
BenchmarX

Anthony Anjorin
Technische Universität

Darmstadt
anthony.anjorin@es.tu-

darmstadt.de

Alcino Cunha
HASLab / INESC TEC and

Universidade do Minho
alcino@di.uminho.pt

Holger Giese
Hasso-Plattner-Institut

holger.giese@
hp.uni-potsdam.de

Frank Hermann
Université du Luxembourg
Interdisciplinary Centre for

Security, Reliability and Trust
frank.hermann@uni.lu

Arend Rensink
University of Twente

arend.rensink@utwente.nl

Andy Schürr
Technische Universität

Darmstadt
andy.schuerr@es.tu-

darmstadt.de

ABSTRACT
Bidirectional transformation (BX) is a very active area of research
interest. There is not only a growing body of theory, but also a rich
set of tools supporting BX. The problem now arises that there is
no commonly agreed-upon suite of tests or benchmarks that shows
either the conformance of tools to theory, or the performance of
tools in particular BX scenarios. This paper sets out to improve the
state of affairs in this respect, by proposing a template and a set
of required criteria for benchmark descriptions, as well as guide-
lines for the artifacts that should be provided for each included test.
As a proof of concept, the paper additionally provides a detailed
description of one concrete benchmark.

Categories and Subject Descriptors
D.4.8 [Software Engineering]: Performance—Measurements

General Terms
Measurement

Keywords
bidirectional transformations, benchmark, tools, comparison

1. INTRODUCTION AND MOTIVATION
Bidirectional transformations (BX) are required to maintain the

consistency of related artifacts modified by concurrent engineering
activities [2]. This task is relevant in multiple domains and is an
active research focus in various communities [2]. Although the
first theoretical foundations for BX have been laid and there are a
number of tools that already support BX to a certain extent [9], it is
difficult for non-developers to discern the exact capabilities of each
BX tool and effectively compare it with others.

What is missing is a collection of benchmarks, which can be used
to identify the strengths and weaknesses of different tools and their

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

respective approaches. Such a benchmark suite for BX will not
only clarify the state of the art and current limitations of BX tools,
but also drive further development and cross-fertilization between
the different BX sub-communities and tool developers.

Our goal in this paper is to improve the current situation by
proposing a template for BX benchmarks. Specifically, we:

1. Provide a precise definition for a BX benchmark, identifying
a set of required properties that distinguish a BX benchmark
from a mere BX example.

2. Identify a feature matrix similar to that given in [12], which
is to be used to classify BX benchmarks.

3. Present, as a proof of concept, a simple but concrete bench-
mark that adheres to our proposed template.

2. STRUCTURE OF A BX BENCHMARK
According to the dictionary,1 a benchmark is a standardised

problem or test that serves as a basis for evaluation or comparison.
The aim of benchmarking is to systematically assess and, if possi-
ble, measure a set of features of a system under different, precisely
defined, and reproducible circumstances [12]. Based on the respec-
tive results on a benchmark, different systems can be compared and
evaluated based on pertinent system characteristics. In this section
we collect the characteristics needed for a BX benchmark to make
such assessment and measurement possible.

2.1 Prerequisites
In order to precisely define different aspects and properties of

bidirectional transformations in this paper, we first provide some
detailed formalisations and general requirements.
A bidirectional transformation consists of the following:
• A left language LL, a right language LR, and a binary con-

sistency relation C over both languages that specifies which
pairs of left and right models are consistent. It is difficult
to escape the directional cultural bias here, though we try to
avoid equating “left” with “source” and “right” with “target”.
• Sets of possible left updates UL and right updates UR. Each

update u is a mapping from models to corresponding updated
models. The application of an update to a single model is
given by a change δ (we shall state exactly what this is in a
moment), that specifies how a model is modified to a changed
model. The sets of possible changes to the left and right
models are denoted by ∆L and ∆R, respectively.

1Merriam-Webster, 2013

1



• Propagation functions
−→
C : ∆L × LR → ∆R and

←−
C : ∆R ×

LL → ∆L, commonly called forward and backward propa-
gation. The forward propagation

−→
C takes a change δ on the

left-side together with a right model (consistent with the left
model that is the source of δ), and returns a change on the
right-side to be applied to that model. The same applies du-
ally for the backward propagation

←−
C .

We will equate languages with their extensions, being sets of
models; hence we can regard C ⊆ LL ×LR as a binary relation
between left models and right models. Consistency of a left-model
ML ∈LL and a right-model MR ∈LR will be denoted by ML C MR.
In some scenarios, the consistency relation C may only be admitted
if there is further evidence of consistency, for instance in the form
of an element-to-element mapping between related models; this can
be captured by defining C as the union of a set of indexed binary
relations Cϕ, where ϕ is the object that captures the evidence — for
instance, a binary relation between the elements of the left model
and those of the right model.

Members of the sets of left updates UL and right updates UR are
partial functions from models to models. For instance, a left update
uL ∈UL is a partial function from LL to LL. We reserve the word
change (or delta) for the pairs of models that are the extension of
an update; i.e., if u(M1) = M2 for some update u then (M1,M2)
is a change. Like pairs of consistent models, in some scenarios a
change may have additional information about the relation between
the elements of source and target model; in such a situation, the
change will be a triple (M1,M2,µ) for some object µ that encodes
the additional information. In general, a change δ will always have
a well-defined source model src(δ) and target model tgt(δ). The set
of all allowed left- [right-] changes is denoted by ∆L [∆R]. A single
change δ may be taken as a kind of degenerate update u, applicable
only to src(δ) and yielding tgt(δ).

The general requirement for
−→
C is that for all δL ∈ ∆L and MR ∈

LR, such that src(δL) C MR:

MR = src(
−→
C (δL,MR)) (1)

and analogously for
←−
C . These requirements are usually known as

incidence laws in delta-based BX frameworks [3]. In the simplest
case, where ∆ = L ×L is the set of all possible pairs of models,
(1) can be trivially satisfied. It should be noted that, when C is
left-unique and left-total (see below), then the target of

−→
C (δL,MR)

is uniquely defined by the target of δL; and dually for the other
direction. A special case of (say forward) propagation is where δL

is the change from some initial, empty model ⊥ ∈ LL into our left
model of interest ML (often referred to as a batch transformation).

How forward and backward propagation are defined is up to the
benchmark in question. For instance, if there is additional evidence
Cϕ associated with the consistency of ML and MR, then Cϕ might
play a role in the definition of

−→
C and

←−
C (and be required as input).

2.2 Definition of a BX benchmark
The following definitions are adapted from [12] and adjusted as

required for BX benchmarks:
A BX scenario is a broad application field that can be clearly

characterized as requiring BX. Examples include model synchro-
nization, tool integration, and round-trip engineering.

A BX benchmark is a bidirectional transformation that serves as
an incarnation of a BX scenario, with the following properties:

1. A precise, executable definition of the consistency relation
C , which can be used as an oracle to decide if a left model
ML ∈ LL, and a right model MR ∈ LR are consistent (i.e.,
ML C MR).

2. An explicit definition of data (input models) for the trans-
formation, or a generator that can be used to produce the
required models.

3. A set of precisely defined updates for certain input models.
4. A set of executable metric definitions for what is to be mea-

sured / assessed by the benchmark.
5. Finally, as it is of no interest to measure arbitrary and irrel-

evant features, a benchmark should represent a useful trans-
formation that covers aspects that are indeed relevant in the
corresponding BX scenario.

A BX benchmark consists of several test cases, each of which is
a complete, deterministic, but parametric specification fixing all de-
tails required for executing the corresponding measurements. Ev-
ery test case measures or assesses specific features.

Finally, a run is a test case for which all parameters (e.g., input
data size) are set to concrete values.

The results of carrying out a benchmark for a specific tool are
produced by executing a series of runs for the different test cases of
the benchmark.

2.3 Classification of BX benchmarks
A BX benchmark is to be classified using a feature matrix,

with one dimension corresponding to the different test cases of the
benchmark, and the other to paradigm and tool features, discussed
in the following.

2.3.1 Paradigm features of the benchmark
A paradigm feature of a BX benchmark describes a character-

istic of a test case of the benchmark. We identify the following
paradigm features (to be extended as required):

Properties of the consistency relation. The following proper-
ties purely depend on the left and right languages. While in some
BX approaches, the consistency relation is derived from the spec-
ification of the BX operations, we explicitly avoid this coupling.
This implies that the benchmark can be seen as a test for the cor-
rectness and completeness of the particular solution using a specific
approach.

1. C can be left-total, meaning that for every left model ML ∈
LL, there exists at least one right model MR ∈ LR such that
ML C MR; and right-total, which is the dual and defined anal-
ogously.

2. C can be left-unique, meaning that for every right model
MR ∈ LR, there exists at most one left model ML ∈ LL such
that ML C MR; and right-unique, which is the dual and de-
fined analogously.

For those more familiar with other terminology: a left-total relation
is often called total, right-total surjective, left-unique injective, and
right-unique functional.

Platform dependency. A test case can range from platform in-
dependent (PI) to platform specific (PS), depending on the nature
of its description. Note that according to our definition of a BX
benchmark, data must be provided, but this can be, e.g., in form of
a textual format for which adapters for different platforms can be
provided as required (PI), as opposed to, say, Ecore XMI files (PS).
A benchmark should state explicitly the platforms for which data
or appropriate adapters are provided.

Characteristics of the data domain. Every benchmark (or indi-
vidual test case) should state the characteristics of the required data
domain explicitly. With this we mean (i) if the data can be rep-
resented as simple sets, trees, or graphs, and (ii) what constraints
are imposed including keys, an order on elements, etc. This is im-
portant as some BX tools are specialized for, e.g., sets and do not
support graph-like structures.

2



Variations and extension points. Every benchmark should state
if it is a variation of an existing benchmark and make the differ-
ences as explicit as possible. The goal here is to be able to doc-
ument and manage a family of different benchmarks, which are
clearly related, i.e., use basically the same transformation, but ei-
ther simplify or introduce additional complexity.

2.3.2 Tool features measured by the benchmark
A tool feature of a BX benchmark represents a tool characteristic

that can be assessed and measured with a series of runs of a test
case of the benchmark. We identify the following tool features (to
be extended as required):

Run time: The run time required to execute a run can be mea-
sured in, e.g., milliseconds for a tool. Note that run time can also be
measured abstractly in “actions” or “edits” depending on the used
technology (e.g., a database or model repository).

Memory Consumption: The required memory for executing a
run can be measured for a tool either in (kilo)bytes or, as for run
time, in more abstract units if this makes sense.

Scalability: By plotting run time/memory consumption for
(i) increasing input data size and (ii) increasing size of propagated
changes (UL,UR), the scalability of a tool can be measured with
respect to the varied dimension. Note that this is only feasible if
the test case consists of several runs of increasing size or if a size
parametric data generator is provided.

Conformance to laws for BX approaches: The expected be-
haviour of BX tools is typically assessed by checking conformance
to a set of laws. Depending on the BX framework, e.g., lenses [3],
Triple Graph Grammars [8], or other BX algebraic frameworks
[10], various sets of laws can be formulated differently.

Given ML ∈ LL, MR ∈ LR, δL ∈ ∆L such that ML C MR and
src(δL) = ML, we identify the following potential laws of inter-
est (to be extended as required):
Correctness. A basic law present in all frameworks is confor-

mance of the forward and backward propagation to the con-
sistency relation C . Forward correctness is stated as:[−→

C (δL,MR) = δ
R
]
=⇒ tgt(δL) C tgt(δR)

Backward correctness is defined analogously.
Completeness. Another interesting property to assess is whether

the forward propagation succeeds in returning a change
whenever at least one consistent right-model exists. Forward
completeness can be stated as:[

∃MR
2 . tgt(δL) C MR

2

]
=⇒

−→
C (δL,MR) ↓

Here,
−→
C (δL,MR) ↓ means that the forward propagation is

defined for the given inputs, i.e., the execution is successful
and returns a change on the right domain. Backward com-
pleteness is defined analogously.

As an alternative to the more consensual notion of correctness
proposed above, some scenarios may require some notion of com-
patibility of forward and backward propagation operations, e.g., the
GETPUT and PUTGET laws [6], or (weak) invertibility [4]. For
instance, instead of requiring the result of a forward propagation
to be consistent, one may only require it to be constant under an
additional round trip application of backward and forward propa-
gations. Benchmarks may vary on the used laws to assess expected
behaviour.

If the consistency relation C is not source unique, backward
propagation must possibly deal with a loss of information as it is
unclear and in general impossible to reconstruct the “expected”
source only given a modified target. It is important to assess if a

Figure 1: Meta-models for LL (left) and LR (right)

tool is able to use the old source to cope adequately with informa-
tion loss. The situation is analogous for non target uniqueness and
forward propagation. The following laws can be used to assess this:
Hippocraticness. A basic property that is present in most frame-

works forbids unnecessary changes when the left and right
model are already consistent. This is most commonly known
in a simplified form as hippocraticness [10]. Forward hip-
pocraticnes can be formalized as follows (similarly for back-
ward hippocraticnes):[

tgt(δL) C MR∧
−→
C (δL,MR) = δ

R
]
=⇒ tgt(δR) = MR

Least Change. A stronger requirement than hippocraticness is the
least change property, that forbids changes that are clearly
unnecessary (first introduced in [7] as the principle of least
change). A formalization of forward least change is:[−→

C (δL,MR) = δR
]
=⇒

@ δR2 . src(δR2 ) = MR∧ tgt(δL) C tgt(δR2 )∧δR2 <∆ δR

Here we assume the existence of a partial order <∆ between
changes that somehow measures if one change is “smaller”
than another. The concrete definition of this partial order is
benchmark dependent, and it may be interesting to even have
different instantiations of this law for different partial orders.

3. AN EXAMPLE BX BENCHMARK
We presuppose primitive types String and Int. Our left and

right languages are defined by the meta-models in Fig. 1. Both
are extremely simple: the left language consists of sets of Per-
sons, with name and age attributes, whereas the right language
likewise consists of collections of Persons, in this case only with
name attributes. For both languages, name is considered to be a
key attribute, meaning that only collections of persons with distinct
names are allowed. The languages are extensionally defined as sets
of models with the following characteristics:
• LL is the set of finite partial functions

ML : Int ⇀ (String× Int) such that for all pairs of elements
ML(pi) = (ni,ai) for i = 1,2, n1 = n2 implies p1 = p2.
• LR is the set of all finite injective partial functions

MR : Int ⇀ String.
Note that models are not simply tuples of names and ages, respec-
tively names: they include an identity, here taken from the set
Int. This is essential for the benchmark, as it allows us to speak
meaningfully of a given person changing his name while remain-
ing the same entity. The actual choice of identity does not matter.
Also note that, though for conciseness we have chosen to formulate
models as finite partial functions from the identity set to the corre-
sponding tuple of attributes, this is mathematically equivalent to a
left-unique relation between the identity set and tuples of attributes.

Consistency relation. We will use nameL : Int ⇀ String [resp.
ageL : Int⇀ Int] to denote the partial function mapping each person
p ∈ dom(ML) to the first [second] component of ML(p); likewise,
nameR : Int ⇀ String will have the same meaning in the right do-
main (hence it is actually the same function as MR).

3



The consistency relation is defined by C ⊆ LL×LR such that

ML C MR ⇔ ∃ϕ : dom(ML)↔ dom(MR), nameL = nameR ◦ϕ

In words: a pair of left/right models is related if and only if there
is a name-preserving bijection between the person identities in the
left and those in the right models. Thus, ϕ is an example of the
evidence mentioned in the previous section.

This consistency relation exhibits the following properties:
• It is both left-total and right-total;
• It is not left-unique but it is right-unique;
• It implies a unique one-to-one relation on the element level.

Changes. In general, a left-change is any triple (ML
1 ,M

L
2 ,µ) where

ML
1 and ML

2 are left models, and µ : dom(ML
1 ) ⇀ dom(ML

2 ) is a
partial injective function; A right-change is the same but for right
models.

The mapping µ connects the identities used in the original model
to those in the destination model. It is a partial function, meaning
that identities can neither be split nor merged by a change, but a
person p can be deleted (in which case p ∈ dom(ML

1 )\dom(µ)) or
created (in which case p ∈ dom(ML

2 )\ cod(µ)). In practice, identi-
ties will typically not change at all during updates, except for dele-
tion and creation, and so µ will always be a partial identity. Even
so, it is important to recognise this component; for instance, when
identities are reused (a person is deleted from the database and later
another person is added, reusing the identity of the first) this does
not mean it is the same person — and the only way in which this
confusion is avoided is through µ. In fact, in a very real sense,
the presence of the mapping µ defines the difference between state-
based and delta-based BX approaches.

A left-change is minimal if one of the following cases holds:
1. It deletes a single element:

• |dom(ML
1 )\dom(µ)|= 1 and cod(µ) = dom(ML

2 )

• ML
2 (µ(p)) = ML

1 (p) for all p ∈ dom(µ).
2. It creates a single element:

• dom(ML
1 ) = dom(µ) and |dom(ML

2 )\ cod(µ)|= 1
• ML

2 (µ(p)) = ML
1 (p) for all p ∈ dom(µ).

• ML
2 (pi) = (ni,ai) for i = 1,2, n1 = n2 implies p1 = p2.

3. It modifies one of the fields of a single element:
• dom(µ) = dom(ML

1 ) and cod(µ) = dom(ML
2 )

• For a single p ∈ dom(µ), either
(a) nameL1(p) 6= nameL2(µ(p)) or
(b) ageL1(p) 6= ageL2(µ(p)) (but not both)

• ML
1 (q) = ML

2 (µ(q)) for all q ∈ dom(µ)\{p}.
It can be seen immediately that every change is a composition of
a finite sequence of minimal chances. For each of these minimal
changes we can formulate update functions that cause them:

1. For all s ∈ String, delete(s) ∈UL is an update function that
deletes the person p with nameL(p) = s.

2. For all s ∈ String, create(s) ∈UL is an update function that
adds a person p with nameL(p) = s.

3. (a) For all s1,s2 ∈ String, setName(s1,s2) ∈UL is an up-
date function that changes the name of a person from
s1 (in the source model) into s2 (in the target model).

(b) For all s ∈ String,a ∈ Int, setAge(s,a) ∈UL is an up-
date function that changes the age of a person with
name s to a.

The right changes and updates are defined analogously, except that,
obviously, the age attribute (case 3b) is irrelevant.

Propagation. According to our definition of a BX benchmark,
we now have to precisely define update propagation for the exam-
ple. Since we have shown how arbitrary changes can be decom-
posed into minimal changes, we only have to explain how minimal

changes are propagated.2 Forward propagation is actually already
completely defined by demanding correctness as C is left-unique.
We therefore concentrate on backward propagation. Let ML

1 Cϕ MR
1

be a pair of consistent models, and let δR = (MR
1 ,M

R
2 ,µ

R) be a min-
imal right-change. We define δL =

←−
C (δR,ML

1 ) for each of the cases
of minimal change listed above. Note that age changes do not exist
in this setting.

1. For deletion, let p ∈ dom(MR
1 )\dom(µR), and define ML

2 as
the restriction of ML

1 to all persons except ϕ−1(p). µL is the
identity function on dom(ML

2 ).
2. For creation, let p ∈ dom(MR

2 ) \ cod(µR) and fresh q /∈
dom(ML

1 ); define ML
2 = ML

2 ∪{(q,(nameR2 (µ
R(p)),a))} for

some default age a. µL is the identity function on dom(ML
1 ).

3. Let p ∈ dom(MR
1 ) be the person whose name has changed;

let s1 = nameR1 (p), a1 = ageR1 (p), and s2 = nameR2 (µ
R(p)),

and let q = ϕ−1(p). Define {ML
2 = ML

1 \ {(q,(s1,a1))}}∪
{(q,(s2,a1))}. µL is the identity function on dom(ML

1 ).
The interesting cases, for which not all information is available

in the right model, are when a person is created (in that case a
default age has to be inserted) or when a name is changed (in that
case the age must be preserved).

Test cases and BenchmarX repository. The draft and artifacts
related to this first benchmark (to be known as Person2Person),
and all future BenchmarkXs, will be uploaded to the BX Examples
Repository, being set up by Cheney et al. [1] at the BX community
Wiki at http://bx-community.wikidot.com/examples:home

Several illustrative test cases are already described in the Wiki,
tailored for assessing different operational modes of existing BX
tools, including the following:
Person2Person.BCF The goal of this test case is to assess the

conformance to BX properties (correctness and complete-
ness) of a forward propagation run in batch mode (i.e, to
create a new right-model from an input left-model). This
is equivalent to providing as original right-model the empty
model with no persons. The inputs for the runs in this
test case will be typically small in size, and hand-picked to
expose possible corner cases where achieving conformance
might not be trivial (in general this will be the case with con-
formance test cases).

Person2Person.BCB This test case is similar to the previous,
but for the backward propagation.

Person2Person.BSF The goal of this test case is to assess the
performance (scalability of run time and memory consump-
tion) of a forward propagation run in batch mode. A size
parametric left-model generator will be provided.

Person2Person.BSB This test case is similar to the previous,
but for the backward propagation.

Person2Person.MCB The goal of this test case is to assess the
conformance to BX properties (correctness, completeness,
and hippocraticness) of state based backward propagation.
It can be used to assess tools that allow the propagation of
changes on the right model to the left one in the style of
constraint maintainers (where only the result model of the
change is known) [7]. Since the right model contains strictly
less information than the left one, the dual test case is equiv-
alent to batch forward propagation.

A summary of the features these test cases intend to assess is
presented in Fig. 2.

2We thus require for this example that propagation be compatible
with update composition, i.e., for readers familiar with the delta-
lens framework, we demand PUTPUT [3].

4



Performance Scalability Laws
Test Cases Time Memory Time Memory Correctness Completeness Hippocraticness Least-change
Person2Person.BCF X X
Person2Person.BCB X X
Person2Person.BSF X X
Person2Person.BSB X X
Person2Person.MCB X X X

Figure 2: Feature matrix for the Person2Person BX Benchmark

4. RELATED WORK
Benchmarking is an important means of assessing and driving

development and improvement in a specific area. In BX related
communities, existing benchmarks include for instance [11] for
databases, and [12] for graph transformations. These and other ex-
isting benchmarks, however, are not directly applicable for BX and
cannot be used to address the specific challenges and characteris-
tics of a comparison of BX tools. Our proposal for a BX benchmark
format, certainly inspired by existing benchmarks (especially [12]),
is explicitly designed to address BX specific aspects.

There also exist tool comparisons and surveys for BX including
a quantitative and qualitative comparison of Triple Graph Grammar
(TGG) tools by Hildebrandt et. al [5], and the more general survey
of BX approaches by Stevens [9]. These survey papers indicate the
need for a systematic comparison of existing BX tools but are ei-
ther too specific (e.g., only covering TGG tools), or too general (no
quantitative comparison via a well-defined transformation). Our
benchmark proposal is an attempt to fill this gap.

Finally, the Transformation Tool Contest (TTC)3, organized
yearly, is an ideal venue for presenting challenge transformations
and soliciting solutions, which are then compared systematically.
Although the TTC 2013 actually had a challenge4 that required
bidirectionality, TTC does not typically focus on BX scenarios.
Furthermore, the TTC tends to be specialized for model transfor-
mation approaches, while BX encompasses other approaches, e.g.,
from the programming language or database community.

5. DISCUSSION AND CONCLUSION
In this paper, we have identified the properties of a BX

benchmark and proposed a format for classifying and present-
ing BX benchmarks. As a proof of concept, we presented the
Persons2Persons BX benchmark as an example that adheres to
our format. Note that our example, however, does not fulfil our
“usefulness” criterion as it is meant as a minimal template. The
next step is to establish a series of BX benchmarks according to
the proposed format, extending and refining it as required. There
have already been commitments from BX tool developers including
Echo,5 eMoflon,6 GRoundTram,7 and HenshinTGG,8 to provide,
support and implement BenchmarX in the near future.

Acknowledgements. The authors would like to thank the re-
viewers for their insightful comments, and all the participants in
the 2013 Banff’s meeting on BX that were also involved in the
discussion that eventually led to this paper, in particular, Soichiro
Hidaka and James Terwilliger.

The second author is funded by ERDF - European Regional De-

3http://planet-sl.org/ttc2013/
4http://goo.gl/754XT
5http://haslab.github.io/echo/
6http://www.emoflon.org
7http://www.biglab.org/
8https://github.com/de-tu-berlin-tfs/Henshin-Editor

velopment Fund through the COMPETE Programme (operational
programme for competitiveness) and by national funds through the
FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) within project FATBIT with
reference FCOMP-01-0124-FEDER-020532.

6. REFERENCES
[1] J. Cheney, J. Gibbons, J. McKinna, and P. Stevens. Towards a

Repository of BX Examples. In Proc. of BX 2014, 2014.
[2] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and

J. F. Terwilliger. Bidirectional Transformations: A
Cross-Discipline Perspective. In R. F. Paige, editor, Proc. of
ICMT 2009, volume 5563 of LNCS, pages 260–283.
Springer, 2009.

[3] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to
Delta-Based Bidirectional Model Transformations: the
Asymmetric Case. JOT, 10:1–25, 2011.

[4] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin,
Y. Xiong, S. Gottmann, and T. Engel. Model
Synchronization Based on Triple Graph Grammars:
Correctness, Completeness and Invertibility. Software &
Systems Modeling, pages 1–29, 2013.

[5] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer,
W. Schäfer, M. Lauder, A. Anjorin, and A. Schürr. A Survey
of Triple Graph Grammar Tools. In P. Stevens and J. F.
Terwilliger, editors, Proc. of BX 2013, volume 57 of
ECEASST. EASST, 2013.

[6] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric
Lenses. In T. Ball and M. Sagiv, editors, Proc. of POPL
2011, pages 371–384. ACM, 2011.

[7] L. Meertens. Designing Constraint Maintainers for User
Interaction, 1998. Available at
http://www.kestrel.edu/home/people/meertens.

[8] A. Schürr and F. Klar. 15 Years of Triple Graph Grammars.
In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer,
editors, Proc. of ICGT 2008, volume 5214 of LNCS, pages
411–425. Springer, 2008.

[9] P. Stevens. A Landscape of Bidirectional Model
Transformations. In R. Lämmel, J. Visser, and J. a. Saraiva,
editors, Proc. of GTTSE 2008, volume 5235 of LNCS, pages
408–424. Springer, 2008.

[10] P. Stevens. Towards an Algebraic Theory of Bidirectional
Transformations. In H. Ehrig, R. Heckel, G. Rozenberg, and
G. Taentzer, editors, Proc. of ICGT 2008, volume 5214 of
LNCS, pages 1–17. Springer, 2008.

[11] Transaction Processing Performance Council. TPC
Benchmark C (Standard Specification, Revision 5.11), 2010.
http://www.tpc.org/tpcc/.

[12] G. Varró, A. Schürr, and D. Varró. Benchmarking for Graph
Transformation. In Proc. of VL/HCC 2005, pages 79–88,
2005.

5


