 〈A,Green〉, 〈A,Blue〉, 〈A,Yellow〉, 〈B,Red〉, . . .},
{〈A,Red〉, 〈B,Green〉, 〈C,Blue〉, 〈D,Yellow〉}]

According to the above semantics, the only two valid instances of this prob-
lem bind color to either {〈A,Red〉, 〈B,Green〉, 〈C,Green〉, 〈D,Yellow〉} or {〈A,Red〉,
〈B,Blue〉, 〈C,Blue〉, 〈D,Yellow〉}. Both these instances are at distance 2 from the
specified target, requiring one tuple deletion and one tuple insertion (to change
the color of either B or C, respectively). The next sections present two different
approaches to the analysis of a Kodkod problem with targets.

3.1 Analysis via cardinality constraints

Some SAT solvers allow the specification of cardinality constraints, a bound on
the number of literals within a given set that can be assigned true. Given a set
of literals {l1, . . . , ln} a cardinality constraint takes the form l1 + . . . + ln ≷ k,
where ≷ is any of the comparisons in {≤,=,≥}, to specify atmost, exactly, and
atleast bounds, respectively.

Cardinality constraints can be encoded with standard CNF boolean formulas
and thus handled by standard SAT solvers. The best known encoding for atmost
constraints requires n log2 k extra clauses [1]. They can also be handled natively
by the solver by tweaking the standard unit propagation and conflict analysis
procedures [9]: the former is updated to keep track of how many literals in the
set have been assigned true and propagates the negation of the remaining when
the limit is reached; when a conflict is detected, the latter adds a conflict clause
with the literals that were assigned true and rewinds those assignments.

The analysis of a Kodkod problem with targets can be done by creating an
atleast constraint describing the structure of the ideal instance (i.e., containing
a positive literal for each tuple in the targets and a negative one for each allowed
tuple not in the targets), and then solving with decreasing bounds starting from
the total size of the targets until SAT or reaching 0 (or dually using atmost
constraints, negating all literals, and starting from 0). Formally, the CNF formula
generated by Kodkod is repeatedly extended with the cardinality constraint∑

r∈T ,〈Ai1
,...,Aik

〉∈rT

ri1,...,ik +
∑

r∈T ,〈Ai1
,...,Aik

〉∈rU\rL\rT

¬ri1,...,ik ≥ n

with n starting with value
∑
r∈T |rU−rL| (the number of propositional variables

created by Kodkod for the relations with targets), and iteratively decreased until
SAT or reaching 0. If the result is UNSAT for n = 0 then the Kodkod problem has
no valid instance. Notice that this iterative process is performed after all Kodkod
simplifications are done, and thus they can be reused in every incremental call of
the SAT solver. As detailed in Sect. 4, one of the consequences of this approach
is that the performance of the analysis will decrease as the number of mutations
required to make the target a valid instance increases.

1 Bold type will be used to highlight targets in relation declarations.



3.2 Analysis via PMax-SAT solvers

Max-SAT is an optimization extension to SAT where, instead of finding an
assignment that satisfies all the clauses, one tries to find an assignment that
maximizes the number of clauses that can be satisfied. Unfortunately, in real
world optimization-like problems, there are constraints that are mandatory and
whose unsatisfaction deems the solution meaningless. The partial maximum sat-
isfiability problem (PMax-SAT) was introduced [11,2] precisely to address such
scenarios: clauses can either be soft or hard, and the goal is to find an assignment
that satisfies all hard clauses and that maximizes the number of satisfied soft
clauses. A typical approach to this problem takes advantage of the UNSAT core
extraction feature already present in many SAT solvers [5]: an UNSAT core is a
subset of the original clauses whose conjunction is still unsatisfiable, and with an
iterative procedure it is possible, by introducing extra variables and clauses, to
relax one soft clause in the UNSAT core at a time until a satisfying assignment
is found.

To analyze an extended Kodkod problem with targets using PMAX-SAT
solvers it suffices to generate, besides the normal hard clauses originating from
the problem formula, a set of soft clauses containing:

– One soft clause for each 〈Ai1 , . . . , Aik〉 ∈ rT and r ∈ T , containing a single
literal ri1,...,ik .

– One soft clause for each 〈Ai1 , . . . , Aik〉 ∈ rU \ rL \ rT and r ∈ T , containing
a single literal ¬ri1,...,ik .

Likewise to the implementation with cardinality constraints, these soft clauses
describe the ideal solution specified in the targets. If the hard clauses are satis-
fiable, maximization of the satisfied soft clauses will yield a binding that is as
close as possible to the target.

3.3 Symmetry breaking

One of the optimizations performed by Kodkod is symmetry breaking. A per-
mutation l of the atoms in U is a symmetry of the problem iff, for all bindings
B, we have B |= P ⇐⇒ l(B) |= P. Here l(B) is the binding that results from
applying l to all atoms in B. A symmetry induces an equivalence relation in the
bindings, and the goal of symmetry breaking is to restrict model finding to yield
only one witness of each equivalence class. One of the main results in [19] states
that l is a symmetry iff it fixes all relational constants in the lower- and upper-
bounds of the problem (i.e., maps each constant to itself). Based on this result,
an efficient algorithm is proposed to compute such permutations: this algorithm
is not complete, in the sense that it does not always generates all permutations
that fix all constants in the bounds, but in practice succeeds in doing so for most
problems.

The above result is no longer true when considering targets: namely, there
are symmetries that may not fix the constants in the targets. Consider for exam-
ple our running example: the permutation {Red → Red,Green → Blue,Blue →



Green,Yellow → Yellow} is a symmetry of the problem (note that the two in-
stances of the problem are not truly different – the essence of the solution is
that both B and C should have the same color and it should be one of their
original colors) but it does not fix the target of the relation color. However, it
can be shown that any permutation that fixes the lower- and upper-bounds and
the targets is still a symmetry of the problem2, and as such we can still reuse
Kodkod algorithm for symmetry breaking, provided it is adapted to take targets
into account. In practice, when targets are present, the algorithm will be less
complete, in the sense that it will miss more symmetries than when no targets
are specified. For example, the above symmetry will not be detected. As an ex-
ample of a symmetry that would be detected, consider the case of adding to the
problem a new (unconnected) node and two new colors: in this case only one
instance will be produced, assigning one of the new colors to the new node.

4 Evaluation

We have implemented the proposed extension in Kodkod 2.0, and added support
for the following solvers: Sat4J 2.3.5 (http://www.sat4j.org), a pure Java SAT
solver that handles both native cardinality constraints and PMax-SAT problems,
and Yices 1.0.39 (http://yices.csl.sri.com), a SMT solver claimed to be
competitive as a standard SAT and PMax-SAT solver.

4.1 Case-study 1: data repair

To evaluate our approach we developed two case studies. The first illustrates the
usage of targets in data (and model) repair, and builds on our running example of
coloring the SCCs of a graph. To assess the scalability of the proposed analysis
techniques, we will resort to a parametrized version of this problem. Suppose
we have a directed graph of size n (n nodes named N1 to Nn) organized as a
chain, i.e., with n − 1 arcs connecting node Ni with node Ni+1 for every i < n.
Obviously, in this graph there are n SCCs, each containing exactly 1 node. These
SCCs are currently colored with colors C1 to Cn. Suppose now that the graph
is updated and a new arc is added, between node Nn and node Nn−∆, where
∆ < n. The updated graph is depicted in Fig. 2. This change puts the last
∆ + 1 nodes together in the same SCC, and will (at least) require the color
of ∆ nodes to also change, in order for the problem constraints to be satisfied
(requiring 2∆ mutations to the original color). Figure 3 shows how this problem
can be specified in Kodkod with targets. Note how the adj relation is set to the
updated graph configuration, and the target of color is set to the previous color
assignment.

2 In addition to Lemmas 1 and 2 in [18], that prove that a permutation l that fixes all
constants in declarations preserves the validity of bounds and formulas, respectively,
it suffices to show that it also preserves the distance to the targets: for all r ∈ T ,
since l(rT ) = rT , then, by applying standard equational laws relating permutations
with set operations, we have |l(B(r)) 	 rT | = |l(B(r)) 	 l(rT )| = |l(B(r) 	 rT )| =
|B(r)	 rT |.

http://www.sat4j.org
http://yices.csl.sri.com
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Fig. 2: Adding a backlink to a chain with n nodes.

{N1, . . . ,Nn,C1, . . . ,Cn}

Node :1 [{N1, . . . ,Nn}]
adj :2 [{〈N1,N2〉, 〈N2,N3〉, . . . , 〈Nn,Nn−∆〉}, {〈N1,N2〉, 〈N2,N3〉, . . . , 〈Nn,Nn−∆〉}]
color :2 [∅, {〈N1,C1〉, 〈N1,C2〉, 〈N1,C3〉 . . .},{〈N1,C1〉, 〈N2,C2〉, . . .}]

all n : Node | one n.color
all n,m : Node | (n in m.∗adj and m in n.∗adj) iff (n.color = m.color)

Fig. 3: Kodkod problem to update the color of SCCs.

4.2 Case-study 2: bidirectional transformation

The second case study illustrates the potential of targets in bidirectional model
transformation. This case study is a very simplified version of the mapping be-
tween class diagrams and relational database schemas [3]. The basic idea of the
forward transformation is to map a class marked as persistent to a table with the
same name, mapping also its attributes (including inherited ones) to columns. If
the schema is updated, the backwards transformation can be used to propagate
the changes back to the class diagram. Since the forward transformation loses
information (namely about non-persistent classes) the backward transformation
must consider not only the updated schema but also the original class diagram.

Figure 4 depicts a (parametrized) example of a simplified class diagram with
n persistent classes. There are 2n classes in total, denoted C1, . . . ,C2n. Class Ci
is named Ni, class Ci+1 extends class Ci for i < n, and Ci+n extend class Ci for
i ≤ n. Classes C1, . . . ,Cn are marked as persistent (grey shade) and each of these
has an attribute with the same name as the class (whose type will be ignored
in this example). Applying the forward transformation to this class diagram
produces a schema with n tables T1, . . . ,Tn, named N1, . . . ,Nn respectively,
with each Ti, for i ≤ n, containing i columns named N1, . . . ,Ni. Suppose that
the name of the first ∆ tables is changed from Ni to Ni+n and we would like to
propagate this update back to the source model. A backwards transformation
that follows the principle of least change should simply move the persistent flag
from class Ci to class Ci+n for every i ≤ ∆ (requiring 2∆ mutations).

Using Kodkod extended with targets such least change backwards transfor-
mation can be easily implemented, as shown in Fig. 5. First we declare relations
to represent both models. Sets Class, Table and Name capture the model ele-
ments. Relations nameC and nameT capture the association between classes and
tables and their names, respectively. Similarly, attributes and columns map classes
to their attributes and tables to columns, respectively. Finally, persistent denotes
the set of persistent classes and parent the inheritance relationship. The values of



N1
N1: void

N2
N2: void

Nn
Nn: void

Nn+1 Nn+2 Nn+n

Fig. 4: Simple class diagram example

{C1, . . . ,C2n,N1, . . . ,N2n,T1, . . . ,Tn}

Class :1 [∅, {C1, . . . ,C2n},{C1, . . . ,C2n}]
Table :1 [{T1, . . . ,Tn}, {T1, . . . ,Tn}]
Name :1 [∅, {N1, . . . ,N2n},{N1, . . . ,N2n}]
nameC :2 [∅, {〈C1,N1〉, 〈C1,N2〉, . . .},{〈C1,N1〉, 〈C2,N2〉, . . .}]
nameT :2 [{〈T1,Nn+1〉, . . . , 〈T∆+1,N∆+1〉 . . .}, {〈T1,Nn+1〉, . . . , 〈T∆+1,N∆+1〉 . . .}]
attributes :2 [∅, {〈C1,N1〉, 〈C1,N2〉, . . .},{〈C1,N1〉, 〈C2,N2〉, . . .}]
columns :2 [{〈T1,N1〉, 〈T2,N1〉, 〈T2,N2〉, . . .}, {〈T1,N1〉, 〈T2,N1〉, 〈T2,N2〉, . . .}]
persistent :1 [∅, {C1, . . . ,C2n},{C1, . . . ,Cn}]
parent :2 [∅, {〈C1,C1〉, 〈C1,C2〉, . . . , },{〈C2,C1〉, 〈C3,C2〉, . . . 〈Cn+1,C1〉, . . .}]

persistent in Class all c : Class | one c.nameC

attributes in Class→ Name all n : Name | lone nameC.n
nameC in Class→ Name all c : Class | lone c.parent
parent in Class→ Class all c : Class | c not in c.ˆparent

all c : persistent | some t : Table | c.nameC = t.nameT and c.∗parent.attributes = t.columns
all t : Table | some c : persistent | c.nameC = t.nameT and c.∗parent.attributes = t.columns

Fig. 5: Kodkod problem specifying a bidirectional object to relational mapping.

the relations that represent the updated schema are fixed in the partial instance
(by setting the lower- and upper-bounds equal). To ensure the principle of least
change, targets are used to capture the original class diagram, whose update is
to be determined by model finding. The first set of constraints specifies the class
diagram meta-model constraints, such as, uniqueness of class names (note how
relational composition is used in nameC.n to determine all classes that have name
n), or non circularity of the inheritance relationship (expression c.ˆparent uses
the transitive closure of relation parent to determine all ancestors of c). The last
two constraints specify the desired consistency relation, in a style similar to the
bidirectional model transformation language QVT-R standardized by OMG [13].
Using the forall-there-exists pattern, every persistent class is required to have
a matching table and vice-versa. By matching we mean a table with the same
name and columns for every declared and inherited attribute of the class. Again
(reflexive) transitive closure is key to specify this constraint.
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Fig. 6: Results for the graph SCC coloring problem.
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Fig. 7: Results for the bidirectional object to relational mapping problem.

4.3 Discussion

The first case study was tested with size 10 ≤ n ≤ 100 (with increments of 10),
and for 0 ≤ ∆ ≤ 5. The results can be seen in Fig. 6. The vertical axis shows
solving time in milliseconds and log-scale; the horizontal axis shows the problem
size; and in different line styles we have the timings for different values of ∆.
The second case study was tested with sizes 6 ≤ n ≤ 20, and for 0 ≤ ∆ ≤ 5.
The results can be seen in Fig. 7. The tests were conducted on an Intel CORE
i7 3517U with 4Gb of memory and the Ubuntu 13.4 operating system.

In both problems the total time to find a solution grows exponentially with
the size of the problem. For the first one, the analysis using PMax-SAT clearly
outperforms the one with cardinality constraints for values of ∆ > 3, and is only
slightly worst in the remaining cases. For example, using Sat4J, for n = 100
and ∆ = 5 the former is around 5.8× faster than the latter. This is due to
the iterative nature of the analysis with cardinality constraints, that requires
as many calls to the solver as the number of mutations required to recover
consistency. The analysis with PMax-SAT is more insensitive to ∆, as confirmed
also in the bidirectional transformation example. In Fig. 7 we present no results
for Sat4J with PMax-SAT because this solver failed to handle the problem in
question for most values of ∆ > 0. In fact, PMax-SAT solvers tend to exhibit a



more unpredictable behavior: they can be surprisingly fast for some problems,
but fail miserably in others. In fact we did some preliminary tests with other
PMax-SAT solvers but they failed even in our simpler graph problem, so we
chose not to support them. So far, Yices proved to be the more stable, and
in the bidirectional transformation case study it also outperformed significantly
Sat4J with cardinality constraints for bigger values of ∆: for n = 20 and ∆ = 5
it is around 12.6× faster. In short, the analysis based on cardinality constraints
is more stable and performs better if few mutations are required to recover
consistency. When more mutations may be required, PMax-SAT is much more
efficient, but may for some problems just fail to produce a solution.

In absolute terms, for the data repair problem with n = 100 and ∆ = 5 the
best solver was Sat4J with PMax-SAT, taking around 17s to yield a solution. In
this problem we have a total of 200 atoms and 100 edges in the targets. In the
bidirectional transformation case study, for n = 20 and ∆ = 5 the best solver was
Yices with PMax-SAT, taking 93s to yield a solution. Here we have a total of 100
atoms and 200 edges in the targets. For applications like scenario exploration,
where instances are typical small, this performance suffices. For model repair and
bidirectional transformation, the proposed approach will only be able to tackle
realistic models of medium size, within the hundreds of model elements. Finally,
we also checked if the specification of targets induced performance gains, when
compared to normal solving without targets. Obviously, in the latter case the
returned instance can differ substantially from the target. In the first case study
the analysis with targets using Yices is roughly 3.8× faster in average for n = 100,
being 6.7× faster for the case of Sat4J with PMax-SAT. In the other case study,
for n = 20 it is in average 1.8× slower using Yices and 12× slower using Sat4J
with cardinality constraints. Although inconclusive, this suggests that targets
may sometimes considerably speed-up solving, and using PMax-SAT does not
impose a big penalty, besides, of course, yielding optimum solutions.

5 Related work

This research was mainly motivated by our previous work on Echo [7,8], a tool for
bidirectional model transformation obeying the principle of least change. Echo
works by embedding both QVT-R transformations and the meta-models they re-
late into Alloy [6]. One of the least change criteria supported by Echo is precisely
to minimize GED. To do so, Echo uses an analysis technique similar to cardi-
nality constraints, but encodes them directly in Alloy (using a relational logic
formula) using the size of the symmetric difference of relations. To avoid prob-
lems with overflows this encoding requires the usage of the Forbid Overflow

option, that is currently supported by a modified Kodkod version [10]. Moreover,
for each iteration of the search algorithm (starting at GED 0 and with successive
increments until SAT) a new Kodkod problem must be generated, preventing
incremental solving, namely the reuse of simplifications performed in previous
iterations. We implemented our first case study with this ad hoc approach and
compared the results to the ones presented in Sect. 4. The implementation with



targets and analysis via native cardinality constraints outperformed the previ-
ous technique by 4.3× in average for n = 100. The gains with PMax-SAT would
be even higher. Given these promising results, we are currently reimplementing
Echo on top of the extended Kodkod proposed in this paper.

Most of the existing model repair tools are not fully automatic, in the sense
that the suggested fixes consist of sequences of abstract edit operations (which
the user must manually instantiate to actually repair the models). The work of
Egyed et al. is a prime example of this approach [14]. Fully automatic model
repair tools usually rely on solvers and use ad hoc non-optimal procedures to
minimize repairs. Some of them already target Kodkod (or Alloy) due to the
effectiveness of relational logic in specifying rich constraints. For example, Van
Der Straeten et al. [16] assessed the viability of using Kodkod to perform model
repair. To minimize repairs, they first use an external (non specified) procedure
to identify tuples suspect of causing the inconsistency, which are then removed
from the lower-bound of the respective relations. The upper-bound of those
relations is also relaxed to allow tuple insertions. This technique does not ensure
minimality of the repairs, only handles one inconsistency at a time, and is still not
fully automatized (e.g., the relaxation of upper-bounds is performed manually).
This study concluded that, performance wise, Kodkod is not viable for model
repair of large size models. Our evaluation does not invalidate this conclusion,
but as shown in Sect. 4, by resorting to specialized SAT solving procedures
(namely PMax-SAT) substantial performance gains can be obtained, somehow
alleviating this problem, without having to resort to approximate solutions.

Zaeem and Khurshid proposed an Alloy/Kodkod based data repair frame-
work that attempts to keep the perturbation to the faulty data structure to a
minimum [21]. To do so, they try to find a minimal subset of relations that needs
to be relaxed (that is, allowed to contain any possible tuple) in order to recover
consistency. Several algorithms are proposed to find such minimal subset, for
example exhaustive search (first relax one relation at a time, then two relations,
and so on). Likewise to [16] this heuristic method is not guaranteed to yield a
minimal repair, and its implementation using the standard version of Kodkod is
far from trivial, unlike with targets.

Xiong el at. [20] propose a technique for generating minimal fixes for software
configuration, based on Reiter’s theory of diagnosis [15]. This theory is quite
similar to PMax-SAT, in that it tries to find a minimal subset of soft clauses that
can be removed to restore satisfiability (and to do so also resorts to the UNSAT
core extraction). To be able to handle constraints over integers and strings,
this fix generation technique is implemented using a SMT solver. Although the
support for primitive types is very convenient, the logic supported by this tool
is quite limited, namely lacking the expressiveness afforded by the relational
logic (and closures), that makes Kodkod so useful for many software engineering
applications. The ideal would be to combine both, namely analyze relational
specifications using SMT solvers, a technique we intend to explore in the future.

Minimality is also key in scenario exploration. Aluminum [12] is a modifica-
tion of the Alloy Analyzer that allows the visualization of minimal scenarios, i.e,



instances from which no tuple can be removed without becoming UNSAT. The
algorithm proposed to find such minimal instances can be adapted to handle
targets, provided the closest instance can be found just by resorting to tuple
insertions (or dually just deletions). For example it could not handle any of our
case studies, which required both insertions and deletions to recover satisfiability.

6 Conclusion

In this paper we have shown how the Kodkod model finder can be extended
with targets, allowing the specification of a priori knowledge about the ideal
solution for a problem. We have also shown how the analysis of such extended
Kodkod problems can be performed (to yield instances that are as close as possi-
ble to the specified targets), by resorting to two different techniques: SAT solvers
with native cardinality constraints and PMax-SAT solvers. As illustrated by our
case studies, this extension simplifies considerably the implementation of many
software engineering applications where such targets were needed: Kodkod’s re-
lational logic allows a very direct encoding of constraints, and the native support
for targets renders obsolete ad hoc techniques previously implemented in tools
that used model finders (in particular Kodkod) to implement such applications.
The proposed analysis techniques deem the approach viable for problems of
medium size. Native cardinality constraints are more stable and efficient when
the optimum solution is very close to the target, but PMax-SAT solvers can
largely outperform them when reaching the optimum requires several mutations.

In the future we intend to implement some optimizations to our analysis pro-
cedure, namely trying to apply some of the techniques described in [21] to infer
which relations can be given exact bounds instead of targets. For example, in
our bidirectional transformation case study, if we could somehow infer that only
the persistent relation needs to be changed, solving would be substantially faster.
We also intend to implement a larger set of case studies and real applications in
order to validate our conclusions. In particular, we are currently reimplementing
our Echo [8] bidirectional model transformation tool using the proposed Kod-
kod extension. We also intend to implement a scenario exploration feature in the
Alloy Analyzer, to allow the automatic readjustment of a previously calculated
instance in order to accommodate changes in the specification.
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