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Abstract:
Non-trivial bidirectional transformations (BXs) are inherently ambiguous, as there
are in general many different ways to consistently translate an update from one side
to the other. Existing BX languages and frameworks typically satisfy fundamental
first principles which ensure acceptable and stable (well-behaved) translation. Unfor-
tunately, these give little insight about how a particular update translation is chosen
among the myriad possible. From the user perspective, such unpredictability may
hinder the adoption of BX frameworks.

The problem can be remedied by imposing a “principle of least change” which, in
a state-based framework, amounts to translating each update in a way such that its
result is as close as possible to the original state, according to some distance measure.

Starting by formalizing such BXs focusing on the particular framework of lenses,
this paper discusses whether such least-change lenses can be defined by composition,
an essential construct of BX frameworks. For sequential composition, two (dual)
update translation alternatives are presented: a classical deterministic one and a
nondeterministic. A key ingredient of the approach is the elegant formalization of the
main concepts in relation algebra, which exposes several similarities and dualities.

Keywords: Bidirectional transformations, Principle of least change, Compositional-
ity, Relational calculus

1 Introduction

Consider the bidirectional transformation (BX) framework of lenses [FGM+07]1.

Definition 1 (Lens) A lens l : S Q V between a source schema S and a view schema V consists
of a total function getl : S→ V and a partial function putl : S→ V 7→ S. The lens is said to be
well-behaved if it satisfies two BX laws:

s′ ∈ putl s v⇒ v = getl s′ PUTGET

v = getl s⇒ s ∈ putl s v GETPUT

1 Note that we see lenses as a general bidirectional framework, including the particular lens language of [FGM+07].
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Composing least-change lenses

Person *
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(a) Model M1.

popularity : Nat
Person

(b) Model M2.

Person

(c) Model M3.

Figure 1: Model (M1) and respective views (M2,M3) of a simplified Twitter.

Here s′ ∈ putl s v means that putl s v is defined and that s′ = putl s v. The PUTGET law entails
that a lens is acceptable, i.e., view updates are translated exactly by put (information in the view
is not ignored). Essentially, this law imposes an upper bound on the behavior of put (admissible
behaviors). The GETPUT law entails that a lens is stable, i.e., if the view is not changed, then it
must be “put back” to the same source. Dually, this law imposes a lower bound on the behavior
of put (mandatory behaviors).

The classic lens framework is compositional: writing a BX amounts to writing the get trans-
formation in a domain-specific language that includes a set of primitive BXs, and combinators
that allow us to compose those into complex “correct-by-construction” BXs. This contrasts
with other “bidirectionalization” frameworks, that perform syntactic or semantic inversion of a
transformation written in a general purpose language, or that derive suitable forward and backward
transformations from a declarative consistency relation specified between source and target values.

In general, the above BX laws allow multiple valid backward transformations. For instance,
consider the class diagram M1 in Figure 1a that models a simplified Twitter: we have people
(Person) who may follow other people. We could define a model transformation T1 that keeps
the popularity of each person and erases the follows associations, resulting in the model M2 of
Figure 1b, with the constraint that popularity cannot be higher than the number of people. A
second model transformation T2 could also remove the popularity of each person, ending up with
M3 of Figure 1c, where only people that have followers are represented. To satisfy GETPUT, a
put for T1 must return the same source when the view is not changed. If the view is changed, then
it must satisfy PUTGET, which essentially only requires popularity preservation. For example,
should somebody be added to a view with a given popularity, put has freedom to determine who
should follow her or him. Unfortunately, it is free to rearrange the followers of all other people
too, as long as their popularity remains the same.

The lens laws should be taken as first principles: for example, GETPUT “only provides a
relatively loose constraint on the behavior of lenses”, as originally remarked by the authors of the
lens framework [Fos09]. To understand the behavior of a lens, a user cannot rely solely on the
laws and must directly inspect the definition of put. Therefore, laws providing more guarantees
about put would provide a better account of its behavior to users: instead of requiring only that
the source remains unchanged when the view is unchanged, they could require also that an update
translation should be as small as possible.

This “principle of least change” has in fact already been proposed by Meertens [Mee98] for
the BX framework of constraint maintainers. When applied to lenses, this principle will allow
us to tighten the bounds imposed by the traditional laws, thus making the behavior of put more

Proc. BX 2013 2 / 19



ECEASST

predictable. Returning to our example, and assuming that the “distance” between two source
instances increases with the number of people and follow associations not shared by both, the
behavior of a put function that when adding a person to the target rearranges the followers of the
remaining persons would no longer be acceptable (but different puts can still be defined, reflecting
the different choices of followers to be added to the new person).

In this paper, we introduce least-change lenses by applying Meertens’ [Mee98] “principle of
least change” to regular lenses. Given a preorder (a reflexive and transitive binary relation) on
sources that captures the distance to a given source, least-change lenses will require put to return
minimal updates according to that preorder. We also discuss whether a compositional approach is
viable to build such lenses. Indeed, Meertens did not investigate the composition of least-change
maintainers and many authors [Ste10, Dis08, HPW11] view the lack of compositionality as a
drawback.

Our fundamental (and novel) research question is: given two least-change lenses, is their
sequential composition also a least-change lens? Suppose, for instance, that T1 is a least-change
lens minimizing updates according to the distance presented above. Can it be safely composed
with another least-change lens? In part, the answer depends on the distance measure used for the
target model, and we will present some criteria involving this metric that enable us to answer
positively the above question.

Unfortunately, the framework of deterministic lenses (where put returns at most one source) is
too restrictive to allow composition in general. In our example, if the distance on target models
ignores popularity, any transformation performed after our transformation (for example, throwing
away the popularity field and leaving only people) is free to assign a very high popularity to a new
person, which will obviously lead to a non-minimal update of the composed global transformation
(T2 after T1). In such situations, some sort of compositionality can sometimes be achieved if we
allow put to be nondeterministic and require it to generate all sources at the minimal distance.
This will allow the put of the first transformation to consider the different alternatives, and maybe
return the desired least-changed sources. This nondeterministic composition is not ideal: when
composing two lenses f and g, putf needs to search which intermediate candidate results of putg
will generate minimal sources according to its preorder. Nevertheless, it is still far better than
trying to discover the least-changed sources of the composed transformation directly, since for
reasonable orders the guidance from the inner transformations will greatly limit the search space
(indeed, it allows the construction of a search tree by composition).

Paper structure. The next section will introduce least-change lenses, both deterministic and
nondeterministic. In Section 3 we provide a brief account of the relational calculus, just enough
for allowing us to elegantly formalize such lenses. In particular, it will become clear that the
traditional lens laws just impose bounds on the behavior of put, which will be tightened by
least-change lenses. It will also expose the two variants (deterministic and nondeterministic) as
duals of each other, paving the way to easily transcribing properties found about one of them to the
other. Section 4 then presents some necessary conditions to attain (sequential) compositionality.
Section 5 presents some related work, and Section 6 concludes and discusses several possible
directions for future work on this topic, about which this paper aims only to make a small but
principled contribution.
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2 Least-change lenses

The concept of least changes requires the definition of a family of total preorders comparing
sources relative to their “distance” to some other source2. For any source value s ∈ S we also
require the respective total preorder on S, denoted by �s, to be stable.

Definition 2 (Stable preorder) For any source s ∈ S, a preorder �s is said to be stable if s is its
unique minimal value, i.e.,

s1 �s s⇔ s1 = s ORDSTABLE

Condition ORDSTABLE ensures that the source s is the single closest value to itself, i.e., s is
the universal lower-bound of �s. One possible way to construct such total preorder �s is to rely
on a distance measure function dist : S→ S→ N on sources S, such that [Mee98]

s1 �s s2⇔ (dist s s1) 6 (dist s s2)

where 6 :N→ N is the standard order on natural numbers3. The order is stable if the distance is
stable, i.e., the closest value to a source s is itself4:

dist s s′ = 0⇔ s = s′ DISTSTABLE

An instance of M1 of our example consists of a tuple (W,F), where W is a set of people and F
a follows relation from people to people (a set of pairs F ⊆ W×W). A suitable distance measure
for M1 is the size of their symmetric differences:

dist1 (W,F) (W ′,F′) = #(W ∆ W ′)+#(F ∆ F′)
where X ∆ Y = (X−Y) ∪ (Y−X)

An instance of M2 can be seen as a tuple (W,P), where W is again a set of people and P is
a function from people to popularity P : W → N, which is equivalent to a multi-set of people.
Again, a suitable distance measure could be the size of their symmetric differences (generalized
to multi-sets with the obvious definition):

dist2 (W,P) (W ′,P′) = #(W ∆ W ′)+#(P ∆ P′)

We could however ignore the popularity of people not contained in both instances:

dist′2 (W,P) (W ′,P′) = #(W ∆ W ′)+#((P ⊗ (W ∩ W ′)) ∆ (P′ ⊗ (W ∩ W ′)))
where (X ⊗ Y) x = if x ∈ Y then X x else 0

2 By total preorder we mean a preorder � such that, for any points x, y, either x � y or y � x holds. Anti-symmetry
is not required because any two points at the same distance will be comparable in either way and they need not be the
same.
3 Instead of natural numbers any well ordered set could be used in the range of the distance function, providing more
flexibility when computing distances. Notice also that if, for a given s, dist s is an injective distance function, then the
induced preorder � will be anti-symmetric (i.e. a partial order).
4 In a metric space, this clause is known as identity of indiscernibles. In fact, it could be reasonable to assume that
(S,dist) is a metric space, satisfying other properties such as symmetry or triangle inequality, although these are
orthogonal to the properties of least-change lenses.
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2.1 Deterministic least-change lenses

Definition 3 (Least-change lens) Given a family of stable total preorders �s for every s ∈ S,
a least-change lens l : S� Q V consists of a forward total transformation getl : S→ V , and a
partial backward transformation putl : S→ V 7→ S. A least-change lens is well-behaved if it
satisfies GETPUT and

s′ ∈ putl s v⇒ v = getl s′ ∧ (∀ s1 . v = getl s1⇒ s′ �s s1) LEASTPUTGET

LEASTPUTGET is equivalent to the original least change principle proposed in [Mee98]. It is
a refinement of PUTGET, in the sense that the resulting source value is required to be not only
acceptable, but also one of closest to the original s among the sources that share the same view v.
LEASTPUTGET thus lowers the upper bound for put and reduces the range of valid updates.

Although the backward transformation is more restricted, there may still be more than one valid
put for the same get and preorder �s, since there may be multiple sources at the same distance.
Consider our example transformation T1 with the preorder induced by the distance measure dist1.
If we add a person p to the view with popularity n, put is free to choose who will be her followers,
since any instance with n followers for p is at the same distance from the original source. However,
it is no longer free to change the followers of other people, since this would result in more distant
instances. Concerning transformation T2, if we use the preorder induced by dist2, then when
a new person is added to the view put must assign him popularity 0. However, if we use the
preorder induced by dist′2 instead, put is free to assign the new person any valid popularity. In
both cases, put must preserve the popularity of the previously existing people.

Obviously, the preorder may not discriminate much, and at one end of the spectrum we may
have a preorder induced by the measure that considers all different values at the same distance5:

dist s s′ = if s = s′ then 0 else 1

In this case, LEASTPUTGET degenerates into the original PUTGET, allowing the same backward
transformations as the regular lens laws, only recovering the original source when the view is not
modified. The other extreme case occurs when the preorder is refined to the point where minimal
values are unique and there is a single valid put. This will occur when dist s is injective (resulting
in a total order �s), since the minimal source will always be unique.

2.2 Nondeterministic least-change lenses

As discussed in the introduction, for many pragmatic examples a deterministic put that commits
to a particular minimal update will be too restrictive to allow compositionality. Therefore, we
will introduce a variant of least-change lenses where put is nondeterministic, and enumerates all
possible minimal updates. To distinguish it from the deterministic case it will be denoted as Put.

Definition 4 (Nondeterministic least-change lens) Given a family of stable total preorders
�s for every s ∈ S, a nondeterministic least-change lens l : S� IQ V consists of a forward total

5 In metric space terminology, this is known as the discrete metric on a set.
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transformation getl :S→V , and a nondeterministic backward transformation Putl :S→V→P(S)
The lens is said to be well-behaved if it satisfies PUTGET and

v = getl s′ ∧ (∀ s1 . v = getl s1⇒ s′ �s s1)⇒ s′ ∈ Putl s v LEASTGETPUT

In nondeterministic least-change lenses, the LEASTGETPUT law replaces GETPUT as the
lower bound of Put and PUTGET is kept as the upper bound. In fact, LEASTGETPUT is the dual
of LEASTPUTGET, as it states that, if a source s′ (with view v) is one of the closest to s, then it
must be returned by Put s v. This duality will become clear in the next section.

Returning to our transformation T2 with distance measure dist′2, when a new person is added to
the view, a well-behaved Put will return all instances with all possible popularities for this person.

3 Formalizing least-change lenses in relational algebra

In the sequel we use relational algebra [BM97] to formally specify and reason about least-change
lenses. Each set-valued function f : A→P(B) is in 1-to-1 correspondence with a relation
R ⊆ B×A in the sense that b ∈ f a is equivalent to (b,a) ∈ R, or b R a using infix notation, as in
26 3. Infix notation suggests writing R : B← A (or R : A→ B) instead of R ⊆ B×A as the type
of relation R, where the arrow captures the flow of information. This makes it easy to type the
main operation of relation algebra, sequential composition, as arrow chaining: given relations
R : A→ B and S : B→ C, their composition, denoted by S ·R : A→ C, such that c (S ·R) a means
that there is a b such that c S b and b R a. Arrow notation is also meaningful in typing the converse
of a relation R : A→ B, R◦ : B→ A, which is such that a R◦ b means the same as b R a. A function
f : A→ B is a special case of relation, in that it is deterministic and totally defined. Thus both
b f a and a f ◦ b mean b = f a. For instance, expression f ◦ ·R·g denotes a preorder if R is another
preorder. It compares a and a′ by comparing their images R, (f a) R (g a′).

The relational calculus enables a point-free (or quantifier-free) formalization of first-order logic,
where atomic formulas are inequations R ⊆ S, meaning b R a⇒ b S a for all a and b. To obtain
the expressive power of first-order logic we also need the split (or fork) of relations R : A→ B and
S : A→ C, denoted by R M S : A→ B×C, (b,c) (R M S) a holding whenever b R a and c S a hold.
The notation a :B→ A is used to denote the constant function that returns the value a ∈ A for every
input. Finally, we also use the division combinator between relations R : C→ A and S : C→ B
denoted S/R : A→ B (with b (S/R) a holding whenever a R c implies b S c, for any possible c).
The domain and range of a relation R : A→ B will be denoted by δR : A→ A (a δR a⇔∃ b . bRa)
and ρR : B→ B (b ρR b⇔ ∃ a . bRa) respectively. These belong to a special kind of relation
called coreflexive which, being subsets of the identity, act as a kind of filter.

It can be easily checked, for instance, that inequality put s ⊆ get◦ means the same as the
PUTGET law: s′ ∈ put s v⇒ v = get s′. Similar re-statement of PUTGET and GETPUT in
relational algebra makes it clear that they establish lower and upper bounds for put,

put s ⊆ get◦ PUTGET

ρs·get◦ ⊆ put s GETPUT

where ρs = {(s,s)} filters out values other than s, restricting the output of get◦ to s. As ρs is at
most the identity, such bounds are consistent – the lower bound is smaller than the upper bound.

Proc. BX 2013 6 / 19



ECEASST

The principle of least change, formalized by the LEASTPUTGET and LEASTGETPUT laws,
can be encoded in terms of the so-called shrink operator R � S : A→ B [MO11] that minimizes the
output of a relation R : A→ B in regard to a relation S : B→ B, and defined as follows:

b (R � S) a⇔ b R a ∧ (∀ x . b R x⇒ a S x)

In relational notation this equals defining R � S = R ∩ S/R◦. So R � S is at most R and its output
is a minimum in regard to S. Using shrink, the least-change laws can be specified as follows:

put s ⊆ get◦ ��s LEASTPUTGET

get◦ ��s ⊆ Put s LEASTGETPUT

Clearly, these laws are dual of each other. Moreover, it can be shown that they refine the
original laws in the sense that LEASTPUTGET lowers the upper-bound imposed by PUTGET and
LEASTGETPUT raises the lower-bound imposed by GETPUT.

Proposition 1 Given a family of stable total preorders �s : S→ S, we have

ρs·get◦ ⊆ get◦ ��s ⊆ get◦

Proof. The upper bound is trivial since get◦ ∩ �s /get ⊆ get◦; for the lower bound we have

ρs·get◦ ⊆ get◦ ��s
≡ {-shrink definition -}
ρs·get◦ ⊆ get◦ ∩ �s /get
≡ {-universal-∩ ; division -}
ρs·get◦ ⊆ get◦ ∧ ρs·get◦ ·get ⊆ �s
≡ {-ρs = s· s◦ ; shunting -}
s◦ ·get◦ ·get ⊆ s◦ ·�s
≡ {-ORDSTABLE thus s◦ ·�s => -}
s◦ ·get◦ ·get ⊆ >

Note how ORDSTABLE is required for this proof. This was expected, since the lower bound is
only restricting the result of put for the original source s, and ORDSTABLE states precisely that it
is a minimum of the preorder. This proposition also shows that LEASTGETPUT and PUTGET are
consistent bounds.

Wherever dist s is injective (�s is antisymmetric in this case) or get is injective, get◦ ��s will
be deterministic6 and put s will also be deterministic. Moreover:

Proposition 2 For get surjective and get◦ ��s deterministic, put s = get◦ ��s is the only total
backward transformation that gives rise to a well-behaved deterministic least-change lens. It is
also the smallest Put that gives rise to a well-behaved nondeterministic least-change lens.

6 Since antisymmetric shrinking criteria ensure determinism [MO11].
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Proof. Trivial, since �s is reflexive and shrinking deterministic relations by reflexive orderings
has no effect [MO11].

We can also prove the expected relationship between regular and least-change lenses.

Proposition 3 Every well-behaved deterministic least-change lens l : S� Q V is a well-behaved
regular lens l : S Q V.

Proof. GETPUT is a requirement for least-change lenses and PUTGET follows from Proposition 1.

Proposition 4 Every well-behaved regular lens l : S Q V is a well-behaved deterministic
least-change lens l : S� Q V.

Proof. Take the total preorder induced by dist s s′ = if s = s′ then 0 else 1. Then LEASTPUTGET

degenerates into PUTGET.

Finally, any well-behaved lens can also be seen as a well-behaved nondeterministic least-change
lens by inferring a preorder such that get◦ ��s is deterministic and equal to put.

Proposition 5 Every well-behaved regular lens l : S Q V is a well-behaved nondeterministic
least-change lens l : S� IQ V.

Proof. For the total preorder

s′′ �s s′⇔ (s′ ∈ Putl s (getl s′)⇒ s′′ ∈ Putl s (getl s′′))

get◦l ��s is deterministic and equal to the only possible put. LEASTGETPUT follows easily.

4 Criteria for composing least-change lenses

Given two well-behaved least-change lenses f : S� Q U and g : Uv Q V , we will now discuss
when can they be composed in order to obtain a well-behaved least-change lens g· f : S� Q V
using the lens composition combinator (·) [FGM+07]:

getg·f s = (getg ·getf ) s
putg·f s = (putf s)· (putg (get f s))

In general this is not true, because putg·f is not guaranteed to return minimal values. For instance,
consider the following example depicting the forward transformations get f and getg, and where
dist xi x j = |j− i| for both lenses:

s1
get f // u1

getg // v1

s2 // u5 // v2

s9 // u2

99
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Consider the backward transformation of the view v2 over the original source s1 of the g· f lens:
first, putg v2 (get f s1) = u2, since u2 is closer to u1 (the original intermediate U-view) than u5;
then, putf s1 u2 = s9, since it is the only choice for u2. However, this is not the minimal result for
the least-change lens g· f , since the source closest to s1 with view v2 is s2 rather than s9. Such
issues occur because the U-view generated by the concrete putg selected from the range of valid
ones may not result in a minimum S-view when passed through putf .

We will see that in order to preserve LEASTPUTGET, the forward transformations will need to
somehow preserve the preorders. To be more precise, the goal of this section is to analyze under
which conditions LEASTPUTGET is preserved by composition, i.e.:

∀ s . putf s ⊆ get◦f ��s ∧ ∀ u . putg u ⊆ get◦g �vu⇒∀ s . putg·f s ⊆ (getg ·get f )
◦ ��s

The simplest condition for this to hold is for getg to be injective: since get◦g is deterministic,
there is a unique valid putg, and thus there is no ambiguity in the choice.

Proposition 6 If f : S� Q U and g : Uv Q V are well-behaved least-change lenses and getg is
injective, then g· f : S Q� V is a well-behaved least-change lens.

However, as the above counter-example also shows, having an injective get f is not enough to
preserve LEASTPUTGET. Still, a sufficient condition on get f is for it to be strictly increasing
between the preorders �s and vget f s:

s1 ≺s s2⇒ (get f s1)@get f s (get f s2)

A strictly increasing get f reads: if a source s1 is smaller than another source s2 (in distance to
the original source s), then its view get f s1 shall be smaller than the view of s2 (in distance to the
original view get f s). In point-free notation this can be expressed as follows:

get f ·≺s ⊆ @get f s ·get f STRICTINC

In total preorders, we have s1 ≺s s2⇔¬ (s2 �s s1). As such, an equivalent formulation is:

(get f s1)vget f s (get f s2)⇒ s1 �s s2

Proposition 7 If f : S� Q U and g : Uv Q V are well-behaved least-change lenses and get f is
strictly increasing between �s and vget f s for every s ∈ S, then g· f : S Q� V is a well-behaved
least-change lens.

Unfortunately this requirement is too restrictive, as it forces get f to be injective, meaning that
it cannot abstract information from the source. To help understand why composition succeeds
when get f is strictly increasing, Figure 2 shows a possible configuration under this assumption.
On the left subfigure, several values of type U spread over concentric circles according to their
distance to a hypothetical center denoting get f s (and represented by a star). Similarly for the right
subfigure, for values of type S and center s. x−1 denotes the pre-image of x under get f . In this
case, we have a one-to-one correspondence since get f , being strictly increasing, must be injective.
Another consequence of this property is that all values of U that are at the same distance from
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x

y z
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t x-1
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t-1
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Figure 2: Strictly increasing transformation

get f s must have their pre-images at the same distance from s. Moreover, the relative distances to
the center are preserved, in the sense that, for example, since yvget f s z then y−1 �s z−1. Now,
consider the backward transformation, when putting back a given target in the original source
s. Being well-behaved, putg will return one of the values that is closest to get f s, in this case
either x, y or u; putf must return one of their pre-images which, due to the above assumptions, is
guaranteed to be one of the closest to s, whatever choice is made by putg.

While a strictly increasing get f suffices to guarantee that any composition g· f is also a well-
behaved least-change lens, in order to attain a proper compositional language and be able to
compose any sequence of transformations, this property must also be preserved by composition.

Proposition 8 If two transformations get f : S�→ U and getg : Uv→ V are strictly increasing,
then getg ·get f : S�→ V is also strictly increasing.

A more interesting requirement is the following more relaxed version of STRICTINC, that does
not imply injectivity:

(∀ s3 . get f s2 = get f s3⇒ s1 ≺s s3)⇒ (get f s1)@get f s (get f s2)

In point-free notation this is written

(≺s /get f )·ρget f ⊆ get◦f ·@get f s QUASISTRICTINC

Now a view get f s1 is required to be smaller than another view get f s2 only when s1 is smaller
than all sources that map to the view of s2. An alternative formulation using the less than or equal
orders is

(get f s1)vget f s (get f s2)⇒ (∃ s3 . get f s1 = get f s3 ∧ s3 �s s2)

or ρget f ·vget f s ·get f ⊆ get f ·�s in the point-free notation. In other words, when a view v1 is
smaller than or equal to another view v2 (in distance to a view get f s), then at least one source
with view v1 is smaller than or equal to all the sources with view v2 (in distance to a source s). The
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x-1
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Figure 3: Quasi strictly increasing transformation

difference to STRICTINC can easily be seen in Figure 3. Now the pre-image of a target value can
contain several sources at different distances from the center. Still, for targets at the same distance
to get f s, the minimum values of their pre-images must all be at the same distance from s.

Proposition 9 If f : S� Q U and g : Uv Q V are well-behaved least-change lenses and get f
is quasi strictly increasing between �s and vget f s for every s ∈ S, then g · f : S Q� V is a
well-behaved least-change lens.

Figure 3 also helps understanding why this proposition holds. Again, putg is free to choose any
value closest to get f s but, whatever the choice made, putg will always return one of the value
closest to s. An example of a transformation that is not strictly increasing but is quasi strictly
increasing is determining the size of a set, with the obvious distance measures (size of symmetric
difference in the source and absolute value of the difference in the target).

Unlike with strictly increasing transformations, the composition of two quasi strictly increasing
transformations only remains so if get f is surjective.

Proposition 10 If two transformations get f : S� → U and getg : Uv → V are quasi strictly
increasing and get f is surjective, then getg ·get f : S�→ V is also quasi strictly increasing.

In a lens framework requiring surjectivity is not a big drawback, since it is usually already
required due to totality constraints [FGM+07, PC10].

An interesting class of lenses is that obtained from transformations with a perfect complement.
A function cpl is said to be a complement of get if get M cpl is injective, i.e., any source can be
losslessly represented as a view-complement pair. For view update translation under a constant
complement, there is a unique source update for each view update [BS81]. A complement is said
to be independent [KU84] when get M cpl is bijective, i.e., any pair corresponds to a source state.
If a get has an independent complement (we call it perfect), then there exists a lens with a unique
optimal put with perfect updatability, since it is possible to translate all view updates onto source
updates while keeping the constant complement. Typical examples of transformations that fall
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under this category are tuple projections, whose perfect complement is exactly the information
projected out.

Having a perfect complement is not sufficient for a least-change lens to be composable.
However, if get is strictly increasing among sources with the same complement, then it is also
quasi strictly increasing, and thus can safely be composed.

Proposition 11 If get f :S�→Uv has perfect complement and (get s1)vget s (get s2) ∧ cpl s1 =
cpl s2⇒ s1 �s s2 for every s,s1,s2 ∈ S, then get f is quasi strictly increasing.

Proving that a transformation is quasi strictly increasing is not trivial. This is an example of a
useful class of transformations where such proof can be much simplified.

Dually to the deterministic case, the necessary condition for two nondeterministic least-change
lenses to be composable is the following:

∀ s . get◦f ��s ⊆ Putf s ∧ ∀ u . get◦g ��u ⊆ Putg u⇒∀ s . (getg ·get f )
◦ ��s ⊆ Putg·f s

Once again, an injective getg guarantees the compositionality.

Proposition 12 If f : S� IQ U and g : Uv IQ V are well-behaved nondeterministic least-change
lenses and getg is injective, then g· f : S� IQ V is a well-behaved nondeterministic least-change
lens.

Interestingly, the remaining laws that ensure nondeterministic compositionality are dual to those
for the deterministic case: we can either reverse every law from R ⊆ S to S ⊆ R or, equivalently,
replace every ≺s by �s. For example, instead of requiring get f to be strictly increasing it suffices
to require it to be monotonic:

s1 �s s2⇒ (get f s1)vget f s (get f s2)

Remember that monotonicity reads the same way as the strictly increasing property, by simply
replacing “smaller than” by “smaller than or equal to” in the text. An equivalent formulation in
the opposite direction is:

(get f s1)@get f s (get f s2)⇒ s1 ≺s s2

In the point-free notation we have

get f ·�s ⊆ vget f s ·get f MONOT

Proposition 13 If f : S� IQ U and g : Uv IQ V are well-behaved nondeterministic least-change
lenses and get f is surjective and monotonic between�s andvget f s for every s∈ S, then g· f :S� IQ
V is a well-behaved nondeterministic least-change lens.

Unlike the strictly increasing property, monotonicity no longer implies that get f is injective.
Unlike in Proposition 7, here we require get f to be surjective: note that surjectivity is the dual
property of being deterministic, which get f always satisfies. Figure 4 helps understanding the
differences between being strictly increasing and monotonic, and why this property ensures a
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Figure 4: Monotonic transformation

well-behaved nondeterministic composition. Unlike in Figure 2, the pre-images of the values of
type U at the same distance from get f s are allowed to be at different distances from s. However,
we have the restriction that, for example, when y@get f s z then y−1 ≺s z−1, forcing the pre-images
of targets at different distances from get f s to also be at different distances from s (respecting the
relative orders). This ensures that when putg returns all values at the minimum distance from
get f s, all sources at the minimum distance from s are contained in their pre-image.

An interesting fact is that, unlike in total partial-orders, a strictly increasing transformation is
not necessarily monotonic. This means that we can can have transformations whose composition
is well-behaved in the deterministic scenario, but not well-behaved in the nondeterministic one.
Figure 2 helps understanding why: even if putf returns all values closest to get f s, there is no
chance for putf to return all values closest to s, since some of the pre-images closest to s originate
from targets further away from get f s (namely, v and z).

As with strictly increasing transformations, monotonicity is preserved by composition.

Proposition 14 If two transformations get f : S�→ U and getg : Uv→ V are monotonic, then
getg ·get f : S�→ V is also monotonic.

Again, monotonicity can be relaxed to

(∀ s3 . get f s2 = get f s3⇒ s1 �s s3)⇒ (get f s1)vget f s (get f s2)

or with the point-free notation:

(�s /get f )·ρget f ⊆ get◦f ·vget f s QUASIMONOT

Quasi monotonicity states that if a source s1 is smaller than or equal to all the sources with view v
(in distance to a source s), then its view get f s1 shall be at most v (in distance to a view get f s).
Alternatively, when a view v1 is smaller than another view v2 (in distance to a view get f s), then
at least one source with view v1 is smaller than all sources with view v2 (in distance to a source s):

(get f s1)@get f s (get f s2)⇒ (∃ s3 . get f s1 = get f s3⇒ s3 ≺s s2)
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Figure 5: Quasi monotonic transformation

Proposition 15 If f : S� IQ U and g : Uv IQ V are well-behaved nondeterministic least-change
lenses and get f is surjective and quasi monotonic between �s and vget f s for every s ∈ S, then
g· f : S� IQ V is a well-behaved nondeterministic least-change lens.

Figure 5 illustrates this property. The difference to monotonicity is that only the minimum
pre-images of each target are required to respect the relative orders. This suffices for putf to able
to return all closest sources to s given all closest targets to get f s.

Likewise to quasi strictly increasing transformations, preservation of quasi monotonicity by
composition requires the surjectivity of the first transformation.

Proposition 16 If two transformations get f : S�→ U and getg : Uv→ V are quasi monotonic
and get f is surjective, then getg ·get f : S�→ V is also quasi monotonic.

Finally, regarding lenses with perfect complement, nondeterministic compositionality is ensured
by a monotonic get among sources with the same complement, since this ensures that get is quasi
monotonic.

Proposition 17 If get f : S� → Uv has perfect complement and s1 �s s2 ∧ cpl s1 = cpl s2 ⇒
(get s1)vget s (get s2) for every s,s1,s2 ∈ S, then get f is quasi monotonic.

5 Related work

Most modern BX languages (see references [FGM+07, BFP+08, PC10, HHI+10, HEO+11]
among others) do not consider the difficult problem of minimizing view updates. In pioneering
work, Meertens [Mee98] proposes a framework of constraint maintainers according to a “principle
of least change” stating that the action taken by a transformation operation to restore a constraint
should be minimal. He then proposes to formalize this notion by introducing a preorder on values
and studies the construction of maintainers for particular constraints over sets. However, no
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linguistic mechanisms to combine maintainers following the principle of least change, including
composition, are proposed.

Much existing work in the context of database view updating is concerned with, given a view
function, deriving an update strategy that translates view updates into source updates according
to some minimization criteria. [Heg04] introduces a notion of order on sources (�S) and on
views (�V ) and postulates, among other properties, that view updating shall be order-compatible
(get s �V v⇒ s �S put s v). Note that his notion of order is only between two values of the
same type (hence �S, for a type S), and the above property formalizes that if an updated view
is at most an original view, then the updated source shall be at most the original source7. In the
context of database tables, his particular orders imply the reflection of view insertions as source
insertions, and similarly for deletions. He then establishes that, under particular conditions and
for monotonic get functions, there is a unique translation of insertion and deletion view updates
under a constant complement approach [BS81]. More recently, [JRW10] shows the connection
between the constant complement update translators of [Heg04] and lenses, by demonstrating that
they arise from very well-behaved lenses in a category of ordered sets.

[Kel86] acknowledges the ambiguity of view-update translation for non-constant complement
approaches (well-behaved lenses), and proposes an interactive algorithm that runs a dialog with the
view programmer to choose a particular put function that obeys 5 minimization criteria. [LS91]
claims that the view information is not sufficient to disambiguate view updates, and proposes to
consider not only a dialog with the view programmer but also a dialog with the view user, obeying
similar minimization criteria. Their minimization criteria can be seen as an order on sources
and their algorithms as a nondeterministic least-change lens, whereas the dialog is an additional
mechanism to allow choosing a minimal source from the various possible. Nevertheless, these
approaches consider whole get functions and do not allow reasoning by composition.

[BKT02] studies the complexity of minimizing view updates for a monotonic fragment of
relational algebra, for two kinds of deletion and annotation updates, and conclude that this problem
is NP-hard for queries including both projection-join or join-union. The authors consider two
measures for minimality: first the number of changes in the source, and second the number of side
effects in the view caused by the view update. Although our notion of order is more natural with
the former measure (since the lens laws disallow view side effects), our framework of least-change
lenses is general in the sense that it does not assume any particular order on states nor language of
updates. Also, while they study the problem of inverting an individual lens in a minimal way, we
consider the orthogonal problem of composing “minimized” lenses.

In previous work [MPC12], we claim that nondeterminism is necessary to support non-
surjective BX languages and propose a language of nondeterministic lenses whose put func-
tions are the largest nondeterministic ones satisfying the BX laws. Nevertheless, as we noted
in [MPC12], such nondeterminism needs to be controlled to be useful in practice and this paper
proposes such an approach by selecting only the minimal values according to a known order.

A solver-based bidirectional model transformation tool is proposed by [CREP10], that intro-
duces the declarative JTL language inspired by a QVT-like syntax. A JTL BX is nondeterministic

7 These order-based lenses are significantly distinct from least-change lenses: our notion of order �s is “triangular”, as
it relates two updated values according to their distance to an original value s, and our least-change properties entail
that an updated source must be at most any other possible source with the same updated view.
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because: if a modified target model has a trace to a source model, such source model is modified,
otherwise all possible source model candidates are returned. In a similar approach, we propose
the bidirectionalization of QVT-Relational programs using the Alloy language [MC13]. A BX
in our tool is a nondeterministic least-change maintainer that finds all possible source models
that are at a minimal distance to the source (and vice-versa), according to user-specified distance
metrics. Still, none of these languages nor the QVT standard support composition.

Stevens [Ste10] argues that transformations should always be deterministic in order to be
predictable for users, in the sense that users should not observe different results for similar
executions. In our perspective, a certain degree of nondeterminism is inescapable in BXs, as
predictability also requires allowing users to control the particular semantics of the transformations
that the BX language is not able to capture. Notwithstanding, although we reason about composing
nondeterministic lenses, we still agree that the final transformations should be deterministic, either
by fixing a default choice or by providing a dialog-like mechanism to users.

6 Conclusions and future work

In this paper, we have introduced a framework of least-change lenses that is characterized by
two dual scenarios: a deterministic one that only requires that transformations return minimal
updates, and a nondeterministic one that requires them to return all minimal updates. We have
then presented several sufficient conditions that enable composition of least-change lenses. The
properties for well-behavedness and for composition arise naturally from the duality between
both scenarios, which has become apparent by formalizing them using the relational calculus
notation. Our criteria are still not general enough to encompass least-change lenses we believe can
be composed, although more relaxed criteria will most likely not be independent of the composed
transformation, denying the advantages of a truly compositional approach. This issue raises the
interesting question of completeness: is there a limit on the expressiveness of a least-change lens
that can be composed safely with any other such lens? Our (still unproved) conjecture is that such
limit is set precisely at quasi strictly increasing transformations for the deterministic scenario, and
quasi monotonic transformations for the nondeterministic one.

A problem with some of the proposed criteria is that it is also rather tedious (and unintuitive)
to verify if a transformation satisfies them, and we are working on providing better intuitive
explanations and proof methods to perform such task. For example, we expected our example
transformation T1 to be quasi monotonic (with distance measures dist1 and dist2), but have found
that such is not the case. We are currently investigating if other subtle redefinitions of dist1 and
dist2, namely using distance functions to lexicographic orders, would satisfy any of the criteria.

Our work shows the usefulness of nondeterminism in BXs, namely, by enabling a composi-
tional approach for a wider class of transformations, but still supporting precise and predictable
bidirectional laws. We advocate the principle of least change as a tool to trim down nondeter-
minism to reasonable bounds. In contrast with traditional BX approaches, whose criteria for
update translation (besides the regular well-behavedness laws) are usually vague or non-existent,
least-change BXs come equipped with an order on sources plus least-change well-behavedness
laws that constitute a formal and explicit documentation of the criteria used for update translation.
Therefore, reimplementing existing BX approaches in our framework could bring to light their
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underlying update translation semantics.
To better suit that goal, we are studying if the composition of least-change lenses should be

more flexible, by allowing different orders for different lenses over the same source type: one
would write f : S Q� U to state that lens f is well-behaved for order �. By doing so, the order
could specify more precisely the behavior of a lens, and given two least-change lenses f : S Q� U
and g : U Qv V , an interesting research direction is to infer an order - such that g · f : S Q- V
is a well-behaved least-change lens. Obviously, one could always default to the discrete metric
referred in Section 2, but the goal would be to derive a more precise (i.e. more predictive) order.

In the future we also intend to tackle other combinators to compose BXs besides sequential
composition. For example, we are currently researching whether recursive patterns for algebraic
data types (like folds or unfolds) can be used to build least-change lenses from simpler ones. A
final interesting direction for future work would be to generalize our theory to symmetric BX
frameworks like maintainers.

We have modeled our framework in Alloy [Jac12], a lightweight formal specification language
with support for automatic model finding via SAT solving. This model has proved very useful
in the early stages of this research to rapidly explore and verify/discard different propositions8.
Of course, such automatic verification is necessarily bounded, and full unbounded calculational
proofs for all our propositions were then conducted in Isabelle/HOL [NPW12] proof assistant9.
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