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Resumo

O réapido crescimento da complexidade dos sistemas de software exige, agora mais do que
nunca, uma validagdo rigorosa dos mesmos por forma a manter ou até mesmo aumentar
a confianca nestes sistemas. Em particular nos sistemas criticos, onde as falhas podem ter
consequéncias catastroficas podendo até incluir a perca de varias vidas humanas, é de extrema,
importacia o desenvolvimento de técnicas capazes de garantir altos niveis de confianca para
estes sistemas.

Nesta tese é proposta a utilizacdo de uma técnica formal para a verificagdo de programas
Ada, que pretende aumentar a confianca em sistemas cuja implementacao seja realizada nesta
linguagem de programacao. Mais precisamente, pretende-se a aplicagao da técnica de verifi-
cagdo de modelos para a analise do codigo fonte de programas concorrentes Ada, com especial
foco para o dominio dos sistemas criticos.

A vericagdo de modelos é uma técnica bem sucedida no que diz respeito a garantia de um
aumento de fiabilidade destes sistemas. No entanto, a aplicagio desta técnica a sistemas de
software enfrenta ainda vérios obstéculos, e as ferramentas e técnicas para ajudar a ultrapassar
estes obstaculos estdo ainda a ser desenvolvidas. A ferramenta desenvolvida no contexto
desta tese (ATOS) visa responder a problemas como (i) a construgdo de modelos a partir
de programas e (ii) a especificagdo de propriedades para estes modelos de acordo com as
pretendidas para os programas.

A construcao manual de modelos que simulam o comportamento de programas é um pro-
cesso complexo, temporalmente dispendioso, e sujeito a falhas devido & complexidade destes
sistemas. De forma a ultrapassar este problema o ATOS propde a extraccdo automética de
modelos a partir de programas Ada. Por outro lado, o mapeamento das propriedades de-
sejadas dos programas em propriedades dos modelos pode ser uma tarefa com um grau de
complexidade elevado, pois requer entre outros a utilizacao de um formalismo logico ao qual
a maioria dos programadores ndo estd acostumado. O ATOS ajuda no mapeamento destas

propriedades, oferecendo véarios mecanismos de suporte & sua especificacao.
Palavras-chaves: Ada, Extracdo de Modelos, Légica Temporal, Métodos Formais, Sis-

temas Criticos, SPIN, Verificacdo de Programas, Verificacdo Formal, Vericacdo de Mod-

elos, Vericacdo de Modelos de Software.
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Abstract

The rapid growth of the complexity of software systems demands, now more than ever, a
rigorous validation of these systems in order to maintain or even increase their reliability. In
particular in high-integrity systems, where failures may have catastrophic consequences which
may even include the lost of human lives, the development of verification techniques capable
of ensuring high degrees of confidence is seen as extremely important.

In this thesis the use of a formal technique for the verification of Ada programs is pro-
posed, which aims to increase the reliability of systems whose implementation is based on
this programming language. More precisely, we target the application of the model checking
technique to the verification of source code of concurrent Ada programs, with a special focus
on the critical systems domain.

Model checking is a well-succeeded technique for providing increased levels of assurance
regarding system correctness. However, its application to software systems still faces several
obstacles, and the necessary tools and techniques to help in the overcoming of these problems
are still being developed. The tool presented in this thesis (ATOS) addresses the problems of
(i) constructing models from programs and (ii) specifying properties for models corresponding
to the ones desired for programs.

The manual construction of models that simulate the behavior of programs is a time-costly,
complex and error-prone process, due to the complexity of these systems. In order to overcome
this problem, ATOS proposes the automatic extraction of models from Ada programs. On
the other hand, the mapping of the desired properties from programs to models can be a
task of high complexity, because it requires among others that they are expressed in a logical
formalism that most programmers are not acquainted with. ATOS helps in this mapping task

by providing several mechanisms aiming to support the specification of properties.
Keywords: Ada, Critical Systems, Formal Methods, Formal Verification, Model Checking,

Model Extraction, Software Verification , Software Model Checking, SPIN, Temporal
Logic.
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1. Introduction

The work presented in this document was developed in the context of the EVOLVE project, a
project that in Portugal was promoted jointly between Critical Software SA and the University
of Minho, and intended to propose techniques and tools capable of verifying and validating
software products along all of the development phases. The target domain are the so-called
reactive systems, i.e., systems that react to environment stimuli. The verification of these
systems intends to focus particularly on concurrency aspects, due to the difficulty of stating
the correctness of concurrent systems. Most embedded systems, commonly used in many
critical missions, belong to the class of concurrent reactive systems.

In particular, this work intends to address the formal verification of critical systems at
the implementation level. More specifically, we fous on the analysis of the source code of
concurrent systems through the use of formal methods techniques. Formal methods have
been used in different phases of the software development process, in particular at the system
specification level, which can be considered already a mature topic. However, their usage in
source code verification has only recently been addressed.

The present work describes a formal tool called Ada Translation to Spin . The
tool supports the verification of Ada programs using the model checking technique. More
precisely, this work focuses on verifying the source code of concurrent programs written in

Ada [TDB™07, BAQ9|, although it can also be useful for verifying sequential Ada programs.

The remainder of this chapter contains an introduction to several essential topics, aiming

to frame this work in the formal verification context.

1.1. Formal Verification of Software Systems

Information systems have nowadays an extremely high importance in our lives, whether as
an essential support for highly efficient communication systems, or in the support of systems
essential for the evolution of medical and avionics sciences. The rapid growth of these sys-
tems, prompted by the evolution of several different economic sectors, have quickly led to the
increase of the complexity of the computer programs underlying these systems. Currently,
most software systems are characterized by such a high level of complexity that it is now more
difficult than ever to have a reasonable degree of confidence in their reliability.

Attaining absolute certainty that a software system has no errors, i.e. ensuring that it will

not produce any unexpected behavior, is clearly an utopia. However, increasing the degree



of confidence in software systems is a central and justified concern, since errors (the so-called
bugs) have consequences. The cost of a system failure is not the same in all systems; in high
integrity systems or critical systems failures may be catastrophic.

On the fourth of July 1996, less that a minute after lunching, the rocket Ariane 5 was
destroyed by its automated self-destruct system. After the accident inspection carried out by
European Spatial Agency and Centre National d’Etudes Spatiales , a report was
produced explaining the reasons for this accident. The report revealed that the destruction of
Ariane 5 was caused by an error in software design: the conversion of a 64-bit floating point
number to a signed 16-bit integer was at the origin of the accident. In this accident no lives
were lost, but the damages approached 260 million Euros.

Presently, in the majority of software systems deployed the certification is made essentially
through the testing mechanism. This technique consists in passing a set of inputs to the system
and observing if the obtained outputs correspond to the ones expected. In the attempt to
increasing the efficiency of the input set, which leads to a higher certification degree, a huge
broad of techniques have emerged, and more will certainly appear as a result of the big
investments made in this research field. As an alternative to testing we find formal methods,
which encompass techniques capable of providing high levels of assurance. Due to the high
costs associated with their usage, formal methods have mainly been used in the development

of critical software systems.

Formal methods Many different definitions of Formal Methods are given in different books
and scientific documents. As an example, Formal Methods can be seen as “the applied
mathematics for modeling and analyzing Information and Communication Technology sys-
tems” [BK08]. With the growth of systems’ complexity and size the interest in formal methods
has risen, since they provide a basis for the precise definition of consistency, completeness, spec-
ification, implementation and correctness of systems. Formal methods encompass several vali-
dation methods such as: deductive verification [Hoa69, [Flo67|, model checking |[JGP99, BKOS|
or theorem proving [BMS83].

Even though formal methods are seen as very promising in systems’ validation, they are
currently still seen as very costly and not suitable for the majority of systems. In fact, it is
possible to conclude that formal methods are essentially used in the development of critical
systems, where failures are seen as unacceptable. This vision is explained essentially by the
cost-effectiveness relation, and by the difficulty of scaling up the use of formal methods for
“big” projects. Nevertheless, a study in [WLBF09| has revealed that the effect of formal
methods in several projects, considering time, cost and quality, were very positive as can be
observed in Figure[I.I] This study was based on data collected from more than sixty projects

(probably, most of them related to critical systems).



Time Cost Quality

. Worsening |:| Improvement . No effect/no data

Figure 1.1.: Formal methods effect on projects: time, cost and quality

Even so, the time and cost of applying Formal Methods can be reduced through the use of
automated techniques (e.g. model checking) and the development of new tools capable of re-
ducing the time and knowledge required for their application. Formal methods techniques will
only be suitable for the majority of software deployments when they are capable of providing

answers in minutes rather than days.

1.2. Verification of Critical Systems in the Industrial Context

The software for critical systems is required to be certified with a high level of reliability, due
to the cost associated with failures. Therefore, the industry responsibly for the development
of these systems has been progressively increasing its interest in Formal Methods. However,
this increasing interest is not simply explained by the potential profits of their application;
another reason, probably with more impact, is the explicit recommendation of the application
of formal methods in most critical systems standards.

The deployment of safety critical systems is regulated by several standards. These stan-
dards vary according to the domain they apply to (medical, defense, railway, aerospace, etc.),
but have significant commonalities. In general, they define different assurance levels and dif-
ferent activities/objectives for achieving compliance with each level. For each assurance level,
the different activities/objectives are classified as mandatory (M), not required ( - ), or an
intermediate value, such as recommendable (R) or highly recommendable (HR), as illustrated
in Table 1.1. Typically, formal methods are considered highly recommendable for obtaining
the highest assurance levels. More details about the particular safety standards of different

industrial sectors are given next.



. Safety Level Lowest Level | ... | Highest level
Requirement
1 R M
N - HR

Table 1.1.: The standards generic table to assign the safety level of a system

Avionics Industry The standard DO-178B: Software Considerations in Airborne Systems and
Equipment Certification has an important role in the certification of aerospace and defense-
related systems. This standard defines five levels of certification known as Design Assurance
Level (DAL]), which go from [DAL| E to [DAIL] A, where the Lowest/highest level is
E/A. Other standards have originated from DO-178B, like the [ESA}Galileo Software Standard
. The application of formal methods in avionics is about to be clarified in a new version
of the standard, DO-178C, which shall contain a segment specifically dedicated to the subject.

Railway & Automotive Industry In this industry the standards EN 50128:Railway Applica-
tions - Communications, Signaling, and Processing systems stand out. This standard is part
of a group of related standards containing the EN 50126 and EN 50129 defined by CENELEC,
the European Committee for Electrotechnical Standardization. The EN 50128 specifies five
levels of safety, denominated as Safety Integrity Levels where and are the
lowest and the highest levels, respectively. The use of formal methods is highly recommend

for the highest assurance levels.

Automotive Industry The International Organization for Standardization 26262, which
was adapted from the International Electrotechnical Commission 61508, is a func-
tional safety standard that classifies the system functions in four Automotive Safety Integrity
Levels (ASIL)), which vary from [ASIL}-A to[ASIL}-D , where[ASIL}-A is the lowest safety-critical
level. Formal methods are highly-recommended for [ASTL}-C and [ASIL}-D.

Medicine Industry The standard 62304 has an important role in medicine industry,
concerning the certification of software for medical devices. The manufacturer classifies soft-
ware system as whole in three classes: A (No injury or damage to health is possible); B (Non
serious injury is possible) and C (Death or serious injury is possible). Based on this classi-
fication, 62304 imposes the accomplishment of several requirements along the software

development life cycle.

Common Criteria The Common Criteria (CC|), or 15408, is one of the most commonly

used international standards. Unlike the previously presented standards, [CC|is more oriented



to security-critical, rather than safety-critical, systems. [CC| evaluates its target systems in
seven Evaluation Assurance Level (EAL|) ranging between the lowest level [EAL[l, and the
highest level EATJ7. The use of formal methods is mandatory for the highest assurance levels.

Formal Methods Tools in Standards Depending on the application and domain, a tool to
be used in the certification of a system may have to be itself qualified, prior to its acceptance
and usage. As such, a tool based on formal technologies may require self qualification, not
necessarily using another formal methods-based tool (otherwise one would enter a vicious
cycle). This process is also regulated in the different domains. Acceptable arguments for the
qualification of tools are, for example, evidence of a rigorous development process (detailed
documentation of the development and verification activities), and “proven in use” evidence,

i.e. a track record illustrating that the tool has been successfully applied in several projects.

1.3. Formal Verification of Ada Programs

The Ada programming language was developed at the request of the United States Department
of Defense, with the aim of using it as the universal programming language for its military sys-
tems. However, the programming language that was originally targeted for military systems
quickly proliferated to critical systems in general. Henceforth, the use of Ada in the develop-
ment of critical systems has progressively increased and remains extremely significant at the
present, which is mainly explained by its careful and safe design (as explained in [Bar08]), and
the existence of clear guidelines for building this kind of system.

The first standard of the Ada language was published in 1983, and therefore denominated
as Ada 83 (but before this date the language proposal had already been published for scientific
review). The next version of Ada appeared in 1995, bringing many extension and modifications

with respect to the previous version. This new version was denominated Ada 95. The last

version of Ada and the one used in the context of this thesis is Ada 2005. This version no longer
has the participation of the United States Department of Defense, whose collaboration in this
project ceased in 1998. The promotion of Ada is now undertaken by a group of commercial
companies, while its standardization had continued under the procedures. A new version
of Ada is expected in 2012, which is expected to continue providing new mechanisms for the

improvement of systems reliability.

SPARK The programming language SPARK |[Bar03| is a restricted subset of the Ada lan-
guage, with added annotations for the specification of the desired behavior of programs, resem-
bling the principles of Design by Contract [Mey92]. These annotations are embedded
in programs as comments, thereby enabling SPARK and Ada programs to share the same

compiler. In other words, a valid SPARK program is also a valid Ada program. SPARK



additionally provides a toolset containing different types of tools for different purposes, such

as a static analyzer or an automated theorem prover.

RavenSPARK RavenSPARK [SPAQS] is an extension of compliant with the Raven-
scar profile [BDV04, [ADO03|, which aims to make possible the formal verification of concurrent
and real-time Ada programs. The restrictions imposed by the Ravenscar profile are the key to
make formal verification of concurrent and real-time Ada programs treatable; without these it
would be difficult to perform this type of analysis, due to the high level of some Ada features.
Beyond the extension of the SPARK subset, RavenSPARK also includes new annotations
concerning the additional primitives added to SPARK.

Formal Verification of Concurrent Ada Programs As mentioned, Ada is a programming
language endowed with mechanisms that make it very appealing for the development of safe
and secure systems. Arguably, the programming language along with its toolset
are the most important landmark of formal verification in Ada programs. RavenSPARK
was introduced in an attempt to extend formal verification to concurrent Ada programs,
but it is still very limited. There exist of course other approaches to the verification of
concurrent programs written in Ada, more precisely through the modeling of Ada programs
[HMO3], EKPPRO3b], but there is still a gap that needs to be filled.

1.4. Verification of Software Systems using Model Checking

Model Checking is a formal verification technique suitable for assessing the functional proper-
ties of systems. Model checking-based methods are among the most successful formal methods,
at least in the industrial context. This is due to their automated nature, which can contribute
to significantly reducing the cost of applying the methods, by decreasing the expertise and
the time that are commonly required.

Given a model and a property, this technique explores in a brute force manner the states of
the model, in order to prove its correctness against the desired property. When a property is
not valid for a given model, an error trace is produced containing the path in the model that
violates the property. The process of model checking consists in three main phases [JGP99|:
Modeling, Specification and Verification. Different approaches to the model checking process
are proposed by different methodologies [BKO0S].

Modeling is the first phase of the process; it consists in converting a design into a formalism,
i.e. in translating system requirements into a mathematical model, typically a transition
system. Constructing a model that represents exactly the behavior of a system is essential for
the success of model checking. It is usually said that “the model checking technique is as good
as the model of the system” [BKO0S].



After the construction of the model, it is necessary to state which properties the model
enjoys (or is supposed to enjoy). The specification of properties is usually given in some
temporal logic formalism, with Computation Tree Logic [HRO04] and Linear Temporal
Logic [HRO4, Pnu77| having a predominant role. This kind of logic allows for the
specification of ordered events, without explicitly using time.

Lastly, the verification phase is an automatic process, which checks a property against a
model. When the property check fails, i.e. an error is encountered, a trace showing the error
path is provided. When error traces are caused by errors or limitations of the models or of
the specified properties (rather than of the modeled systems or of the intended properties),
they are called false negatives. Even though the verification process is automatic, most often
human assistance is needed to overcome some obstacles, such as the state space explosion.
Many options are offered to this effect by model checking tools. Choosing the best option is
not an easy task and requires some expertise from the user.

The application of the model checking technique to software systems is seen as very promis-
ing and has led to the creation of a new research area, known as software model checking
[IDKWO8, [JM09|. This technique is not simply the application of model checking to software;

it involves also the design of solutions to some obstacles in its application, most notably:

Model construction: The manual construction of a model of a software system is an error-
prone and time consuming process, due to the complexity of these systems. In addition,
there is a gap between the semantics of programming languages for software systems
(e.g. C, Ada, or Java) and the input languages of model checking tools. Programming

languages have richer features with more complex semantics than modeling languages.

State explosion: This is recognizably the biggest problem of model checking. In software
model checking the problem can become even more serious, due to the size of software
systems, which leads to the generation of models with an enormous number of states.

Thus, more aggressive abstractions must be considered.

Property specification: Typically, properties are specified in some variant of temporal logic.
This creates two difficulties: firstly, it requires some level of expertise for expressing the
desired system properties in temporal logic. Second, the mapping of these properties to
the properties of the model may not be straightforward, since the typical specification
languages are designed to state properties of mathematical models rather than of source

code.

Output interpretation: When a property does not hold in a given model, the model checker
reports a counter-example illustrating a trace that evidences the violation of the property.
Large models can produce very long traces. As such, manually matching the provided

trace to the model’s source code can be a really hard task.



1.5. A Formal Approach to the Verification of Ada Programs

The approach presented in this section corresponds to the one embedded in [ATOS] The
main role of ATOS is to help overcoming some of the software model checking problems
(as outlined above), in the application of the model checking technique to Ada programs.
In particular, ATOS directly addresses two of these problems: given an Ada program, it is
capable of automatically extracting a model from it, overcoming the difficulties expressed in
the model construction problem, and by inferring properties directly from Ada programs or
from annotations embedded in the programs, it tackles also the property specification problem.

ATOS uses the Simple PROMELA Interpreter model checker [Hol03] as back-end
to perform the verification of the extracted models. SPIN is a model checking tool focused on
verifying the correctness of models of concurrent systems, which clearly matches our intents.
The models are described in PROMELA, the SPIN modeling language, and correctness claims
can be stated through LTL formulas or PROMELA assertions. In short, ATOS generates
PROMELA models from Ada programs, and formulas or assertions from inferred and

annotated properties.

The ATOS approach and related decisions Software model checking tools follow essentially
two main approaches: (i) they either generate input models for one or more different exist-
ing model checkers, where ATOS is included, or (ii) they include their own model checking
algorithms to check the correctness of the models. Selecting one of these two approaches
was not straightforward and required the analysis of the pros and cons of each approach, as
enumerated in Table



Approach | Advantages Disadvantages

e Less time required; e Little room for development

of new techniques related with
model checking theories, such as
abstraction techniques, or the
definition of new mathematical
models which can provide less
complex and faster algorithms;

e Profit from all the techniques
already implemented in the tar-
get tool, from abstraction tech-

(i) niques to model checking algo-

rithms;

e Use a stable and recognized tool
(of course it depends from the
chosen tool).

e Restricted to the temporal logic
of the chosen tool;

e Significant time and effort re-

e Opportunity to developed new quired;
(ii) techniques and theories accord-
ing to what is intended; e One could being “reinventing
the wheel”;

Table 1.2.: Comparison of approaches

An analysis of the advantages and disadvantages of approaches (i) and (ii) revealed that
both could be equally interesting to explore, but due to the time restrictions of this work, the
approach (i) was judged to be more suitable, because it could guarantee results in the short
term.

Another important decision in the definition of the ATOS approach was whether or not to
use an intermediate representation between the programs and the models. On one hand, using
such a representation would give us the possibility to then generate more easily models that
could be exported to others model checkers, because the intermediate representation would
be closest to a model than the programs. On the other hand, program details might be lost
in this intermediate representation, and it was our intention to generate models that would
be as accurate as possible. The decision of performing the extraction of models directly to
PROMELA without any intermediate representation was due essentially to this fact. It also
seemed that it might be relatively easy to generate input models for others model checkers
directly from PROMELA] since it provides high-level mechanisms for the specification of

models.

1.6. Contributions and Document Qutline

Our most important contributions in this work are are:



1. a model extraction mechanism, which automatically generates PROMELA models from

Ada programs;

2. several mechanisms supporting the extraction of properties from annotated Ada pro-
grams to PROMELA models; and

3. as a case study of significant size to help validate our approach, the verification of a

Separation Kernel subsystem using these mechanisms.

4. The background material contained within this thesis, which surveys themes like model

checking, software model checking and the Ada programming language.

A paper containing part of this work was presented at the Embedded and Real- Time Systems
track of INForum 2011. A new paper containing all of ATOS’ features including the new
supported Ada primitives and the new case study (the Separation Kernel) is about to be
prepared.

The rest of this document is organized as follows. First, some background information about
software model checking is given in Chapter 2] concerning its different approaches, theories
and tools. Chapter [3]introduces ATOS, and chapters [ and [5| explain the model and property
extraction mechanisms implemented in it, respectively. Then the application of ATOS is
demonstrated in Chapter [6] through two case-studies: Readers- Writers and Separation Kernel.
Lastly, a discussion of the developed work along with its limitations and future improvements

is given in Chapter [7]
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2. Model Checking - Approaches, Theories

and Tools

A broad range of model checking tools are available. Even though these tools follow all
the same technique, the approaches and theories implemented in each are very different.
The application of the model checking technique, whether on software or hardware systems,
requires some knowledge of these concepts. Therefore, in the context of this work, a deep
study was performed with the aim of obtaining the sufficient knowhow for the development of
a tool like ATOS.

Our research of model checking techniques began with the study of the different mathe-
matical model theories, in order to understand their semantics and decide whether there were
one most suitable for our intents. Along with the mathematical models, several different ap-
proaches to the logical formalism used in model checking ( Temporal Logic) were studied. This
formalism enables the specification of properties required for correctness of the models.

The next step of research was the study of model checking tools, realizing what approaches
and theories were followed by each, and analyzing its application in systems verification.
Despite software model checking having only recently emerged as a research field, there exist
already several (software) model checkers targeted to support the verification of software
systems. Therefore, a study of some software model checking tools was also carried out, with
particular focus on the ones that support the verification of Ada programs.

The research described above was very important in the definition of the ATOS approach.
Many questions such as whether to Use or not an existing model checker, or the choice of
the most adequate model checker to use as ATOS back-end, were answered based on all the
information collected along this research process. The research was also important to realize
how we may contribute to the verification of Ada programs using the model checking technique.

In the remaining of this chapter an overview of mathematical models is first presented, along
with details about the two main theories: Petri Nets and Automata. Next, an introduction
to temporal logic is given, covering the details of some different temporal logic approaches.

Lastly, several model checking and software model checking tools are analyzed.

11



2.1. Mathematical models

A formal model is an essential piece in the model checking technique puzzle, because it allows
the representation and reasoning about the system behavior. Formal models have a mathe-
matically defined syntax and semantics. Such models can be manipulated by a computer tool
and can be used to verify system properties, i.e., to prove that certain desired properties are
fulfilled, or that certain undesired properties are guaranteed to be avoided.

Our purpose here is to identify and analyze the characteristics of mathematical models, in
order to understand which is the “ideal” model to represent a concurrent software system. Next,
it will be analyzed two of the most used mathematical models in model checking: Automata
and Petri Nets.

2.1.1. Automata

Automata models are transition systems, where nodes represent the state of a system in a
given moment and the edges (transitions) specify how the system evolve. A Deterministic
Finite Automata (DFA) is a 5-tuple (S, s0, L, F, T), where S is a finite set of states, s0 is the
initial state, L is the set of labels (the actions executed in transitions), F' C S is the set of
final states and T'C S x L x S is the transition relation.

A pathE] in the model is an ordered sequence of labels. In DFA paths are finite, which makes
impossible the representation of non-terminating systems. This restriction can be solved with
a simple method called Buchi-acceptance [Per90], where infinite runs are enabled. DFA’s have
another constraint, they can not represent non-deterministic actions contained in systems
behavior. Transforming a DFA into a non-deterministic Automata (NFA) is a simple process
[HMUOQG], in fact these two structures are equivalent, i.e, each DFA can be converted into a
NFA and vice-versa. Finally, to represent concurrent systems it is only missing the simulation
of concurrency, which can be achieved by the product of NFA’s (i.e the joint of two NFA’s).

The use of Automata models in model checking, is a stable matter. Many successful model
checkers use Automata models as a basis for theirs transition system definition (e.g. SPIN

uses NFA’s as mathematical model).

2.1.2. Petri Nets

Petri Nets [PRO8|, DJEO1] as graphical and mathematical model, provide a uniform environ-
ment for modeling concurrent systems. The transition system of Petri Nets are composed by
nodes and arcs. There are two types of nodes: places and transitions, which are connected by
arcs. Arcs only connect places and transitions or vice versa, they do not connect two places
or two transitions. The hold of conditions is represented by tokens in places. Transitions are

only activated if and only if there is at least one token at each of its input places.

!Paths are also named as runs
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The representation of systems is usually done by high level Petri Nets like Colored Petri
Nets (CPN) [Jen95]. CPN’s combine the capabilities of Petri Nets (control structures, synchro-
nization, communication and resource sharing) with the capabilities of a high programming
language (data and data manipulations).

Every Petri Net can be converted into a CPN and vice versa, so there is no theoretical
difference between them. However CPN is a much more compact and convenient modeling
language than Petri Net. CPN’s are to Petri Nets as high level programming languages are
to assembly.

A bunch of verifications methods exist to provide Petri Nets analysis. Model checking
algorithms are included in these methods. There are already some model checking tools using

Petri Nets as mathematical model (e.g. Quasar).

2.2. Temporal Logic

The temporal logic allows the specification of properties over a given period of time. The time
may be implicit or explicit, and enables the specification of an ordered sequence of events.
The model checking technique is based on temporal logic, thereby enabling the specification
of formulas (properties) which validate a set of model states rather than single points as it
proposed by the traditional propositional or predicate logic. Therefore, in the context of
software model checking, temporal logic is very useful and can really simplify the specification
of properties due to its capability to state properties for regions of code rather than single
points in implementation.

Several temporal logic approaches have been proposed until now, each with a different
purpose. These different approaches may be distinguished by theirs view of time. Next, are
presented two of this views denominated as and [CTL] These may be considered the most
important ones, since are the basis for many others, such as CTL* and TCTL, also presented

in this section.

2.21. LTL

The Linear Temporal Logic views time as a set of individual paths, where a path is
a sequence of events (states). An example of how LTL wviews a given transition system is
illustrated in of Figure [2.1] contains several connectives which encompass the “normal”
operators (common to the traditional logic formalisms) such as: A, V, —, <, but it also
encompasses other connectiveﬂ These connectives allow the reference of (implicit) time in
models such as: F (in a future state), G (all future states), X (next state) and the binary
operators U (Until) and W (Weak-Until). Where the formula ¢ U 1 holds on a path if ¢

2There exist several different terminologies to represent the same connectives we depict one of these
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holds on all states path until ¢ holds and v must hold at some future state. The ¢ W 2 is

similar to the previous however it is not required that v holds in some state.

o
@
F—O

Figure 2.1.: The LTL view of time

2.2.2. CTL

The Computation Tree Logic which belongs to the branching-time logics, views time
as a tree of paths. A similar example to one used in LTL is utilized again (Figure , but
now to illustrate the CTL view of time. The CTL view of time unlike the [LTT] allows one to
assert the ezistence of a path rather than just state properties over all paths.

The has the same time operators as but now they are quantified over the paths.
Therefore, the temporal operators appear as pairs: the first part is the quantifier which can
be A (all paths) or E (exists at least one path); while the second part may contain the already
introduced X, F, G, and U operators (The W did not exist but it is derivable). As an example,

the formula EF ¢, means “ezists a path in a future state where ¢ holds”.

L= &3

. . .

-
-
-

xS
X
X

Figure 2.2.: The CTL view of time
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2.2.3. CTL*

The CTL* [EC82| is a superset of CTL, that combines the expressive power of and
as illustrated in Figure [2.3] As mentioned, does not allow the quantifications over paths
permitted in . Nevertheless, does not include all the expressive power of LTL too,
since LTL permits the selection of range paths, which is impossible in CTL.

CTL* combines the expressive power of LTL and CTL by dropping the CTL constraint
which requires that all temporal operators (X, F, G, and U) must be preceded by a quantifier
(E and A). Thus, CTL* encompass two classes of formulas: state formulas (evaluated at state

level) and path formulas (evaluated along paths).

CTL*

Figure 2.3.: CTL* expressive power

224, TCTL

The Timed Computation Tree Logic [ACD93, [LPY95] is an extension of CTL, al-
lowing the use of explicit time constraints in properties specification. For example, in the
property “in all future paths p is valid” expressed as AF p it is possible the addition of a
time restriction. Thus, one can state in “all future paths p is valid within 10 units of time” as
AF<yo p.

TCTL requires a different transition system comparing to the one used previously (in LTL
and CTL). The main difference between them is the addition of clocks to the (timed) models.
A number of finite clocks defined in R>, may exist in a model, these evolve synchronously as
if there was a global clock controlling the entire system, nevertheless, the clocks reset can be

performed individually.
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2.3. Model Checking - Tools

The first model checkers start to be developed in the early 80’s, since then a significant number
of model checking tools had appeared. Most of these tools are focused on the verification of
concurrent systems, in fact these systems were in the model checking origin, from Edmund
Clarke in [Cla08] we quote “Model Checking did not arise in a historical vacuum. There was
an important problem that needed to be solved, namely Concurrent Program Verification”.
Amongst the model checking tools we highlight three: SPIN; [NuSMV} and Uppaal. The
SPIN because was one of the first model checkers and it is probably the most successful one;
NuSMYV for being the first symbolic model checkelﬂ; and Uppaal for incorporating timed
models (timed automata), allowing the use of explicit time, essential in the verification of

real-time systems. These three tools were presented in the remaining of this section.

2.3.1. SPIN

Simple PROMELA Interpreter (SPIN) is a general tool for verifying the correctness of dis-
tributed software models and belongs to the category of model checker’s[Hol03]. It was written
by Gerard J. Holzmann and others in the original Unix group of the Computing Sciences Re-

search Center at Bell Labs, beginning in 1980.

Modeling language and property specification [SPIN| targets efficient software verification
and hardware verification. The tool supports a high level language to specify systems descrip-
tions, called Process or Protocol Meta Language (PROMELA)). [SPIN|is essentially used to
trace logical design errors in distributed systems by supporting requirements specification in

Linear Temporal Logic (LTL]) or embedded assertions in models. presented in SPIN has

the following syntax:

¢ = true| false |0 1|p| =0 | ¢ ANdloV olod—=9ld] <> dloUg

where p is propositional atom and the connectives [| (equivalent to G operator), <> (equiv-
alent to F operator) and U are the temporal connectives. As previously explained, these

connectives mean: [] all future states; <> some future state and U until the state.

Verification There are three main modes for the verification of models in [SPIN|tool: Simulator,
allowing for rapid prototyping with a random, guided, or interactive simulations; Verifier, ca-
pable of rigorously validate of user specified correctness requirements (using partial order

reduction, collapse compression and minimized automata theories to optimize the search) or

3The primary version of NuSMV (SMV) was the first symbolic model checker

16



validate even very large system models with maximal coverage of the state space using ab-

straction techniques like hash compact and bitstate. Driver for swarm verification (a new form

of swarm computing), which can make optimal use of large numbers of available compute cores
to leverage parallelism and search techniques, which may increase the chance of verifying large

models by speeding up this process.

2.3.2. Uppaal

Uppaal [BDL04] is a toolbox for the verification of real-time systems jointly developed by
Uppsala University and Aalborg University. The tool was designed to verify systems modeled
as networks of timed automata extended with integer variables, structured data types, and
channel synchronization. In Uppaal, the state of the system is given by the location of all
automata, the clocks, and the values of the variables. A timed automaton is a finite-state
machine extended with clock variables. It uses a dense-time model, i.e., when a clock variable

evaluates all the clocks advance too, in a synchronously manner.

Modeling language and property specification The Uppaal modeling language is a mix
between the graphically design of system entities behavior and the specification of data struc-
tures and functions described in a C similar language. The query language of Uppaal, used
in property specification process is a subset of Timed Computation Tree Logic . As
mentioned, TCTL among others allows the use of time constraints in the specification of

properties.

Verification The Uppaal tool has two main modes, one that presents a graphical visualizer
for quickly and efficient simulation and another where properties may be specified and then
validated. In the latter, different algorithms search (depth-first and breadth-first) and abstrac-
tion techniques (allowing different modes for the space state representation and techniques that

reduce the state space) were provided.

2.3.3. NuSMV

The New Symbolic Model Verifier (NuSMV]) is based on the SMV model checker, actually it
is the reimplementation of the latter. The SMV model checker was the first symbolic model
checker, and as such was in the origin of this new class of model checking tools [McM93|. The
symbolic model checkers aim to tackle the main problem of model checking, the state explosion,
by introducing the concept of symbolic representation. This concept allow the manipulation
of sets of states rather than single states as in the classic model checking approach, where the
symbolic techniques Binary Decision Diagram and Satisfiability Solving (SAT) have a

prominent role.
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Modeling language and property specification The modeling language of NuSMV was
inherited from SMV, and it describes finite state machines. The specification of a NuSMV
model is made using modules, which have parameters and may be instantiated several times.
There must be at least one main module per system (like in C language). The modules
specification have a variable declaration part and an assignment part. The assignment part
may be divided in two different parts: the variables initialization; and the definition of system
transitions, which is made indicating the value (or the values, allowing non-determinism) of
variables for the next state. The described systems specification process is very extensive and
along with the obligation of array indexes and parameters having to be constants, make the
NuSMYV modeling language quite low-level. The properties specification is made in the models
within the modules declaration. NuSMYV supports the specification of formulas in both
and formalism (including one predefined pattern of properties, the invariants).

Verification The verification of NuSMV models includes both model simulation and vali-
dation. In the latter, are offered the classic model checking algorithms (i.e, the exhaustive
verification) for ’s representation and the bounded model checking algorithms using a
propositional SAT solver. The bounded model checking algorithms unroll the finite state
machines only for a fixed number of steps, thereby reducing the resources required for the

verification but also decreasing the effectiveness of verification.

2.4. Software Model Checking - Tools

The earlier model checking tools (e.g. SPIN) were not prepared to perform the verification
of software systems. Many problems (already enumerated) emerged when it was tried the
application of model checking technique to software. In order to solve these problems a new
generation of model checkers came up (the software model checking tools). These new tools
have among others automated the modeling phase by starting to receive programs as input
instead of models. In Table are illustrated some of these software model checking tools as
well as their supported input programming language. In the rest of this section were analyzed
four of these model checking tools: Quasar, Ada Translating Toolset, BLAST and BANDERA.
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Model
Checking Input Language
Tools
SPIN PROMELA and C
BLAST C
Quasar Ada
BANDERA Java
Ada
Translating Ada
Toolset
SLAM C
Java Path Java
Finder

Table 2.1.: Model checkers and translation tools input languages

2.4.1. Quasar

Quasar [BPP99, EKPPRO03alis a model checker tool, that enables the specification and verifi-
cation of temporal properties on concurrent Ada programs. Quasar receives Ada programs as
input, converting them into high level Petri Nets.

The translation process of an Ada program to a performed in Quasar, can be divided

in two phases.

1. The whole Ada program is converted into a set of generic Petri Nets, where each Petri
Net is an Ada construction. These generic Petri Nets have abstract transitions that are

then replaced by the correct sub net, this operation is called substitution.

2. The set of produced Petri Nets in (1) is then combined through merging operations.

These operations combine two Petri Nets by merging places having the same name.

task body Client is
Begin
Loop
server.service
5 End loop
End Client

task body Server is
Begin
10 Loop
accept service
End loop
End Client
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To clarify the translation process performed by Quasar, FiguresEl and illustrate the
first and second phases, respectively, for the translation of the above Ada program (The < and

> operators present in Figures[2.4] and 2.5] represent the substitution and merging operations,

respectively).
Client side
<id>
E.CALL [
<id,1> O
— - o
sl it <id> ‘LO
E.RETURN
E.RETURN N
<id>
<id>
———
<id>
loop loop
(SCI'VCI’.C'; Server.c;
end loo end loop:
Server side
<id>
G E.CALL o
<idC. id>
~2 —
<id>
<l >
E.RETURN
5 i <id>|
<id>
loop loop
accept ¢ accept e
end loop end loop:
Figure 2.4.: The first phase of Quasar translation process
“Figure imported from [EKPPR03al
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Figure 2.5.: The second phase of Quasar translation process

For the design of temporal properties, Quasar provides four templates: state accessibility,
bounded wait, critical section and stable property. These templates are LTL formulas and cor-
respond to the most common properties, for more information about them see [EKPPR03al.
The validation of Quasar extracted models is performed with High Level Net Analyzer (HE-

LENA) [Eva05].

2.4.2. BLAST

Berkeley Lazy Abstraction Software Verification Tool IBHIMOT| is an automatic
verification tool for checking temporal safety properties of C programs. Given a C program
and a property, Blast answers the question " Does the program satisfies the property?". If
the answer is no it provides an execution path that exhibits a violation of the property (or,
since the problem is undecidable, does not terminate).

uses C Intermediate Language INMRWO02| to extract information from C
programs, this information is crucial in the model extraction process. Programs are internally
represented as a set of Control Flow Automata , one for each function. A is a
directed graph, where states correspond to control points of the program and edges correspond
to program operations. There exist four types of program operations: blocks of assignments,

assume predicaﬁcesﬂ7 function calls and return instructions. To translate a program to a set of

5 An assume predicate is the condition that must hold to execute a certain transition
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CFA’s BLAST use an intermediate representation, which is the Control Flow Graph (CFG]) of
the correspondent program. Figure demonstrates the extraction process of Maz program
performed by Blast. Max is a simple program which receives two integers and returns the

bigger one.

Int Max (int a, int b) {

int max; @
max=0; erd

if (a>b) { m=a; }

else {m=b;} /
return m; @ e
}
return m

Figure 2.6.: The translation of program Max done by Blast

O

The verification on BLAST can be done, through these three forms: reachability checking,
assertion checking and temporal safety specifications. Reachability checking is made through
the use of labels, the user may annotate labels in C programs enabling BLAST to check whether
such labels are reachable or not in the source code. Assertions are checkpoints of programs,
where a given property must hold and they can be annotated everywhere in C program. For
the specification of temporal properties, BLAST has its own specification language, which is

given in terms of program events.

2.4.3. Ada Translating Toolset

The Ada Translating Toolset [DPC98| converts Ada programs to input languages of different
model checkers (SPIN and SMV). Thereby enabling, in an automatic way, the verification of
an Ada program by different model checking tools.

Initially this toolset, converts the original Ada program to a safe finite-state variant by ap-
plying program abstractions, configuration, restriction and specialization enabling the creation
of a tractable model to apply model checking technique. The transformed code is then con-
verted to S-Expression Design Language [Cor93| using the IRIS-Ada toolset.
allows the specification of concurrent systems in a compact language notation that can be

easily converted into finite state Automata. The next step is the design of properties in INCA
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query language. Finally, with the concurrent system written in and the properties spec-
ified in INCA query language, the INCA tool [Sie(2] creates the input model and property for
a model checking tool. The described translation process is graphically illustrated in Figureﬁ
27

State/event LTL
predicate ¢
definitions ¥ _
1
T , ¢ Promela_| SPIN |
Ada | Program Abstraction, ) 7 Lo -
Source —*| Configuration, Restriction, — | Ada to SEDL, INCA \ True or
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Figure 2.7.: The Ada Translating Toolset approach

2.4.4. Bandera

The Bandera tool is the most complete of the tools presented in this section, because it tackles
all of the software model checking main problems. The Bandera project was carried out by an
experienced team, involving many people who had participated in the Ada translation Toolset
development. However, the Bandera tool whose the first released was set up in 2005 is no
longer supported.

Bandera receive Java programs as input and is able to extract from these, input models
for several model checkers. The specification of Java programs properties is available through
Bandera Specification Language , an own language based on source-code annotations,
with a similar syntax to the already “dead” Java Modeling Language [BCCT03].
enables the specification of temporal properties through the same high level mechanism of
ATOS, which encompasses a set of predefined pattern properties (see Section . Assertion
on Java programs were also allowed in[BSL] as well as the specification of observable properties
(commonly denominated as invariants) of different Java control points.

At first, Bandera converts Java programs into an intermediate representation using Jimple
language as support. Jimple is essentially a language of control-flow graphs, targeted to be
a Java decompiler. Next, with the intermediate representation and the properties specified
in [BSL| Bandera builds the Bandera Intermediate Representation using a tool named
[BIR] constructor. Lastly, from [BIR]Bandera is able to generate input models for four different
model checkers: dSPIN (a no-longer spin extension with functions and pointers) [DIS99),
Symbolic Model Verifier (SMV)) (the origin tool of New Symbolic Model Verifier

Figure imported from [DPCI§]
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tool [CCGRO0]) and Java Path Finder (JPF)) [Hav99| (which was initially a Java translator
to SPIN that was then converted into a standalone model checker).

Bandera also encompasses a back-trace mechanism, enabling an easy mapping of the error
traces provided by the enumerated model checkers, and two program abstraction techniques:

program slicing and abstract interpretation, whose details are presented next.

Program slicing Program slicing is one example of an abstraction model technique. Based
on a given property, all lines of a program which do not influence the verification of that
property are removed. Thereby reducing the size of program and consequently the number of
model states. For example, in a property which checks the value of a variable A, all variables

in program that do not influence A’s value, can be removed.

Abstract interpretation This technique reduces the model via data abstraction. When a
property to be checked does not depend on the program’s concrete values but instead depend
on the properties of those values, some values could be abstracted. For example, a program
may use a vector to store information about people (e.g age, date of married, number of
brothers, etc), but if the property to be checked only depends on a particular information
such as being married or not, it is possible to abstract the large number of vector states onto

a small set: {married, not married}.
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3. An Overview of ATOS

The tool presented in this chapter (ATOS) may be classified as a software model checker, a
framework which helps in the application of the model checking technique to software systems
(both definitions seem correct). The main goal of ATOS is to help in the overcoming of the
software model checking problems identified previously, in an attempt to verify concurrent
software systems.

ATOS integrates two mechanisms which are very helpful in taming the model construction

and the property specification problems. The mechanism used to tackle the model construction

problem is the model extraction whereas the property specification problem is tackled using

the property extraction mechanism.

The model extraction consists in the automatic generation of models from programs. In
particular ATOS receives as input Ada programs (only the main program is required) and
outputs PROMELA models. The technical details of the model extraction process are given
in chapter [

The properties extraction mechanism results from joining two different mechanisms, one
that automatically generates properties from programs and another which builds properties
from annotations in Ada programs. The annotation language provided is inspired by SPARK]
The properties extracted by these mechanisms can either be in the form of formulas or
assertions embedded in the extracted models. More details about these mechanisms are given
in chapter [5]

The models and properties extracted by ATOS are then verified with the SPIN model
checker. Although the SPIN verification step is an automatic process, the user should have
some experience with and knowledge of the SPIN model checker. This experience and knowl-
edge are even more important in the presence of the state explosion problem, since SPIN
offers several abstraction techniques and different search algorithms. Knowing how to take
advantage of these functionalities could be the difference between being able or not to verify
a model.

In summary, ATOS receives Ada programs as input, generating a model of these programs
along with properties to be verified against this model. The verification is then performed by
SPIN, which receives as input the previously generated model and properties. The graphical

representation of this process is illustrated in Figure [3.1]
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Figure 3.1.: ATOS process

ATOS was fully implemented in Ada, using the Gnat Programming Studio (GPS|), an
Integrated Development Environment for Ada development. was very helpful
in the maintenance, debugging and testing along the software development process. No less
important was the Ada Semantic Interface Specifications [BSBY1], a library that offers
an excellent interface to the Ada syntax tree (AST) of programs. This library has provided
all the syntax and semantic information required by ATOS.

In the remaining of this chapter it is given an overview of ASIS and explained how ATOS
is capable of converting an Ada program by just receiving the main of a program. The simple
ATOS[GUI)is also explained in this chapter, by giving an overview and illustrating its principal

functionalities.

3.1. ASIS

The packages of ASIS library offer an excellent interface to the Ada syntax tree programs.
The access to the environmentﬂ of Ada programs provides valuable syntactic and semantic
information. The design of ASIS tries to be independent of Ada environments, thus supporting
portability of software engineering tools.

ASIS packages explore the abstract syntax tree (AST) of an Ada program. Each node from
AST can be accessed through the package FElement and other packages allow the access to

all information of a node, such as: kind (declaration, expression, statement), related elements

! Ada AST can be referred as Ada environment
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and components.

ASIS offers two ways to access the AST, through an iterator that transverses the whole
tree, using the algorithm depth-first [CSRLO1| and through queries. The iterator is used to
access generic information, such as: list of tasks, list of variables, list of protected objects,
etc. While queries are used to obtain specific information, like the upper and lower bound of
a cycle clause. The general use of ASIS is explained in its Websitﬂ

Many tools use ASIS as support to perform code analysis (data flow analysis, safety and
security compliance tools, static correctness verifiers, tasking analysis tools). The successful
use of ASIS by these tools and also in ATOS demonstrates the importance of ASIS concerning

the analysis of Ada programs.

3.2. How To Compile from Main?

The translation of Ada programs performed by ATOS requires only the main file as input,
even if this depends from other library units declared in separate files. However, in order to
allow ATOS to process separate library units there are two conditions which must be valid:
1) all library units must be in the same context and 2) the library units names and the names
of the files which contain them must be exactly the same.

The process performed by ATOS to convert an Ada program from main can be divided in
two phases, a first phase where it processes all the units in the correct order and a second

phase where it puts together all the generated files containing the library units.

Processing Library Units

ATOS uses the with clauses of a main file to obtain and translate all of the library units that
is dependent from. Nevertheless, the units must be processed in the correct order because
they can be dependent from one another. Therefore, ATOS generates a dependency graph,
which allows it to convert the library units in the correct order.

As it was said previously, the dependency graph is built based on the with clauses of main
declaration, and on the with clauses of its dependent library units and so on. The generated
directed acyclic graph (DAG) is an ordered pair G = (V, A), with:

e V a set of vertices, which in this case represent library units;
o A aset of ordered pairs of vertices, that represent the library units dependency relation.

In order to ensure that there are no circular dependencies between the library units, the

generated graph must be a directed acyclic graph, i.e, let P be a path of G:

*Http://www.sigada.org
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(a,Z) € P= (Z,a) ¢ P, wherea €V and Z =V \ {a}

In Figure is shown an example of a generated graph by ATOS.

e

Figure 3.2.: An example of a generated graph by ATOS

After the construction of the dependency graph, ATOS transverses it, starting with a vertex
that does not point to other vertex (a library unit that does not depend from others library
units). In the next steps this procedure is repeated until the main unit is processed. As an

example, ATOS would transverses the graph represented in Figure [3.2] as follows:

1. At first, there is only one library unit that does not depend from others library units

which is the D library, so this is the first one to be preprocessed and then translated;

2. Next, there are two library units that can be chosen after D, which are A and C, ATOS
randomly chooses one, for hypothesis admit that ATOS choose C;

3. Now, there is only library that did not depend from others, which is A, so is the chosen
by ATOS;

4. At this phase, remains only Main and B, but Main depends on B, so in this step the

library B is chosen;

5. Finally, is chosen the Main unit.



Order File Inclusion

The translation of an Ada program may origin several different files, ATOS generates one per
each library unit declared in a separate file (the specification and the body parts of a unit
are put together in the same file). However, PROMELA does not has the same reference
mechanisms of Ada, i.e., in PROMELA it does not exist the with clause primitive to reference
other units. The only way for a declaration from a unit being available for other unit is being
declared above of it. Thus, ATOS uses a different mechanism to allow the same visibility rules
of Ada, which is the directive include. This primitive allows the include of all declarations of
a file in a certain point of other file.

ATOS through the directive include generate a PROMELA model containing different files
as it was a single file, where the order of files inclusion is given according to the library
units dependencies. A file (library unit) can only be included once otherwise would occur
a redefinition of its declarations. Thus, the inclusion order is given in a list where the first
element did not include any of the others, the second element includes the first one, the third
element includes the second and so on. This list is generated through the previous generated

dependency graph and the algorithm is also the same that generates the processing order.

3.3. GATOS - a graphical user interface for ATOS

ATOS has a simple Graphical User Interface (GUI|) designed in Java using the API swing
[HWL™T02|. The decision of implementing the in Java rather than in Ada, which would
seem the obvious choice since it was used in the development of ATOS, was due to the facilities

provided by the use of the swing gui builder provided by Netbeans IDE.

X GATOS

File Options Help

Choose file |

Convert

Figure 3.3.: GATOS main window

GATOS is composed by a simple design with colors black and gray as main background

colors, the main window is shown in Figure 3.3] The creation of GATOS had as main goal
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making the execution of ATOS simpler, without requiring knowledge at the command line

level. The execution of ATOS can be performed in two simple steps with GATOS:

1. Loading the Ada program — The selection of a file (Ada program) may be performed
through the file selector illustrated in Figure which contains a filter for Ada pro-
grams (*.adb and *.ads) in order to facilitate the search of Ada files. Loading an Ada
program may also be performed by writing directly in the white box (next to the button

Choose File) the path of the file;

X Open File

New Folder Rename File

/home/fjoao |

Folders Files

i * 124.adb =
AdaTypes2Spin.adb
AdazSpin/ AnnotatedRW.adb
AsisPackage/ DeclarationConvert.adb
Documentos/ Max2.adb

Dropbox/ Rw FULL ANMotated. adt

Readerc\triters adh
v (3 »

Imagens/

T W |

Selection: /home/joao

Filcer:
Ada Programs (*.adb) v

€ Cancel | </ OK
Figure 3.4.: The file selector of GATOS

2. Executing ATOS — The ATOS execution with the selected file as input can be per-
formed by simply pushing the button Conwvert, which will generate the PROMELA model

as well as several properties for this.
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4. Model Extraction

The ATOS tool is capable of translating a subset of the Ada language into the PROMELA
language. The targeted subset of Ada intends to be as inclusive as possible. Knowing be-
forehand that would be almost impossible to cover all of Ada’s subset, trying to reach the
coverage of other subsets like SPARK or RavenSPARK would be an error. Since these subsets

were built aiming to permit a specific type of verification, completely different from the one

presented in this thesis, so there were restrictions required for this verification that do not
make sense in this one and vice-versa. Therefore, the intention is allowing that these different
approaches complement each other at coverage level and not make them comparable.

ATOS makes a special effort to extract accurate models, in particular by choosing an ap-
proach which does not use intermediate representations of programs, because this could lead
to the loss of program details and consequently to the generation of inaccurate models. It
is very important that the extracted models indeed simulate the behavior of the Ada pro-
grams, otherwise they are useless — in particular when the main goal is the verification of high
integrity systems where failures are unacceptable.

The model extraction performed by ATOS tries to map the Ada primitives into similar
PROMELA primitives. Nevertheless, when an Ada primitive does not have a correspondent
similar primitive in PROMELA, ATOS tries to convert these so that the semantics of the Ada
primitive is respected. As mentioned, all the syntactic and semantic information about the
Ada programs required by ATOS in the translation process is fully provided by [ASTS]

The model extraction process is performed by traversing the AST of the input program
twice. In the first traversal ATOS preprocesses information that will be required in the second
traversal, when the model is actually extracted. In the preprocessing phase, ATOS collects
information such as the number of tasks, which is required for example to declare the array
of channels associated to each process (in particular to obtain the range of the array). The
preprocessed information is identified and explained along with extraction details.

ATOS handles the following Ada declarations: subprograms (procedures and functions),
packages, concurrency primitives (tasks, protected objects, and entries), variable declarations
(including arrays and basic records), integer constants, and new integer types and subtypes.
The translation of many statements as well as the conversion of logical operators or support
for the Ada inheritance mechanism are also provided by ATOS. Throughout this chapter,
these and other details about the model extraction performed by ATOS will be explained.
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4.1. Encapsulation

Encapsulation is a well-known mechanism used by most programming languages, including
Ada, which restricts and hides object’s data. This mechanism is not directly matched in the
PROMELA semantics; nevertheless, it is partially assured by the ATOS translation.

ATOS converts all the declarations, whether global or not, as global declarations in the
PROMELA models. This solution came up after encountering difficulties in the use of
PROMELA scopes, namely due to the fact that PROMELA processes (tasks) do not al-
low for the declaration of inlines inside its “body”, which are used, for example, to translate
procedures and functions.

The PROMELA restriction explained above forced the development of encapsulation mecha-
nisms in ATOS that would not be necessary if there were no such restriction. A list of problems
created by this restriction and mechanisms provided by ATOS to maintain encapsulation is

given next:

1. The declarations of process types were not scoped anymore, so if a process type (used for
instance in the conversion of task types) was instantiated twice, these two new processes
would share the same declarations because they were global (e.g. they would share
the same variables). To overcome this problem, ATOS generates many declarations as
process instantiations, replicating them. These declarations are suffixed with a number
indicating the instantiation, which ranges from 0..N, where N is the number of process
instantiations. The replication of process declarations forced the replication of processes
themselves (since they were now actually accessing different declarations with different
names): a new process is created for each instantiation, once more suffixed with the
instantiation number. The instantiations of a process are counted in the preprocessing
and if for example a task type is declared but not instantiated then it is not represented

in the extracted model, which reduces its complexity;

2. Not only were process declarations considered globally, but all other declarations were
global to. So, for example if two processes call the same procedure of a package, they
would also share the same declarations. Once more the solution proposed by ATOS
is the replication of the procedure twice, one for each process. The procedures are
differentiated by prefixing their names with the name of the process that will execute
it. In order to know which processes execute which procedures and functions, ATOS
generates a Data Flow Diagram in the preprocessing phase. With the
ATOS not only solves an encapsulation problem, but it also reduces the complexity of
the extracted models because it does not generate declarations which are not used by

any process;

3. ATOS preserves the encapsulation of variables by declaring them globally in the model,

prefixed with the name of its “mother entity”. For example, the variable with the name

32



Var from the protected object PO is declared globally as PO_Var. The variable renaming
process is performed automatically by ATOS. This encapsulation mechanism guarantees
only the maintenance of variable encapsulation, all other declarations must have different

names in order to avoid the redefinition of these along the extracted model.

The solutions introduced by ATOS make all declarations available to all PROMELA prim-
itives, which in principle could in turn lead to new encapsulation errors. However this is not
the case in practice, since all the Ada programs considered for translation must be correct, so
the encapsulation is guaranteed already by the Ada compiler. In other words, ATOS just has
to preserve the referential integrity that is present in Ada programs; it is not required to detect
possible referential integrity errors in the input programs. The maintenance of encapsulation

is provided by the mechanisms explained above.

4.2. Types

A good type system allows for the construction of powerful abstractions, which provide valu-
able information to the compiler, so that many logic or design errors can be found at an early
stage of the software developing process. The Ada and PROMELA type systems are very
different, the first one offers a much more powerful and wider type system.

The wide Ada type system is categorized in a hierarchy where types inherits properties from
other types that stand above in the hierarchy. Figure illustrates the Ada type hierarchy.
The SPIN type system is much more primitive: it has only a few predefined types as shown in
table[f.1], and a simple mechanism for the definition of new types that permits the aggregation
of several variables in a single structure, i.e. it allows for the declaration of record structure
types.

The declaration of task and protected object types are explained in Sections and [£.7]
respectively. The details of the translation of all other Ada types are given in the remainder

of this section.
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Figure 4.1.: Ada type Hierarchy

Type PROMELA Range
bit 0,1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short -2t 215 —1
int —231.231 1
unsigned 0..2" -1

Table 4.1.: PROMELA basic types

Numeric Types

The numeric types correspond to the following path in the Ada hierarchy types: all types —
elementary — scalar — discrete — integer — signed. In order to provide a more intuitive
explanation, signed types will be referred to simply as numeric types.

ATOS is capable of converting all the numeric types whose range is defined in Z, where the
minimum and the mazimum values allowed are —2'5 and 2'° — 1, respectively. The definition
of mazimum and minimum come from the assumption that all Ada programs will run on a
16-bit machine. All Ada types which belong to this range of values are converted to some
PROMELA predefined type, the translation is performed by ATOS according to the rules
defined in table [£.2] The ranges for PROMELA numeric types (see table are defined
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assuming that the verification of PROMELA models will be performed in 32-bit machines.

Ada Type SPIN Type
LowerBound | UpperBound
<0 - Short
>0 UpperValue | Unsigned with n bits , where 2"~! — 1 < UpperValue < 2" — 1

Table 4.2.: Numeric Types conversion rules

The first rule of table 4.2] concerns negative lower bounds. There exist only two PROMELA
types which support negative numbers: integer and short. For the range of values supported
by Ada types, short is more appropriate, since it supports the range of values defined by the
Ada integer types, and it saves memory when compared to the integer type (it uses only two
bytes instead of four).

The second rule tries like the previous to reduce as much as possible the memory required
by the extracted models. The value of n corresponds to the number of bits that the unsigned
type represents, and is defined according to the smallest number of bits required to represent
the upper bound of the Ada type. For instance, a type which represents values between 0..100
is translated to an unsigned with 7 bits, whereas a type defined between 0..50 is converted

into an unsigned with 6 bits.

Predefined Numeric Types — The Ada programming language offers several predefined
types; ATOS is capable of converting some of these types. The predefined numeric types
supported by ATOS and the correspondence between these is demonstrated in table [4.3] The
matching between the types is done according to the rules of table .2

Type Ada Range Type PROMELA Range
integer | —2% + 1.2 —1 short —215 215 1
positive 1.2 -1 unsigned 0.27=15 1
natural 0.2 —1 unsigned 0.27=15 1

Table 4.3.: Correspondence between Ada predefined types and PROMELA types

The range of values that PROMELA types can represent is always greater than or equal
to the corresponding Ada type ranges. As such, when corresponding types have different
ranges, overflow errors could stay undetected in the models. For example, a variable with
type short in PROMELA can represent the number —2'°, which would not be possible with
the corresponding Ada type. This is easily avoided by adding to the model an LTL formula
which asserts that a variable respects its range values (see Section .
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ATOS allows for range constraints to be used in variables declarations and takes advantage
of this by reducing (if possible) the memory needed for the models, which will make easier its
subsequent verification. The translation of a variable type declared with a range constraint is

vy

performed according to its “new” range of values. Say, a natural variable with range 0..45 is

not declared as an unsigned with 15 bits, but is instead declared as an unsigned with 6 bits.

Numeric Types and Subtypes Declaration — ATOS supports the declaration of new sub-
types of integer types, event though the PROMELA language does not support this func-
tionality. The information of an integer type declaration is kept in a data structure, which
contains the name of the type and its range. Thus, every time the type is used, for instance as
the type of a variable, ATOS looks for its range and converts it according to the rules defined
in Table

Booleans

The boolean type belongs to Ada’s enumeration types. Although ATOS is not capable of
converting types of this kind, it is capable of translating the boolean predefined type. This
type is defined as an enumeration with two values (true or false), and ATOS converts it to
the bool type in PROMELA. The conversion is direct (and obvious), see table [4.4]

Type Ada Range Type PROMELA Range
boolean | false, true bool false, true

Table 4.4.: The translation of the Ada predefined hoolean type to PROMELA

Array Types

Ada allows for the declaration of array types. PROMELA does not support the declaration
of this kind of types. However, ATOS is capable of translating array types through a strategy
similar to the one used for the conversion of numeric type declarations, which is to store the
information concerning the type declaration and use it when the type is instantiated. The
information required to simulate the declaration of an array type consists of the range of the
array; the type of its elements; and the type name. An example of a variable declaration

whose type is a previously defined array type is given nextﬂ

!The listing style is different in order to distinguish examples from rules
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Declaration of Type
Type ExArrayType is ArrayRange of ElementType

Declaration of variable using the declared type

VarName: ExArrayType

4

The type is processed

The variable declaration
ElementType VarName [ArrayRange]

Record Types

The record type is a composite type, which aggregates one or more fields (elements) into a sin-
gle object. Ada offers some alternatives for the declaration of records, such as the declaration

of a null record or the declaration of a record with a variant part (for more information about

record declaration see [TDBT07]). ATOS supports only the declaration of “simple” records,
which are record type declarations defined with just a name and a list of elements.
The PROMELA modeling language provides only a simple mechanism for introducing new

types of record structures, very similar to structs in the C programming language. The transla-

tion performed by ATOS uses this mechanism to convert Ada “simple” records to PROMELA.
The translation rule used by ATOS is illustrated below.

Type TypeName
Record
ElementsDeclaration
End Record

typedef TypeName {
ConvertedElementsDeclaration
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4.3. Variables

The declaration of a variable is composed by the name of the variable and its type; variables
with non-limited types may be initialized. The translation of variables is not static and
depends on the variable type. Variables of numeric, record and boolean types have the same
translation rule while for the other types there exists a new rule for each type. Variables may
also be declared as constants, meaning that their values are never altered during program
execution. The translation of constant variables are covered by specific rules too.

The remaining of this section explains the translation rules for variables with numeric,
record, boolean and array types, and also the conversion performed for constant variables.

The translation of variables whose type is a task type or a protected object type is explained
in Sections §.6] and [£.7] respectively.

Numeric, Boolean and Record Variables

A variable with a numeric type (see Section may be defined within a range, which deter-
mines its new upper and lower bounds. This range is not explicitly present in the models, but
it is used in the translation of variable types as well as to generate range checking properties
(see Section [5.1.1]).

As was said previously, variables with numeric, boolean and record types share the same

translation rule, which may be observed below.

VariableName: TypeName [:= Initialization|]
TypeName VariableName [= Initialization]

Array Variables

An array variable is a data structure which aggregates a list of elements, all of the same type.
This data structure exists both in Ada and PROMELA. However, in Ada it is more powerful,
since it allows the range of an array to be defined using complex expressions. In PROMELA,
the range of an array can only be defined within 0..N — 1, where N € N represents the number
of elements. In Ada, the range of an array is defined within N..M, where N,M € Z and N < M,
thus allowing for both a lower and an upper bound for an array range, unlike PROMELA
arrays for which only the upper bound is defined.
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ATOS can convert all declarations of arrays in Ada, even those with a lower bound different
from 0. In the conversion of an Ada array to a PROMELA array, ATOS first calculates the

number of elements defined in the original array, which is given by the formula:

Nr_Of Arrays_ FElements = Upper Bound — Lower Bound + 1,

where Upper_Bound and Lower_Bound are the upper and lower bound, respectively, of an Ada
array range. With the number of elements ATOS can declare the array in PROMELA, but the
translation work is not over yet, since PROMELA arrays can only be accessed from indexes
between 0..Nr_Elements — 1. This problem is solved by calculating the difference between 0
(the lower bound of a PROMELA array) and the lower bound of an Ada array; the calculated
offset is then added to the indexes of the PROMELA array every time it is accessed.

The translation rule for array variables is given next, together with the expression rule to

access its indexes.
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Array declaration
VariableName: array range (Lower Bound..Upper Bound) of ElementsType

[:= Initialization]

Array’s index access
VariableName (Pos)

4

Array declaration
ElementsType VariableName [Upper_Bound — Lower _Bound +1] [= Initialization |

Array’s index access
VariableName [ Pos + (Of fset) ]

Multidimensional arrays are not allowed in PROMELA, at least in an explicit way. This re-
striction forced the creation in ATOS of a special translation rule when the type of the array’s
elements is an array type (i.e., when a bi-dimensional array is declared). The type of the
elements is declared through the typedef mechanism, a new record type is created containing
an array variable with the array type, this new type is then used as the type of the multidi-
mensional array. The translation performed by ATOS is clarified by the following rule.

Array declaration
VariableName: array range (Lower Bound..Upper Bound) of ArrayType
[:= Initialization]

Array’s index access
VariableName (Posl) (Pos2)
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Typedef SubVariableName {
SubVariableName ArraytypeDeclaration

Array declaration
SubVariableName VariableName [Upper Bound — Lower Bound + 1]

Array’s index access
VariableName [ Posl + (Of fsetl)]. SubVariableName [ Pos2 + (Of fset2)]

[= Initialization |

Constants

A constant is a variable with an initialization whose value is never modified along the program
execution (attempts to modify the value of a constant are detected statically at compilation
time). ATOS does not need to worry about possible errors caused by constant variables being
modified, because the absence of these errors is guaranteed by the Ada compiler.

The translation of constant variables could be exactly the same as for “normal” variables if
there were no problems with the complexity of the extracted models. In an attempt to save
resources, ATOS has different rules for constant variables, once more selected according to the

type of the variable. The details of these rules are presented next.

Numeric Type Constant variables with numeric types are translated into a preprocessor

macro. A macro is defined according two entities substituted and substitute, where all occur-

rences of the first one (substituted) are automatically replaced for the second entity (substi-
tute) by the compiler. In this case the macro substituted is the variable name and the macro
substitute corresponds to the variable initialization value, i.e., all occurrences of constant
variable name will be replaced by its initialization value. Thus, memory resource savings are
optimal compared to other possible translations. The translation rule for constant variables

is showed below.

VariableName : NumericTypeName constant [Range| [:= Initialization |

4

#define VariableName Initialization
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Record Types Constant variables with this type are converted equally to normal variables;
the only difference concerns their type declaration. A new type is declared and its elements are
initialized with the corresponding initialization values. The elements whose type is numeric
may have a different type according to the rules defined in Section where the upper and

lower bound correspond to the initialization value.

VariableName: RecordTypeName constant Initialization

4

Typedef ConstRecordTypeName {

Elements Imnitialization

ConstRecordTypeName VariableName

Array types The translation performed by ATOS to allow for constant arrays is very prim-
itive, assuming that the initialization value is equal for all of its elements, the elements with

numeric types are redefined according to their new range.

Derefered Constants This mechanism allow for the declaration of a constant variable in
the visible part of a package, while its initialization is performed only in the private part or
imported from other languages. Derefered constants are translated as if they were “normal”

variables, i.e., they are declared and then initialized.

4.4. Subprograms

Subprograms encompass functions and procedures, whose execution is invoked through a func-
tion call and a procedure call, respectively. A function call is an expression and returns a value,
whereas a procedure call is a statement and does not return any value. The definition of a
subprogram can be given in two parts: the declaration that defines its interface and the body
that defines its execution.

A subprogram can have parameters, each with its associated modes. There are three types

of mode:

e In — A parameter with this mode is considered to be a constant (see Section [4.3)), which

means that it cannot be modified by the subprogram, and must be initialized. This
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mode is the default mode if no mode is specified. Functions can only have parameters

with the In mode, in order to ensure side-effects freedom.

o Out — The parameter with this mode is an uninitialized variable. The variable is then
initialized during the subprogram execution. This mode is typically used to pass infor-

mation from the subprogram to the calling program.

e In Out — This mode is very similar to the Out mode; the main difference is the fact

that in the In Out mode, the parameter (i.e., the variable) must be initialized.

A parameter can be passed either by-copy or by-reference. A parameter passed by-copy
denotes a separate object from the actual parameter and the information transferred between
the two happens only in two moments: immediately before and after the subprogram execu-
tion. A parameter passed by-reference on the other hand is updated along the subprogram
execution.

The parameters passed by-reference are not a problem since they are updated along the
correspondent PROMELA primitive execution, but the parameters passed by-copy must un-
dergo a special processing. Firstly, it is important to identify which parameters are passed
by-copy or by-reference. This distinction is made based on the parameter’s type and is clearly
explained in [TDBT07]. After a careful look at this definition it follows that the types that
require a special treatment are elementary types and composite types whose components all
have an elementary type. The rest of the types do not need a special treatment, because
either i) they have by-reference types (i.e. they are parameters passed by-reference); or ii)
their translation is not supported by ATOS.

The mode of a parameter also has to be considered in the translation of by-copy parameters,
since if a parameter has mode In its value is never altered, so it does not matter which type
it has. Thus, parameters with mode In do not undergo special processing, even if they are
considered to be passed by-copy.

The solution for parameters passed by-copy is the creation of an auxiliary variable for each,
which is assigned with the value of the parameter before the beginning of the procedure
execution (note that functions only have parameters with In mode). All occurrences of this
parameter inside the procedure are replaced by the corresponding auxiliary variable. At the
end of the procedure execution, the parameter is assigned with the corresponding auxiliary
variable.

In the remaining of the section the translation of procedures and functions will be explained

in more detail.

4.4.1. Procedures

A procedure is a subprogram which may have side-effects, i.e., it can have parameters with

the three modes. Unlike functions, procedures do not return any value to the calling program:
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they are simply a couple of declarations and statements encapsulated in a single object.

The specification part of a procedure declaration it is not important for the translation
because the body contains all the required information, so it will be omitted. There is no
support for the direct translation of procedures in PROMELA. However there exit three
PROMELA primitives which could possibly be used to represent procedures: Processes, Inline

and Macro. Both structures have advantages and disadvantages, which will now be considered.

Processes are able to encapsulate a sequence of statements, and allow for the definition
of parameters. However, a PROMELA model can have only 255 processes, so translating
procedure into processes could quickly result in this value being reached. Another problem
is the asynchronous execution of processes: nothing guarantees that a process which makes
a procedure call (creating a new process) will continue its execution only after the process
responsible for the procedure execution has finished. Due to these reasons, in particular the

latter one, translating procedures into processes does not seem to be a good choice.

Macro and Inline primitives are very similar: both amount to automatic inlining a procedure
call into the body of a process. Compared to inline, macro has a disadvantage, which is that
line-number references will be restricted to the location of a macro call, not a line number
within a macro definition itself. This disadvantage led to the choice of inline to represent
procedures in PROMELA, rather than macro.

Nevertheless, the parameters of an inline primitive do not have types or modes associated:
unlike parameters of subprograms, inline parameters are simply names. This does not create
a problem, since ATOS only converts Ada programs that compile successfully, and therefore
the parameters’ type and mode checking are guaranteed up-front by the Ada compiler.

The rule used by ATOS for the translation of an Ada procedure into a PROMELA inline

is illustrated below.

Procedure ProcedureName (Type: Mode ParamName,...) is
Declarations
Begin
Statements

End ProcedureName
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Declarations
inline ProcedureName (ParamName,...) {

Statements

4.4.2. Functions

A function is a subprogram that can be invoked as part of an expression and has no side-effects
on the calling program. Every call to a function produces a new copy of any object declared
within it. The body of a function must have at least one return statement (see Section[d.9)). As
is the case in procedures, the specification part of a function is not relevant in the translation
process because the body contains all the required information.

Functions are converted by ATOS into inline primitive for the same mentioned reasons as
procedures. However, the semantics of functions brings a few extra problems, since a function

can be recursively invoked as part of an expression. An inline can not be called recursively

nor can it return a value, and consequently, cannot be part of an expression either.

The solution proposed by ATOS to overcome these problems cannot fully represent the
behavior of Ada functions. ATOS adds an extra parameter to the function parameters, which
will contain the return value. However, this mechanism requires a few assumptions: the
expression containing the function can only contain a single element, which is the function
call, and the expression must correspond to the right-side expression of an assignment (see
Section , i.e. the value returned by the function must always be directly assigned to a
variable.

The rule used by ATOS for the translation of an Ada function into a PROMELA inline is

given below.
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Function FunctionName (Type: In ParamName,...) is
Declarations
Begin
Statements

end FunctionName

4

Declarations
inline FunctionName (ParamName,..., RetValue) {

Statements

Automatic Inline

We must remark at this point that a SPIN restriction (or bug) forces ATOS to simulate the
inline mechanism without explicitly using this primitive. The restriction is the impossibility
of passing array variables as parameters of inlines: SPIN only allows parameterization with
individual array positions, not entire arrays. So, instead of converting subprograms which
have arrays as parameters into inlines, ATOS generates only their correspondent declarations
and keeps the statements apart in a data structure. Thus, when a subprogram call is made,
all the occurrences of the parameters are replaced by the instantiated parameters, and the

statements are written directly in the process which made the call.

4.5. Packages

Packages are the unit design of Ada, they separate the interface from the implementation. The
declaration of a package consists of two parts: specification and body. The specification part is
also divided in two parts, the private part and the visible part. The basic declarations provided
in the latter are visible outside the package, while the ones declared in the private part are

only available within the package declarative region. The body region gives the completion
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of the declarations specified in the specification part, and can also contain new declarations.
The package body defines a sequence of statements. In the case that no statements have been
given by the user, this sequence of statements is implicitly built with the null statement (see
Section [4.9)).

As was to be expected from the semantic differences between Ada and PROMELA, the latter
does not have a primitive that resembles a package, so the translation performed by ATOS is
once more based on the mapping of its semantics to PROMELA models. The key idea behind
the translation of packages is the fact that the visibility rules defined by packages are not
relevant for their translation, since the Ada compiler ensures statically that they were respected
by the Ada program inputs. Thus, the translation of packages is simply the translation of its
declarations and statements. In order to avoid problems with the redefinition of declarations
(which are global in the model), all the declaration names from packages are prefixed with the
package name, for instance the function with name func declared in a package with the name
pack is declared in a PROMELA model as pack func and consequently all this function
calls were also renamed. This encapsulation mechanism is performed automatically by ATOS.

Regarding package statements, they are encapsulated through the inline primitive and ex-
ecuted in the main program (see Section . When a package does not contain statements
the correspondent inline is not generated unlike what happens in Ada. Where even if a pack-
age is declared with no statements it contains implicitly the null statement. The rule for the

translation of packages is illustrated above.

Package PackageName is
Declarations
[Private]
Private Declarations
end PackageName
Package body PackageName is
Body Declarations
[Begin |
Statements

end PackageName

47




Declarations

Private Declarations

Body Declarations
inline PackageName {

Statements

4.6. Tasks

Ada tasks represent different threads of control, which execute independently and concurrently.
This primitive may contain several interaction points, which allow the communication with
other tasks. Beyond these interaction points tasks can interact with / affect other tasks in
many ways (e.g. through shared variables).

The definition of an Ada task is divided in two parts: the specification, which describes the
interface with other tasks, and a body that contains the code defining the task’s behavior. A
task can either be declared as a single task or as a type task. The first becomes active from
the moment it is declared; whereas the type task simply creates a new type which can be
instantiated later. The interaction points are declared first in the specification part through
entries declarations which correspond to accept statements in the body (see Section .

Tasks are translated to PROMELA through the process primitive. Similarly to Ada tasks,
processes in PROMELA are the only primitive that can represent parallel activities. Simple

tasks are converted into active proctypes, which become active from the moment they are

declared (just like simple tasks in Ada). Nevertheless, when a simple task is declared in the
main program it will only become active after the statements of packages have been executed.
The primitive provide can be used to suspend a process, by specifying a condition that must
be valid for a process to execute. The condition included in active processes is given by
the boolean variable Start, which has the value true (i.e., the condition is valid) in the
main process only (see Section . Consequently, until the model gets to this point active
processes are suspended.

Type tasks are translated into PROMELA proctypes, which simply creates a new process
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type that can be instantiated later. However, ATOS creates a new type for each instantiation
due to encapsulation issues as explained in Section [{.I] The translation rule for both simple

tasks and task types are in listings and [.2] respectively.

Listing 4.1: Simple task conversion rule

Task SimpleTaskName is
Declarations
[Private]
Private Declarations

end SimpleTaskName

Task body SimpleTaskName is
Body Declarations
[ Begin |
Statements
End SimpleTaskName

Declarations
Private Declarations

Body Declarations

active proctype SimpleTaskName(Id,Params...) provided Start {

Statements

Listing 4.2: Task type conversion rule

Task type TaskTypeName is
Declarations
[Private]
Private Declarations

end TaskTypeName

Task body TaskTypeName is
Body Declarations
[Begin |
Statements
End TaskTypeName
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Declarations
Private Declarations

Body Declarations

proctype TaskTypeNameO..N(Id,Params...) {

Statements

A process has an associated ID number that univocally identifies it, and is used when a
process makes an entry call (see Section . Processes also have an associated channel
through which they can receive messages from other processes, used for example in accept
statements (see Section . Channels are declared as an array where each array position
corresponds to a channel belonging to the process whose ID corresponds to the index. The
range of this array is calculated in the preprocessing phase, by counting the number of tasks

in a model thereby the dynamic creation of tasks is not allowed.

4.7. Protected Objects

The protected object primitive is a structured mechanism that provides mutually-exclusive
access to shared data. A protected object is relatively similar to a package, the main difference
being the fact that all operations of a protected object are mutually-exclusive. The protected
operations encompass three different declarations: procedures, functions and entries.

The semantics of protected objects are commonly explained using the eggshell model. Fig-
ure illustrates graphically a protected object.
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Figure 4.2.: Graphical representation of a protected object

The eggshell (black circle) represents a lock primitive. Each task must acquire the lock in
order to execute a protected operation (the behavior of a lock is similar to that of a semaphore).
Only one task can be inside the eggshell if it is executing an entry or a procedure operation;
several tasks can be inside if they are executing function operations. Protected objects allow
several functions to be executed concurrently because functions (supposedly) do not have side
effects (this is not completely true because functions can in fact change the value of shared
variables, influencing the other tasks’ behavior).

When a task has accessed the eggshell (lock), if it is trying to execute a procedure or a
function it goes directly inside the eggshell (i.e., starts its execution). If on the other hand it
is trying to execute an entry operation, after having acquired the lock, the task must evaluate
its entry barrier before execution starts. If the barrier is open (i.e. it has been evaluated to
true) the task goes to the execution zone (i.e. inside the eggshell), otherwise it is queued in
the associated queue of protected objects (i.e. stays within the eggshell). The tasks that have
been blocked are enqueued one-by-one; each time a task terminates an operation, the barrier
of the entry operation is reevaluated and if it is now open the task goes to the execution zone;
otherwise it is queued again.

Since no similar primitive is available in PROMELA, the conversion of protected objects
consists in the mapping of its semantics to the PROMELA models. The first step of the
translation is the modeling of locks in PROMELA. A lock is modeled using a record structure
with two variables: a boolean variable named Critical_Section, that indicates if the critical
section is occupied (i.e., if a task is executing) and a variable Functions, which counts the
number of functions in the execution zone. The semaphores are declared as an array whose
elements have the previously explained structure as type. The number of array elements
corresponds exactly to the number of protected objects. The declaration of semaphores in
PROMELA is shown below.

o1



typedef Semaphore{

byte Functions;
bool Critical Section;

}s

Semaphore Sem[+xNr. of Protected Objects x|

The state of a semaphore is altered through four operations: Acquire, Release, AcquireF

and ReleaseF. More details about these four operations are given next:

e Acquire — change the value of Critical_Section to true, but only if its value is false,
i.e, if no process is already in the critical section. Only entries and procedures execute

this operation;

inline Acquire(SemIndex) {

atomic{

!Sem[SemlIndex|]. Critical _Section —

Sem|[SemIndex |. Critical Section = true

e Release — alters the value of Critical Section to false when a process leaves the crit-

ical section. Only entries and procedures execute this operation;

inline Release(SemIndex) {

atomic{

Sem|[SemIndex ]. Critical Section = false

e AcquireF' — if there are no processes in the critical section or the process(es) is (are)

executing a function operation, this changes the value of Critical Section to true and
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increases the value of Functions. Only functions execute this operation;

inline AcquireF (SemIndex) {

atomic{

(!'Sem[SemIndex]. Critical Section || Sem[SemlIndex].Functions > 0) —
Sem [ SemIndex|. Critical Section = true
Sem [SemIndex |. Functions++

}

}

e ReleaseF — decreases the value of Functions, and if the new value is equal to 0, i.e. if
no processes remain in the execution zone, the value of Critical_Section is altered to

false. Only functions execute this operation.

inline ReleaseF (SemIndex) {
atomic{
Sem|[SemIndex|. Functions—— —
if
::Sem|[SemIndex|. Functions = = 0 —
SemSem [ SemIndex |. Critical _Section = false
::else — skip;
fi;
}
}

The next step in the translation of protected objects is the creation of a process that
manages the functioning of protected operations. This process is respounsible, among others,
for the queue of entries. When a process finishes the execution of a protected operation, it
communicates this to the protected object process (except if it is a function operation), which
then activates the queued processes, in order for them to test again theirs entries barriers. If
a barrier is now open then the enqueued task may execute, otherwise it is enqueued again.
The lock is released if none of the entries has its barrier open. The PROMELA pseudo-code
implemented by ATOS to simulate the protected object process is listed below.
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do
Waiting for a task termination —

do
There are blocked tasks (entries operation)
enqueue a task
activate the enqueued task
waiting for the reevaluation of entrie’s barrier —
if
barrier is close — queue the task again
barrier is open (had executed)
fi
else — Open the semaphore
break;
od

od

A final element is necessary to understand the full translation of protected objects, concern-
ing the interaction between the protected operations and the previously explained protected
object process. As was said previously, there exist three different types of protected operations:

entries, procedures and functions.

Procedures and Functions — The translation of procedures and functions as protected oper-
ations is almost equal to the translation of their ‘normal’ declarations. The only difference is
that the protected operations have two extra statements, one at the beginning and the other
at the end. The statement at the beginning concerns the acquisition of the lock for both
operation, whereas the end statement corresponds in the case of function to the lock release,
and in the case of procedures to the communication of operation termination to the protected

object process.

Entries — The declaration of an entry in the specification part of a protected object, unlike its
declaration in a task’s specification, originates an entry body in the body part. The semantics
of an entry as a protected operation is similar to the one for procedures (the execution of a
sequence of statements). Entries differ from procedures just in that they have a barrier before
the execution of their statements. This barrier should avoid referring to variables outside the
protected object, so that the underlying assumptions of the state of the protected object are
not violated.

The translation of entries to PROMELA is similar to the translation of procedures; both
are converted into an ¢nline and their parameters to nline parameters. However, the inline

containing an entry’s statements have a few extra statements to simulate the barrier of an
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entry, and the interaction with the protected object operation. The translation rule used by
ATOS to convert an entry body to PROMELA is given next (the specification is omitted, be-
cause it is not relevant). In order to facilitate the understanding of the rule the corresponding

SPIN code is given as pseudo-code.

Entry body EntryName(Params...) is
Declarations
Begin
Statements

end EntryName
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Declarations

inline EntryName(Params...) {
Acquire the lock

TestCondition:
atomic{
if
barrier is open —
goto Execute
barrier is close —
if
::Had already been blocked — goto InsideEgg
:telse — Is blocked
Releases the lock
goto InsideEgg
fi
fi
}
InsideEgg:

atomic{

Wait until it is activated — goto TestCondition

Execute:
Statements
Inform protected object process that it has successfully finished

4.8. Expressions

Expressions in Ada can be explained as a combination of operators and terms whose evaluation
retrieves a value. Each expression has a type, which defines the type of the retrieval value.
Expressions are present in almost all programming languages, including Ada and PROMELA.

Ada gathers many different types of expressions. A semantic analysis of these expressions is

performed by ATOS in the extraction process. The rules used in the conversion of expressions
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are almost direct, making this translation process trivial. Its discussion will be omitted in
what follows.

One of the most important aspects of expressions is the evaluation process. This is performed
according to a given set of precedence and association rules; the use of different rules may
result in the retrieval of different values for the same expression. A careful analysis of the
evaluation order of operators is given in the remaining of this section, as well as the explanation

of the package Ezpression_ Resolver that allows ATOS to solve expressions in a static way.

Operators’ Evaluation Order

Expressions are evaluated to produce a value; the precedence and associativity of operators
affect this evaluation. The semantic and syntax of Ada expressions are not that far from
PROMELA expressions; they share most of the operators and evaluation rules. Therefore,

the conversion of operators is almost trivial, as shown in Table [£.5]

Ada operator | PROMELA operator
and &&
or I
/= =
mod %
not !
Xor -
< <
<= <=
> >
>—= >—
+ +
X *

/ /

Table 4.5.: Operators precedence level

As mentioned, evaluation order is defined by precedence and associativity rules. Prece-
dence rules are not the same for Ada and PROMELA (which has the same rules as in the
C programming language), whereas the associativity rules are equal for both languages. A
deeper analysis of precedence rules is thus required in order to avoid errors in the evaluation
of expressions.

In Table it can be observed that Ada groups its operators in five levels of precedence
(shown from lowest to highest), whereas PROMELA has more levels. The general distribution

of operators is almost the same in Ada and PROMELA, but some operators which are grouped
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in a single level in Ada are divided in two or more levels in PROMELA. This difference in
operator precedence may have disastrous consequences in expression evaluation, because two

different results may be obtained for the same expression.

Ada operators Precedence | PROMELA operators Precedence
I
and, or, xor &&
=, !:’ <7 >7 <:7 > ==, !:
<, >, <=, >=
+, - +, -
*7 /7 mOd *7 /7 %
not !

Table 4.6.: Operators precedence order

The operators and and or belong to the same level in Ada but are divided in two different
levels in PROMELA, where && (the corresponding and operator in PROMELA) has higher

precedence than the || operator. Thus, the evaluation of the expression

A or B and C

in Ada would be:
(A or B) and C,

whereas in PROMELA, after the translation, the evaluation would be:
Al (B && C).

The problem is that:
(Aor B)and C # A || (B && C).

In order to avoid problems in the evaluation of expressions we advise users to use brackets to

delimit subexpressions.

Expression Resolver

Along the translation process, ATOS needs to evaluate some expressions in order to per-
form the translation of several Ada primitives. The declaration of an array is an example
of an Ada primitive which may require the evaluation of an expression, in order to calcu-
late the array range. To help ATOS in situations similar to this, ATOS uses the pack-

age ASIS Ezpression_ Resolver, which calculates the numeric/boolean value of an expression
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through semantic analysis only. Without this package, expressions containing attribute refer-

ence such as: 'Last, 'First or 'Range could not be evaluated or converted.

4.9. Statements

Statements are a familiar concept to most programming languages, including Ada. This
concept, also known as instruction, is also present in PROMELA. ATOS is able of converting
the following Ada statements: if, null, assignment, case, loop, exit, while loop, for loop, goto,
procedure call, accept, selective accept, return and entry call.

A specific rule is used for each of the supported statements. Some of these rules are trivial
due to the common primitives of Ada and PROMELA. However, there are other translation
rules which require some creativity in mapping their semantics to PROMELA. In the remaining

of this section the conversion rules of statements are explained and illustrated.

If

The ¢f statement for conditional execution is common in most programming languages, includ-
ing Ada. PROMELA also supports this statement, however its semantics is a little bit different
from the common if instruction semantics. In PROMELA the conditions of an if statement
need not be mutually exclusive: one of the branches is chosen non-deterministically if more
than one condition is valid. Another semantic difference is the fact that in PROMELA if none
of the if conditions are valid the system is suspended, unlike what happens in programming
languages like Ada.

ATOS uses the If mechanism provided by PROMELA in the conversion of Ada’s If state-
ment, despite the semantic differences between them. ATOS uses the if statements with only
two conditions, the first is a “normal” condition and the second is the primitive else. This
prevents the nondeterministic choice of conditions and processes from becoming suspended.

The translation of the if statement is provided by three different rules:

1. A simple ¢f statement without an elsif or else path — ATOS adds the else condi-
tion followed by the skip statement, to prevent a process from remaining suspended in

case the if condition is not valid.

If condition Then
statements
End If

29



if
::condition — statements
::else — skip

fi

2. An if statement with an elsif path — a new if statement with the elsif condition is

executed after the else condition;

If conditionl Then
statements

[Elsif condition2 Then]
other statements

End If

¥

if
::conditionl — statements
::else — if
::condition2 — other statements

::else — skip
fi

fi

3. The existence of an else path — the else statements are executed after the else con-

dition instead of using the skip statement;

If conditionl Then
statements
[Elsif condition2 Then]
other statements
[Else]
else statements
End If
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if
:conditionl — statements
::else — if
::condition2 — other statements
itelse — else statements
fi
fi

Null

The null statement has no effect in the program execution; it is however a very useful state-
ment. Some points in Ada programs require at least the presence of one statement, and the
null statement can always be used if no other statements are algorithmically appropriate.

PROMELA has a similar statement to the null instruction named skip, which has exactly
the same semantics. So ATOS translates Ada’s null statement into the skip statement of
PROMELA.

Assignment

Assignment statements set a new value for a variable (the left-hand side of an assignment).
The assigned value results from an expression evaluation (the right-hand side of an assign-
ment). PROMELA has an assignment statement too, however it only allows the assignment
of variables with numeric types, whereas in Ada this statement can be used with variables of

unrestricted types.

Numeric Types The assignment of variables with numeric type is represented in models
similarly to Ada programs. The left-hand side contains the name of the variable and the

right-hand side the expression. Only the assignment operator is different (:= is converted into

=).

Record Types As mentioned, PROMELA does not allow the assignment of variables with
record types, as such the assignment is not made to the whole variable but instead to its
elements individually. The assignments of elements are translated as an atomic statement, to

simulate the assignment of the original variable. This translation rule is given below.

VariableName:= Expression
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atomic{

VariableName .Elem1l = Expression .Eleml

VariableName .ElemN = Expression . ElemN

Array Types Similarly to the assignment of variables with record types, variables with array
types in PROMELA cannot be assigned in a single assignment, unlike what happens in Ada.
Once more the solution is the assignment of the array’s elements individually in a single step

as an atomic statement.

VariableName:= Expression

4

atomic{

VariableName [0] = Expression [0]

VariableName [N] = Expression [N]
}

Function Call When the expression (the right-hand side) of an assignment is a function call,
the translation follows a different rule. ATOS takes the variable to assign and includes it as

a parameter of the function, following the conversion of functions (see Section [4.4.2)).

VariableName:= FunctionCallName (CallParams)

4

FunctionCallName (CallParams , VariableName)
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Case

The case statement selects one alternative from a list of possible choices for the value of an
expression. This list must encompass all the possible expression results, and the conditions
defined in each alternative must be mutually exclusive. ATOS converts this statement to a
PROMELA If statement. Although in PROMELA conditions are chosen nondeterministi-
cally if more than one is valid, in this case this is not a problem since all the conditions are
by translation mutually exclusive. The problem of a process getting stuck in this statement

does not exist either, because all possible values of expression are covered by the conditions.

Case Expression 1is
When Valuel => statements

When ValueN —> statements

End Case
if
Expression==Valuel — statements
Expression==ValueN — statements
fi

Loop Statements

Loop statements allow the repetitive execution of statements. Each repetition is called an
iteration and its execution may depend or not on a certain condition. Ada provides three
different loop primitives: loop; while loop and for loop. ATOS converts all these primitives
into the unique repetition primitive in PROMELA, the do primitive. The specific translation

details about each of these primitives are given next.

Loop In this statement a sequence of instructions is executed infinitely, without requiring a
condition to hold. There is only one way to jump out of a loop, which is by using the exit

statement.
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Loop

statements
End Loop
do
statements
od

While Loop This primitive executes a sequence of instructions repeatedly, but before each
execution a certain condition is tested, and if it is not true the program jumps to the first
statement after the loop. As in the if statement, a process which executes the do instruction
may get suspended if none of its conditions are valid. In order to avoid this, ATOS uses the

same strategy used in the ¢f statement, that is, the addition of an else condition.

While condition Loop
statements
End Loop

do
::condition — statements
::else — break

od

For Loop This statement is similar to the while loop statement, but the number of cycles
is determined according to a range of values, where each single value corresponds to a new
cycle. A high level mechanism for for loop statements is provided in Ada and PROMELA,
which only requires a variable and the lower/upper bounds. However, unlike in Ada, where
the variable is implicit (it does not need to be declared), in PROMELA the variable declara-
tion is mandatory. Therefore, ATOS declares the variable before the statement’s execution,

and its type is given according to the range specified in the statement. In order to avoid the
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redefinition of for loop variables, if two or more for loop statements are declared within the

same entity (e.g. procedure, function) then they must have different loop variable names.

For VarName in Range Loop
statements
End Loop

VarType VarName;

for (VarName: Range){

statements

Exit

The exit statement allows abandoning a loop statement by jumping to the first subsequent
instruction. A loop abandon may be conditional or unconditional, if there is a condition or
not to enclose the statement. Therefore, to deal with these two possibilities ATOS has two

different translation rules:

e Unconditional: there is no condition for the abandoning of a loop. The conversion
of unconditional ezit statement (declared simply as exit;) is simply made through the
declaration of a break statement in PROMELA.

e Conditional: in this case the exit statement requires a certain condition to be true in
order to be executed. ATOS simulates this through an if statement in PROMELA, as

follows.

Exit [LoopName]| When condition

4

if
condition — break
else — skip

fi
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Goto

This statement corresponds to a jump from the point where it is being executed to another
point in the program, with the destination point identified through a label. The goto mech-
anism exists both in Ada and in PROMELA with the same semantics, and the syntax is the

same in both, so the translation is direct.

Procedure Call

A procedure call is an instantiation of a declared procedure. This statement is constructed
using the procedure name along with the procedure’s parameters (if any). According to the
restriction presented in [4.4.2] procedure calls are converted according to the following two

different rules.

1. No arrays as parameters — if a procedure does not have arrays as parameters, this
means that it has been converted into an inline already, so instantiating the procedure

corresponds simply to instantiating the corresponding inline primitive.

2. At least an array as parameter — in this case, the statements declared within the
procedure are converted directly to the process which makes the procedure call, i.e.,

ATOS simulates internally the behavior of an inline without explicitly use this primitive.

Accept

Accept statements are declared in the specification part of a task (as an entry declaration)
and identify the interaction points of a task. Unlike the entries declared in protected objects,
when an entry is declared in the specification part of task ,the correspondent primitive in the
body part is given by an accept statement and not by an entry body.

The translation of this statement is done by just mapping its semantics into PROMELA. In
PROMELA, processes (tasks) communicate with each other through channels, so an accept
statement is mapped simply as an execution point where a task is listening on a channel that
will eventually receive a message from another task, where the message contains the sender
identification and the parameters of the accept statement.

The communication between tasks follows the rendezvous mechanism. The basic principle
of rendezvous is that the first party to reach the “rendezvous point” must wait for the other
party to make the communication. So when a task calls, an entry is suspended until the
communication finishes, i.e., it is suspended until the requested task finishes the sequence of
statements within the accept statement. A task is also suspended if it reaches a communica-
tion point and no caller tasks are present. In this case, the process listening on the channel is
suspended, whereas in the first case the caller task suspension is simulated, by making it wait

for a message on its process channel.

66



Accept AcceptName (Parameters) do
statements
End AcceptName

4

chan AcceptName [1] = [0] of {Byte, ParameterTypes}
ParametersDeclaration
AcceptName ? Senderld, Parameters —
statements
Processes|[SenderId]!AcceptName

Selective accept

The selective accept statement allows for the nondeterministic selection of one of multiple
alternatives if their conditions are valid. These alternatives can be either an accept, terminate
or delay statement. In none of the conditions to select an alternative is valid, the task executing
the statement is suspended.

ATOS translates this statement using the if primitive of PROMELA, which has exactly the
same semantics of theselective accept statement in Ada. However, the statements terminate
and delay are not supported by ATOS, so only selection alternatives containing accept state-

ments are considered.

Select
[When conditionl =>] accept statement

or

[When conditionN =>] accept statement

End Select
if
[conditionl —] accept statement
[conditionN —] accept statement
fi
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Return

In Ada a return statement encloses a subprogram body or an accept body, and if it is within
a function body it additionally returns a value. ATOS only allows the use of this statement
in the function’s body. As was explained in Section the variable which will contain the
return value is passed as parameter, named RetValue. So a return statement is nothing more
than an assignment to this variable, where the value assigned is the return value. The as-

signment of the return value is done according to the assignment rules explained in Section [4.9]

Return Expression

4

RetValue = Expression

Entry call

An entry call statement has two different targets: 1) an entry declared within a task which
corresponds to an accept statement in the task body, or 2) an entry declaration belonging to
a protected object which corresponds an entry body. In order to simulate these two types of

entry calls ATOS performs two distinct translation rules:

1. In this case the entry call is converted to PROMELA by sending a message to the cor-
responding accept statement channel (created in the processing of the accept statement)
with the pid of sender and the parameters to be instantiated. The sender task has to
wait then for the reply of the requested task, which occur at the end of the correspondent

accept statement execution.

EntryName (Parameters)

¥

EntryName! pid, Parameters

Processes|[ pid]?_

2. In this case the entry call conversion is similar to a procedure call translation, i.e. in

both statements ATOS instantiates the corresponding inline declaration.
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4.10. Main Program

The notion of main program exists in Ada, despite not being identified with a special name
as happens in other programming languages (e.g. Java or C). The main program in Ada can
be either a subprogram or a package.

The main of an Ada program is translated into an active proctype main , which is parame-

terless. The main process contains a sequence of statements in the following order:

1. Package statements — A package does not originate a process in the translation per-
formed by ATOS, so its statements are executed in the main process before any other

process is active;

2. Process activations — The processes declared in PROMELA remain suspended until
all package statements have been executed. They are then activated by assigning the

value {rue to the boolean variable Start which is blocking them.

3. Process instantiations — If there is any task instantiation declared in the declaration
part of the main, they are performed in the init process. The process instantiations in
PROMELA are performed inside other processes because they are executed through the

run statement, rather than by a declaration as in Ada.

4. Main program statements — Finally, main statements are executed.

MainName body is
declarations
Begin
statements
End

declarations

init{
packages statements
Start = true
tasks instantiations

statements

}
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5. Property Specification

A model checker verifies whether a model fulfills a given (set of) property(ies). Hence, the
specification of properties is a crucial step in the verification of programs when the objective
is to use the model checking technique. These properties arise, essentially, from Software
Requirements Specification , which produces a set of properties necessary for system
correctness. However, mapping these properties into a “model checker’s language” is not always
straightforward, in particular when some of these properties must be specified in temporal
logic: most software developers are not familiarized with this logical formalism.

In order to support the specification of properties, and helping in the mapping of source
code properties to model properties, ATOS offers high-level mechanisms based on (SPARK-
inspired) annotations in the source code, and on the automatic inference of properties from
Ada programs. However, and although the annotation and inference mechanisms are very
helpful in the property specification process, at least some basic knowledge of logic is still
required.

Several difficulties were found while testing the inference and annotation mechanisms, most
of them concerning SPIN bugs. For example, the expressions used in assertions (which are one
of the ways of stating the correctness of models) can not have occurrences of the — connector,
otherwise an error in the model is produces. This restriction can be overcome by using an

equivalent formula with the connector V:

¢ = ¢ =290V o

Other difficulties are related with the fact that annotations are not semantically analyzed by
ATOS: non-valid expressions are accepted within the annotations, and errors may occur in the
conversion of expressions since is not being performed according to the expression translation
rules used in programs. For example, an expression containing the value of an array position
whose array has an offset (see Section is not correctly translated because the offset will
not be included in its conversion to SPIN.

The rest of the chapter contain the technical details of the inference and annotation mech-
anisms and all the techniques encompassed by these (range checking; temporal properties;

invariants; etc).
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5.1. Inferred Properties

Inferred properties are the ones extracted without user interference / annotations. The infer-

ence mechanism assembles the specification of properties which guarantee:

1. that the range of a variable with a numeric type is not violated (Range Checking), and

2. that deadlock configurations are not possible in the system (Deadlock).

The two enunciated inference mechanisms refer to safety properties, specified in SPIN as
formulas. The technical details of these two types of inferred properties are given in the

remaining of this section.

5.1.1. Range Checking

The numeric types of PROMELA are very primitive, not allowing a precise conversion from
the Ada types, as explained in Section Although PROMELA is able to detect overflow
errors in variables (without the specification of any property), if the range of a variable in
PROMELA is bigger than the range of its correspondent variable in Ada, possible overflow
errors may stay undetected.

In order to overcome this problem an formula is automatically extracted, checking if
the upper and lower bounds of variables are respected. This mechanism is activated when
variables have range constraints, or the converted type of a variable has a bigger range of
values than its correspondent Ada Type (e.g. integer to short). The generic formula for
the verification of variable range is illustrated below. All names for formulas start with

RC and are suffixed with a unique number.

Itl RCO..N { [ ][(VarName > Var_LowerBound && VarName < Var_UpperBound)}

5.1.2. Deadlock

One of the typical problems in concurrent systems is the deadlock problem, which occurs
when two or more entities are waiting for resources that will never be released by other
entities. In order to overcome possible deadlock configurations ATOS automatically extracts
a property which guarantees its freedom; this property is always the same independently from
the program.

The property is specified as an [LTL] formula which checks deadlock freedom by verifying if
none of the processes in the model can execute. The deadlock formula is expressed through a
predefined variable of SPIN (the np  variable), which contains the number of active processes

in a model.

Itl Deadlock { [](np_ > 0)}
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The above formula does not detect when an individual entity is stuck; it just detects when
the whole system can not evolve. This formula suffers from a false deadlock detection problem.
This situation occurs when the system is supposed to finish, i.e., when at a certain point none
of the processes should execute. In this situation the formula is not valid, despite the system

being correctly designed.

5.2. Annotations

The annotation language provided by ATOS for the specification of properties in Ada pro-
grams is inspired by SPARK. Actually, this annotation language it is an extended subset of
SPARK, and uses some of the annotations provided in SPARK (e.g. for the pre-postcondition
annotations) and adds a few new ones (such as temporal properties and invariant annotations).

The syntax analysis of annotations is fully performed by ATOS, through a simple imple-
mented in it. This mechanism allows ATOS to extract the individual elements of an annotation
and (through string-matching) to perform the correct translation. Thus, ATOS does not per-
form any semantic analysis of expressions in annotations and so bad elaborated formulas will
not be detected. The absence of semantic analysis of expressions does not permit a correct
translation of all expressions, i.e., the translation may not be the same performed for the
expressions in an Ada program.

Although ATOS does not perform any semantic analysis of expressions, it allows the use of
old values in expressions. The old value of a variable contains its value before the beginning
of an operation (function, procedure and entry) execution, which is very useful for the post-
condition annotations. The old value of a variable is simulated in ATOS through the creation
of an auxiliary variable that is assigned with the value of the corresponding variable at the
beginning of the Ada operation. This new variable can then be used in the corresponding
postcondition assertion as the old value. An old variable is annotated using SPARK notation,
as VarName~, and it is converted as VarName Old.

In the remaining of this section more details are given about the different types of an-
notations that may be specified in ATOS: temporal properties, pre-postconditions, invariant,

return, assert and special labels.

5.2.1. Temporal properties

The specification of temporal properties in ATOS is restricted by the temporal logic allowed
in SPIN, which is ATOS offers a high-level mechanism for the specification of temporal
properties, based on the properties pattern for defined in [DAC98|. These are composed
by five basic patterns:

e Universal — the property is true in the execution;
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e Absence — the property is never true in the execution;

¢ Response — a property which states that a designated state/event must be followed by

another event;
¢ Existence — the property is valid at a certain point of the execution;

e Precedence — a property which states that an event is preceded by the first occurrence

of another event.
The five patterns have variations which are defined in terms of five basic patiern scopes:
e Globally — a pattern holds globally along the program execution;
o After — a pattern holds after the first execution of a specified event;
e Before — a pattern holds before the first execution of a specified event;

e Between — a pattern holds between the occurrence of a designated event and the oc-

currence of another specified event;

o After until — a pattern holds after the occurrence of a specified event and wuntil the
next occurrence of another event, or throughout the rest of the program execution if

there are no further occurrences of that event before the end of the program.

The pattern properties specified above can be annotated in Ada programs; these annotations
then originate an formula. The syntax of these annotations, as well as the corresponding
formulas, are given table[5.I] In addition to these sets of patterns, users can also specify
their own temporal properties. ATOS provides automatic operator conversion and variable

renaming.
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Type Annotation Syntax LTL formula
globally [] (P)
before R <> R —» (PUR)
affer Q 1@ — )
Universality | P is_ true between Q andOp R | [J((Q && 'R && <> R) —
(P U R))
after Q until R [ (Q&& 'R —
(P W R))
globally [] (\P)
before R <> R —- (IPUR)
after Q 1@ = [0P)
Absence P is false between Q andOp R | [J((Q && IR && <> R) —
(P U R))
after Q until R [ (Q&& 'R —
(PW R)
globally <> (P)
before R IRW (P && 'R)
after Q I(Q) [I <> (Q && <> P))
Existence P becomes true | between Q andOp R [](Q && 'R —
(IR W (P && 'R)))
after Q until R [](Q && IR —
((RU (P && 'R)))
globally (P —<>9)
before R <>R — (P —
('lRU (S && 'R))) U R
Response S responds _to P | after Q J(Q — [[(P — <>20))
between Q andOp R | [[((Q && 'R && <> R) —
(P — (IRU (S && 'R))) U R)
after Q until R (Q && 'R —
(P —- (IRU (S && 'R))) W R)
globally IPW S
before R <>R — (IPU (S|| R)
Precedence | S precedes to P | after Q R <> (Q&& (IPWS))
between Q andOp R | [J((Q && 'R && <> R) —
(\P U (S| R))
after Q until R (Q && 'R —
(‘P W (S| R))

Table 5.1.: Pattern property annotations and their corresponding LTL formulas

5.2.2. Asserts, Preconditions and Postconditions

These annotations allow for the verification of conditions at a certain point during a program
execution, and are converted into PROMELA asserts. The expressions within the annotations

are not kept and reused to prove other assertions, as in deductive verification.

Assert An annotation corresponding to an assert can be specified anywhere in an Ada

program where statements are allowed. This annotation allows checking a given expression at
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a certain point of a program. The syntax of an assert annotation can be given as follows
- -# assert Fxpression
This is mapped in PROMELA as

assert (Ezpression)

Pre- and postcondition These annotations are defined only in the body of the following
Ada primitives: functions, procedures and entries. Precondition statements (asserts) appear
at the beginning of the corresponding primitives, while postconditions appear at the end. The
syntax of these annotations is given next, as well as their generic translation into PROMELA

through an example operation.

OperationName is
annotation of Precondition
——+# pre PreExpression
annotation of Postcondition
——+ post PostExpression
Begin

Statements

end OperationName

Operation begin

assert (PreExpression)
statements

assert (PostExpression)

Operation end
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5.2.3. Return

The return annotation stating whether a function return value is correct or not. Functions

are translated to inlines primitives with an additional parameter (RetValue) that contains its
return value, as explained in Section f.4.2] Therefore, stating if the return value is correct
or not amounts to verifying if RetValue contains the desired value at end of the function
execution. This verification is made through an assert statement at the end of functions,
similar a postcondition. The generic annotation of a return property and its correspondent

translation are given next:

— —# return Expression

and the translation is

assert(RetValue == Expression)

5.2.4. Invariants

Invariant properties permit checking if a given logic expression is valid along the execution
of one of these Ada primitives: procedures, functions and entries. An invariant annotation is
given in the body of the enunciated Ada primitives like preconditions and postconditions, and

may be annotated as follows:

— —#invariant Expression

ATOS converts the invariant annotations in several LTL formulas, one for each task that
possibly executes the Ada primitive. ATOS generates LTL formulas equivalent to this pattern

annotation:

Expression is_true between (Q andOp R

where Q/R corresponds to the begin/end states of an operation execution. These states
are specified using specific labels for execution states: ATOS needs to create previously two
labels (automatically created), one at the beginning and another at the end of the operation,
so it can then specify

Q = proc@QOperationBeg

and

R = proc@QOperationEnd

The invariant is verified if all the generated LTL formulas are valid, i.e., if none of the

processes which execute violates the invariant expression.
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5.3. Special Labels

There are three labels in SPIN that may have a special meaning when verifying models: end,
accept and progress. ATOS converts Ada label statement into PROMELA labels, so it is
possible to use these special labels of SPIN as (if they were) special labels of Ada. These
labels only have a special meaning in the verification mode, and even in this mode correctness
checking involving the labels can be activated/ or disabled individually. There is thus no
problem if using them as normal labels. An important detail is that all the labels starting
with special label prefixes are considered special. For example, the label endAll has the same
meaning of the special label end.

The use of special labels in an Ada program is not so intuitive: it requires the understanding
of some parts of the translation process, and of course, of the particular meaning of each of
these labels, so it is not recommended to rookie users. An overview of each special label is

given next.

End The end label permits a distinction between valid and invalid end states of processes.
A process which does not finish is not always incorrect, because it could be meant not to
finish execution. With the label end it is possible to specify that a process that never finishes
execution is not incorrect. This label is commonly used to ensure the absence of deadlock
situations in a model, for such the user just needs to indicate the statements where a process
may become stuck, and then SPIN will verify if it only these statements that are causing the
process to block. An example of an incorrect model, followed by a correct one using the end

label, is given below.

Listing 5.1: Incorrect model due the ab- Listing 5.2: Correct model using end label

sence of end label

active proctype B () { active proctype B () {
end:
if if
::false— skip; ::false— skip;
fi; fi;
} }

Progress SPIN is able to detect non-progress cycles, i.e., loops which are executed infinitely
often along the model execution. The non-progressing of cycles could be an error or not,
depending on the desired behavior of the model. The label progress equips the user with
a way to state that a cycle which should be executed infinitely often is not a non-progress
cycle. The example below presents two models, one where a non-progress cycle is detected,

and another that is correct due to the addition of the progress label.
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Listing 5.3: Incorrect model due the ab-

sence of progress label

Listing 5.4: Correct model using progress
label

active proctype B () { active proctype B () {
do do
::skip; ::skip; progress: skip;
od; od;
} }
Accept This label is complementary to the progress label, in the sense that in contrast with

progress, it is meant that a process cannot achieve this label infinitely often. Thus, an accept

label may be used to detect undesired infinite loops. Two examples of incorrect /correct models

are given below, using the accept label.

Listing 5.5: Incorrect model using accept

label

Listing 5.6: Correct model using accept
label

active proctype B () {

do

::skip; accept: skip;

od;

)

active proctype B () {

do

::skip; accept: break;

od;

b
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6. Experimental Validation

The experimental validation of a tool is very important (almost indispensable) to establish its
usefulness in practice, but also to identify its weaknesses. In this chapter, we report on the
experimental validation of ATOS, performed through two case studies: Readers- Writers and
Separation Kernel. ATOS was also used in a third case study (Producers-Consumers), but
due to its similarity with Readers-Writers we include it only in Appendix [A]

The Readers-Writers is a small case study, but it contains many of the supported Ada
features in ATOS. The use of ATOS in this case study aims primarily to demonstrate the ATOS
approach and some of its main features. The Separation Kernel on the other hand is a bigger
case study than Readers-Writers, of considerable complexity, and intends to demonstrate the
performance and the potential of ATOS in a context that resembles more the industrial setting.

The two Ada programs concerning each of the case studies had been previously developed
by people external to ATOS. This is a relevant issue, in order to avoid the typically error-prone
process of validating your approach and tools by applying them in the verification of programs
that you have implemented yourself. The verification of the models from the two case studies
was performed in a machine with 4 Gigabyte of Random Access Memory and two
cores running at 2,5 GHertz each. This information is relevant because of the state explosion
problem.

The details of the Readers-Writers and Separation Kernel case studies are given in the
remaining of the chapter. The details of the case studies are given in a similar manner: first
we give an overview of the case study, followed by an overview of its implementation, and then
the details of the verification performed with ATOS. The last section of this chapter contains

some feedback and conclusions drawn from the ATOS validation process.

6.1. Readers-Writers

The case-study presented in this section is a solution to the First Readers- Writers problem, a
well known concurrency computing problem: two different threads (readers and writers) try
to obtain at the same time a shared data (read and write) with the constraint that these two
processes cannot access the data at the same time (cannot read or write at the same time).
The solution considered along this section was extracted from [BA06] and covers some of the
Ada features that ATOS can translate. An overview of its implementation as well as the

verification performed with ATOS are given next.
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Implementation

The Ada program which solves the First Readers-Writers problem is composed by: the main
Readers_Writers procedure; the declaration of a single protected object RW; a single Writer
task; and a task type Reader, which is instantiated twice. The main procedure has only one
statement (mandatory), which is the null statement. The details of the other components will

be discussed next.

The protected object RW is composed by four protected operations and two data structures
declared in the private part as illustrated in listing The variable Readers contains the
number of readers along the program execution, while the boolean Writing signals whether
there is a writer writing. The values of these two variables are altered by four protected
operations: two entries (StartWrite and StartRead) and two procedures (EndWrite and
EndRead). The entries have a barrier, which in the case of StartWrite means that in order
for a writer to start writing there can be no readers reading and no writers writing, while in
the case of StartRead it indicates that there can be no writers writing in order for readers to

start reading.
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Listing 6.1: The protected object RW

Protected RW is
procedure EndRead;
procedure EndWrite;
entry StartRead;
entry StartWrite;

private
Readers:natural range 0..2:=0;
Writing : boolean :=false;

end RW;

Protected body RW is
procedure EndRead is
begin
Readers:=Readers 1;
end EndRead;

procedure EndWrite is
begin
Writing:=false;
end EndWrite;

entry StartWrite when not Writing and Readers = 0 is
begin
Writing:=true;
end StartWrite;

entry StartRead when not Writing is
begin
Readers:=Readers + 1;
end StartRead;
end RW;

The Writer and Reader Tasks The Writer task is a single task, while the Reader task is a
task type, which means that several instantiations of it may be created during the program
execution. In our example, as mentioned, it is instantiated twice. Lists and correspond
to the bodies of Reader and Writer tasks, respectively. The behavior defined by these two
body tasks is similar: it is a loop trying to start and end the read/write of the protected object.
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Listing 6.2: The body of task Reader Listing 6.3: The body of task Writer

task body Reader is task body Writer is
begin begin
loop loop
RW. StartRead ; RW. StartWrite ;
RW. EndRead; RW. EndWrite ;
end loop; end loop;
end Reader; end Writer;

Verification

The previously introduced Ada program was verified with ATOS. In order to exemplify the
verification performed, we start by enumerating a set of expected requirements (properties)

for the Readers-Writers example:

1. The numbers of readers lies between 0 and 2 (the max number of readers).

2. Readers and writers cannot execute simultaneously.

3. Before a reader finishes to read there must be at least one reader reading.

4. After a reader ends to read, the number of readers is decreased in one.

5. While a reader is finishing its execution the writers status must always be not writing.

6. The system is deadlock free.

The requirement (1] can be translated at code level, checking if the variable Readers does
not violate its range constraint. The specification of this property is done automatically by

ATOS through the Range Checking mechanism, which generates the following LTL formula:
Itl RCO { [ ](Readers > 0 && Readers < 2)}

The next requirement is the most important and one of the less trivial. This requirement
is mapped to source code by stating that along the program execution, the variables Readers
and Writing can not simultaneously be bigger than 0 and have the true value, respectively.

This property is annotated in the program with following absence pattern property:
— —#tproperty Readers > 0 and Writing is_false globally
This annotation is then automatically converted by ATOS into following the LTL formula:

It prop0 {[] ( [(Readers > 0 && Writing) )}
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The requirements [3] and [4] can be expressed through a precondition and a postcondition
annotation, respectively, in procedure EndRead. The precondition states that the value of

Readers must be greater than zero:
— —#pre Readers > 0,

while the post condition checks if the value of Readers at the end of the procedure is equal

to the value of Readers at the beginning of procedure (old value), less one:
— —#post Readers = Readers ~ —1

Requirement [5] can be verified stating that the boolean Writing is always false along the

procedure EndRead execution:
— —#invariant not Writing

ATOS converts the invariant annotations in several LTL formulas, one for each task that
possibly executes the Ada primitive. In this example, there are two processes (tasks) which
can possibly execute the procedure EndRead (the two instantiations of Reader task), so ATOS

generates two LTL formulas equivalent to this pattern annotation:
not Writing is_true between Q andOp R

where /R corresponds to the states whereupon the Reader processes begin/end the EndRead

execution. The invariant is verified if the two LTL formulas are valid.

Results Analysis

As expected, the Ada Readers- Writers program respects all the requirements, i.e., the prop-
erties corresponding to the requirements were validated by the extracted model. Table
illustrates some of the information output by SPIN in the properties verification, including
memory and time spent in the verification. These are very small, and so the state explosion

problem was not a concern.
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Requirement | Validation Memory Time
(Megabytes) | (seconds)
1 v 7,289 0,02
2 v 6,312 0,02
3.4 v 7,289 0,02
51 v 7,484 0,02
6 v 6,312 0,02

Table 6.1.: Result analysis of Readers-Writers

In order to understand how new readers and writers tasks may affect the program verifica-
tion, in particular how these new tasks could lead to state explosion, two more Readers-Writers
programs were constructed, one with two readers and two writers, and the other with three
readers and two writers. In both we tried to verify requirement [6] again, in the first one it took
0,59 seconds and 25,160 Megabytes were spent, whereas in the second 2023,967 Megabytes
were spent, and the verification took 192 seconds. It was not possible to verify a third program
with one more reader due to memory and time restrictions. It can thus be concluded that
in this case (and probably in other cases), due to the arbitrary interleaving execution imple-
mented by SPIN, the number of processes has enormous impact on the resources required for

its verification.

6.2. Separation Kernel

The concept of separability was first introduced by Rushby [Rus81]; he stated that computer
systems which are completely separate from each other are safe from one another. He also
argued that the separation between the components (computer systems) does not have to be
necessarily physical, as long as the components are separated at some level of abstraction.
The Multiple Independent Levels of Security [AFTO04] was proposed a few years
later. This is an architecture with a high level of assurance, based on the separation of its
components and on controlled information flow, using a separation kernel.

The MILS Message Router is one of the two subsystem that implement communi-
cation security infMILS|] This subsystem is responsible for controlling message flow between
the components (and is also known as Partition Information Flow Policy (PIFP)). The Ada
program described along the rest of this section, extracted from [ROAfT06|, implements an
system and it was. In order to test this program (system), it was created a main which
simulates the interaction between the components.

!The time and memory presented concern to each LTL formula of the two encompassed by the invariant
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Implementation

The Ada program that implements [MMR] (in Appendix [B]) contains six packages, with all the
operations and data structures required for the simulation of a system. The main data
structures and operations are illustrated in Figure and are briefly described below:

e Message — this is a record structure composed by three fields: origin, destiny and

data. The latter is not very relevant for the verification.

e Memory — this is represented as an array where each of its positions is a memory
cell (or memory space) and it is named in source code as Mem_Space. Each memory
position contains a message, and belongs to a certain partition. All partitions have the
same memory space, which is exactly the number of partitions. Thus, if the system has
three partitions then each has three memory cells. In order to read/write messages from

memory, partitions can execute the operations (procedures) read/write.

e Pointers — pointers indicate which are the memory spaces belonging to each partition
at a given moment. This data structure is represented as a square matrix, where each
column contain the pointers to the memory space of a certain partition. The value of
position 4,j in the matrix Pointers indicates that the memory position corresponding

to this value belongs to partition i.

e Mailbox - this is a data structure designed as a square matrix (named Flags), where
each column represents the mailbox of a partition. The mailbox is simultaneously an
inbox and an outbox, thereby the position 1, j in the matrix indicates (through a boolean
value) either if a partition i has received a message from partition j or if a partition
i had sent a message to partition j depending on the message that it is pointing out.
The message corresponding to the (slot) matrix position (i,j) is in the memory cell (an
index of Mem_Space) whose the position (index) is given by the value of position (i,3j)

from the matrix Pointers.

e Policy — this is the data structure which contains the partition information flow policy.
This structure is designed once more as square matrix, named Policy_Space. Fach
matrix position contains a boolean value, indicating a communication permission, where
the position (i,j) states if the partition i can send information to the partition j. The
function Is_Allowed, given an origin and a destination partition returns a boolean value
indicating if the communication is permitted or not. In this particular example, only
the partition with the ID equal to 1 can send information to partition with the ID equal

2, thereby all other communications are not allowed.

e Route — this is an operation (procedure) responsible for the message flow between

partitions. When a partition sends a message to another, it puts it in a memory space
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(in a memory cell). Then when the kernel looks for new messages in the system, it will
see this one, and if the sender partition is allowed to send messages to the recipient
partition, the memory space (memory position) which contains the message starts to

belong to the recipient partition (by exchanging the pointers).

¢ Send Message — this is the operation that simulates the process of sending messages.
Firstly, the message is built, then it is written in memory, and lastly it is placed in the

sender partition outbox.

¢ Read Message — this is the operation which simulates the process of reading messages.
All the received messages of a partition are initially copied to an auxiliary data structure,

then the mailbox is cleared, and lastly the messages are erased from memory.

In order to test the MMR] system, a main program was created containing two partitions

tasks (named user_tasks in source code) and one kernel task, whose behavior is:

e Partition — defined by sending and receiving messages to/from other partitions. This
behavior is repeated twice by each partition; a message cannot be sent from a partition
to itself.

e Kernel - for routing messagesm and in parallel ensuring that the information flow policy
is respected, by executing the route operation. This behavior is repeated twice by the

kernel task.

Policy

- Kernel

v Route

(22 s fafs [ |7 |8 |9 |

R B LR 4 LR 4

Read Msg

Partition Partition Partition

A B C

Figure 6.1.: The system
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Verification

The main goal of the verification is to assess its correctness according to several func-
tional requirements. Some of the requirements are identified in [ROAfT06], but new require-
ments were also taken into account in the verification performed with ATOS. These require-

ments are described next, along with their corresponding annotation in the program:

1. The information flow policy is immutable — this requirement can be mapped to
the code level by ensuring that all values of the policy matrix are not modified once this
data structure has been initialized, i.e., after the execution of policy package statements.

The specification of this property through an annotation is intuitive using this pattern

property:

— —#property PolicylsImmutable is _true after PolicyStatementsEnd

The complexity of this property specification concerns the specification of expressions
PolicylsImmutable and PolicyStatementsEnd. The expression PolicylsImmutable is built
specifying the values for policy matrix, which can be made looking for the package
policy. In this case, as was said previously, only one communication is allowed, so the

expression is specified as follows:

PolicyIsImmutable = Policy Space(1)(2) and not Policy Space(zx)(y)

where {z,y} € N and = # 1 Ay # 2, with N containing the number of partitions (in
this case contains only two ID’s 1 and 2). The specification of expression PolicyState-
mentsEnd is trickier, because it requires the identification of a point in the program
(the end of the policy statements). To identify a certain point in an Ada program the

primitive Label can be used, so first it is necessary to add the label PolicyEnd at the

end of the policy statements. However, in SPIN it is not possible to refer a label point;
it is only permitted referencing a process in a label. Thus, it is required to indicate the
process that has arrived at that label. As such, and because all package statements are

executed in the main, the expression PolicyStatementsEnd is specified as follows:

PolicyStatementsEnd = main@Policy End

2. The memory space allocated to each partition is not shared among the other
partitions — this requirement is translated at the code level ensuring that the matrix

pointers have different values for all their positions. The expression which states this
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requirement is:

NoRepPointers = Pointers(z)(y) /= Pointers(z)(w)

where {z,y,z,w} € N and x # z V y # w, with N containing the partition’s ID’s. This
property should only be valid after the initialization of pointers, and while the pointers
are not being swapped by the route operation. Thus, firstly it is important to ensure
that route performs the swapping of pointers well, so the NoRepPointers expression is

annotated as a precondition and postcondition of this procedure:

— —#tpre NoRepPointers

— —#post NoRepPointers

These pre- and postconditions may also be annotated in the procedures read_msg and

send_msg, to state that these processes do not affect the pointers matrix.

. The memory space of a partition can only contain messages whose sender
is authorized - the mapping of this requirement to code level is performed stating
that if a partition z has received a message (i.e., there is a message in its memory space,
which contains its ID in the destination field) from a partition y, then this is because the
position (z,y) in the policy matrix contains the value true (i.e., the message is allowed
to be there). This property should be valid along the whole program execution, and is

therefore is annotated as:

— —#property (Flags(z)(y) and Mem_ Space(Pointers(z)(y)).Dest == x
— —# and Mem_ Space(Pointers(x)(y)).Dest == y) —
— —#£Policy_Space(y)(x) is_true globally

where {x,y} € N and N is the set of partition ID’s.

. Inbox well formed — This property ensures that the inbox of partitions is correctly
formed. In order to verify this property two expressions are used, one for the slots with
true value and another for the empty ones. Thus, if a given slot of a mailbox is flagged
(i.e., if a position (x,y) of matrix Flags contains the value true) then the correspondent
message for that slot (which would be in Mem_Space (Pointers(x,y))) must have the

correct destination and origin values (i.e., the origin field must be y and destination
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must be x). This may be expressed as:

SlotsWithMessages = Flags(z)(y) — (Mem_Space(Pointers(z)(y)).Dest = x
and Mem_ Space(Pointers(x)(y)).Origin = y)

The empty slots of mailbox (i.e., the positions of matrix Flags which contain the value

false) must point to a default message. This condition is expressed as:

EmptySlots = (not Flags(x)(y)) — Mem_ Space(Pointers(x)(y)) = DefMsg

where {z,y} € N, with N containing the partitions ID’s. Thus, a single expression is
built to guarantee the Inbox well formed property, which results from the conjunction

of the two previous expressions:

InboxWellFormed = (SlotsWithMessages) and (EmptySlots)

This property should then be annotated as a precondition of Read_Msg because a parti-
tion should not read sent messages or incorrect messages. The property is also annotated

as a postcondition of the Route operation, to ensure that the routing is well performed.

. Outbox well formed — this is very similar to inbox well formed; the difference is
that rather then verifying if the inbox is correct it verifies if the outbox is well formed.

Thus, the slots with messages would be tested with the following expression:

OutSlotsWithMessage = Flags(z)(y) —
(Memory _Space(Pointers(x)(y).Dest =y
and Memory Space(Pointers(x)(y).Origin = x)

while the empty slots are verified with the EmptySlots expression used in the previous

property. The expression corresponding to this requirement is then:

OutboxWellFormed = (OutSlotsWithMessage) and (EmptySlots)

This property is annotated as a precondition of Route, to ensure that all messages that

will be routed hane not been previously routed.
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6. Messages are correctly sent by partitions — this property is mapped to the source
code level ensuring that the Send_Msg procedure has a correct behavior, i.e, that pro-
duces the expected results. Thus, there are two different expected results from this
operation: 1) the input message is sent correctly; and 2) no extra messages were pro-

duced. The first one may be expressed as:

SendMessageCorrectly = M.Dest = x and M.Origin =y —
((Memory_Space(Pointers(y,z)).Dest = z and
(Memory _Space(Pointers(y,z)).Origin = y)) and
Flags(y)(x)

whereas the second expected result can be expressed as :

NoExtraMessages = M.Dest / = x or M.Origin /| = y —
(Memory _Space(Pointers(y,z)) =
Memory_Space ~ (Pointers(y, z)) and

Flags(y)(z) = Flags ~ (y)(x))

where x and y are partition ID’s. The conjunction of these two expressions allows for
the specification of this property, which is annotated as postcondition of Send_Msg pro-

cedure.

— —#tpost SendMessageCorrectly and NoFExtraMessages

7. Messages are correctly read by partitions — the reading operation should build
an array containing all new received messages, so this requirement may be specified at
code level by ensuring the correctness of the outputted array. The array of messages
will be built in the input variable A, which should contain: the new income messages
(DesiredMessages); and no unexpected messages (NoUnexpectedMsg). This con-

dition may be expressed through the following expressions:

DesiredMessages = Flags ~ (x)(y) = A(y) = Mem_ Space ~ (Pointers(z)(y)))

and
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NoUnexpectedMsg = not Flags ~ (z)(y) — A(y) = DefMsg

where x is ID of the partition which is executing the operation, and y is the ID of another

partition. These expressions are then annotated as Read_Msg postconditions, as follows:

— —#tpost DesiredMessages and NoUnexpectedM sg

. Messages are correctly routed — this requirement can be ensured by guaranteeing
that the procedure Route has a correct behavior. A correct routing behavior is defined
through the verification of three distinct cases: if there is a message and the communica-
tion is allowed then the pointer of the memory position where the message is contained
is swapped and the inbox of the recipient partition is activated (AllowedMsg); if there
is a message but the communication is not allowed then the message is erased, as well
as the message indication in sender’s inbox (NotAllowedMsg); all the mailbox slots
which were not flagged should not produce unexpected modifications in the memory or

in the mailbox of partitions (NoAlterations).

AllowedMsg = Flags ~ (x)(y) and Policy Space(x)(y) —
Mem__ Space(Pointers(y)(z)) = Mem_ Space ~ (Pointers (x)(y))
and Flags(y)(x))

NotAllowedMsg = Flags ~ (x)(y) and not Policy Space(x)(y) —
(Mem __Space(Pointers(y)(xz)) = DefMsg and

not Flags(y)(z))

NoAlterations = not Flags ~ (z)(y) —
Mem__Space(Pointers(y)(z)) = DefMsg and
not Flags(y)(z))

From the conjunction of these different expected behaviors results a property which can

then be annotated as a Route postcondition:

— —#tpost AllowedM sg and NotAllowedM sg and NoAlterations

. The Kernel eventually executes the routing operation — this requirement is
mapped to the code level by stating that the kernel task eventually reaches the end of
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the Route procedure. A pattern property may be annotated specifying this property:

— —#property KernelTask@QRouteEnd becomes true globally

Beyond ensuring that the kernel task eventually executes the routing operation, this
property also ensures that the precondition and postcondition of Route are asserted
at least once (for e.g., if the precondition of route was incorrect but the model never
reaches it, then no errors will be detected in the model). Although SPIN outputs the
unreachable code, this kind of error is very common, and can be easily detected with

liveness properties similar to this one.

Results Analysis

After the specification phase, these properties were verified against the extracted model. As
can be seen in Table [6.2] the requirements [2 { [5] [6] are not fulfilled by the input Ada

program. An individual analysis of these errors is given next:

e Although the requirement [2] is valid as pre- and postcondition of the Route operation,
it is not valid as pre- and postcondition of operations Read_msg and Send_msg. This
happens because there is a moment in the route operation where two positions of ma-
trix pointers momentarily have the same value, as is shown in listing As such, and
because the Route operation is not mutually exclusive from operations Read_msg and

Send_msg, this property is not valid.

Listing 6.4: Route operation

T := Pointers(I)(J);

B := Flags(I)(J);

Pointers (I)(J) := Pointers(J)(I);

Two pointers, pointing for the same memory position
Flags(I)(J) := Flags(J)(I);

Pointers (J)(I) := T;

Flags(J)(I) := B;

)

e The properties concerning the requirement 4] and [5| are both invalid for the same reason.
The inbox and outbox are represented in the same mailbox (i.e., the matrix Flags) so
if, for example, a partition sends a message, and after this checks its mailbox (i.e., read

the messages in its mailbox) without a route operation being executed in the middle,
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the message that it had sent will still be in the mailbox, and it will be read. Therefore,
for these requirements to be valid it would be necessary that after the send or read

operation execution, was performed the route operation, and vice-versa.

e The requirements [6] [7], [§] were not fulfilled, due the fact that the operations route,
send_msg and read_msg are not mutually exclusive, which was already the problem for
requirement [2 For example, in the postcondition of route it cannot be ensured that
the expression NoAlteration is valid, because after the beginning of this operation a new
message may be sent by a partition. Similar errors to this one explain the failure of the

attempts to ensure the other two requirements.

Requirement | Validation Memory Time
(Megabytes) | (seconds)
1 v 2.756,441 322
2 X 2,189 0
3 v 2.756,195 321
4.5 X 2,195 0
6 X 2,195 0
7 X 2.195 0
8 X 20,066 246
9 v 2.195 0

Table 6.2.: Result analysis of Separation Kernel

In order to solve the problems observed for requirements [2] [6] [7], [§] it was decided to declare
the operations route, send_msg and read_msg within a protected object, as can be observed in
listing [6.5] Therefore, these operations become now mutually exclusive, which allowed testing
if other problems were hidden behind this one. Table [6.3] contains the results of verification
performed with this new Ada program. As expected the requirements[d] [ are still not fulfilled
by these program, but all the others are now valid. As was said previously, in order for the
input program to respect requirements [4] and [5| it would be necessary to synchronize route,
send_msg and read_msg so that after each sending or reading operation a routing operation

would be performed, as well as a sending or a reading operation after each routing operation.

Listing 6.5: The specification part of protected object containing the MMR operations

protected Operations is
procedure Route
procedure Send Msg(M:in Msg)
procedure Read Msgs(P: in Proc Id; A: out Mem_ Row)

end Operations
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Requirement | Validation Memory Time
(Megabytes) | (seconds)
1 v 207,773 125
2 v 13,281 1,16
3 v 207,773 125
4,5 X 2,539 0
6 v 13,281 1,16
7 v 13,281 1,16
8 v 13,281 1,16
9 v 2,539 0

Table 6.3.: Result analysis of Separation Kernel with a protected object

An interesting error in Route procedure A bug in ATOS (which has already been corrected)
forced the verification of a counter-example provided by SPIN for requirement [§] Although
this was not a problem of the input program, but a problem in its translation, this error could
be contained in the program. For instance, imagine that the piece of code from the route
operation presented in listing is replaced by the one in listing

Listing 6.6: Route operation - original code

for I in Lbl t.Proc ID loop
for J in Lbl t.Proc ID range I .. Lbl t.Proc ID’Last loop

Listing 6.7: Route operation - error code

for I in Lbl t.Proc ID loop
for J in Lbl t.Proc ID loop

Thus, after the analysis of the counter-example given by it was realized that the route
operation was badly conceived. The problem is that in fact the route operation might erase
allowed messages which should be routed. The counter-example is defined step-by-step as

follows:

1. The partition with the ID 1 sends a message to the partition with ID 2, and therefore the

position (1,2) of Flags become true and message is placed in Mem_Space (Pointers(1) (2)).

2. Next, the kernel starts the routing operation, which iterates over all positions of Flags
checking for new messages. The iterations over the mailbox reserved for the messages
sent from a partition to itself will be omitted. Thus, there are only two iterations
possible: the first is when I = 1 and J = 2 and second is for I/ = 2 and J = 1 (The
second iteration is not possible in the original program). In the first iteration (see listing

the message which was sent by partition 1 is routed to the mailbox of partition 2;
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however, this message is erased in the second iteration and consequently lost (see listing

Listing 6.8: Route operation - first iteration
I=1 and J=2

the condition is false

if not Policy.Is Allowed(1,2) then
Memory . Write (Msg_t.Def_Msg, Pointers (1)(2));
Flags(1)(2) := FALSE;

end if;

the condition is true

if not Policy.Is_ Allowed(2,1) then
Memory . Write (Msg_t.Def Msg, Pointers (2)(1));
Flags(2)(1) := FALSE;

end if;

the condition is true

if Flags(1)(2) or Flags(2)(1l) then
T := Pointers(1)(2);
B := Flags(1)(2);

Pointers (1)(2) := Pointers(2)(1);
Flags(1)(2) := Flags(2)(1);
Pointers (2)(1) := T;
Flags(2)(1) := B;

end if;

the message has been routed
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Listing 6.9: Route operation - second iteration

I1=2 and J=1
the condition is true and the message
which was routed is erased
if not Policy.Is Allowed(2,1) then
Memory . Write (Msg_t.Def Msg, Pointers (2)(1));
Flags(2)(1) := FALSE;
end if;

the condition is false

if not Policy.Is_Allowed(1,2) then
Memory . Write (Msg_t.Def_Msg, Pointers (1)(2));
Flags(1)(2) := FALSE;

end if;

the condition is false

if Flags(2)(1) or Flags(1)(2) then
T := Pointers(2)(1);
B := Flags(2)(1);

Pointers (2)(1) := Pointers (1)(2);
Flags (2)(1) := Flags(1)(2);
Pointers(1)(2) := T;
Flags (1)(2) := B;

end if;

6.3. An overview of the experimental validation process

This section presents the most interesting conclusions from the experimental validation of
ATOS. In particular we give feedback on how the typical software model checking problems
affect the verification, and also a small comparison between the verification that ATOS and

Bakar Kiasan have performed, using the separation kernel example.

How do the typical software model checking problems affected the verification with
ATOS? With the mechanisms for extracting models and help in the property specification,
the model construction and property specification problems almost disappeared. Still missing
is a deeper semantic analysis of expressions contained in annotations, which forced some of
the expressions to be expressed directly in [SPIN]

The state explosion problem manifested in both examples. Although in the first example

(Readers-Writers) it was forced on purpose, in the second example verifying the corresponding
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Ada program with three partitions was already not possible. In the attempt to verify this
example a machine with 24 [GB] of RAM] was used, but verification was not possible due
to memory and time restrictions. A verification with collapse compression was attempted,
but this technique did not make the verification possible. We then tried to use minimized
automata, which reduces considerably the memory spent in the verification, but after running
for two weeks the verification had still not finished.

The output interpretation problem did not cause many problems during the verification of
the two examples. The Readers- Writers is a small example, but the Separation Kernel already
has considerable complexity, and even in the second example the mapping of counter-examples
given by was not so difficult as could be expected.

A simple comparison between ATOS and Bakar Kiasan using the Separation Kernel ex-
ample Bakar Kiasan performs the verification of SPARK programs, using the symbolic ex-
ecution technique, aiming to scale SPARK for “big” industrial projects. After inspecting the
verification of Separation Kernel performed in Bakar Kiasan [BHR™11] based on the
annotations, and the verification performed with ATOS, several differences stand out.

One of the main differences is the expressiveness provided by the temporal logic used in
ATOS, which allows the specification of properties not for particular program points as SPARK
annotations do, but for regions of code (regions of programs). An example of this difference
may be observed in the property specified to ensure the requirement [I] of Separation Kernel
presented in Section[6.2] ATOS specifies this property ensuring that the partition information
policy is never modified once it has been initialized, whereas in Bakar Kiasan this property
is specified stating that in the beginning (precondition) and in the end (postcondition) of
the principal operations (Read_Msg, Send_Msg and Route) the partition information policy
remains unaltered. Both properties seem correct in order to fulfill the requirement [I, however
it seems also correct to state that the property specified in ATOS is simpler and more efficient
than the one specified with SPARK based annotations. Another difference is the fact that
in Bakar Kiasan a sequential version of Separation Kernel is verified (SPARK is sequential),
whereas in ATOS is verified a concurrent one, which, as was amply demonstrated, brings new

challenges.
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7. Conclusions and Future Work

In this chapter we present the conclusions concerning the goals and achievements of this thesis,

followed by the limitations of the work developed, and ideas for future work.

7.1. Conclusions

In this section we present a summary of the work developed in this thesis, and some of the
results obtained. A comparison with similar tools to the one developed in this thesis is also
made.

The main goal of this thesis was the development of an artifact that would enable the formal
verification of Ada programs, having the verification of critical systems as main background.
The formal technique chosen to support the formal verification was the model checking tech-
nique, a completely automated formal technique. A tool named ATOS was developed to
support the application of the model checking technique to Ada programs. ATOS tries to
bridge the gap in the application of model checking to software by automating the model
construction from Ada programs, and by extracting properties either by inferring them, or by
extracting them from annotations contained in the programs.

The direct extraction of PROMELA models from a subset of Ada programs is performed
through the semantic mapping of Ada’s declarations, statements, and expressions, to similar
semantic primitives in PROMELA. In spite of the semantic differences between a programming
language (Ada) and a modeling language (PROMELA), this approach can be considered well-
succeeded. The approach imposes a few restrictions, as is the case with functions, but in
general all the Ada features covered have a complete correspondent PROMELA feature. This
is the case in particular for the main concurrency primitives (tasks, protected objects and
shared variables), which are all completely covered by ATOS. The model extraction process
executed by ATOS tries to be as rigorous as possible, in the attempt to generate models that
are closely related with the corresponding Ada programs. As an example of this rigor one can
highlight the distinction between by-pass and by-reference parameters.

The specification of properties is made through annotations and complemented by the infer-
ence of safety properties, such as range checking of numeric variables and freedom of deadlock.
The annotations are inspired by the SPARK annotation language, encompassing a few similar
syntactic and semantic annotations like pre- and postconditions, but also containing new an-

notations like the specification of operation invariants, or the ones related to the construction
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of temporal properties. The use of the special labels mechanism proposed by ATOS is not
so straightforward, since it requires not only a deep understanding of their meaning, but also
of the context where the labels are used. In general, our evaluation is that the mechanisms
provided by ATOS to support the specification of properties seem quite reasonable and helpful.

The validation of ATOS was performed through the case-studies Readers- Writers and Sep-
aration Kernel. The use of ATOS in these two case studies aimed primarily to improve the
confidence on the tool itself, and secondly to confirm in practice the potential of ATOS in the
verification of Ada programs. The use of ATOS in Readers-Writers and Separation Kernel
have also revealed the simplicity and efficiency of properties specified in temporal logic, when
compared for example with the logic used in SPARK, essentially due to the capability to state
properties for a region of code, rather than a single point in the source code. Particularly in
the separation kernel example, the results were very interesting, firstly because the example
has approximately 500 Lines Of Code which is already a significant complexity, and
secondly due to the capacity demonstrated to find concurrent system problems.

According to a published study [WLBFQ9|, the complexity of Separation Kernel is con-
siderable (perhaps not so different from many critical systems). This study reports that the
majority of industrial projects where formal analysis was applied have between 1.000 and
1.000.000 of LOC] So it can be concluded that the application of ATOS in the industrial con-
text is at least partially demonstrated by this example. Separation Kernel has also revealed
that the implementation of[MMR] when tested in a concurrent configuration, has in fact many
errors that are detected by ATOS, thereby reinforcing our confidence in its adequacy for the

verification of concurrent Ada programs.

A comparison between three model checkers which support program verification for Ada
We now turn to a comparison between ATOS, Quasar and Ada Translating Toolset, to justify
the development of a new software model checking tool (ATOS), when there were already two
existing tools (Quasar and Ada Translating Toolset). The main reason is the fact that from the
work developed in Quasar and Ada Translating Toolset, all that remains are a few papers, i.e,
the corresponding tools are no longer available. This fact also prevents a deeper comparison
between these three tools. Nevertheless, we would like to point out some differences, starting
by a small comparison between the underlying approaches of each.

The three tools use other model checker(s) to perform the verification of the extracted
models: ATOS uses SPIN, while Quasar has Helena (developed as an autonomous tool in the
context of the Quasar project) and Ada Translating Toolset exports models to both SPIN and
SMV. However, the extraction processes of these tools are completely different. While Quasar
generates models for transition systems based on Petri nets, the other two tools use modeling
languages to describe transition systems based on automata theory.

The extraction of models from Ada programs is made directly in the case of Quasar and

ATOS, whereas in Ada Translating Toolset an intermediate representation is used between the
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programs and the models. In the latter, although the extraction process is known in general, no
further details could be found (not even a single complete example), thereby making the task
of analyzing in detail its extraction process very hard. The approaches followed by ATOS and
Quasar, have some common properties, in particular the translation rules used in both tools
may be valid for other programming languages than Ada, because declarations like procedures
or functions and statements such as if, loop or case are common to almost all programming
languages. In terms of the supported subset, it is hard to compare these three tools because of
the scarce information concerning this matter for both Quasar and Ada Translating Toolset.

The specification of properties is arguably easier and more intuitive in Quasar and ATOS
than in Ada Translating Toolset, which has no high-level mechanisms to tackle the property
specification problem. Quasar proposes several templates of LTL formulas, thereby easily
enabling the specification of the properties which are encompassed by these templates, but
does not propose solutions for the ones that are outside of this scope. By the latter we
are not only referring to different required LTL formulas, but also to other elements like
assertions. With the pattern annotations mechanism, ATOS proposes a high-level mechanism
for the specification of LTL formulas which is complemented by the other forms of annotations,
enabling a wide variety of mechanisms to specify properties at code level.

In terms of usability no comparisons can be made because neither Quasar nor Ada Trans-
lating Toolset are available. However, it can be said that only ATOS and Quasar have a

which, theoretically, makes them more usable than Ada Translating Toolset.

7.2. Limitations and Future Work

Let us now consider the limitations of this work along with possible solutions for some of

them, to be implemented in future work.

A parser for annotations ATOS parses annotations in the code through a very basic mech-
anism, which does not perform any semantic analysis of the expressions present within an
annotation. This incapacity implied that some expressions could not be correctly translated
to SPIN according to the conversion performed for models. In order to solve this problem, a
parser for the annotation language would be required. A preliminary study of this matter has
already been carried out, and the use of Another Tool for Language Recognition

[Par07] seems to be a good solution for this parser implementation.

Objects quantification SPIN does not allow the use of quantifiers in formulas. Thus, for
stating simple facts like “all positions of an array have a positive value” which could be simply
expressed as

Vi, MinArr < i < MazxArr — Arr(i) >0
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one has to explicitly state this property for all of the array’s positions as follows
Arr(MinArr) and ... and Arr(MazxArr)

The quantification of objects (e.g. quantifying over tasks or data types) would enable a
simple and less error-prone property specification process. In fact, what we are proposing is
an extension of the SPIN propositional logic with first order quantifications, which would be
supported by ATOS at the translation level. This mechanism is a primary objective for future

work.

The absence of an Ada scheduler Concurrent Ada programs may be executed on a single
processor (interleaved) or on a multiprocessor. Ada proposes several different priority schedul-
ing policies, which define the order by which the tasks are executed when they are competing
for a resource (a processor). The concurrency model of SPIN is different from Ada’s: the be-
havior of SPIN models is defined simply by arbitrarily interleaving the processes’ statements.
In an abstract way it is possible to state that all the configurations defined by Ada’s priority
scheduling policies are represented in the single “scheduling policy” of SPIN. Thus, the absence
of a scheduler in SPIN means that more configurations are being tested than those which could
in fact occur in an Ada program. Therefore, false-positives may be detected, i.e., some error
configurations may be detected in SPIN that do not occur in the Ada program being studied.

A preliminary study of a scheduler implementation in SPIN was already made. In our
sketch, the scheduler would be a PROMELA process with two queues associated, one for the
ready tasks and one for the non-ready. The scheduler process would control the execution
tasks through a condition placed in the provided expression of processes (recall that a process
can only execute if the expression within the provided primitive is true). All processes would

have the same condition, that would be
Ezxecute == pid,

where the Execute variable contain the id of the selected task (process) to execute, and this
selection would be controlled by the scheduler process. Lastly, the task dispatching points (the
point where a task become blocked) would be identified through the timeout primitive which
is only executed when no other process can execute in a PROMELA model. Nevertheless, this
is just a sketch and unforeseen problems may prevent its implementation.

Even though representing all scheduling policies in SPIN is something that seems impossible
to achieve, the implementation of a few policies seems not only possible but also advisable,
to improve the confidence in the tool and the associated verification technique. With the
implementation of the presented scheduler draft, we think is possible to represent the non-

preemptive and preemptive dispatching policies in SPIN. However, this is just a sketch, thereby
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these or other scheduler policies still remain as future work.

Extending the Ada subset covered by ATOS The semantic gap between Ada and PROMELA
is huge, so we knew in advance that it would be almost impossible to cover all the Ada features
in the context of this work. Nevertheless, the Ada subset covered by ATOS is in our opinion
already reasonable for our goals, since most critical systems typically use only a small subset
of Ada. However, there are still some Ada features that it would be interesting to support
(e.g. enumeration types), so extending the Ada subset covered by ATOS, while not a main

priority, is an interesting goal for the future.

Addressing the state explosion and output interpretation problems These problems, which
could be foreseen, manifested in practice in the case studies of ATOS. In order to enable the
verification of more complex models, and consequently more complex programs, one would
have to introduce additional abstraction mechanisms. The abstraction techniques provided
by SPIN are already helpful for verifying large models; however, the models generated from
software systems tend to have a huge amount of states, which would require abstraction
techniques capable of reducing their complexity. One of the commonly used techniques is
program slicmgm (presented in Section , which slices all the parts of a program that
do not influence the satisfaction of a certain property. The implementation of this or other
abstraction techniques would require an in-depth study of the research fields related with these
type of techniques.

The mapping of the error traces provided by the model checker back to the code is not
always obvious, and is often prone to errors. In our experience with ATOS this task did
not raise so many problems as we anticipated. Nevertheless, with more complex programs
than the ones tested in ATOS so far, the mapping problem will certainly raise much more
difficulties, thereby it is important, as future work, the implementation of artifacts to tackle

this problem.

!Program slicing may have other meanings in different contexts
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A. Producers-Consumers

A.1. Ada Program

Listing A.1: The Ada program of Producers-Consumers

Procedure ProducersConsumers is
task Producer;

task type Consumer;

bufferArr: array (0..99) of integer;

protected Buffer is
entry Consume(cons: out integer);
entry Produce(prod: in integer);
private
se o i for 100; iremos ter um problema no array k ira
BufferSize: integer:=99;
i: integer range 0..99 :=0;
end Buffer;

protected body Buffer is

entry Consume(cons:out integer) when i>0 is

begin
cons:=bufferArr(i);
i=1 1;

end Consume;

entry Produce(prod:in integer) when i<BufferSize is

begin
bufferArr(i):=prod;
= i+41;

end Produce;

end Buffer;

Consl, Cons2: Consumer;
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task body Consumer is
consume:integer ;

begin

loop

Buffer . Consume (consume) ;
end loop;

end Consumer;

task body Producer is

product:integer:=3;

begin

loop
Buffer . Produce (product) ;

end loop;

end Producer;

begin
null;

end ProducersConsumers;

A.2. PROMELA Model

Listing A.2: The extracted model from the Producers-Consumers program

#include "Semaphores.pml"
Semaphore Sema| 1];

chan Processes|[ 3] = [0] of {mtype};

#include "ControlProtectedObjects.pml"

chan End_Operation| 1] = [0] of {bit};

chan Blocked _Entries|[ 1] = [5] of {byte};

chan Active_Blocked Entries| 1] = [0] of {byte};
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byte Wait[ 1];
bool Start=false;

/*ProducersConsumersx/

J* Declarations x/
short ProducersConsumers_bufferArr [ 100 | ;

short BufferSize = 100

unsigned i : 7 = 0 ;

inline Consume ( cons) {

FirstTime=true;
Acquire ( 0);

TestCondition: atomic{

if
i >0 — goto Execute;
else — if
:: FirstTime— FirstTime=false;
Blocked _Entries|[ 0]!_pid;
Wait[ 0]++;
Release( 0);
goto InsideEgg;
:!FirstTime — End_Operation| 0]!0;
goto InsideEgg;
fi;
fi;
}

InsideEgg:

atomic{

Active Blocked Entries|[ 0]? pid—
goto TestCondition;
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}

Execute:

InfExec:

atomic{

if

:: FirstTime— End_Operation| 0]!1;
::!'FirstTime — Wait[ 0] ;
End_Operation| 0]!1;

fi;

FirstTime=true;

}
}

inline Produce ( prod) {

FirstTime=true;
Acquire ( 0);
TestCondition: atomic{

if
i < BufferSize — goto Execute;
else — if
:: FirstTime— FirstTime=false;
Blocked Entries|[ 0]! pid;
Wait| 0]++;
Release( 0);
goto InsideEgg;
::!'FirstTime — End_Operation| 0]!0;
goto InsideEgg;
fi;
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fi;
}

InsideEgg:

atomic{

Active Blocked Entries|[ 0]? pid—
goto TestCondition;

}

Execute:

ProducersConsumers_bufferArr [ i + ( 0 ) | = prod ;

i = i+1 ;
InfExec:

atomic{

if

:: FirstTime— End_Operation| 0]!1;
::!'FirstTime — Wait[ 0] ;
End_Operation| 0]!1;

fi;

FirstTime=true;

}
}

active proctype Buffer ( ) provided (Start) {

ControlProtectedObjects( 0)

}

short Consumer0O consume ;
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proctype Consumer0( byte ProcNumber) provided (Start)

local byte SenderPid;
local bool FirstTime=true;
J* Statements x/

do
Consume ( Consumer0_consume );
od

}

short Consumerl consume ;

proctype Consumerl( byte ProcNumber) provided (Start)

local byte SenderPid;

local bool FirstTime=true;

J* Statements */
do
Consume ( Consumerl consume );
od
}
short Producer product = 3

active proctype Producer ( ) provided (Start) {

local byte SenderPid;

local bool FirstTime=true;
J* Statements x/
do

Produce ( Producer product );
od

}

init {
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Start=true;

run Consumer0( 1);

run Consumerl( 2);
J* Statements

skip;
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B. Separation Kernel

B.1. Ada Program

Listing B.1: The specification of package Lbl t

package Lbl t

is
subtype Proc_Id is integer range 1 .. 2;
Mem _Size: constant integer := Proc_Id’Last % Proc_Id’Last;
subtype Pointer is integer range Proc_Id’ First .. Mem_Size;
end Lbl t;

Listing B.2: The specification of package Msg

with Lbl t;use Lbl t;
package Msg t
is
0 represents a null message
type Data_Range is range 0 .. 2;
type Msg is
record
Data: Data_Range;
Origin: Proc_1Id;
Dest: Proc_1Id;
end record;
Def Msg: constant Msg;
procedure Set_Origin(aMsg: in out Msg; O: in Proc_Id);
function Get_Origin(aMsg: in Msg) return Lbl t.Proc_Id;
procedure Set Dest(aMsg: in out Msg; D: in Lbl t.Proc Id);

function Get_ Dest(aMsg: in Msg) return Lbl t.Proc_ Id;

procedure Set Data(aMsg: in out Msg; B: in Data_Range);

115




function Get Data(aMsg: in Msg) return Data_Range;
function Is Default Message (aMsg: in Msg) return Boolean;

private
Def Msg: constant Msg := Msg’(Data => 0,
Origin => Lbl_t.Proc_Id’ First ,
Dest => Lbl t.Proc Id’First);
end Msg t;

Listing B.3: The body of package Msg ¢

package body Msg t
is
procedure Set Origin(aMsg: in out Msg; O: in Lbl t.Proc_Id) is
begin
aMsg. Origin := O;
end Set_Origin;

function Get_ Origin(aMsg: in Msg) return Lbl t.Proc_Id is
begin

return aMsg. Origin;
end Get_Origin;

procedure Set Dest(aMsg: in out Msg; D: in Lbl t.Proc_Id) is
begin

aMsg.Dest := D;
end Set_Dest;

function Get_Dest(aMsg: in Msg) return Lbl t.Proc_Id is
begin

return aMsg. Dest;
end Get_Dest;

procedure Set Data(aMsg: in out Msg; B: in Data_ Range) is
begin

aMsg.Data := B;
end Set Data;

function Get Data(aMsg: in Msg) return Data Range is
begin
return aMsg.Data;

end Get_ Data;

function Is_ Default Message (AMsg: in Msg) return Boolean
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is
Z: boolean ;
begin
Z:=false;
if AMsg.Data = 0 and AMsg. Origin = Lbl_t.Proc_Id’First and AMsg. Dest =
Lbl_t.Proc_Id’First
then
Z := True;
end if;
return 7;
end Is Default Message;
end Msg t;

Listing B.4: The specification of package Mem ¢

with Lbl t, Msg t;use Lbl t, Msg t;

package Mem t

is
pragma elaborate body (Mem t);
type Mem Row is array (Proc_Id) of Msg;
Def Mem_ Row:Mem Row;
end Mem t;

Listing B.5: The body of package Mem_t

package body Mem t is
begin
Def Mem Row:= Mem_ Row’(others => Msg t.Def Msg);

end Mem t;

Listing B.6: The specification of package Memory

with Lbl t, Msg t;use Lbl t,Msg t;

package Memory

is
type Mem Space T is array (Proc_Id’First..Mem Size) of Msg;
Mem _Space: Mem Space T;

procedure Write( M: in Msg t.Msg; S: in Lbl t.Pointer);

function Read(S: in Lbl t.Pointer) return Msg t.Msg;
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end Memory;

Listing B.7: The body of package Memory

package body Memory
is
procedure Write (M: in Msg t.Msg; S: in Lbl_t.Pointer) is

begin
Mem _Space(S) := M;
end Write;

function Read(S: in Lbl t.Pointer) return Msg t.Msg is
begin

return Mem_Space(S) ;
end Read;

begin
Mem Space := Mem_ Space T’ (others => Def Msg);

end Memory;

Listing B.8: The specification of package Policy

with Lbl t;use Lbl t;
package Policy
is
type Policy Row is array (Proc_Id) of boolean;
type Policy Matrix is array (Proc_Id’First..Proc_Id’Last) of Policy Row;

Policy _Space: Policy Matrix;

function Is_ Allowed (Origin: in Lbl_ t.Proc_Id; Dest: in Lbl t.Proc_Id)

return Boolean;

function Is_Satisfied

return Boolean;

end Policy;

Listing B.9: The body of package Policy

package body Policy
is
function Is Allowed(Origin: in Lbl t.Proc_Id; Dest: in Lbl t.Proc_Id)

return Boolean
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is
begin
return Policy Space(Origin) (Dest);
end Is_Allowed;

function Is_Satisfied return Boolean is
begin
return

(

Policy Space = false and

true and

(1) (1)
Policy Space(1)(2)
Policy Space(2) (1) = false and

(2)(2)

Policy _Space = false
)5
end Is_Satisfied;
begin
Policy Space := Policy Matrix’(others =>
(Policy Row’'(others => false)));
Policy Space(1l)(2) := true;
end Policy;

Listing B.10: The specification of package Mmr

with Msg t, Lbl t, Mem t, Memory, Policy;use Msg t, Lbl t, Mem t, Memory,

Policy;

package Mmr

type Pointer Row is array (Proc_Id) of Pointer;
type Pointer Matrix is array (Proc_Id) of Pointer Row;
Pointers: Pointer Matrix;
type Flags Row is array (Proc_Id) of boolean;
type Flags Matrix is array (Proc_Id) of Flags Row;
Flags: Flags Matrix := Flags Matrix’(others =>
Flags Row’(others => false));
procedure Route;

procedure Send Msg(M: in Msg t.Msg);

procedure Read Msgs(P: in Lbl t.Proc_Id; A: out Mem_ t.Mem Row);
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end Mmr;

Listing B.11: The body of package Mmr

Procedure: Fill Mem_ Row

Retrieve messages for process P and store them in the memory row
data structure M. The data structure M acts as a "mailbozx" for P
holding messages destined to P. When a process @ has not sent a message

to P (as indicated by Flags), @’s slot in P’s row holds a default message

procedure Fill Mem Row(P: in Lbl t.Proc_Id; M: out Mem Row)

is
begin
initialize mem row to default message (using an aggregate here will
allow wus
to class M as an "out" only wvariable
M := Mem t.Mem Row’(others => Def Msg);
loop through each (sending) process I
for L in Proc_Id range Lbl t.Proc_Id’First .. Lbl t.Proc_Id’Last loop
if Flags(P)(L) = True then
if Flags indicates that P has been sent a message from I,
then copy that message into T(I) wia temp variable M.
M(L) := Read(Pointers(P)(L));
end if;
end loop;

end Fill_Mem_Row;

Procedure: Zero_Flags

Sets all of P’s flags to false

procedure Zero_ Flags(P: in Proc_Id)

is
begin
for K in Proc_Id loop
Flags(P) (K) := false;
end loop;

end Zero_ Flags;
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Procedure: Zero_Mem_Row

Clear (write default message to) all the memory slots "owned"” by the

mailbozr of P (ownership is indicated by Pointers data structure)

procedure Zero Mem Row(P: in Proc_1Id)

is
begin
for I in Proc_Id range Proc_Id’First .. Proc_Id’Last loop
Write( Def Msg, Pointers(P)(I));
end loop;

end Zero_Mem_Row;

procedure Route

is
T: Pointer;
B,allow: boolean;
begin

for I in Proc_Id loop
for J in Proc_Id range I .. Lbl_t.Proc_Id’Last loop

allow:= Is_Allowed(I,J);

if not allow then
Write (Def Msg, Pointers(I)(J));
Flags(I)(J) := false;

end if;

allow:= Is_Allowed(J,I);

if not allow then
Write (Def Msg, Pointers(J)(I));
Flags(J)(I) := false;

end if;

note: 1t may not be mecessary to swap the flags or even
pointers below,
but the rest of the code currently depends on Flags being
swapped
if Flags(I)(J) or Flags(J)(I) then
T := Pointers(I)(J);
B := Flags(I)(J);
Pointers (I)(J ) = Pmnters(J)(I);
Flags (1) (1) =
) )

Pointers (J

S(J)(I);
(I
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Flags(J)(I) := B;
end if;
end loop;
end loop;

end Route;

Send_Msg procedure is called by System when the system is in the
"sending" state. The MMR places the
message in memory and sets the flag to indicate there is a
message waiting to be delivered. It is the responsibility
of Route to check to see if the communication is allowed by
the policy.

procedure Send Msg(M: in Msg)

is
Origin: Proc_Id;
Dest: Proc_1Id;
begin
Origin := Get_Origin (M) ;
Dest := Get_Dest (M) ;
Write (M, Pointers(Origin) (Dest));
Flags (Origin) (Dest) := True;
end Send_ Msg;

Read Msgs will be called from System for each Proc_Id. Route
should have already been called so all the messages are
valid. We just need to transfer P’s messages into A and then
do clean up.

In the wuse of Flags and Pointers matrices, the first process
used in indexring 1s the destination process (e.g., P), and
the second inder represents the source of the message.
procedure Read Msgs(P: in Proc_Id; A: out Mem Row)
is
Temp_Mem_ Row : Mem_Row;
begin
copy all flagged messages for P into Temp Mem Row
Fill Mem Row (P, Temp Mem Row);
clear flags (set to false) associated with P’s mailbox
Zero Flags(P);
clear memory "owned" by P’s mailbozx
Zero_Mem Row (P);
move the result to the output parameter
A := Temp_Mem_Row;
end Read_ Msgs;
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begin
Pointers := Pointer Matrix’(others =>
Pointer Row ’'(others = 1));

initialize the Pointers array with the numbers 1 .. Lbl t.Proc_Id’Last
for I in Proc_Id range Lbl t.Proc_Id’First .. Lbl t.Proc_Id’Last loop
for J in Proc_Id range Lbl_ t.Proc_Id’ First .. Lbl_t.Proc_Id’Last loop
Pointers(I)(J) := J + (Lbl_t.Proc_Id’Last * (I 1));
end loop;
end loop;
end Mmr;

Listing B.12: The system main program

with Lbl t, Msg t, Mem_ t, Memory, Policy, Mmr;use Lbl t, Msg t, Mem t, Memory,

Policy , Mmr;
procedure Main is

task KernelTask;
task type UserTask(TaskID: Proc_Id);

UT1 : UserTask(1l);
UT2 : UserTask(2);

task body KernelTask is

i: natural range 0..3:= 0;
begin
while i < 2 loop
Route;
i:=i+1;
end loop;

end KernelTask;

task body UserTask is
i: natural range 0..3 := 0;
dest : Proc_Id;
locMsg : Msg;
A: Mem Row;
begin
while i < 2 loop

dest := (i mod 2) + 1;
locMsg . Data:=0;
locMsg. Origin:=TaskID;
locMsg.Dest:=dest ;
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loop
if (locMsg.Origin /= locMsg.Dest) then exit;
else locMsg.Dest := (locMsg.Dest mod 2) +1;
end if;

end loop;
Read Msgs(TaskID, A);
Send Msg(locMsg) ;
=141,
end loop;
end UserTask;

begin

null;

end Main;

B.2. PROMELA Model

Listing B.13: Package Lbl { translation

chan Processes|[ 3] = [0] of {mtype};
bool Start=false;
/* Lbl_t

#define Lbl t Mem Size 4

Listing B.14: Package Msg { translation

# include "Lbl t.pml"
/% Msg t

typedef Msg{
unsigned Data : 2
unsigned Origin : 2

unsigned Dest : 2

}s
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typedef ConstMsg{
unsigned Data : 1 = 0;
unsigned Origin : 1 = 1;
unsigned Dest : 1 = 1;

b
ConstMsg Def Msg;

inline UserTask0 Get_ Origin ( aMsg, Ret )
J* Statements x/

Ret = aMsg .Origin ;
}

inline UserTaskl Get_ Origin ( aMsg, Ret )
/* Statements */

Ret = aMsg . Origin ;
}

inline UserTask0 Get Dest ( aMsg, Ret )
J* Statements x/

Ret = aMsg .Dest ;
}

inline UserTaskl Get Dest ( aMsg, Ret )
J* Statements x/
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Ret = aMsg .Dest
}

)

Listing B.15: Package Mem_t translation

# include "Msg t.pml"

/% Mem t
*/

Msg Mem_t Def Mem Row [ 2] ;

inline Mem t (){

atomic {

Mem t Def Mem Row [ 0].Data = Def Msg .Data;

Mem t Def Mem Row [ 0].Origin = Def Msg .Origin;

Mem_ t Def Mem Row [ 0].Dest = Def Msg .Dest;

Mem t Def Mem Row [ 1].Data = Def Msg .Data;

Mem t Def Mem Row [ 1].Origin = Def Msg .Origin;

Mem t Def Mem Row [ 1].Dest = Def Msg .Dest;

}

b

Listing B.16: Package Memory translation

# include "Mem t.pml"

/% Memory
*/

Msg Memory Mem Space | 4]

)

inline UserTask0 Write ( M, S) {

J* Statements x/
atomic {

Memory Mem_ Space [ S + ( 1 ) ].Data =M .Data;
Memory_Mem_Space [ S + ( 1 ) ].Origin =M .Origin;
Memory_Mem_Space | S + (1 ) ].Dest =M .Dest;
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inline UserTaskl Write ( M, S) {

/* Statements */
atomic {

Memory_Mem_Space [ S + (1 ) ].Data =M .Data;
Memory Mem_ Space [ S + (1 ) ].Origin =M .Origin;
Memory_Mem_Space [ S + (1 ) ].Dest =M .Dest;

inline KernelTask Write ( M, S) {

/* Statements */
atomic {

Memory_Mem_Space | S + (1 ) ].Data =M .Data;
Memory Mem_Space [ S + (1 ) ].Origin =M .Origin;
Memory_Mem_Space [ S + (1 ) ].Dest =M .Dest;

inline UserTask0 Read ( S, Ret ) {
/* Statements */

atomic {

Ret.Data = Memory_Mem_Space [ S + ( 1 ) ].Data;
Ret.Origin = Memory Mem_ Space [ S + ( 1 ) ].Origin;
Ret.Dest = Memory_Mem_Space | S + ( 1 ) ].Dest;

}

}
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inline UserTaskl _Read ( S, Ret ) {
J* Statements x/

atomic {

Ret.Data = Memory_Mem_Space [ S + ( 1 ) ].Data;
Ret.Origin = Memory Mem Space [ S + ( 1 ) |].Origin;
Ret.Dest = Memory Mem_ Space [ S + ( 1 ) ].Dest;

inline Memory (){
atomic {

Memory Mem Space 0].Data = Def Msg .Data;
0].Origin = Def Msg .Origin;
0].Dest = Def Msg .Dest;
1].Data = Def_Msg .Data;

1]. Origin = Def Msg .Origin;
1].Dest = Def Msg .Dest;
2].Data = Def Msg .Data;
2].Origin = Def Msg .Origin;
2].Dest = Def Msg .Dest;
3].Data = Def Msg .Data;
3].Origin = Def Msg .Origin;
3].Dest = Def Msg .Dest;

Memory Mem _Space
Memory Mem Space
Memory Mem _Space
Memory Mem Space
Memory Mem Space
Memory Mem _Space
Memory Mem Space
Memory Mem _Space
Memory Mem Space
Memory Mem _Space

—_—— — —_ — — — —_—— —_——_——_——

Memory Mem_ Space

}
}s

Listing B.17: Package Mmr translation

# include "Policy.pml"
/* Mmr

typedef SubMmr_ PointersType {
short subPointers|[ 2];

}s

SubMmr PointersType Mmr Pointers| 2] ;

typedef SubMmr FlagsType {
bool subFlags|[ 2];

}s
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SubMmr_ FlagsType Mmr_ Flags|[ 2] = false ;

inline UserTask0 Zero Flags ( P) {

/* Statements */

byte K; for(K: 1.. 2) {

Mmr Flags [ P+ ( 1 ) ]|.subFlags [ K+ ( 1 ) ] = false ;

}s
}

inline UserTaskl_ Zero_Flags ( P) {

J* Statements */

byte K; for(K: 1.. 2) {

Mmr Flags [ P+ ( 1 ) ].subFlags [ K+ ( 1 ) ] = false ;

inline UserTask0_Zero_Mem_ Row ( P) {

J* Statements x/

byte I; for(I: 1.. 2) {

UserTask0_Write ( Def_Msg , Mmr_Pointers [ P+ ( 1 ) ].subPointers |
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inline UserTaskl Zero Mem Row ( P) {

J* Statements x/

byte I; for(I: 1.. 2) {

UserTaskl Write (  Def Msg
L+ C 1)1 );

, Mmr_ Pointers [ P+ (1 ) ].subPointers |

}s
}

unsigned KernelTask Route T : 3 ;
bool KernelTask Route B ;

bool KernelTask Route allow ;
inline KernelTask_Route () {

J* Statements x/
SubMmr FlagsType Mmr_ Flags Old[ 2] ;
SubMmr_PointersType Mmr_ Pointers Old[ 2]
Msg Memory Mem Space Old[4];
d_ step{

Mmr_ Flags Old[ 0].subFlags[0] =Mmr_Flags[ 0].subFlags[0];
Mmr_Flags_Old[ 0].subFlags[1] =Mmr_Flags[ 0].subFlags[1];
Mmr_ Flags Old[ 1].subFlags[0] =Mmr_Flags[ 1].subFlags[0];
Mmr_Flags_Old[ 1].subFlags[1] =Mmr_Flags| 1].subFlags[1];

b

Mmr_Pointers_Old[0]. subPointers|[0]=Mmr_Pointers[0]. subPointers [0];
Mmr_Pointers_Old[0]. subPointers|[1]=Mmr_Pointers[0]. subPointers[1];
Mmr_Pointers Old[1]. subPointers[0]=Mmr_Pointers[1].subPointers[0];
Mmr_Pointers_Old[1].subPointers[1]=Mmr_Pointers[1].subPointers[1];

Memory Mem Space Old[0]. Origin= Memory Mem Space[0]. Origin;
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Memory Mem Space Old[0].
Memory Mem _Space Old[0].

Memory Mem Space Old[1].
Memory Mem Space Old[1].
Memory Mem Space Old[1].

Memory Mem Space Old[2].
Memory Mem _Space Old[2].
Memory Mem Space Old[2].

Memory Mem Space Old[3].
Memory Mem _Space Old[3].
Memory Mem _Space Old[3].

Dest=Memory Mem Space[0]. Dest;
Data=Memory Mem_Space[0]. Data;

Origin= Memory Mem Space[1]. Origin;
Dest=Memory Mem Space|[1].Dest;
Data=Memory Mem_Space[1]. Data;

Origin= Memory Mem Space[2]. Origin;
Dest=Memory Mem _Space[2]. Dest ;
Data=Memory Mem Space|[2].Data;

Origin= Memory Mem Space[3]. Origin;
Dest—=Memory Mem Space|3]. Dest;
Data=Memory Mem _Space[3]. Data;

b
byte I; for(I: 1.. 2) {
byte J; for(J: I.. 2) {

KernelTask Is Allowed ( I , J , KernelTask Route allow );
if
(! KernelTask Route allow ) — KernelTask Write ( Def Msg
Mmr_Pointers [ T + ( 1 ) ].subPointers [ J+ ( 1 ) ] );
Mmr_Flags [ T + ( 1 ) ].subFlags [ J+ ( 1 ) | = false ;

::else — skip;
fi;

)

KernelTask Is Allowed (

if
(!

Mmr_Pointers [ J + (

KernelTask Route allow )

J , I , KernelTask Route allow );

1)

|.subPointers | I + (

1) ]
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Mmr_Flags [ J + ( 1 ) ].subFlags [ I + ( 1 ) ] = false ;
::else — skip;

fi;

if
( Mmr _Flags [ T+ ( 1 ) ].subFlags [ J+ ( 1 ) ] || Mmr_Flags [ J
+ ( 1 ) J].subFlags [ T+ ( 1) ] ) =—

KernelTask_Route_T = Mmr_Pointers [ I + ( 1 ) ].subPointers [ J + ( 1
)1

KernelTask_Route_ B = Mmr Flags [ T + ( 1 ) ].subFlags [ J + ( 1 ) ]

Mmr Pointers [ T + ( 1 ) ].subPointers [ J + ( 1 ) ] = Mmr_ Pointers |
J+ ( 1) ].subPointers [ I + ( 1 ) | ;

Mmr Flags [ I + ( 1 ) J.subFlags [ J + ( 1 )] = Mmr_Flags [ J + ( 1

) ].subFlags [ T + ( 1) ] ;

Mmr_Pointers | J + ( 1 ) |.subPointers | T + ( 1 ) | =
KernelTask Route T ;

Mmr Flags [ J + ( 1 ) ].subFlags [ T + ( 1 ) | = KernelTask Route B

)
::else — skip;
fi;

)
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unsigned UserTask0 Send Msg Origin : 2

unsigned UserTask0 Send Msg Dest : 2

inline UserTask0 Send Msg ( M) {

d_step{
Mmr_ Flags Old[ O0].subFlags[0] =Mmr_Flags[ 0].subFlags[0];
Mmr_Flags_Old[ 0].subFlags[1] =Mmr_Flags| 0].subFlags|[1];
Mmr_ Flags Old[ 1].subFlags[0] =Mmr_ Flags[ 1].subFlags[0];
Mmr_Flags_Old[ 1].subFlags[1] =Mmr_Flags| 1].subFlags|[1];

Memory Mem Space Old[0]. Origin= Memory Mem Space[0]. Origin;
Memory Mem_Space Old[0]. Dest=Memory Mem_Space[0]. Dest;
Memory Mem Space Old [0]. Data=Memory Mem Space[0].Data;

Memory Mem Space Old[1]. Origin= Memory Mem Space[1l]. Origin;
Memory Mem Space Old[1]. Dest—=Memory Mem_ Space[1].Dest ;
Memory Mem_Space Old[1]. Data=Memory Mem_ Space[1].Data;

Memory Mem_Space Old[2]. Origin= Memory Mem_ Space[2]. Origin ;
Memory Mem Space Old[2]. Dest=Memory Mem Space[2].Dest ;
Memory Mem_Space Old[2]. Data=Memory Mem Space[2]. Data;

Memory Mem Space Old[3]. Origin—= Memory Mem Space[3]. Origin;

Memory Mem_Space Old[3]. Dest=Memory Mem _Space[3]. Dest;
Memory Mem Space Old [3]. Data=Memory Mem Space[3].Data;

}s

J* Statements x/

UserTask0 Get Origin ( M , UserTask0 Send Msg Origin );
UserTask0 Get_ Dest ( M , UserTaskO Send Msg Dest );

UserTask0 Write ( M , Mmr_ Pointers [ UserTaskO0 Send Msg Origin + ( 1

) ].subPointers [ UserTaskO_Send Msg_Dest + ( 1 ) | );

Mmr Flags [ UserTaskO Send Msg Origin + ( 1 ) ].subFlags |
UserTask0 Send Msg Dest + (1 ) | = true ;
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unsigned UserTaskl Send Msg Origin : 2

unsigned UserTaskl Send Msg Dest : 2

inline UserTaskl Send Msg ( M) {

d_step{
Mmr_Flags Old|
Mmr_Flags Old|
Mmr_Flags Old|
Mmr_ Flags Old|

0].subFlags[0] =Mmr_Flags|
0].subFlags|[1] =Mmr_Flags|
1].subFlags[0] =Mmr_Flags|
1].subFlags[1] =Mmr_Flags|

0].subFlags [0];
0].subFlags [1];
1].subFlags[0];
1].subFlags[1];

Memory Mem Space Old[0].
Memory Mem Space Old[0].
Memory Mem_Space Old[0].

Memory Mem Space Old[1].
Memory Mem Space Old[1].
Memory Mem Space Old[1].

Memory Mem Space Old[2].
Memory Mem _Space Old[2].
Memory Mem Space Old[2].

Memory Mem Space Old[3].
Memory Mem Space Old[3].
Memory Mem _Space Old[3].

}s

Origin= Memory Mem Space[0]. Origin;
Dest=Memory Mem Space[0]. Dest;
Data=Memory Mem_Space[0]. Data;

Origin= Memory Mem Space[1]. Origin;
Dest=Memory Mem Space|[1].Dest;
Data=Memory Mem_Space[1]. Data;

Origin= Memory Mem Space[2]. Origin;
Dest=Memory Mem Space[2]. Dest ;
Data=Memory Mem Space|[2].Data;

Origin= Memory Mem Space[3]. Origin;
Dest=Memory Mem _Space[3]. Dest ;
Data=Memory Mem _Space[3]. Data;

Statements

/*

UserTaskl Get_ Origin ( M , UserTaskl Send Msg Origin );

UserTaskl Get Dest ( M , UserTaskl Send Msg Dest );
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UserTaskl Write ( M , Mmr_ Pointers [ UserTaskl Send Msg Origin + ( 1
) ].subPointers [ UserTaskl Send Msg Dest + ( 1 ) | );

Mmr_ Flags [ UserTaskl Send Msg Origin + ( 1 ) ].subFlags |
UserTaskl Send Msg Dest + ( 1 ) | = true ;

Msg UserTask0 Read Msgs Temp Mem Row [ 2]

Msg UserTaskl Read Msgs Temp Mem Row [ 2] ;

inline Mmr (){

atomic {

Mmr_Pointers [ 0]. subPointers [ 0 ]= 1;

Mmr_Pointers [ 0]. subPointers [ 1 |= 1;

Mmr_Pointers [ 1]. subPointers [ 0 |]= 1;

Mmr Pointers [ 1]. subPointers [ 1 |= 1;

}

byte I; for(I: 1.. 2) {

byte J; for(J: 1.. 2) {

Mmr_Pointers [ I + ( 1 ) ].subPointers [ J+ ( 1 )] = J+ (2 =x* (1

L)) 5
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Listing B.18: The main translation

# include "Mmr.pml"
/*  Main */
J* Declarations

unsigned KernelTask i : 2

active proctype KernelTask (
local byte SenderPid;
local bool FirstTime—=true;

J* Statements
do
KernelTask i < 2— KernelTask Route (

KernelTask i
else — break;
od

}

unsigned UserTaskO i : 2

KernelTask i + 1 ;

unsigned UserTask0 dest : 2 ;
Msg UserTaskO locMsg ;

Msg UserTaskO0_A [ 2]

UserTask0( unsigned TaskID:

proctype
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2;byte ProcNumber) provided (




Start) {

local byte SenderPid;
local bool FirstTime=true;
J* Statements x/

do
UserTask0 i < 2—

do

UserTask0 dest = ( UserTask0 i % 2 ) + 1 ;
UserTask0 locMsg .Data = 0

UserTask0 locMsg .Origin = TaskID ;
UserTask0 locMsg .Dest = UserTaskO dest ;
if

(

UserTask0 locMsg .Origin != UserTask0 locMsg .Dest
)

%

break;

::else — skip;

fi;

od;

)

SubMmr_FlagsType Mmr_ Flags Old[ 2] ;

Msg Memory Mem_Space Old[4];

atomic{
Mmr_Flags_Old[ 0].subFlags[0] =Mmr_Flags[ 0].subFlags[0];
Mmr_Flags Old[ 0].subFlags[1] =Mmr_Flags[ 0].subFlags[1];
Mmr_Flags_Old[ 1].subFlags[0] =Mmr_Flags[ 1].subFlags[0];
Mmr_Flags_Old[ 1].subFlags[1] =Mmr_Flags[ 1].subFlags[1];
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Memory Mem_Space Old[0]. Origin= Memory Mem_Space[0]. Origin ;
Memory Mem Space Old [0]. Dest=Memory Mem Space[0]. Dest ;
Memory Mem_Space Old[0]. Data=Memory Mem _Space[0]. Data;

Memory Mem_Space Old[1]. Origin= Memory Mem_ Space[1]. Origin;
Memory Mem_Space Old[1]. Dest=Memory Mem_Space[1]. Dest;
Memory Mem Space Old [1]. Data=Memory Mem Space[1].Data;

Memory Mem Space Old[2]. Origin= Memory Mem Space[2]. Origin;
Memory Mem_Space Old[2]. Dest=Memory Mem _Space[2]. Dest;
Memory Mem Space Old [2].Data=Memory Mem Space[2].Data;

Memory Mem_Space Old[3]. Origin= Memory Mem_Space[3]. Origin ;
Memory Mem Space Old [3]. Dest=Memory Mem_Space[3]. Dest ;
Memory Mem_Space Old[3]. Data=Memory Mem _Space[3].Data;

}s

Msg Aux A [ 2 |;

atomic {

Aux_A [ 0 | .Data =
UserTaskO_ A [ 0 ] .Data;
Aux_A [ 0 ] .Origin =
UserTask0O_ A [ 0 ] .Origin;
Aux_A | 0 | .Dest =
UserTaskO_A [ 0 ] .Dest;

Aux A [ 1 ] .Data =

UserTaskO_A [ 1 | .Data;

Aux A [ 1 ] .Origin =

UserTaskO_ A [ 1 | .Origin;

Aux A [ 1 ] .Dest =

UserTaskO A [ 1 ] .Dest;

}s

Msg Aux M [ 2 ];

atomic {

Axx M [ 0 | .Data =

UserTask0 Read Msgs Temp Mem Row [ 0 | .Data;
Axx M [ 0 | .Origin —

UserTask0 Read Msgs Temp Mem Row [ 0 ] .Origin;
Auxx M [ 0 | .Dest =

UserTask0 Read Msgs Temp Mem Row [ 0 ] .Dest;

Axx M [ 1 ]

.Data —

138




UserTask0 Read Msgs Temp Mem Row [ 1 | .Data;
Axx M [ 1 ] .Origin =

UserTask0 Read Msgs Temp Mem Row [ 1 | .Origin;
Aux M [ 1 ] .Dest =

UserTask0 Read Msgs Temp Mem Row [ 1 | .Dest;
}s

atomic {

Aux_M [ 0].Data =

Def Msg .Data;

Aux M [ 0].Origin =

Def Msg .Origin;

Aux M [ 0].Dest =

Def Msg . Dest;

Aux M [ 1].Data =

Def Msg .Data;

Auxx M [ 1].Origin =

Def Msg .Origin;

Aux M [ 1].Dest =

Def Msg . Dest;

}
byte L;

for(L: 1.. 2) {
if

(

Mmr Flags | TaskID + ( 1 ) |.subFlags [ L+ ( 1 ) | = true

)

-

UserTask0 Read ( Mmr_ Pointers [ TaskID + ( 1 ) |.subPointers [ L + ( 1
) 1A M [ L+ (1) 1]);

:telse — skip;

fi;

}s

atomic{

UserTask0 Read Msgs Temp Mem Row [ 0].Data =

Aux_M[ 0].Data;

UserTask0 Read Msgs Temp Mem Row [ 0].Origin =

Aux_M][ 0].Origin;

UserTask0 Read Msgs Temp Mem Row [ 0].Dest —

Aux_M[ 0].Dest;

UserTask0 Read Msgs Temp Mem Row [ 1].Data =

Aux_ M| 1].Data;

UserTask0 Read Msgs Temp Mem Row [ 1].Origin =
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Auwx M[ 1].Origin;

UserTask0 Read Msgs Temp Mem Row [ 1].Dest =
Aux M[ 1].Dest;

}
UserTask0 Zero Flags (

TaskID

)

UserTask0 Zero Mem Row (

TaskID

)

atomic {

Aux_A | 0].Data =

UserTask0 Read Msgs Temp Mem Row [ 0].Data;
Aux_A [ 0].Origin =

UserTask0 Read Msgs Temp Mem Row [ 0].Origin;
Aux_A [ 0].Dest =

UserTask0 Read Msgs Temp Mem Row [ 0].Dest;
Aux_A [ 1].Data =

UserTask0 Read Msgs Temp Mem Row [ 1].Data;
Aux_A | 1].Origin =

UserTask0 Read Msgs Temp Mem Row [ 1].Origin;
Aux A [ 1].Dest =

UserTask0 Read Msgs Temp Mem Row [ 1].Dest;

}

atomic{

UserTaskO_A [ 0].Data =
Aux_A[ 0].Data;
UserTaskO_A [ 0].Origin
Aux_A[ 0].Origin;
UserTaskO_A [ 0].Dest =
Aux_A[ 0].Dest;
UserTaskO_A [ 1].Data =
Aux A[ 1].Data;
UserTaskO_A [ 1].Origin =
Aux_A[ 1].Origin;
UserTaskO_A [ 1].Dest =
Aux A[ 1].Dest;

}

UserTaskO0 Send Msg (  UserTask0 locMsg );

UserTask0 i = UserTask0 i + 1

Y
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else — break;
od;

)

}

unsigned UserTaskl i : 2 = 0
unsigned UserTaskl dest : 2

Msg UserTaskl locMsg

)

Msg UserTaskl_ A [ 2]

)

proctype UserTaskl( unsigned TaskID: 2;byte ProcNumber) provided (
Start) {

local byte SenderPid;
local bool FirstTime=true;
J* Statements x/

do
UserTaskl i < 2—

do

:: UserTaskl dest = ( UserTaskl i % 2 ) + 1 ;
UserTaskl locMsg .Data = 0 ;

UserTaskl locMsg .Origin = TasklD ;
UserTaskl locMsg .Dest = UserTaskl dest ;
if

UserTaskl locMsg .Origin != UserTaskl locMsg .Dest —
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break;

else—
skip;

fi;

od;
SubMmr FlagsType Mmr_ Flags Old[ 2] ;

Msg Memory Mem Space Old[4];

atomic{
Mmr_ Flags Old[ 0].subFlags[0] =Mmr_Flags[ 0].subFlags[0];
Mmr_Flags_Old[ 0].subFlags[1] =Mmr_Flags[ 0].subFlags|[1];
Mmr_ Flags Old[ 1].subFlags[0] =Mmr_ Flags[ 1].subFlags[0];
Mmr_Flags_Old[ 1].subFlags[1] =Mmr_Flags| 1].subFlags[1];

Memory Mem Space Old[0]. Origin—= Memory Mem Space[0]. Origin;
Memory Mem_Space Old[0]. Dest=Memory Mem_Space[0]. Dest ;
Memory Mem Space Old [0]. Data=Memory Mem_ Space[0]. Data;

Memory Mem Space Old[1]. Origin= Memory Mem Space[1l]. Origin;
Memory Mem Space Old[1]. Dest=Memory Mem Space[1].Dest;
Memory Mem Space Old [1]. Data=Memory Mem Space[1].Data;

Memory Mem_Space Old[2]. Origin= Memory Mem_Space[2]. Origin ;
Memory Mem Space Old [2]. Dest=Memory Mem Space[2].Dest ;
Memory Mem_Space Old[2]. Data=Memory Mem Space[2].Data;

Memory Mem_Space Old[3]. Origin= Memory Mem_Space[3]. Origin ;
Memory Mem_Space Old[3]. Dest=Memory Mem_Space[3]. Dest;
Memory Mem Space Old [3]. Data=Memory Mem_Space[3].Data;

}s

Msg Aux A [ 2 |;

atomic {

Aux_ A [ 0 ] .Data =
UserTaskl A [ 0 ] .Data;
Aux A [ 0 ] .Origin =
UserTaskl A [ 0 | .Origin;
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Aux A [ 0 | .Dest =

UserTaskl A [ 0 ] .Dest;

Aux A [ 1 | .Data =

UserTaskl A [ 1 ] .Data;

Aux A [ 1 ] .Origin =

UserTaskl A [ 1 ] .Origin;

Aux A [ 1 ] .Dest =

UserTaskl A [ 1 ]| .Dest;

b

Msg Aux M [ 2 |;

atomic {

Auxx M [ 0 | .Data =

UserTaskl Read Msgs Temp Mem Row [ 0 | .Data;
Axx M [ 0 ] .Origin =

UserTaskl Read Msgs Temp Mem Row [ 0 | .Origin;
Axx M [ 0 | .Dest =

UserTaskl Read Msgs Temp Mem Row [ 0 | .Dest;
Axx M [ 1 | .Data =

UserTaskl Read Msgs Temp Mem Row [ 1 | .Data;
Axx M [ 1 ] .Origin =

UserTaskl Read Msgs Temp Mem Row [ 1 ] .Origin;
Axx M [ 1 ] .Dest =

UserTaskl Read Msgs Temp Mem Row [ 1 ]| .Dest;
b

atomic {

Aux_ M | 0].Data =

Def Msg .Data;

Auxx M [ 0].Origin =

Def Msg .Origin;

Aux M [ 0].Dest =

Def Msg .Dest;

Aux M [ 1].Data =

Def Msg .Data;

Aux_ M [ 1].Origin =

Def Msg .Origin;

Auxx M [ 1].Dest =

Def Msg .Dest;

}
byte L;
for(L: 1.. 2) {
if
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Mmr Flags [ TaskID + ( 1 ) ].subFlags [ L+ ( 1 ) | =— true
)

%

UserTaskl Read ( Mmr_Pointers [ TaskID + ( 1 ) ].subPointers [ L + ( 1
)l A M [ L+ (1) ]);

::else — skip;

fi;

b

atomic{

UserTaskl Read Msgs Temp Mem Row [ 0].Data =
Aux M| 0].Data;

UserTaskl Read Msgs Temp Mem Row [ 0].Origin =
Auwx M[ 0].Origin;

UserTaskl Read Msgs Temp Mem Row [ 0].Dest =
Aux M[ 0].Dest;

UserTaskl Read Msgs Temp Mem Row [ 1].Data =
Aux M[ 1].Data;

UserTaskl Read Msgs Temp Mem Row [ 1].Origin =
Aux M[ 1].Origin;

UserTaskl Read Msgs Temp Mem Row [ 1].Dest =
Aux_M[ 1].Dest;

}
UserTaskl Zero Flags (

TaskID

)

UserTaskl Zero Mem Row (

TaskID

)

atomic {

Aux_ A [ 0].Data =

UserTaskl Read Msgs Temp Mem Row [ 0].Data;
Aux_ A [ 0].Origin =

UserTaskl Read Msgs Temp Mem Row [ 0].Origin;
Aux A [ 0].Dest =

UserTaskl Read Msgs Temp Mem Row [ 0].Dest;
Aux A [ 1].Data =

UserTaskl Read Msgs Temp Mem Row [ 1].Data;
Aux A [ 1].Origin =

UserTaskl Read Msgs Temp Mem Row [ 1].Origin;
Aux_A [ 1].Dest =

UserTaskl Read Msgs Temp Mem Row [ 1].Dest;

}
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atomic{

UserTaskl A [ 0].Data =
Aux_A[ 0].Data;
UserTaskl A [ 0].Origin =
Aux_A[ 0].Origin;
UserTaskl A [ 0].Dest
Aux_A[ 0].Dest;
UserTaskl A [ 1].Data
Aux_A[ 1].Data;
UserTaskl A [ 1].Origin =
Aux_A[ 1].Origin;
UserTaskl A [ 1].Dest =
Aux A[ 1].Dest;

}

UserTaskl Send Msg ( UserTaskl locMsg );

UserTaskl i = UserTaskl i + 1 ;
else — break;
od ;

active proctype main() {

Mem_t();
Memory () ;
Policy ()
Mmr () ;

Start=true;

?

run UserTask0(1, 1);

run UserTaskl(2, 2);
/* Statements

skip;
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