
Learning and testing stochastic discrete event
systems

André de Matos Pedro

November 2011

School of Engineering
University of Minho
Braga, Portugal

Supervisors
Simão Melo de Sousa

Maria João Frade

Thesis submitted in partial fulfillment of the requirements for the degree of Master
of Computer Engineering

c© 2011 André Pedro



This research was sponsored by the
EVOLVE project with reference BI6-
2010 EVOLVE UMINHO.



Abstract

Discrete event systems (DES) are an important subclass of systems (in systems theory).

They have been used, particularly in industry, to analyze and model a wide variety of

real systems, such as production systems, computer systems, traffic systems and hybrid

systems. Our work explores an extension of DES with an emphasis on stochastic pro-

cesses, commonly called stochastic discrete event systems (SDES). There was a need to

establish a stochastic abstraction for SDES through a generalized semi-Markov processes

(GSMP). Thus, the aim of our work is to propose a methodology and a set of algorithms

for GSMP learning, using model checking techniques for verification, and to propose two

new approaches for testing DES and SDES (non-stochastically and stochastically). This

work also introduces a notion of modeling, analysis and verification of continuous systems

and disturbance models in the context of verifiable statistical model checking.





Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Simão

Melo de Sousa for the continuous support of my MSc study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time

of research and writing of this thesis. I could not have imagined having a better supervisor

and mentor for my MSc study.

I would like to express also my sincere gratitude to my second supervisor Prof. Maria

João Frade, for her encouragement, insightful comments, and hard questions.

My sincere thanks also go to Prof. Ana Paula Martins, Prof. Paul Andrew Crocker,

Prof. Kouamana Bousson, and Prof. Thierry Brouard, by very constructive talks and

very interesting explanations.

I thank my fellow labmates of the RELEASE, NMCG, and SOCIALAB: Angelo Ar-

rifano, Silvio Filipe, Gil Santos, João Vasco, Mário Pereira, Luis Pedro, and Rui Pedro

by the stimulating discussions, for the sleepless nights we were working together before

deadlines, and for all the fun we have had in the lab in the last year. Also I thank my

friends in University of Minho.

In particular, I am grateful to Dr. João Paulo Patricio for enlightening me the first

glance of hard programing at the high school.

Last but not the least, I would like to thank my family: my parents José Pedro and

Eugénia Pedro, for giving birth to me at the first place and supporting me spiritually

throughout my life, and to my brother Eduardo.

In the past few years, however, the person closest to my heart has been my beloved

Sara. Her love is the inspiration for my professional achievements.





Contents

1 Introduction 1

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Summary of research contribution . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Systems and models 5

2.1 An introduction to discrete event systems . . . . . . . . . . . . . . . . . . . 5

2.1.1 The concept of event . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 The model characterization and its abstractions . . . . . . . . . . . . 7

2.1.3 Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The clock structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Stochastic process basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Stochastic timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 The stochastic clock structure . . . . . . . . . . . . . . . . . . . . . . 17

2.5 The stochastic discrete event system . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Equivalence between stochastic timed automata and discrete event

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 The generalized semi-Markov process . . . . . . . . . . . . . . . . . . 19

3 Related work 23

3.1 Learning stochastic and probabilistic models . . . . . . . . . . . . . . . . . . 23

3.1.1 Learning continuous-time Markov chains . . . . . . . . . . . . . . . . 25

3.1.2 Learning hidden Markov chains . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Learning stochastic languages with artificial neural networks . . . . 26

3.2 Discrete event systems specification . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Probabilistic/Statistical model checking . . . . . . . . . . . . . . . . . . . . 28

i



ii CONTENTS

3.4 Statistical model-base testing generation . . . . . . . . . . . . . . . . . . . . 29

4 Learning and testing stochastic models 31

4.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Learning generalized semi-Markov processes . . . . . . . . . . . . . . . . . . 35

4.2.1 Scheduling as state age memory . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Testing similarity of states . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Model selection applied to the generalized semi-Markov process . . . 41

4.3 Correctness of our learning methodology . . . . . . . . . . . . . . . . . . . . 43

4.4 Abstractions of discrete event systems . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Comparing discrete event specification with stochastic timed au-

tomaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Discrete and stochastic abstraction approaches . . . . . . . . . . . . 47

4.5 Model-based testing of stochastic discrete event systems . . . . . . . . . . . 51

4.6 SDES toolbox - Simulation, learning, verification and testing . . . . . . . . 52

5 Evaluation of GSMP learning 57

5.1 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Learning from a known model: performance analysis . . . . . . . . . 57

5.1.2 Analysis of DVB-S communications for fast trains: a model . . . . . 59

5.1.3 Learning a set of second-order differential equations as perturbation

model to CVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion and Future Work 67

A Statistical background 69

A.1 Random number generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Statistical validation techniques - model verification . . . . . . . . . . . . . 69

A.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2.2 Type-I and type-II errors . . . . . . . . . . . . . . . . . . . . . . . . 70

A.2.3 Kolmogorov-Smirnov . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B Semantics 73

B.1 Event language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.1.1 BNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C A Matlab interface of SDES toolbox 75

C.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



CONTENTS iii

C.2 Alphabetical function list . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.2.1 Function ’SDES psa’. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.2.2 Function ’SDES show’. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.2.3 Function ’SDES simulate’. . . . . . . . . . . . . . . . . . . . . . . . . 78



iv CONTENTS



List of Figures

2.1 Diagram of a warehouse manager system . . . . . . . . . . . . . . . . . . . . 9

2.2 Sample path of a warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Timeline diagram of discrete event system . . . . . . . . . . . . . . . . . . . 12

2.4 Discrete event system of a D/D/1/n stack . . . . . . . . . . . . . . . . . . . 13

2.5 Stochastic discrete event system of a M/M/1/n stack . . . . . . . . . . . . . 20

2.6 Stochastic timeline of a M/M/1/n stack . . . . . . . . . . . . . . . . . . . . 20

3.1 Example of prefix tree constructed from three sample paths . . . . . . . . . 25

4.1 Example of discrete event system scheduling . . . . . . . . . . . . . . . . . . 37

4.2 Graphical comparison between empirical CDF and estimated CDF . . . . . 43

4.3 General diagram for the injection of disturbances in dynamical systems . . 48

4.4 Second-order differential equation simulation and its abstraction . . . . . . 50

4.5 Discrete event system specifying the second-order differential equation . . . 51

4.6 The coefficients table composed by a 3-tuple . . . . . . . . . . . . . . . . . . 51

4.7 Diagram of the sketch for testing stochastic model using GSMP . . . . . . . 52

4.8 Screen-shot of SDES toolbox for Matlab . . . . . . . . . . . . . . . . . . . . 54

4.9 Practical diagram of learning GSMP from sample executions . . . . . . . . 55

4.10 Diagram of the high-level process to learn deterministic and stochastic con-

tinuous systems as SDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Example of a empirical generalized semi-Markov process . . . . . . . . . . . 58

5.2 Empirical generalized semi-Markov process of a task scheduler with uncer-

tainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Performance and convergence evaluation of our method . . . . . . . . . . . 60

5.4 Statistical analysis of a land-satellite mobile communication for a high speed

train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Probabilistic distributions of high speed train fading and non-fading of satel-

lite communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



vi LIST OF FIGURES

5.6 Event language specification of learned model of a high speed train . . . . . 63

5.7 Discrete state space partition of 11 second-order differential equations . . . 64

5.8 Stochastic automaton learned with our proposed method . . . . . . . . . . . 65

C.1 Examples of using SDES toolbox in Matlab . . . . . . . . . . . . . . . . . . 76



List of Tables

4.1 Code lines analysis of SDES toolbox for Matlab . . . . . . . . . . . . . . . . 53

5.1 The boundary values of discretization of several second-order equation sim-

ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Estimated parameters of the learned (hundred) second-order simulations . . 65

A.1 Relations between truth/falseness of the null hypothesis and outcomes of

the test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



viii LIST OF TABLES



List of Algorithms

1 Scheduler estimator (SE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Probabilistic similarity of states (PSS) . . . . . . . . . . . . . . . . . . . . . . 38

3 Similar function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Deterministic merge function . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Estimation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



x LIST OF ALGORITHMS



Chapter 1

Introduction

Discrete event systems (DES) are actually a wide class of systems that are encountered

daily. The canonical example is a simple queuing system with a single server. For ex-

ample, consider a post office with only one employer, and therefore one queue for letters,

packages, etc. The customers arrive the post office, deposit the goods in the queue, are

attended by the postal worker, and then leave the post office. We can think of the ar-

rival and departure of a customer as two separate events. There is no synchronization

between the arrival and departure of customers, i.e. the two events just introduced are

asynchronous and do not occur at the same time so this is clearly an example of a DES.

Coping with asynchronous events is the major advantage of DES. Other examples of DES

besides queuing systems include, computer systems, communication systems, manufactur-

ing systems, traffic systems, database systems, software systems - telephony, and hybrid

systems (hybrids between DES and continuous-variable dynamic systems (CVDS)).

This thesis explores an extension of DES with an emphasis on stochastic processes.

This type of system is commonly called a stochastic discrete event system (SDES). When

we talk about stochastic processes, we have to know that the dynamics of DES is described

by a set of random variables (i.e., a stochastic process). For example, the arrival rate

of customers at the post office or the risk that the post office is closed for some reason.

These random variables have certain probabilistic distributions that can model the system

behavior. We concern ourselves with how these probability distributions are obtained.

These distributions are given by a collection of realistic measures to which we fit an analytic

distribution function. This will be made due to a well established learning algorithm

that accurately captures the timing of events from the real world, therefore there are no

empirical assumptions.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem

In this thesis, we consider one main problem and three secondary problems. The main

problem is the learning of generalized semi-Markov processes (GSMP). The next prob-

lem is to establish a relation between GSMP and SDES in order to verify them. The

second secondary problem is to establish abstractions for continuous systems in order to

be modeled as DES or SDES (respectively, non-stochastic and stochastically). The last

problem is to apply stochastic and non-stochastic testing generation for the SDES such as

perturbation model or classical unit testing suite. In the following lines, we shall describe

these four problems in a more detailed manner.

− The learning of well defined stochastic processes has always been a great challenge.

Although there exist complex models that are analytically intractable actually there

are a set of problems that were solved by the technique of model checking (more

precisely statistical model checking). However, existing solutions assume that the

acquisition of empirical models is enough. Today, we could safely say that they are

not enough for most real systems like critical systems, due to its growing complexity.

In this case, for the verification, only a model and a set of properties are needed

to be able to determine whether the system satisfies some given property. Thus,

verifying empirical models may not make sense. Solving the learning problem for

a class of stochastic processes allows us to verify not only the model but to ensure

some guaranties about the implementation and allows us to use that model for test

generation.

− The relation between SDES and GSMP must be compatible (coincident). Thus, the

GSMP has to be established as a more abstract model for SDES. With this, we can

verify statistically SDES.

− CVDS are a class of systems that include all known dynamic systems defined by

differential or difference equations. As we know, this type of systems require in

many cases a lot of computational resources. Actually, continuous systems run

in discrete event platforms like a computer, for example, a satellite calculates its

perturbations and corrections to maintain its trajectory. So, if a continuous system

is executed as a discrete system, we can model it with some abstractions as a DES.

There are many advantages. First, we can simulate systems with much a less of

resources than those that are need for continuous cases. Second, we can simplify

(with abstractions) with a minor loss of precision. This is a vast problem that would

require another new thesis. In this thesis we will address only the preliminaries of



1.2. SUMMARY OF RESEARCH CONTRIBUTION 3

such by defining and identifying the challenges to be addressed. Third, we can use

DES easily to make its verification through the model checking technique and for

test generation. Fourth, we can also use it for generation of perturbation models, for

dynamic systems. Lastly, there exists a lot of simulators for discrete event systems,

including parallel simulation.

− Testing is an essential methodology to target some parts of one system to find a set

of problems/defects (bugs). The original challenge of this thesis was to derive a new

methodology for test generation from stochastic models. The complex systems are

not traceable to test all possible inputs. So, model testing generation requires a set

of realistic models, otherwise we are running the risk of create many tests that are

not time feasible (time-consuming and potentially expensive procedures). We shall

discuss the problem of generating excessive test sets. A method to reduce it is using

test generation based on realistic inputs, some that occurs in a realistic scenario shall

also be discussed in this thesis.

1.2 Summary of research contribution

SDES are a large class of known stochastic systems with a good intuitive basis. At present,

there are several learning algorithms that can be adopted for SDES. For instance, Sen et al.

[2004b] has proposed learning the continuous-time Markov processes, but other processes

for a more general approach do not exist. However, there is no learning algorithm for

stochastic systems that does not hold the Markov property. The generalized semi-Markov

processes are a large class of stochastic processes that does not hold it. Obviously, this

made this type of model more complex and analytically much more complex. Hence,

learning GSMP is statistically an ambitious due to its potentialities in this area.

We propose in this thesis a new and unique methodology for learning generalized

semi-Markov processes that is the most extensive model when lifetimes can be governed

by any continuous probabilistic distributions. As we know from classical Markov processes,

the exponential distributions are not enough to model the lifetime of a product (e.g., a

electronic component life) [Lu and Wang, 2008] or even a computer process [Harchol-Balter

and Downey, 1997, Leland and Ott, 1986].

We propose an algorithm to learn generalized semi-Markov processes, that can be

used for stochastic discrete event systems. We show with our experiments that this type

of model is really capable and scalable. We can use it for analysis of an industrial system

but also to verify or testing it.

We would like to highlight the Stochastic DES toolbox for Matlab, in particular, that



4 CHAPTER 1. INTRODUCTION

have come out of our research efforts and are now available to the public 1.

1.3 Overview of this thesis

This thesis is concerned with discrete event systems, in particular on stochastic extensions.

Furthermore, it introduces the concept of a perturbation model for continuous systems.

A comprehensive introduction to terminology, notation, and techniques that are used

extensively throughout the thesis is given in chapter 2. It contains a brief overview on DES,

stochastic processes, and SDES. Moreover, it presents some known common examples.

Chapter 3 provides the context for our research contribution with a discussion of

related work in learning generalized semi-Markov processes, abstractions for continuous

systems using the discrete event specification (DEVS) approach, probabilistic/statistical

model checking, and test generation for stochastic processes.

We start in chapter 4 by introducing the learning of generalized semi-Markov processes.

Some preliminary definitions are made in order to understand the terminologies that are

made there. This work originated in an effort to develop a learning approach for SDES

[de Matos Pedro et al., 2011].

The evaluation of the learning algorithm is described in chapter 5. Three case studies

are studied. The first, consists on an empirical evaluation of generalized-semi Markov

processes learning algorithm. The second, is applied to a real case study of communica-

tion availability between a satellite and a high-speed train. Lastly, an abstraction of a

continuous system is made in order to be described and simulated as DES.

Finally, chapter 6 discusses directions for future work in continuous systems abstrac-

tions and stochastic testing. For abstractions of continuous systems there is a need for

applying this approach to stochastic polynomials or polynomial chaos. For testing it shall

be adopted a full stochastic approach for creating a toolbox to test generation for SDES.

1http://sourceforge.net/projects/desframework/



Chapter 2

Systems and models

In this chapter some basic concepts of system’s theory based on the definitions of Cassan-

dras and Lafortune [2006] and Zimmermann [2007] shall be given. No detailed explana-

tions about the concepts of state space, sample equation, sample path and feedback shall

be given. We suppose that the reader is familiarized with those concepts, nevertheless, it

should be suficient for the reader to use their intuition in order to understand them.

We begin our description of discrete event systems (DES’s) by first identifying their

fundamental characteristics, and by presenting a few familiar examples of such systems.

Lastly, we describe two extensions (deterministic and stochastic) of DES’s that will be

used in the next chapters.

2.1 An introduction to discrete event systems

We shall now describe system in terms of a primitive concept like a set or a mapping. We

provide three definitions about ”What is a system” as found in Cassandras and Lafortune

[2006]:

− An aggregation or assemblage of things so combined by nature or man as to form
an integral or complex whole.

− A regularly interacting or interdependent group of items forming a unified whole.

− A combination of components that act together to perform a function not possible
with any of the individual parts.

In these definitions there are two salient features. First, a system is composed of a set of

components, and second a system is associated with one function that presumably intends

to perform something.

DES’s are a particular class of systems that are largely used in industry as pattern

model Cassandras and Lafortune [2006]. So, when the state space of a system is naturally

described by a discrete set like {0, 1, 2, ...}, and state transitions are only observed at

5



6 CHAPTER 2. SYSTEMS AND MODELS

discrete points in time, we associate these state transitions with events and talk about a

DES.

Usually DES’s can be used as an hybrid model combined with continuous-variable

dynamic systems (CVDS). The CVDS changes with measured quantities such as temper-

ature, pressure and acceleration, which are continuous variables evolving over time. It is

usually characterized by a continuous state space. So, in contrast to CVDS, DES’s evolves

in a discrete state space, where at each transition there exists an associated event (i.e., an

event-driven system).

2.1.1 The concept of event

The event is a primitive concept with a good intuitive basis. As Cassandras and Lafortune

[2006] say we need to ”... emphasize that an event should be thought of as occurring

instantaneously and causing transitions from one state value to another.”.

An event can be identified when a specific action occurs (e.g., a package arrived at

a warehouse or a button is pressed), or it can be viewed as a spontaneous occurrence

dictated by nature (e.g., a computer crash for whatever reason too complicated to figure

out or a set of sensors that are unstable when temperature changes), or it can be viewed

as a result of several conditions which are suddenly all met (e.g, the fluid level in a tank

has just exceeded a given value or a warehouse that suddenly is full).

At this point, it is clear for us that DES’s are event-driven systems, they depend on

discrete occurrences (i.e., something occurs due to an action, an event or something not

well defined). Thus, we will introduce the informal definition of these systems and compare

it with continuous systems, which are guided by the time.

Event-driven systems and time-driven systems. In continuous-state systems the

state generally changes as time changes. This is particularly evident in discrete-time

models, where the clock is what drives a typical sample path. With every clock tick the

state is expected to change, since continuous state variables continuously change with time.

It is because of this property that we refer to such systems as time-driven systems. In this

case, the time variable (t in continuous time or k in discrete time) is a natural independent

variable which appears as the argument of all input, state, and output functions.

In discrete-state systems, we say that the state changes only at certain points in time

through instantaneous transitions. To each such transition we can associate an event.

However, the description of the timing mechanisms based on which events take place

before it can be triggered is missing. We describe it in detail in section 2.2.



2.1. AN INTRODUCTION TO DISCRETE EVENT SYSTEMS 7

2.1.2 The model characterization and its abstractions

The event-driven property of DES was discussed in the previous section. It refers to the

fact that the state can only change at discrete points in time, which physically correspond

to occurrences of asynchronously generated discrete events. From a modeling point of

view, this has the following implication. If we can identify a set of events any one of

which can cause a state transition, then time no longer serves the purpose of driving such

a system and may no longer be an appropriate independent variable. Thus, the DES

satisfies the following two properties:

1. The state space is a discrete set.

2. The state transition mechanism is event-driven.

However, according to these properties and as described by Cassandras and Lafortune

[2006] DES’s are informally described by the definition 1. So, the state space is some

discrete set X = {s1, s2, s3, s4, s5, s6}, where X is a set of finite states that have the state

s1, s2, ... (see definition 2).

Definition 1. A Discrete Event System (DES) is a discrete-state, event-driven system,

that is, its state evolution depends entirely on the occurrence of asynchronous discrete

events over time.

Definition 2. The state space of a system, usually denoted by X, is the set of all possible

values that the state may take.

The sample path1 can only jump from one state to another whenever an event occurs.

Note that an event may take place, but not cause a state transition. For example when

one event occurs at state s2 and goes to the same s2 state (i.e., an arc transition). It

is often convenient to represent a DES sample path as a timing diagram (timeline) with

events identified by vertical dashed lines at the times they occur, and states shown in

between events like the figure 2.3.

DES’s have a set of models available for the most diverse of systems. So, due to this,

we describe below some abstractions for different DES’s. Note that DES’s may be viewed

as an event-language or even just a language.

The abstractions of DES’s. Languages, timed languages, and stochastic timed lan-

guages represent the three levels of abstraction at which DES’s are modeled and studied:

untimed (or logical), timed, and stochastic. We describe in the following sections (see

1The sample path is one simulation (sample execution) of a DES; It identifies the behavior of DES’s

over time, where the time instants are discrete steps in the state space.



8 CHAPTER 2. SYSTEMS AND MODELS

sections 2.2 and 2.4) the timed automaton and stochastic timed automaton, which are

two abstract models for describing DES’s.

Remark 2.1. One should not confuse discrete event systems with discrete-time systems.

The class of discrete-time systems contains both CVDS and DES’s. In other words, a DES

may be modeled in continuous or in discrete time, just like a CVDS can.

2.1.3 Hybrid models

Systems that combine time-driven with event-driven dynamics are referred to as hybrid

systems. Recent years have seen a proliferation of hybrid systems largely due to the

embedding of microprocessors (operating in event-driven mode) in complex automated

environments with time-driven dynamics; examples arise in automobiles, aircraft, chemical

processes, heating, ventilation, and air-conditioning units in large buildings, etc.

We do not describe here formally any definition for a hybrid model, therefore, we will

try to deduce one perturbation model from a continuous variable system based on other

abstractions such as differential equations and difference equations.

A more close example of a hybrid system will be shown later in section 4.4, where a

perturbation model from an inverted pendulum is described and modeled.

2.1.4 Examples

The subtleties of DES’s were described in the previous sections. There are many common

examples such as: a computer system crashing due to periodical bugs that obligate its

watchdog to reboot it or even a bottle filling line of an industry (a hybrid industrial

system). Here we shall discuss in detail one practical example of a warehouse system

manager.

The model that we will describe is quite misunderstood from a mathematics point of

view principally due to discontinuities (there is more time when nothing occurs than when

sometimes does occurs). Now, in this sense what we need to explain is that there are

other models with better abstractions, which we will explain in the next sections. They

are timed automata (see section 2.2) and stochastic timed automata (see section 2.4).

Example 2.2. Consider a warehouse containing packages of goods from a shipping

company. When a new package is received by the shipping company, this represents an

arrival event at the warehouse and when the shipping company dispatches the package it

is a departure event. So, a truck periodically delivers and loads up a certain number of

products, which are thought of as departures from the warehouse (figure 2.1). With this

model we can check if the storage capacity of a particular warehouse located in Lisbon



2.1. AN INTRODUCTION TO DISCRETE EVENT SYSTEMS 9

Arrival

Departure

Figure 2.1: A warehouse of a shipping company depicted in a simple diagram of input of goods and

the output of packages. The packages arrive at the warehouse as arrival events and the departures

of packages from warehouse as departure events. Thus, the DES is defined by the number of

packages at the warehouse (the state space) and the actions triggered by this two events.

is enough or not. We can analyze how many packages have arrived and departed at one

time instant of the system or also over a long run execution.

We can analyze the warehouse system as a queuing system. This system can be

modeled as a DES where the number of packages is determined by the state space of the

system. For instance supposing that at most ten packages can be stored, we will have a

system with discrete state space X = {1, 2, 3, 4, ..., 10}.
We define two binary functions u1 and u2 that correspond to the arrival event and

departure event to indicate that in time t an event has occurred,

u1(t) =

1 If a package arrives at time t

0 otherwise
(2.1)

and

u2(t) =

1 If a package departs at time t

0 otherwise
(2.2)

The sequence of time instants when u1(t) = 1 defines the schedule of package arrivals

at the warehouse. Similarly, the sequence of time instants when u2(t) = 1 defines the

schedule of package departures from the warehouse.

We next describe the simplifications that we have assumed for the model. First, the

warehouse have space for at most of ten packages and its storage capacity is reached at ten

packages. Next, the loading of the truck takes zero time. Then, the truck can only take

away a single product at a time. Lastly, a package arrival and a package departure never

take place at exactly the same instant, that is, there is no t such that u1(t) = u2(t) = 1. In

order to derive a state equation for this model, let us examine all possible state transitions

we can think of:

1. u1(t) = 1, u2(t) = 0. This simply indicates an arrival at the warehouse at time

instant t. As a result, x(t) should experience a jump of +1, if x(t) ≤ 10.



10 CHAPTER 2. SYSTEMS AND MODELS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

Time (s)

N
u
m
.
p
ac
ka
g
es

Sample path of warehouse system

0

e1

1.2

e2

3

e3

4.3

e4

5.7

e5

7.2

e6

10

e7

14

e8

16

e9

17

e10

19

e11

23

e12

24

e13

26

e14

28

e15

29.5

e16

Figure 2.2: A sample path of the warehouse systems with an event timeline on bottom.

2. u1(t) = 0, u2(t) = 1. This means a truck is present at time t, and we should reduce

the warehouse content by 1. However, there are two sub-cases. If x(t) > 0, then the

state change is indeed −1. But if x(t) = 0, the truck finds the warehouse empty and

the state does not change.

3. u1(t) = 0, u2(t) = 0. Clearly, no change occurs at time t.

Let t+ denote the time instant just after t. With this notation, based on the observa-

tions above we can describe it with the following state equation:

x(t+) =


x(t) + 1 if (u1(t) = 1, u2(t) = 0, x(t) ≤ 10)

x(t)− 1 if(u1(t) = 0, u2(t) = 1, x(t) > 0)

x(t) otherwise

(2.3)

A typical sample path of this system is shown in figure 2.2. In this case, u1(t) = 1 (i.e.,

packages arrive) at time instants t1, t2, t3, t5, t6, t12, and t13, and u2(t) = 1 (i.e., a truck

arrives) at time instants t4, t7, t8, t9, t10, and t11. Note that even though a truck arrival

takes place at time t11, the state x(t) = 0 does not change, in accordance with figure 2.2.

Remark 2.3. The equation 2.3 is an illustration of many situations we could be encoun-

tering on the common DES. This warehouse system is modeled as a stack, therefore the

mathematical model is rather informal and does not the most interesting model. In a

major part of time nothing happens due to the discontinuities of the functions u1 and u2.



2.2. TIMED AUTOMATA 11

2.2 Timed automata

An automaton is a model that is capable of representing a language (i.e., a sequence of

input symbols) according to well-defined rules. The simplest way to present the notion

of automaton is to consider its representation on a directed graph, or state transition

diagram. So, we present here the definitions of the deterministic timed automaton (DTA)

followed by the definition of the clock structure. Lastly, we expose a practical example of

a simple DTA.

Definition 3. The deterministic timed automaton is a six-tuple M = (X , E , f,Γ , x0 ,V ),

where

X is a countable state space,
E is a countable event set,
f : X × E → X is a state transition function and is generally a partial function

on its domain,
Γ : X → 2 E is the active event function (or feasible event function); Γ (x )

is the set of all events e for which f(x, e) is defined and it is
called the active event set (or feasible event set),

x0 is the initial state, and
V = {vi : i ∈ E} is a clock structure.

Having presented the definition of DTA we can make some remarks about it, however we

focus here only on the essential. Our remarks (see Cassandras and Lafortune [2006]) are:

− The functions f and Γ are completely described by the state transition diagram of

the automaton.

− The automaton is said to be deterministic because f is a function from X ×E to X ,

namely, there cannot be two transitions with the same event label out of a state.

− The fact that we allow the transition function f to be partially defined over its

domain X × E is a variation over the usual definition of automaton in computer

science literature that is quite important in DES’s theory.

− Formally speaking, the inclusion of Γ in the definition of M is superfluous in the

sense that Γ is derived from f . One of the reasons why we care about the contents

of Γ (x ) for state x is to help distinguish between events e that are feasible at x but

cause no state transition, that is, f(x, e) = x, and events e′ that are not feasible at

x, that is, f(x, e′) is not defined.

− The event set E includes all events that appear as transition labels in the state tran-

sition diagram of automaton M . In general, the set E might also include additional

events, since it is a parameter in the definition of M . In other words, this can be

composed by a parallel composition.



12 CHAPTER 2. SYSTEMS AND MODELS

t0 t1

e1 = α

t2

e2 = α
x0 x1 xk

tk−1

ek−1 = α

tk

ek = α

tsample

Event lifetime (tk − tk−1)

Figure 2.3: The timeline of a simple DES with one α event is depicted. The lifetime of an event

of one DES is the time between two consecutive identical events, in this example, around tsample

have a lifetime of tk − tk−1.

− The V clock structure has one clock associated for each event. Each clock is made

by a composition of an ordered set of fixed clock values. We formally describe it in

the following section.

2.2.1 The clock structure

We introduce here the key ideas of timed DES’s. As we have previously seen a simplified

DES is a system composed of a finite set of states X , and a finite set of events E . It has one

transition function f , that given an event knows what is the next state and an activation

function Γ that knows what events are active in a given state. So, knowing all of this a

clock structure is needed in order to drive the time of each event.

Example 2.4. (A DES with a single α event.) Let E = {α}, and Γ (x ) = {α} for all x ∈
X . A simulation of this system always produces the same output. So, the generated path,

an event sequence, is denoted by p = (e1, e2, e3, ..., en), ek = α, for each k = {1, ..., n}.
The time instant associated with the kth event is denoted by tk, k = {1, 2, ..., n}. The

length of the time interval defined by two successive occurrences of the event is called a

lifetime as we can see in the timeline of the figure 2.3. We denote vk, the lifetime of the

kth event. Thus, we define vk = tk − tk−1 ∈ R+, for each k.

The evolution of this system over time can be described as follows. At time tk−1, the

kth event is said to be activated or enabled, and is given a lifetime vk. A clock associated

with the event is immediately set at the value specified by vk, and then it starts ticking

down to 0. During this time interval, the kth event is said to be active. The clock reaches

zero when the lifetime expires at time tk = tk−1 + vk. At this point, the event has to

occur. This will cause a state transition. The process then repeats with the (k + 1)th

event becoming active.

To introduce some further notation, let tsample be any time instant, not necessarily

associated with an event occurrence. Suppose that tk−1 ≤ t ≤ tk. Then t divides the

interval [tk−1, tk] into two parts (see figure 2.3) such that yk = tk − t is called the clock or



2.2. TIMED AUTOMATA 13

0 1 2 3 n

λ λ λ . . .

. . .µµµ

Figure 2.4: A discrete event system of the D/D/1/n stack.

residual lifetime of the kth event, and zk = t − tk − 11 is called the age of the kth event.

It is obvious that vk = zk + yk. It should be clear that a sample path of this DES is

completely specified by the lifetime sequence (v1, v2, ..., vn). This is also referred to as the

clock sequence of event α.

Example 2.5. (A simple timed automaton - a stack model with n elements.) This

model is a more interesting DES. It has concurrence between two events. Let the event

set be E = {λ, µ}. The state transition diagram of the figure 2.4 depicts a stack model

with n states. The set of nodes is the state set of the automation, X = {0, 1, 2, 3, ..., n}.
The labels of the transitions are elements of the event set (alphabet) E of the automaton.

The arcs in the graph provide a graphical representation of the transition function of the

automaton, which we denote as f : X × E → X :

f(0, λ) = 1

f(1, λ) = 2, f(1, µ) = 0

f(2, λ) = 3, f(2, µ) = 1

...

f(n, µ) = n− 1

The notation f(1, λ) = 2 means that if the automaton is in state 1, then upon the oc-

currence of event λ, the automaton will make an instantaneous transition to state 1. The

cause of the occurrence of event λ is irrelevant; the event could be an external input to

the system modeled by the automaton, or it could be an event spontaneously generated

by the system modeled by the automaton. So, if model is in state 1 that has f(1, λ) = 2

and f(1, µ) = 0. At this point the system can trigger one of those events. These events

compete with each other one to trigger the event with less holding time. For instance,

if vλ = (1, 10, 30, ...) and vµ = (2, 5, 32, ...) we begin by making a transition λ (the only

possible transition) with time vλ,1, and next compare the clock value of vλ,2 and vµ,1 when

µ event wins. Then, the automaton will make an instantaneous transition to state 1 and

trigger the event λ with a holding time of vλ,2, and so on. It should be clear that a sample

path of this stack model has the event time sequence (1, 2, 10, 5, 30, ...).



14 CHAPTER 2. SYSTEMS AND MODELS

2.3 Stochastic process basics

In this section, we briefly introduce the concept of stochastic process always followed by

practical examples.

A stochastic process is simply a collection of random variables indexed through some

parameter, which is normally thought of as time. For example, suppose that Ω =

{IDLE,CRASHED} is the sample space for describing the random state of a com-

puter system (like the last one). By mapping IDLE into 0 and CRASHED into 1 we may

define a random variable X(ω), ω ∈ Ω, which takes the values 0 or 1. Thus, X(ω) = 1

means the computer system is CRASHED, and X(ω) = 0 means the computer system

is IDLE. Next, suppose that we describe the state of the computer system over time as

discrete steps. Let k = 1, 2, 3, ... be the index of the time (i.e., seconds, hours, days, etc...).

Thus, X(ω, k) is a random variable describing the state of computer system on the kth

time step. The collection of random variable {X(ω, 1), X(ω, 2), ..., X(ω, k), ...} defines a

stochastic process.

Definition 4. A stochastic or random process X(ω, t) is a collection of random variables

indexed by t. The random variables are defined over a common probability space (ω,E, P )

with ω ∈ Ω. The variable t ranges over some given set T ⊆ R.

The probability space is defined by the 3-tuple (ω,E, P ), where ω determine the sample

space, which is the set of all possible outcomes, E is a set of events, where each event is a

set containing zero or more outcomes, and P the probabilities of the events.

The mathematical abstractions for DES’s with stochastic clock structure (see later) is

a stochastic process, which is formally a collection of random variables (as we have seen

above) that we denote by {X(t) | t ∈ T}, where t is the time indexing. The parameter t

may have a different interpretation in other environments. Index set T denotes the set of

time instants of observation. The set of possible results of X(t) is called state space of the

process (a subset of R), and each of its values corresponds to a state.

Stochastic processes are characterized by the state space and the index set T. If the

state space is discrete (countable), the states can be enumerated with natural numbers

and the process is a discrete-state process or simply a chain. T is then usually taken as the

set of natural numbers N. Otherwise, it is called a continuous-state process. Depending

on the index set T the process is considered to be discrete-time or continuous-time. Four

combinations are obviously possible. In our setting of stochastic discrete event systems,

we are interested in systems where the flow of time is continuous (T = R+
0 ) and the state

space is discrete. The stochastic process is thus a continuous-time chain and each X(t) is

a discrete random variable.



2.4. STOCHASTIC TIMED AUTOMATA 15

Now, we describe the inherent properties of a Markov process. They are the following

two properties:

Property 2.6. the future state only depends on the current state and not on the states

history (no state memory is needed)

Property 2.7. the inter-event time in the current state is irrelevant in determination of

the next state (no age memory is needed)

A discrete-state stochastic process {X(t)|t ∈ T} is called a Markov chain if its future

behavior at time t depends only on the state at t.

P{X(tk+1) = nk+1|X(tk) = nk, ..., X(t0) = n0} = p{X(tk+1) = nk+1|X(tk) = nk} (2.4)

Processes that hold a Markov property are easier to analyze than more general pro-

cesses because information about the past does not need to be considered for the future

behavior. Markov chains can be considered in discrete or continuous time, and are then

called discrete-time Markov chain (DTMC) or continuous-time Markov chain (CTMC).

From the memoryless2 property of a Markov process it immediately follows that all inter-

event times must be exponentially (CTMC) or geometrically (DTMC) distributed. Dif-

ferent relaxations allow more general times. Examples are semi-Markov processes [Barbu

and Limnios, 2008] with arbitrary distributions but solely state-dependent state transitions

and renewal processes that count events with arbitrary but independent and identically

distributed interevent times.

A generalized semi-Markov process (GSMP) [Glynn, 1989] allows arbitrary inter-event

times like semi-Markov process. The Markov property of state transitions depending

only on the current state is achieved by encoding the remaining delays of activities with

nonmemoryless delay distributions in the state, which then has a discrete part (the system

states) and a continuous part that accounts for the times of running activities.

2.4 Stochastic timed automata

Stochastic timed automata (STA’s) according to the definition of timed automata have

changes on clock structure and a little difference in the transition function. Broadly, the

stochastic automaton is an automaton with stochastic clocks.

We begin by adopting a random variable notation to define the clock structure of timed

automata as stochastic clocks: X is the current state; E is the most recent event (causing

2The memoryless is a property that some random distributions satisfies. The exponential distributions

of non-negative real numbers and the geometric distributions of non-negative integers.



16 CHAPTER 2. SYSTEMS AND MODELS

the transition into state X); T is the most recent event time (corresponding to event E);

Ni is the current score of event i; and Yi is the current clock value of event i. As in the

deterministic case, we use the prime (’) notation to denote the next state X ′, triggering

event E′, next event time T ′, next score of i, N ′i , and next clock of i, Y ′i .

Besides the stochastic clock structure specification, there are two additional proba-

bilistic features:

− The initial automaton state x0 may not be deterministically known. In general, we

assume that the initial state is a random variable X0. What we need to specify then

is the probability mass function (pmf) of the initial state

p0(x) = P [X0 = x], where x ∈ X (2.5)

− The state transition function f may not be deterministic. In general, we assume

that if the current state is x and the triggering event is e′, the next state x′ is

probabilistically specified through a transition probability3

p(x′;x, e′) = P [X ′ = x′|X = x,E′ = e′], where x, x′ ∈ X , e′ ∈ E (2.6)

A timed automaton equipped with a stochastic clock structure, an initial state cumu-

lative distribution function, and state transition probabilities defines a Stochastic Timed

Automaton, as defined below.

Definition 5. A Stochastic Timed Automaton is a six-tuple M = (X , E ,Γ , p, p0 ,G)

where

X is a countable state space,
E is a countable event set,
Γ (x ) is a set of feasible or enabled events, defined for every x ∈ X ,

with Γ (x ) ⊆ E ,
p(x′;x, e′) is a state transition probability, defined for every x, x′ ∈ X

and e′ ∈ E , and such that p(x′;x, e′) = 0, ∀e′ /∈ Γ (x ),
p0(x) is the pmf P [X0 = x], x ∈ X , of the initial state X0, and
G = {Gi : i ∈ E} is a stochastic clock structure.

The automaton generates a stochastic state sequence {X0, X1, ...} through a transition

mechanism (based on observations X = x, E′ = e′): X ′ = x′ with probability p(x′;x, e′)

and it is driven by a stochastic event sequence {E1, E2, ...} generated through

E′ = arg min
i∈Γ (X )

{Yi} (2.7)

3Note that if e′ /∈ Γ (x ), then p(x′;x, e′) = 0, ∀x′ ∈ X .



2.4. STOCHASTIC TIMED AUTOMATA 17

with the stochastic clock values Yi, i ∈ E , defined by

Y ′i =

Yi − Y ∗ if i 6= E′ and i ∈ Γ (X )

Vi,Ni+1 if i = E′ or i /∈ Γ (X )
i ∈ Γ (X ′) (2.8)

where the interevent time Y ∗ is defined as

Y ∗ = min
i∈Γ (x)

{Yi} (2.9)

the event scores Ni, i ∈ E , are defined through

N ′i =

Ni + 1 if i = E′ or i 6= Γ (X ′)

Ni otherwise
i ∈ Γ (X ′) (2.10)

and

Vi,k ∼ Gi (2.11)

where the tilde (∼) notation denotes ”with distribution”. In addition, initial conditions

are: X0 ∼ p0(x), and Yi = Vi,1 and Ni = 1 if i ∈ Γ (X0 ). If i /∈ Γ (X0 ), Yi is undefined and

Ni = 0.

Having presented the formal definition of stochastic timed automaton we need to make

some remarks about comparison with definitions of the timed automaton. The transition

function f is replaced by the probabilistic transition function p (the transition is made

with uncertainty), x0 the initial state is replaced by p0 the probabilistic mass function

(the initial state is given by this function; it can start from a different set of states given

by the pmf ), and lastly the main difference is that the stochastic automaton have G the

stochastic clock structure instead of V simple structure of events lifetime.

2.4.1 The stochastic clock structure

The clock structure of the stochastic timed automaton is defined according to definition 6.

The stochastic process generates the lifetime sequences for each event given by Vi,k. The

clock structure of the timed automaton is the same of the used in this definition, but the

difference is that it is governed by a stochastic process.

Definition 6. The stochastic clock structure (or timing structure) associated with an

event set E is a set of distribution functions

G = {Gi : i ∈ E} (2.12)

characterizing the stochastic clock sequences

{Vi,k} = {Vi,1, Vi,2, ...}, i ∈ E , Vi,k ∈ R+, k = 1, 2, ... (2.13)



18 CHAPTER 2. SYSTEMS AND MODELS

2.5 The stochastic discrete event system

A stochastic discrete event system (SDES), according to Zimmermann [2007], is a tuple

SDES = (SV,A, S,RV ) describing the finite sets of state variables SV and actions A

together with the sort function S. The reward variables RV correspond to the quantitative

evaluation of the model.

− S is a function that associates an individual sort to each of the state variables SV

and action variables V ars in a model. The sort of a variable specifies the values that

might be assigned to it. We will not specify here the type system, which we assume

as implicit. We will present a simple example (see later) to understand better how

the system behaves. The variable types, and operations can be described by the

semantics of the event language in the appendix B.1.

− SV is the finite set of n states variables, SV = {sv1, ..., svn}, which is used to capture

states of the SDES.

− A denotes the set of actions of a SDES model. They describe possible state changes

of the modeled system. An action a ∈ A of a SDES is composed of a set of attributes

that does not describe here (please consider see Zimmermann [2007]).

− RV is the notion of a quantitative evaluation of SDES called as reward variable. It

is used as a set of variables to the analyze of the SDES (i.e., performance analysis,

produce documents for documentation purposes, and verification). This is one fea-

ture that can be coupled posteriorly for any DES , therefore, we will not describe it

here.

2.5.1 Equivalence between stochastic timed automata and discrete event

systems

The SDES definition comprises state variables, actions, sorts, and reward variables.

SDES = (SV,A, S,RV ) (2.14)

In order to capture a stochastic automaton as defined in the previous section these variable

are set in the following manner. There is exactly one state variable sv, whose value is the

state of the automaton. The set of state variables SV has therefore only one element.

SV = {sv} (2.15)

The set of SDES actions A is given by the events of the automaton.

A = E (2.16)



2.5. THE STOCHASTIC DISCRETE EVENT SYSTEM 19

The sort function of the SDES maps the state variable to the allowed values,i.e., the state

space of the automaton. As there are no SDES action variables necessary, no sort is

defined for them.

S(sv) = X (2.17)

The set of all possible states in SDES and in STA is obviously equal. The condition

function also is always true, because all states in X are allowed. The initial value of the

state variable is directly given by the initial state of the automaton. The actions of the

SDES correspond to events of the stochastic automaton.

The remaining concepts and details that are interesting but not relevant for this work

are left to the reader. For more details see for instance Zimmermann [2007].

2.5.2 The generalized semi-Markov process

A stochastic timed automaton is used to generate the stochastic process {X(t)}. This

stochastic process is referred to as a generalized semi-Markov process (GSMP).

Definition 7. A Generalized Semi-Markov Process (GSMP) is a stochastic process {X(t)}
with state space X , generated by a stochastic timed automaton (X , E ,Γ , p, p0 ,G).

The GSMP simulation

The simulation concepts introduced by Ross [2006] and Banks [1998] shall now be described

as well as the algorithms. We focus in detail on the simulation of generalized semi-Markov

processes [Asmussen and Glynn, 2007].

Let us see the following example in order to understand the concept of simulation of a

GSMP, its scheduler behavior, and its event competition.

Example 2.8. Given the M/M/1/n stack model (notation according to Kendall [1953])

of figure 2.5 that has E = {λ, µ}, X = {0, 1, 2, 3, ..., n} the discrete state space, and

Γ (0 ) = {λ},Γ (1 ) = {λ, µ}, ...,Γ (n − 1 ) = {λ, µ},Γ (n) = {µ}. As was described in the

last sections, the behavior of the DES is that the events compete each other to trigger the

event with the minimal time. So, with that in mind and looking to the timeline of the

figure 2.6, that is one simulation of the stack model, we can view this event competition.

The shadowing below the arrows is the more probable lifetime given by the distributions

related to λ and µ events with high probability (black) and with low probability (gray).

Notoriously, we can view after the first triggered event λ that at each discrete step the

selection of the triggered events is the minor value of the two λ and µ events. The behavior

is the same as DES but with stochastic clocks that have uncertainty in time duration.



20 CHAPTER 2. SYSTEMS AND MODELS

0 1 2 3 n

λ λ λ . . .

. . .µµµ

Figure 2.5: The stochastic discrete event system of the M/M/1/n stack is depicted.

λ

µ
λ

µ
λ

µ
λ

λ
µ

λ
µ

1.0 2.0 3.0 4.0 5.0 6.00.0

0 1 2 1 2 3 2 3

e1 = λ e2 = λ e3 = µ e4 = λ e5 = λ e6 = µ e6 = λ

Figure 2.6: The stochastic timeline of the M/M/1/n stack is depicted.

However, there is a big difference, that is each simulation has an uncertainty in the

output. Now, the events are not governed by the simple structure of static lifetimes but

guided by stochastic clocks that generate, according to this, the samples that is one lifetime

(as we can see the shadowing bars).

We can see two type of events, λ and µ, which can be marked as active event or inactive

depending on the present state. Thus, an active event can be an old clock or a new clock,

and conversely an inactive event has an inactive clock. An old clock is achieved by the

subtraction of the clock values of the triggered events until this old clock is triggered,i.e.,

it is assigned a original value minus every clock values that are triggered until then.

The definition of the inactive clocks, the new clocks and the old clocks is given by

C(en, i) = −1, en /∈ E(Si)

C(en, i) = F(·, Si, Si−1, en), en ∈ N(Si, Si−1, e)

C(en, i− 1)− C(e∗i−1, i− 1) = C(en, i), en ∈ O(Si, Si−1, e)

(2.18)

where n is the number of events, i is the ith steps of simulation, and F is one proba-

bilistic distribution function. Therefore, the E(s) is a function of a set of active events in

a state s, and N(s, s′, e) is the function of new clock in order to an event and a transition



2.5. THE STOCHASTIC DISCRETE EVENT SYSTEM 21

to the s′ state to s. Consequently, we define the en ∈ O(Si, Si−1, e) based on the premise

en /∈ N(Si, Si−1, e) and en ∈ E(Si).

In this chapter we have reviewed the basic principles of DES and SDES as well as the

specification of stochastic processes. However, an algorithm that estimates the scheduling

of GSMP is needed in order to solve the learning methodology in a complete way. In the

next chapter we shall review the state of the art concerning learning stochastic systems

and this will serve as foundation for the specification of a new learning algorithm for

GSMP and its abstraction for continuous systems.



22 CHAPTER 2. SYSTEMS AND MODELS



Chapter 3

Related work

In the previous chapter we have given the main definitions and the essential background

necessary to understand the concept of timed automaton, stochastic automaton, DES and

SDES. In this chapter we review the state of the art. In particular we shall concentrate on:

learning generalized semi-Markov chain (see section 3.1), its abstractions for continuous

systems including other approaches (see section 3.2), and two approaches that could verify

and test stochastic models (see section 3.3 and 3.4). Not that this related work is centered

around the development of the basic ideas of learning, verifying, and testing.

We begin with reviewing the learning algorithms for a set of stochastic models like

probabilistic/stochastic automatas (that identify a stochastic language), the discrete-time

and continuous-time Markov chains, and briefly the hidden Markov chains. Next, a few

other approaches to abstract the continuous systems are discussed. This is followed by re-

cent work about statistical model checking, on which tools have been developed that allow

the verification of the learned models. Lastly, we describe the existent testing methods

that are able to test stochastic models.

However, since the models (automatas, Markov chains, etc) are directly related with

DES or SDES we could use probabilistic/statistical model-checkers to check them. More-

over we can generate a set of tests from these models, unit tests or stochastic tests. Also,

the learning approach can be used to learn models, which can then be verified and tested.

3.1 Learning stochastic and probabilistic models

Learning algorithms are widely used for system analysis and system modeling. As we

have said in the previous chapter, the verification and test of stochastic systems is our

main goal. Machine learning solved several problems but in most cases does not ensure

its reliability. So, today some models have scarce reliability. Here we discuss some proba-

23



24 CHAPTER 3. RELATED WORK

bilistic/stochastic learning methods where our goal is to use statistical model checking to

verify it.

The stochastic models are used for reliability and performance analysis of a set of com-

plex systems. As we have presented in the previous chapter various models are available.

Now, we describe some related algorithms for its learning. Carrasco and Oncina [1994]

introduced the criterion of learning stochastic regular grammars. They proposed an al-

gorithm based on state merging to learn a probabilistic automaton. This method begins

by the construction of one prefix tree from a set of output sequences provided by one

implementation (called sample executions). Next, they established a well defined stable

relation (the state equivalence) to merge equal states. This process produces a stochastic

automaton that recognize a stochastic language. It is based on the beginning principle of

language identification in the limit which was introduced by Gold [1967]. He also proved

that regular languages cannot be identified if only text is given, but they can be identified

if a complete presentation is provided (i.e. ”Is the information sufficient to determine

which of the possible languages is the unknown language?”). Later, Carrasco and Oncina

[1999] propose the same solution but in polynomial time.

A more close method is the work developed by Kermorvant and Dupont [2002]. They

present a new statistical framework for stochastic grammatical inference algorithms based

on a state merging strategy. They use the multinomial tests for establishing the equivalence

relation between the states. Their approach has three advantages. First, the method is

not based on asymptotic results, small sample case can be specifically dealt with. Second,

all the probabilities associated to a state are included in a single test (chi-square test -

X 2). Third, a statistical score is associated to each possible merging operation and can

be used for best-first strategy.

Given the good results of the learning probabilistic automatons, Sen et al. [2004b]

propose a new extension to learn the continuous-time Markov chains. Their learning

algorithm consists in learning a model from an edge labeled continuous-time Markov chain

(see section 3.3). Moreover, with this method we can use the learned model from a set

of practical systems (e.g, the industrial systems, the avionic systems, and the automobile

systems) as the input model for a set of available tools. These tools allow the analysis,

verification and testing of Markov chains.

Another closely related work is proposed by Wei et al. [2002]. They propose a method

to learn continuous-time hidden Markov chains and also propose the acquisition process

with fixed length of sample executions (the sample executions have a finite and a static

length defined before all the learning process). This causes a serious trouble in the learning

process if the specified size is not large enough to learn the model, which is known as the



3.1. LEARNING STOCHASTIC AND PROBABILISTIC MODELS 25

problem of insufficient training data. The learning theory shows that the values computed

by the training algorithms converge to the correct probabilities if the amount of training

data tends to infinite. In practice an existing bias is observed. Which one depends on the

number of training samples and on the length of the samples. When the length increases,

the likelihood of a given sequence decreases.

In the following, we explain in detail the learning approaches which will form the basis

of the next chapter.

3.1.1 Learning continuous-time Markov chains

We explain here some details of the learning methodology proposed by Sen et al. [2004b].

They proposed an algorithm also based on state merging paradigm introduced by Carrasco

and Oncina [1994]. The prefix tree is constructed given a set of sample executions. The

prefix tree has two fields coupled to each node, which are the following: expectation value

to each transition branch, and clock samples to each label in a prefix tree node. For

example, figure 3.1 illustrates a prefix tree with five nodes generated by three paths. It

has the transition labels {a, b}, P that is the expected value to the respective branch, and

C the clock samples from transitions.

a


b


ab


a; P=2/3;

C=[0.1;0.5]


b; P=1/2;

C=[1.2;1.6]


b; P=1/3;

C=[0.8;0.9]


l


a


ab


b


a
 b


b


l
 l


aa


a; P=1/2;

C=[0.2;0.1]


a


aa


a


a


l


Samples


Figure 3.1: Example of a prefix tree constructed from three sample executions. It has five nodes

and four transitions each one annotated.

A prefix tree is used to find similar states which is the essence of this state merge

paradigm. When two similar states are found, they should be merged to give rise to a

new model. This process is made recursively for each node in the prefix tree. After that

process one generates a Markov chain, which in this case is an edge labeled Markov chain.

As we have referred, this is an extension of a known continuous-time Markov chain. This

chain has one label (an identification symbol) coupled to each transition and it solves the

nonexistence of transition symbol in CTMC.

The proof of concept in this case is an indispensable task. Thus, Sen et al. [2004b]

demonstrates that given a structurally complete sample his learning algorithm, in the

limit (as sample executions grows to infinite), the learned model is similar or equal to the



26 CHAPTER 3. RELATED WORK

original model.

There is one other approach that we will not explain here that is based on empirical

rules to learn and classify Markov chains [Lowd and Davis, 2010].

3.1.2 Learning hidden Markov chains

The hidden Markov chains [Barbu and Limnios, 2008] have become increasingly popular

in the last several years, for different reasons. There are two strong reasons why this has

occurred according to Rabiner [1990]. First the models are very rich in mathematical

structure and hence can form the theoretical basis for use in a wide range of applications.

Second the models, when applied properly, work very well in practice for several important

applications.

We give here a little insight of hidden Markov chains in order to know how to learn the

observable process.1 Rabiner [1990] proposes a method to learn hidden Markov models in

order to provide a method for voice recognition. Wei et al. [2002] also proposes a method

to learn continuous-time hidden Markov chains for modeling network performance.

However, our objective here is to make it known that there are other types of models

(with a hidden part) that could be verified or tested. Obviously this is a great challenge.

3.1.3 Learning stochastic languages with artificial neural networks

The artificial neural network (ANN) introduced by McCulloch and Pitts [1988] describes

a formal approach of the human brain. The ANN aims to emulate the human thinking

process, and it is constructed by a binary network of neurons in which each neuron is

composed by one activation function and some synopses. The synopses are the input

signals for the activation functions of neuron, which are provided by other connected

neurons in the ANN.

Carrasco et al. [1996] has introduced the criterion of learning stochastic grammars,

as mentioned in the previous chapter, but also another learning method based on ANN.

In his paper he affirms that the generalization ability of your method is acceptable, and

that the second-order recurrent neural network may become in a suitable candidate for

modeling stochastic processes. However, he does not propose an analysis of his approach,

and does not guarantee some important properties to the ANN method, which are ensured

in the method based on MCs.

The ANNs models have advantages and disadvantages over the MCs. The ANNs have

a variety of learning methods, which allows to obtain easily a reasonable model. However,

1The hidden Markov chains have one observable and one hidden process.



3.2. DISCRETE EVENT SYSTEMS SPECIFICATION 27

in many cases the reliability of this model is unobtainable, and an analysis of an ANN is in-

tractable, due to its complexity and non linearity. The stochastic models are clearly better

in analysis and verification. This is due mainly to the developed statistical/probabilistic

model checking tools (see 3.3).

The stochastic solution is more expensive to calculate, nevertheless verifying properties

in learned models is more efficient. Considering the advantages and disadvantages of the

various approaches stochastic models are overall the best option.

3.2 Discrete event systems specification

The discrete event system specification (called DEVS) is a common specification that it is

commonly used in industry. DEVS are a modular and hierarchical formalism for modeling

and analyzing general systems (Wainer [2009] has written a very interesting book about

DEVS). This systems might be described by: discrete state systems, continuous state

system that can be described by differential equations, and hybrid state systems that it is

continuous and discrete state spaces. There is a Matlab toolbox, SimEvents, that includes

DEVS.

There are some developments about discrete simulation of continuous systems as pro-

posed by Nutaro [2005, 2003]. He proposes a parallel algorithm for DEVS in order to

simulate approximations of continuous systems that are provided by the quantization of or-

dinary differential equations (ODE). However, the DES are characterized by asynchronous

and irregular or random executions. So, finding a parallel algorithm is a challenge. As is

well known, DEVS is the closer specification of the foundations of discrete approximations

of continuous systems. Therefore, this specification should be seen in a different way from

the DES approach exemplified in the previous chapter. An another contribution that

uses the same approach, called quantized state system solver (QSS), is by [Cellier et al.,

2007]. It uses two algorithms to quantize the discrete state space of an ODE and pro-

duce an equivalent DEVS. This replaces the classic time slicing by a quantization of the

states, leading to an asynchronous discrete-event simulation model instead of a discrete

time difference equation model. Also discussed in this paper are the main properties of

the methods in the context of simulating discontinuous systems (the asynchronous nature

of these algorithms gives them important advantages for discontinuity handling).

An example of the use of DEVS to make an abstraction of continuous systems is

proposed by Carmona and Giambiasi [2007]. They use the DEVS with an extension called

generalized discrete event modeling (G-DEVS) in order to make the discretization of the

state space for an integrator with linear and polynomial segments. Moreover, in case of



28 CHAPTER 3. RELATED WORK

input discontinuities its remarkable behavior, strongly contrast with the poor solution of

classical numerical solvers.

More recently Castro et al. [2008] proposed a formal framework for stochastic DEVS,

including their modeling and simulation.

3.3 Probabilistic/Statistical model checking

The goal of model checking technique is to try to predict system behavior, or more specif-

ically, to formally prove that all possible executions of the system conform to the require-

ments [Baier and Katoen, 2008]. Thus, probabilistic model checking focuses on proving

correctness of stochastic systems (i.e., systems where probabilities play a role).

However, the quantitative analysis of stochastic systems is usually made using the re-

ward variables, but in many cases this is not enough to validate some requirements. So,

quantitative properties of stochastic systems usually specified in logics are used to com-

pare the measure of executions that satisfies certain temporal properties with thresholds.

The model checking problem for stochastic systems with respect to such logics is typically

solved by a numerical approach, Kwiatkowska et al. [2011, 2008], that interactively com-

putes the exact measure of paths satisfying relevant sub-formulas. Another approach to

solve the model checking problem is to simulate the system for finitely many runs, and

use hypothesis testing to infer whether the samples provide a statistical evidence for the

satisfaction or violation of the specification (called statistical model checking). A recent

overview of statistical model checking is proposed by Legay et al. [2010].

At the moment of writing of this thesis there is a lot of probabilistic/statistical model

checker tools such as: UPPAAL, Prism, MRMC, Vesta and Ymer. Some of them such

as UPPAAL (their new extension of statistical model checking) and Prism (verification

of the real-time probabilistic systems) are clearly two mature tools [David et al., 2011,

Kwiatkowska et al., 2008].

Oldenkamp [2007] has effected a comparison between known probabilistic model check-

ers. They described that Ymer is more accurate than Vesta [Younes, 2004, Sen et al., 2005]

and they made several justifications for that. The statistical model checking formalism

was invented and introduced by Younes et al. [2010]. They also have introduced the verifi-

cation of black-box systems but with some restrictions on verifiable unbounded properties

[Younes, 2005, Sen et al., 2004a].

Younes [2004] proposes a unified logic and a statistical method to verify steady state

properties. Rabih et al. [2011] also proposes other method for the verification of steady

state properties for very large systems. Other approach based on Bayes theorem has



3.4. STATISTICAL MODEL-BASE TESTING GENERATION 29

emerged to check other systems like biological systems [Jha et al., 2009].

Statistical abstractions and model checking of large heterogeneous systems was also

proposed by Basu et al. [2010]. An heterogeneous system is a series of interconnected parts

(computer systems) that act together in a common purpose or produce results impossible

by action of one alone. Their paper proposes the creation of a stochastic abstraction man-

ually for their application. So, this smaller model can be verified using efficient techniques

such as statistical model checking. They have applied their techniques to an industrial

case study, the cabin communication system of an airplane (a model to synchronize all

on-board systems/computers).

3.4 Statistical model-base testing generation

Software development for discrete and continuous systems is an error-prone task. More-

over, several projects use unit test generation to validate their coverage. Testing programs

can be used to make several shots in the program domain, i.e., only detect the presence of

bugs in an execution. But, program testing is incomplete it does not cover overall program

domain but only finite parts. So, we have to use verification techniques like model checking

to do it. To be sure that the code solves the right problem, we must have a specification

that describes what we want the program to do. So, describing it in a formal model that

checks some requirements (properties), avoids many troubles such as the need for the code

to be reworked or discarded. We describe here some related work about model-based

testing, which allows automatic generation of tests for implementations based on models.

An overview of this approach is described in Fraser et al. [2009], techniques to test

with classical model checkers. At the moment of the written of this thesis there is not

any approach to testing with probabilistic/stochastic model checkers. First, the initial

problem is due to a lack of statistical model checkers generating counter example paths.

However, recently some papers has emerged that propose mechanisms to generation of

counter-examples [Aljazzar et al., 2011, 2010, Han et al., 2009].

Now, we describe some results about testing of stochastic systems and also about mu-

tation testing. Merayo et al. [2009] proposes a formal framework to test systems where

non-deterministic decisions are probability quantified and temporal information is defined

by using random variables. They propose in their paper an extension of the classical finite

state machines formalism in order to define the stochastic systems. Thus, he has intro-

duced the notion of conformance relation (establishing what good implementation is) and

the test case (describing what are stochastic tests). Other closed work about statistical

tests is proposed by [Ševč́ıková et al., 2006]. Hierons and Merayo [2009] propose the con-



30 CHAPTER 3. RELATED WORK

cept of mutation testing for probabilistic and stochastic finite state machines.

The state of the art of learning algorithms for probabilistic and stochastic models was

presented here. Also the abstractions for continuous systems, the statistical model check-

ing techniques were described, and the statistical test generation for stochastic models. In

the following chapters, we describe our contributions for the state of the art.



Chapter 4

Learning and testing stochastic

models

In this chapter we present the core foundations of the contribution of this thesis. The

mathematical theorems and definitions introduced in the previous chapters will be used

as basis here. Furthermore the extensions of the previous definitions will be introduced

when needed.

In section 4.1 we extend the definitions for our learning process and in section 4.2, the

learning approach for GSMP based on these new extensions. We also propose, in section

4.4, a method to model the perturbations for continuous systems as well as explain our

efforts to model a subclass of these systems in order to check some boundary requirements.

Given a realistic model through the learning process, we will show how a test oracle can

be constructed for deterministic and stochastic models. Lastly, in section 4.5 we give an

overview of SDES toolbox, our contribution for Matlab.

4.1 Preliminary definitions

In this section we begin by introducing the definitions required for the learning process,

and also we define concepts such as paths, prefix tree, and probability measure of path.

Moreover, we establish a well defined equivalence relation in order to define when states

are similar or equivalent. Lastly, we describe the proposed solution for the problem of non

deterministic merging.

A infinite path of a GSMP = (X , E ,Γ , p, p0 ,G) is a sequence ρ = a0
e1,t1−−−→ a1

e2,t2−−−→
a2

e3,t3−−−→ · · · where each ai is a state, ei ∈ E is an occurred event at time
∑i

x=1 tx, and

ti ∈ R≥0 is the holding time of each event, for all i in N. One says that s = a0 is the

starting state of the sequence.

31



32 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

A finite path from a GSMP is defined by π = s0
e1,t1−−−→ s1

e2,t2−−−→ s2
e3,t3−−−→ · · · en,tn−−−→ sn,

where s0 = s is the initial state, si ∈ X is the state at ith step, ti is equal to the previous

definition, and the length of path is between 0 < i ≤ n, for all i in N.

Given that, we need to establish that finite path provided by one simulation of GSMP

is equivalent to one finite path accepted by the prefix tree. Thus, we can say that the

prefix tree is a particular case of GSMP by the definition 8. Moreover, the prefix tree

constructed from a set of paths is always a particular case of GSMP, even without any

equivalence between the states. However, we cannot ensure here that the model that was

simulated is equal or equivalent to the model identified by the prefix tree (as we shall see

later, the learning in the limit).

Remark 4.1. Note that the prefix tree with two equivalent states could establish a loop

transition, which is not allowed in a prefix tree. Thus, we need to establish the equivalence

with a stochastic automaton in order to always ensure that the converted prefix tree in

this case continues to be a GSMP. The prefix tree is a particular case of a stochastic

automaton, the reverse it is not true.

A prefix tree that has an acceptor S, a set of finite paths (n-samples, denoted by Sn),

is a tree Pr(S) = (Q, F, δ), where Q is the set of the sequence of events accepted by S,

F is a set of entire words accepted by S (F = S), and δ is the transition function which

have the following definition,

δ(s, λ) = s where λ is the empty string,

δ(s, xe) = δ(δ(s, x), e), where x ∈ Q and e ∈ E ,

δ(s, e) = ⊥ if δ(s, e) is not defined, and

δ(s, xe) = ⊥ if δ(s, x) =⊥ or δ(δ(s, x), e) is undefined.

A sequence of events e1 e2 e3 . . . en defined by the prefix tree that accepts π = s0
e1,t1−−−→

s1
e2,t2−−−→ s2

e3,t3−−−→ · · · en,tn−−−→ sn is denoted by π|E . For a given path π starting at s state

where s = s0, we extend our definitions in order to simplify some notation in the above

descriptions and algorithms as follows:

− π|E [s, i] is the ith event of the event sequence that begin in s state,

− π|X [s, i] is the ith state of the state sequence that begin in s state,

− π|G[s, i] is the ith holding time of the event sequence (π|E [s, i]) that begin in s state,

− η(π|E [s, i]) = π|X [s, i− 1] is a function that returns the state associated to an event

ei,



4.1. PRELIMINARY DEFINITIONS 33

− ε(π|X [s, i]) = π|E [s, i + 1] is a function that given a state of a path returns its

associated event,

− δ(π|E [s, i]) = π|G[s, i] is a function that given an event π|E [s, i] returns its holding

time π|G[s, i],

− τ(s, xei) is a function that gives the set of next events {s, x ∈ Q, ei ∈ E | ∀y :

δ(δ(s, x ei), y) 6=⊥} of a given event sequence x ei, for instance {x ei ej , x ei ek, ...}
stays {ej , ek, ...}, and

− a map function σ(π|X [s, i]) = u, where u ∈ Q is a sequence of events accepted by

the prefix tree Pr(π|E).

Now, we will need to ensure that our prefix tree is and will remain a generalized semi-

Markov process. For this reason, we propose (8) as the definition of partial equivalence

that Pr(S) is a GSMP, or in other words a stochastic automaton.

Definition 8. The prefix tree Pr(S) for a set of multiple examples S is a particular

stochastic automaton, i.e., PSA(S) = (X , E ,Γ , p, p0 ,G), where

1. X = accepted sequences from Q,

2. E = unique events from Q,

3. Γ(si) = τ(s, σ(si)),

4. p(s′, s, e) =

{
1 if δ(σ(s), e) 6=⊥ and σ(s′) 6=⊥
0 otherwise

,

5. p0(s) = 1, and

6. G is the estimated probabilistic distributions from a set of multiple path samples.

A PSA is a GSMP consistent with the sample in S. So, for all n-samples Sn there exists

a corresponding path in the GSMP. Following the definitions of correspondence between

GSMP and a prefix tree, we will define the equivalent relation between two states. This

relation creates a more abstract GSMP from a given set of sample executions, where the

size of model is reduced on each equivalence.

We introduce the following a well defined stable relation (9) in order to establish the

correct equivalence of states.

Definition 9. Let M = (X , E ,Γ , p, p0 ,G) be a stochastic automaton, a relation R ⊆
X × X is said a stable relation if and only if for any s, s′ have the following properties,

|Γ (s)| =
∣∣Γ (s ′)

∣∣ (4.1)



34 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

and there is a one to one correspondence f between Γ (s) and Γ (s ′), for any event e, e′ ∈ E ,

i.e.,

G(s, f(e)) = G(s′, e′) (4.2)

where, |Γ (s)| is the number of active events in the state s, and G a probability distribution

function. Two states s and s′ of M are said equivalent s ≡ s′ if and only if there is a

stable relation R such that (s, s′) ∈ R.

Example 4.2. As a concrete example, given |Γ (s)| = |Γ (s ′)| = 2, Γ (s) = {a, b},
Γ (s) = {c, d}, satisfies definition 4.1 (i.e., the set of active events for s and s′ has the

same size), and therefore, satisfies definition 4.2 if G(s, a) = G(s′, c) and G(s, b) = G(s′, d),

or G(s, a) = G(s′, d) and G(s, b) = G(s′, c).

Remark 4.3. The proposed definition 4.1 and 4.2 do not need to know the event identifiers

and its probability distribution.

The correctness of a learning algorithm crucially depends on the fact that merging

two equivalent states results in a GSMP that generates the same previous model. Thus,

the merge of two states due to the existence of equal active event sets creates a non

deterministic choice, which needs to be solved. We propose two solutions for two distinct

situations that are the following. First, if it is known a priori that the model to learning is

a GSMP we apply a deterministic merge from equal nodes, i.e., we know that a subsequent

evolution of two equal states is always similar. Thus, we need to merge them recursively

while there exists two equal states s′ and s′′ as denoted by While (∃ s, x ∈ Q, e ∈ E :

s′, s′′ ∈ σ(s, x e)) merge(s′, s′′).

Example 4.4. Let two non deterministic transitions labeled with same event e after

merging s2 in s1. We initially have ρ(s, x σ(s1)) = e and ρ(s, x σ(s2)) = e that are equal

sets, the merge of this two states is only possible if we merge states s3 and s4 given inversely

by ε(s3) = e and ε(s4) = e. So, merging s3 and s4 may create more non deterministic

transitions. This process can be repeated recursively until there are no another non-

deterministic transition.

Second, it is not know a priori that the model to learning is a GSMP, so in this case we

need to know probabilistically if events are equal or not. We do not need to know the

name of events but only the empirical distribution for each one. We will describe this in

a more detailed manner in the section 4.4.



4.2. LEARNING GENERALIZED SEMI-MARKOV PROCESSES 35

4.2 Learning generalized semi-Markov processes

The proposed learning methodology is based on the state merge technique over a prefix

tree constructed from sample executions. In this case we refer to learning processes that

have a state age memory, which does not occur in processes with Markov property. Thus,

we need to estimate the history of clock states, which can be labeled as old clock, new clock

or inactive clock. Furthermore an estimator is needed in order to predict the distributions

and parameters from sample data. The partial correctness of the learning method is

also described below as learning in the limit. For the method that we will describe, we

guarantee that when the sample grows, the probability error of merging two non-equivalent

states, in the limit, goes to zero.

We propose the algorithm 1 for estimation of past states of the clocks; the algorithm

2 that allows testing the similarity between two states and also construct the stochastic

timed automaton; and lastly the algorithm 5 that estimate the parameters for probability

distributions.

4.2.1 Scheduling as state age memory

As we seen in chapter 2, the Markov processes are characterized by two properties 2.6

and 2.7. However, the GSMP relaxes the property 2.7 which allows different distributions

to each inter-event time (i.e., in GSMP the inter-event times are not equal, unlike in a

CTMP that is governed by a exponential distribution). In general, the GSMP allows the

use of probability distributions like Weibull, Log-normal and Normal (without memoryless

property) for specifying holding time of states.

Due to the relaxed property, data structures like a Fibonacci heap are needed in order

to simulate a GSMP. A Fibonacci heap memorizes the current state of clocks and refresh

its clocks. In SDES the events compete each other to trigger the winner event which have

the smaller time. We proposed a schedule estimator (SE) in order to estimate the past

clock states and infer the original clock value.

Example 4.5. Suppose two events a and b in a state s, two random variables Xa ∼
E(0.2) and Xb ∼ W (1, 0.1). Assuming the state s as initial state, so the events a and b

are labeled as new clock. When this occurs a sample from random variable is achieved, in

this example xa = 1.2s a sample value of Xa and xb = 0.5 a sample of Xb. Then event

a and b compete each other to trigger the event with the smaller value. In this case, the

winner is the event b. Furthermore the sample of event a is saved in a scheduler to be

used in the next time and labeled as old clock.



36 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

Algorithm 1: Scheduler estimator (SE)

input : A set of paths S of size |S| and a prefix tree Pr (S).
output: A prefix tree Pr (S) with modified clock samples.

for n← 1 to |S| do // For all paths n

for l← 2 to |Sn| do // For all nodes l of path n

for p← l to 1 do // Decrement p

if ¬ (ε(Sn,l) ∈ τ(σ(Sn,p))∧ |τ(σ(Sn,p))| > 1∧ ε(Sn,p) 6= ε(Sn,l)) then
p← p + 1; break;

if Sn,p 6= Sn,l then
Val← 0;
for t← p to l do // Estimate the original clock value

Val← Val + δ(ε(Sn,t));
if Sn,t = Sn,l then break;

replace clk(Pr(S), σ(Sn,l),Val) ; // Replace the estimated clock value

The purpose of this algorithm is to estimate when the value of a clock is labeled as new

clock or an old clock. For the learning algorithm only the new clock values are suitable to

predict the probabilistic distributions of each event.

Remark 4.6. Note that in the algorithm 1 we denote S as follows: Sn is the nth path of

S and Sn,l is the lth element of path n, for each 0 < n ≤ |S| and 0 < l ≤ |Sn|.

Our scheduler estimator algorithm is proposed in order to solve the estimation of

original values from clock distributions. This estimation happens due to the existence

of a mapping function between sample executions S and the prefix tree which include

the same samples Pr(S). We define the map function as one relation between sample

execution nodes and prefix tree nodes, which allow to know the produced node in prefix

tree by sample execution node. So, we have a form to traverse each sample execution and

compare child sets of prefix tree in order to predict the label of each clock in a sample

execution.

We explain in the following how algorithm 1 estimates original sample clock values.

First, the algorithm begins by traversing each path of the sample executions set in a

bottom-up order to know if the current event can be triggered by a clock with a label new

clock or an old clock. In this step, we know that an old clock is valid when the successor

nodes have this event activated, otherwise it is labeled as inactive clock. The algorithm

goes to the predecessor node of the current node recursively, in one sample execution, until

we have encountered a possible inactive clock. When an inactive clock is encountered for

the current event this implies that this event is not in its active event set (given by σ

function). Therefore in the worst case the first element of the sample execution can be

encountered. Given this element we can reconstruct the original clock value by the sum



4.2. LEARNING GENERALIZED SEMI-MARKOV PROCESSES 37

0{tFλ
= 0.86}

1{tFλ
= 0.79, tFµ = 0.90}

2{tFλ
= 0.08, tµ = 0.11} 3

4 5

λ1, 0.86s

λ2, 0.79s µ∗

µ1, 0.11sλ∗

Figure 4.1: The example of discrete event system scheduling. This set of transitions and states

forms a sample of one prefix tree with annotations.

of the values between the found element and the current state. Lastly, we replace the old

clock value by the estimated original clock value.

Example 4.7. Considering the model of figure 4.1, a set of samples from M/M/1

queue of the figure 2.5, which is illustrated a prefix tree Pr({s1, s2, s3, s4}) produced by

four sample executions {s1, s2, s3, s4}. In the following we exemplify the prediction of

the original clock value µ1. First, the model initializes at state 0 and only the event λ

can be activated. In this case it is triggered with holding time of 0.86s. Second, we can

choose between event λ and µ since it is in state 1. Suppose that a clock value for each

event is acquired, respectively 0.79s and 0.90s. Now, the winning event is λ with value

0.79s and µ is scheduling to next time with value 0.90 − 0.79 = 0.11s. Next, it follows

the same method is acquired the value 0.20s for event λ. Certainly µ wins with value

0.11 but with a different value from the first value acquired. In a descendant order of the

simulation trace, we reconstructed the real value of µ through a sum of values from sample

execution until the event µ labeled as inactive clock is found. The original clock value of

µ is 0.11 + 0.79 = 0.90s.

The figure 4.1 illustrates the behavior of a SDES scheduler. The black trace exemplifies

how can we estimate original samples of clocks knowing this prefix tree and the path (set of

black arrows). The sample clock values for each state are indicated inside brackets where

tFλ is the sample value from a random variable which follows a probabilistic distribution

of the λ event, and tFµ denote the same but for the µ event.



38 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

Algorithm 2: Probabilistic similarity of states (PSS)

input : A prefix tree Pr (S), and a type I error α.
output: A stochastic timed automaton M = (X , E ,Γ , p, p0 ,G).

M = equivalence(Pr(S)) ; // By the equivalence of definition 8 between the

prefix tree and the stochastic timed automaton.

count← 1;
while count > 0 do

count← 0;
C ← clusterize(M) ; // Clustering by active event set τ(s′) for each node s′

of the stochastic timed automaton M that initially is equivalent to Pr(S).

for c← 1 to |C| do
for n← 1 to |Cc| do

x← n+ 1;
while Cc,x 6= Cc,|Cc| do

if is active(Cc,x) then
if similar(τ(Cc,n), τ(Cc,x), α) then // τ(Cc,n) and τ(Cc,x) sets

are similar

deterministic merge(M, Cc,n, Cc,x);
inactivate(Cc,x);
count← count + 1;

x← x+ 1;

4.2.2 Testing similarity of states

We propose algorithm 2 in order to test the similarity between states, merge them, and

construct a deterministic stochastic timed automaton. This algorithm is created in order

to support an extension of Markov processes, the generalized semi-Markov processes. Our

approach is different from the other approaches proposed by Carrasco and Oncina [1994]

(learn stochastic languages) and Sen et al. [2004b] (learn continuous-time Markov chains).

Remark 4.8. Note that in algorithm 2 we denote C as follows: Cc is the cth cluster of

C and Cc,n is the nth element of cluster C, for each 0 < c ≤ |C| and 0 < n ≤ |Cc|. The

is active and inactivate functions allow that only the prefix tree words that were not

merged are used. The equivalence function coverts a prefix tree on a stochastic timed

automaton.

Our probabilistic similarity of states algorithm is subdivided in three blocks. The first

block is composed by a clusterize function that clustering the states with an equal active

event set (given by τ function). We assume with this function a plain static equivalence

between states, nevertheless we need to establish a while cycle with count > 0 to cover the

other cases when deterministic merge changes clock samples of the similar states. With

this solution we guarantee the property 4.1, which says that only states with event sets of



4.2. LEARNING GENERALIZED SEMI-MARKOV PROCESSES 39

Algorithm 3: Similar function

input : Two active event set E1 and E2, and α a type I error
output: A boolean, True if similar otherwise False

assert(|E1| ≥ |E2|);
foreach e1 in E1 do // Comparing two active event sets E1 and E2

while E2 6= do
e2 ← get element(E2);
Fn1 = T (%(e1)); // Constructing empirical distribution of clock sample set %(e1);
Fn2 = T (%(e2)); // Constructing empirical distribution of clock sample set %(e2);

if

√
n1n2
n1+n2

sup
x
|Fn1(x)− Fn2(x)| > Kα then

break;

put element(E2, e2);

if |E2| < 1 then return True; else return False;

the same size can be merged. The performance comparison between our algorithm and the

others cited in the state of the art can be made [Carrasco and Oncina, 1999, Kermorvant

and Dupont, 2002]. We conclude that their computational structure are quite similar, but

considering performance our method is fastest due to a selection method based on this

clustering methodology.1 In the second block we use the similar function to test when

two states are similar. This function is defined in algorithm 3 and it uses the Kolmogorov-

Smirnov test (A.2.3) to decide if two empirical probabilistic distributions are equal. It

verifies whether there exists a one to one correspondence of events between two active

event sets through a statistical equivalence. If there is a correspondence for all events

of an active event set, the property 4.2 is satisfied. Lastly, the algorithm merges the

equal states by the function deterministic merge. It initializes the construction of the

stochastic timed automaton. This function defined in algorithm 4 solves the problem of

non-deterministic merge of states when two states have the same set of events.

The algorithm 3 is used to test the similarity between two active event sets E1 and E2

within the type I error α, as described previously. The Kolmogorov-Smirnov test (known

as goodness of fit test) is applied to compare two empirical distribution functions with

hypothesis H0 : the distributions are equal, against H1 : the distributions are different.

An α is the error of rejecting a true null hypothesis (H0) in an hypothesis test (see A.2).

The function applies the hypothesis test, knowing the empirical CDF Fn1 and Fn2 , for

two clock samples sets with size n1 and n2 respectively. We denote as T a function for

1Our method can be implemented as a parallel algorithm to increase the performance and to support

more complex systems.



40 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

constructing the empirical cumulative distribution from a set of sample clocks, i.e.,

Tn (x) =
number of z1, z2, ..., zn that are ≤ x

N
(4.3)

where x is the threshold of cumulative function, and zi for all events i ∈ D and D ⊆ E are

the sample clock values. As seen in the preliminary definitions, the function % returns the

collected sample clock data for one event from prefix tree.

Algorithm 4: Deterministic merge function

input : A deterministic stochastic timed automaton ps = (X , E ,Γ , p, p0 ,G) from
sample executions starting in s, two states s1 and s2, a heap h, and a
prefix tree t.

output: A deterministic stochastic timed automaton M = (X , E ,Γ , p, p0 ,G).

if degree[s1] > degree[s2] then state swap(ps, s1, s2);
if s1 = s2 then return; // The recursive stop condition;

if pt find(t, s1) or pt find(t, s2) then
heap put(h, (s1, s2));
return;

removed[s2] = True; // Set the state s2 as removed in ps;

pt add(t, s1); pt add(t, s2); // Add s1 and s2 states to the prefix tree t;

Update states from ps that have a transition pointing to state s2 for state s1;
if |τ(s, s2)| > 0 then // There exists at least one active event from s2;

foreach event e in τ(s, s2) do
if e ∈ τ(s, s1) then

deterministic merge(ps, s1 e, s2 e, h, t);
else

psa insert(ps, s1, e);

pt remove(t, s1); pt remove(t, s2); // Remove s1 and s2 states from t;

while count[h] > 0 do
tuple← heap get(h);
if pt find(t, s1) or pt find(t, s2) then break;
if removed[first[tuple]] then

tuple = (pt get merged(first[tuple]), second[tuple]);

if removed[first[tuple]] = False and removed[second[tuple]] = False then
deterministic merge(ps, first[tuple], second[tuple], h, t);

Ensuring a merge without non deterministic choices for the algorithm 2 is required.

Thus, we propose a recursive algorithm 4, a variant defined previously in section 4.1, which

needs to know a priori that the sample executions are provided by a GSMP. The recursion

is defined with three base cases as follows: two states s1 and s2 are equals, the state s2

does not have any active event, and the state s1 or state s2 is merging in previous steps

of recursion. Otherwise, a recursive call is always made, characterized by a set of rules

which reduce all other cases toward the base case.



4.2. LEARNING GENERALIZED SEMI-MARKOV PROCESSES 41

The algorithm of the deterministic merge function begins by a comparison between

state degree in order to merge the state with higher degree in state with lower degree.

Next, every state that is removed from the deterministic stochastic timed automaton ps

is labeled as removed, and s1 and s2 is added to another prefix tree t in order to avoid

merge them more than once in the recursion path. The pt remove indicates that the states

can be merged in the following recursion paths. Thus, this is the process to block them

when merging each active event from s2 in the corresponding events of s1. An update of

states from ps that was pointing to state s2 for state s1 is needed. Lastly, if there is at

least one element in the heap h then merge the pair of states which cannot be merged in

the previous steps. The pt get merged function gets the equivalent state at time of the

current recursion.

Remark 4.9. Note that we denote some auxiliary functions in algorithm 4 for known data

structures. The pt get, pt find, pt add, and pt remove are auxiliary functions for the

prefix tree, as name indicates to get the equivalent state that was merged, find, add event

sequences (states) and remove event sequences (states). The heap put and heap get are

auxiliary functions for a classical heap.

4.2.3 Model selection applied to the generalized semi-Markov process

To conclude the learning method, we need to introduce the concept of distribution dis-

criminant and its selection criteria. With a merged prefix tree, we acquire the parameters

for distributions that better fits the sample data. This is done by the maximum likelihood

estimator (MLE) and with a selection criteria [Soong, 2004, p. 277], which allows selecting

the distribution with maximal log likelihood. To test the validity of the selection model, a

fitting test could be applied [Stewart, 2009, p. 630], but also ensuring a fast convergence

of the test will be a good principle. The convergence techniques are used to know if the

sample size is enough or not to make a rigorous fitting. We adopt the method proposed by

Dey and Kundu [2009] as a fundamental guide to solve the learning process with reliability

analysis.

We propose the algorithm 5 to solve the estimation of distribution parameters using

the MLE for Exponential, Weibull and Log-Normal distributions, and the log likelihood

criterion as maximal value to select the better model. Other continuous probabilistic

distributions, like Rayleigh, normal (with non negative values) and other continuous dis-

tributions can be considered further.

Consider a set of samples from a GSMP as denoted in the chapter 2, the model selection

criterion based on the log-likelihood from each event and each distribution to test LDist



42 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

Algorithm 5: Estimation function

input : A deterministic stochastic timed automaton model ps from sample
executions starting in s.

output: A deterministic stochastic timed automaton model.

for n← 1 to |Q| do
if removed[node[n]] = 0 then

foreach event e in τ(s, node[n]) do
parameters[0] = infer Exponential(clocks[node[n] e]);
parameters[1] = infer Weibull(clocks[node[n] e]);
switch max(log Likelihood(parameters)) do // Select distribution;

case 1
dist[node[n]] =”Exponential”;

case 2
dist[node[n]] =”Weibull”;

is denoted by

ln [LDist (θ|x1, ..., xn)] =
n∑
i=0

ln [fDist (xi|θ)] (4.4)

where θ is a set of parameters, LDist is a distribution to calculate the log-likelihood, and

x1, ..., xn the sample clocks.2

The MLE is used to estimate the distribution parameters. After that we apply the

log-likelihood to decide which is the best model to the sample data with the following

formula.

ln [LDmax] > max{∀Dist6=Dmax ln [LDist]} (4.5)

The model acquired by the formula 4.5 is denoted by Dmax distribution. Two or

more distributions are used to calculate the likelihood value. They are the empirical

distribution based on the samples, and the other distribution produced by the estimated

parameters. Statistically, this means that one estimated distribution is more similar to the

original distributions, which has generated the samples to learning. Figure 4.2 depicts a

comparison between estimation of distribution parameters. The blue line is obtained from

100 samples of X ∼Weibull(λ = 1, k = 1.5). The green line has the estimated parameter

λ = 0.88, and a log-likelihood of −87. The red line has the estimated parameters λ = 0.98

and k = 1.5, and a log-likelihood of −75.27. The yellow line has a log-likelihood of −75.73.

However, the chosen method does not have a sufficient decision criterion. It has to be

complemented also with fit tests like the Kolmogorov-Smirnov or chi-square (X2). After

that step a good distributions can be obtained. The goodness of fit test is used to make

2Please note that one event has associated only one distribution.



4.3. CORRECTNESS OF OUR LEARNING METHODOLOGY 43

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

x

P
(X
≤

x
)

Cumulative distribution function

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

x

P
(x
)

Probability density function

Figure 4.2: Graphical comparison between an empirical CDF (blue) and three estimated CDF

(green, red and yellow).

a hypothesis test if distribution follows a certain distribution or not. The p-value and

distances are given by this test.

For exponential distribution, the following situations occur:

L (λ) = λnexp (−λnx) (4.6)

ln [L (λ)] =
n∑
i=0

ln [λ exp (−λxi)] (4.7)

where equation 4.6 show the probabilistic density function of a Exponential distribution,

and 4.7 is the log-likelihood function to calculate its likelihood.

It should be clear that the rate of GSMP in this process is equal to one. However,

assuming that we need to learn the GSMP with unknown rate or different to one, in

this case we need to use a more generalized process to estimate the parameters. So, we

propose using the expectation-maximization algorithm which observes the rate plus clock

value (i.e., labeled as old clock) as unobserved or an erroneous measure.

4.3 Correctness of our learning methodology

In order to show correctness of our algorithm, we need to show that the GSMP that the

learning algorithm produces is equivalent (in some sense) to the model that was used to

generate the samples. Thus, our correctness process is subdivided in two parts. First, we

need to check that a set of samples for the learning algorithm is a structurally complete

sample (SCS). Second, ensuring a SCS, we need to prove that, in the limit, the error of

merging two non equivalent states tends to zero. With these two parts we can prove that

the model that is learned by the algorithm, in the limit, behaves as the original.

A SCS is a sample composed by a set of paths that explores every transition and

every state. This solves a common problem known as insufficient data training to learn



44 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

an equivalent model.3 With a SCS we ensure that all information needed to learning a

model is achieved.

The errors that PSS algorithm could make are now described. We have two types of

errors: type I error (α) (where we reject the equivalence of states, when in fact it should

be done) and type II error (β) (where we do not reject the equivalence of states, when

in fact we should have done), to ensure that our algorithm decides correctly we need to

reduce both errors on to zero (see A.2 for more details).

Proposition 4.10. Suppose the Kolmogorov-Smirnov test for two samples with size n1

e n2 respectively, and a significance level α. For sufficiently large samples, i.e., when

n1 →∞ and n2 →∞, β tends to zero.

In the following we present a sketch of the proof. The proof of this proposition is based on

the following findings: by the theorem of Glivenko-Cantelli when H0 is true and n1 and

n2 tend to infinity, sup
x∈R
|Fn1(x)−Fn2(x)| converges certainly to zero. So, from uniqueness

of the limit, when H0 is true and n1 →∞, n2 →∞, we have that
√

n1n2
n1+n2

sup
x∈R
|Fn1(x)−

Fn2(x)| tends certainly to +∞. Therefore, in the validity of H1, the probability of rejecting

H0 tends to 1, which was to be demonstrated.

More details about the proposition that we present here can be seen in Yu [1971]

and Klotz [1967]. Other related work to guarantee the bi-simulation is given by Danos

et al. [2006]. Our method does not consider the co-algebraic methods (it is based on a

statistical approach). Defining the GSMP with these methods is complex due to GSMP

being considered analytically intractable.

4.4 Abstractions of discrete event systems

The aerospace and automotive industry typically uses computer systems to simulate con-

tinuous systems. For instance, a satellite uses an on-board computer to calculate the

corrections to maintain itself in the desired orbit. These type of systems are hard to run

in real time due to their complexity. Thus, we propose here an abstraction for continuous

systems (small-case complexity) to simulate these systems as discrete event systems. With

this, we could verify and simulate these systems in a simple fashion (from the literature

we know that there are several parallel algorithms that simulate DES, which increase the

simulation performance).

3Only paths of infinite size guarantees that for any model, the learned model eventually converge to an

equivalent.



4.4. ABSTRACTIONS OF DISCRETE EVENT SYSTEMS 45

There are open problems related to representation of continuous systems in an event

oriented model like DES such as the conversion of continuous systems to discrete event

systems and the attribution of events as time changes. Thus, while event oriented models

can be expressed in terms of the DEVS modeling formalisms, there are continuous-variable

system (CVDS) model that do not seem to have an equivalent representation in event

oriented models. This opens the question of how time-driven model can be converted to

an event-driven model? It is possible for all models? We try to describe at least one

solution for a small class of CVDS.

Nutaro [2005] has proposed a discretization algorithm to simulate ordinal differential

equations (ODE) as DES. This method uses a discrete step value for segmenting continuous

variables in discrete segments. For instance, if we have a variable between [10, 22] (a

continuous state space), the discretization with step of 1 produces the set of states X =

{10, 11, 12, ..., 22} (a discrete state space). This type of uniform discretization is called

as quantized state system solver (QSS1, QSS2, and QSS3) as introduced by Cellier et al.

[2007]. There are several comparative studies in the literature between these algorithms,

which show that the algorithms have notoriously different performance. These methods

solve ODE and simulate it as discrete state changes.

Remark 4.11. The presented DES definition in chapter 2 is rather different from the

definition of DEVS. DEVS aim at the discretization of continuous systems, but with a

really set of restrictions. On the other hand, DES allow a much better abstraction for

stochastic discrete event systems. Our goal is to explore the stochastic process that behaves

as event change and does not as state change (respectively, DES and DEVS). Moreover,

note that for SDES we establish an approach to verify it with a statistical model checker

and for stochastic DEVS there is no such approach result. For DEVS verification there

are other approaches like Hwang and Zeigler [2009], Cicirelli et al. [2010].

4.4.1 Comparing discrete event specification with stochastic timed au-

tomaton

The comparison between DEVS and DES is essential to understand their differences. From

Zeigler et al. [2000] we know that DEVS can be seen as an extension of the Moore machine

formalism, which is a finite state automaton where the outputs are only determined by the

current state (and do not depend directly from the input and transitions). This extension

is proposed in two following phases:

− associating a lifespan with each state, and second

− providing a hierarchical concept with an operation, called coupling.



46 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

We present the formal definition of the atomic DEVS in order to explain shortly the

implications of the approach proposed in this thesis. There is also DEVS with stochastic

clocks called as stochastic DEVS (STDEVS) [Castro et al., 2009], which it will not be

presented here in detail. Thus, DES are essential to simplify and check continuous dy-

namic systems, even in timed automaton or DEVS (or even stochastic timed automaton

or STDEVS).

We will explain how DEVS work comparatively to the definitions of the timed au-

tomaton model exposed in chapter 2. In definition 10, we expose a model with three main

parts: the input events (the inputs of the system), the internal behavior model (states

change without any input due to its dynamics), and the output events (output change

as state change). An occurrence of an external event changes the actual state to another

state instantaneously, and the internal dynamics keeping the actual clock values for the

next state change.

We expose two definitions of DEVS, the first is the atomic DEVS and the second the

stochastic DEVS. These definitions are defined according to Zeigler et al. [2000].

Definition 10. The atomic DEVS model is defined by M = (X .,Y .,S, τ, δx, δτ , λ) where

− X . is a set of input events,

− Y . is a set of output events,

− S is a set of states (that can a infinite number of states),

− τ : S → R[0,∞] is the time advance function where R[0,∞] is a set of non-negative real
number with infinity,

− δx : Q × X → S is the external state transition function, where Q = {(s, e)|s ∈
S, 0 ≤ e ≤ τ(s)} is the total states set and e is the elapsed time at s,

− δτ : S → S is the internal state transition function, and

− λ : S → Y is the output function.

Definition 11. A STDEVS model has the structure, MST = (X .,Y .,S, τ,Gint,Gext, Pint, Pext, λ)

where

− X .,Y .,S, τ, λ have the same definition as in DEVS,

− Gint : S → 2S is a function that assigns a collection of sets Gint(s) ⊆ 2S to every
state s,

− Gext : S×R[0,∞]×X . → 2S is a function that assigns a collection of sets Gext(s, e, x) ⊆
2S to each triplet (s, e, x),

− Pint : S × 2S → [0, 1] is a function that returns a probability Pint(s,G) to the next
internal state change, when the system is in state s, and carried in the internal
transition set G ∈ Gint(s), and



4.4. ABSTRACTIONS OF DISCRETE EVENT SYSTEMS 47

− Pext : S . × R[0,∞] × X . × 2S → [0, 1] is a function that returns a probability for the
next state given Gext(s, e, x) that contains all the subsets of S, where s is a state, e
is an elapsed time, and x is a event identifier when an external event arrives.

We invite the reader to read Zeigler et al. [2000] and Castro et al. [2009] for more details

about DEVS and STDEVS, respectively. We describe next the differences between DEVS

and timed automatas and also the similarity between STDEVS and stochastic timed au-

tomatas.

− The DEVS have a particular structure that allows us to model then as known Moore

machines. It has a more intuitive basis properly than DES. So, we can support input

occurrences that are external to the system (called input events, X .), and it has an

internal event associated to each state (called output events, Y .). The discrete event

systems only have a set of events, it does not separate the events as input and output,

meaning by this that it does not support input events.

− The time structure of DEVS is static and is associated to each state, i.e., each state

has fixed lifetime. In timed automatas each event has associated one holding time.

− In the STDEVS a stochastic process changes the state. In the SDES there is a

stochastic clock. The event with minor value is the winner.

Now, we try to emphasize the relation between STDEVS and SDES. We know that our

definitions in chapter 2 are more comprehensive nevertheless the DEVS are closer to the

classical systems due to the definitions of the system behavior as well as system structure.

Converting STDEVS in stochastic timed automatas. Our learning approach al-

lows the translation of this models through sample executions. However, there is certainly

an equivalence between the two models. We are convinced that the GSMP can model

this type of behavior because it is a more comprehensive model. On the other hand, the

problem of input events can be solved by the synchronization of processes. For instance,

suppose that we have two synchronized models, one of these generate inputs and cause

changes in the other processes externally. A simple example are queues, where the input

of one is the output of the other.

4.4.2 Discrete and stochastic abstraction approaches

With the massification of simulation of continuous systems we need to explore simple ways

to make a similar simulation but with less resources. Moreover, the verification procedures

and test generation are more explored and simplified. For this, we short by proposing an



48 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

Control System

u(t) = γ(r, x, t) ẋ = f(~x, ~u, t)
u (t)

U1 U2

y = g(~x, ~u, t)

Figure 4.3: General diagram for the injection of disturbances in dynamical systems with feedback.

introduction about DEVS and STDEVS that is clearly different from the DES and SDES

definitions. Thus, here we propose a methodology to model a small class of continuous

systems using DES definitions and adopting polynomials for event specification. And

what we mean is that we can use a piecewise of polynomials (defined by its coefficient) to

simulate the model as discrete event system and produce the output as continuous systems

by the calculation of the first order or second order polynomials.

Perturbation models for dynamic systems. Perturbation models are widely used

to test the dynamics of continuous systems. These models simulate several situations and

certify that the continuous system can be used in this cases with success. The behavior

of dynamic systems in some cases is tested with boundary tests that represent that the

system is capable of modeling and controlling (i.e., the worst and optimal case execution

of system). A typical diagram to inject perturbations is described in figure 4.3. This figure

depicts the relation between a model (dynamic system) and a controller model (control

system for dynamic systems).

Example 4.12. For instance, supposing that we have a cruise control system (con-

troller) and an electrical accelerator (continuous system) we have the necessity to test this

system in a set of cases. The potentiometer that measures the pedal position can give

erroneous measures due to changes in humidity. Now, the system may not be tolerant

for these measurement errors and crashes the continuous system. Indeed we are facing an

uncertain cause that breaks the cruise control (a probable failure of system). We known

that the failure of one potentiometer is controllable (humidity is linearly related to the

resistance factor that the potentiometer measures). However, we do not know when a

potentiometer can be broken due to an oxidization or other unknown cause.

In the following we describe two methods that solves these described problems. The

first solution is to use test generation given a set of possible cases, using deterministic

input models (e.g., for the linearly change of resistance due to humidity). The second one

is using stochastic models to generate uncertainty in the input data set of a system (e.g.,

the resistor can be broken due to an oxidization or other unknown cause). For this two

solutions are proposed DES and SDES respectively. The first one allows to simulate and



4.4. ABSTRACTIONS OF DISCRETE EVENT SYSTEMS 49

verify deterministic continuous dynamic models, and the second one allows the better and

simple simulation and test. Moreover, we can use the stochastic models for verification,

to ensure that a certain condition is allowed or not.

Deterministic perturbation models. We describe and exemplify a methodology for

test and validation of dynamic systems that follows a common structure as presented in

the diagram of the figure 4.3. We will describe a small-scale example of the modeling of

one perturbation model for an inverted pendulum.

Figure 4.3 depicts one dynamic system and its controller (like the cruise control exam-

ple). We have two main blocks, the control block and the system block. The control block

is defined by the function γ(r, x, t), where r represents the scalar or a vector of reference

for the controller (the desired equilibrium point for the controller), x the state vector of

the system to control (given that is a system with closed-loop feedback), and t is a time

variable. Also the dynamic system that is defined by ẋ = f(x, u, t) is depicted, where x

is the state vector of the system, and u the input vector for the dynamic system from the

controller block.

The identifiers U1 and U2 are two perturbation models, one given by the measure noises

and other by the control information noise. The difficulty is to find U1 and U2 such that

they are appropriate to validate the system in a real way. Thus, we can directly apply

the methods proposed in this thesis, for the acquisition of perturbation models (e.g., data

given by a sensor network). Moreover, we can learn a model on very specific conditions

(which depend on the dynamic system) and testing dynamic system in a realistic way. It

should be noted that methods of pre-processing of data is necessary in order to obtain

these models.

The figure 4.4 depicts one simulation of a particular second-order differential equation.

We can see that with a DES that have 12 states and 25 events, we can produce a model

that are really similar. The produced model by our learning algorithm is shows in figure

4.5. The estimated polynomials are depicted in the table 4.6.

Quantization and learning continuous systems. Dynamical systems typically evolve

over a continuous state space, commonly called continuous-variable dynamic systems. We

can verify this type of system with a low-level approach. So, methods for converting the

state space are needed. The discretization should be made, with as little loss as possible

so that the difference of the systems have an error edisc, which is as close to zero. Note

that if there is a very small error this is probabilistically negligible, since the test of this

hypothesis will be controlled.



50 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

y
(t
)

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

y
(t
)

Figure 4.4: The graph (left) depicts the output of a second-order differential equation. The line

(blue) is the simulation of this equation, and the line (red) is the quantization of this equation.

Dashed lines are a non-uniform state space that are quantized by our algorithm. The graph

(right) depicts a simulation of the discrete event system that abstracts the second-order differential

equation.

The quantization starts by choosing the abstraction that is required. We begin by apply

a clustering algorithms (K-means) in order to non-uniformly segment the continuous state

space. After that we need to apply a polynomial fitting method in order to estimate

the coefficients that are more close to the segment between thresholds of quantization.

Applying that we can learn the path by label the discrete states. After this we have

created a model like the one showed in figure 4.5.

Stochastic perturbation models. The stochastic injection models, as the name sug-

gests, are models where the injection signals vary according to a stochastic process. With

this perturbation model we can test or inject stochastically on continuous systems.

Given a set of continuous domain data we can quantize this and submit it to our

learning algorithm. It produces a stochastic model based on events. However, the known

problem is know how can throwback the process. We propose the use of polynomial chaos

to better understand it.

Contextualizing the model checking, to verify a GSMP, we need to express this model

in a specific language. This language is based on events. So, we have incorporated in our

toolbox a converter according to the syntax and semantics defined in B.1. This language

is directly accepted by Ymer [Younes, 2004] as input model, and it is an equivalent input

model language of PRISM [Kwiatkowska et al., 2011].

Optimizations in the implementation (as will be seen below) are made in order to

model a large set of paths. This implementation was called by SDES framework and is

developed for the Matlab environment. It allows the simulation of GSMP, its visualization,

learning and testing. The tool was developed mainly in C and C++ languages.4

4http://desframework.sourceforge.net/



4.5. MODEL-BASED TESTING OF STOCHASTIC DISCRETE EVENT SYSTEMS51

01

2

3

4 5 6 7

8

9

1011

01 02

03

04

05

06

07
08

09

0a
0b

0c0d
0e

0f

10

11

12
13

14

15

16 17

1819

1a

Figure 4.5: The discrete event system of the

second-order differential equation illustrated in

the figure 4.4 is depicted. It have 12 states and

25 events.

Second-degree polynomial coefficients
Id A B C

01 -0,49967 0,99998 1,1512e-07
02 -0,49615 0,99939 2,5477e-05
03 -0,48499 0,99504 0,00045
04 -0,46352 0,98063 0,00288
05 -0,42429 0,94036 0,01327
06 -0,26084 0,64487 0,14724
07 -0,08304 0,06473 0,62204
08 -0,01410 -0,23055 0,93849
09 0,03470 -0,47438 1,24328
0a 0,06673 -0,65782 1,50612
0b 0,07975 -0,74205 1,64234
0c 0,08150 -0,75433 1,66393
0d 0,08143 -0,75388 1,66309
0e 0,08059 -0,74755 1,65130
0f 0,07769 -0,72516 1,60794
11 0,07145 -0,67440 1,50475
12 0,04199 -0,40914 0,90762
13 0,00961 -0,06453 -0,00968
14 -0,00242 0,07800 -0,43166
15 -0,00991 0,17325 -0,73461
16 -0,01289 0,21375 -0,87222
17 -0,01311 0,21671 -0,88249
18 -0,00600 0,10279 -0,42612
19 0,00182 -0,04412 0,26420
1a 0,00099 -0,02403 0,14421

Figure 4.6: The table depicts the coefficients

for each event. A event is composed by a 3-

tuple of coefficients used to reconstruct the

continuous behavior of the model.

4.5 Model-based testing of stochastic discrete event systems

Model based testing is contextualized here in order to test deterministic systems and

stochastic systems. In the following we propose two methods:

− We must have a model of DES (deterministic) that we can apply the inputs produced

by a stochastic system and acquire the correct outputs from the classical model (the

deterministic DES). So we have a set of unit tests based on a realistic source for any

DES.

− Generate stochastic tests for a stochastic model

With appropriate perturbation models, we can validate the control system in a more

realistic way, however the test of dynamic systems are not assured. The diagram of figure

4.7 illustrates the test for dynamic systems using GSMP, which aims to test the similarity

of these systems. Suppose a SDES learned from an inverted pendulum system (through

a discretization measurements taken), we can test its behavior according to the actual

experiences, inferred through the learning process presented in this thesis. Thus, we can

probabilistically decide whether the system acts in a certain range, correctly. The basic

idea is equivalent to Ševč́ıková et al. [2006], Merayo et al. [2009], two approaches to test

generation on stochastic and probabilistic systems. In Merayo et al. [2009] the authors



52 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

System
H0 : System ∼ GSMP

H1 : System 6∼ GSMP

GSMP

In Out

Figure 4.7: The diagram depicts the scheme for testing stochastic models with GSMP.

proposed to create tests based on trajectories of stochastic and probabilistic finite state

machines (SPFSM) and oracles of tests to ensure the satisfiability testing in stochastic

and probabilistic finite state machines(SPFSM). Therefore, we propose as future work,

the development of this test framework, which can either be based on tests derived from

GSMP, such as synchronized executions of both models (although the latter requires that

the dynamic system and the GSMP be run simultaneously and synchronously).

4.6 SDES toolbox - Simulation, learning, verification and

testing

One application that applies the previous learning definitions was developed. Thus, we

created a small Matlab framework to analyze GSMP, learning GSMP, model conversion

to event-driven languages, and a simple testing generation. The framework was created

with aid of two imperative languages C and C++. Both languages are interconnected

with Matlab engine and functions created with these languages are called in the Matlab

console as known Matlab language.

In table 4.1 we illustrate an analysis of source code lines in order to give an overview

of our Matlab framework interface. The framework has hundred thousand lines of code

excluding the third-party code that our framework needs. The C language is the language

that has the majority lines of code.

We have produced a set of practical examples, as described in the next chapter 5, to

show that our algorithm in practice is useful and scalable. We also developed a graph-

ical user interface in order to simplify and make a user friendly interface. The figure

4.8 illustrates, without detail, the main window of the SDES framework inside Matlab

environment. We can execute some useful tasks, like simulation, learning, testing and ver-

ification. The SDES framework could be used in command line as function calls or with

a simple graphical tool that shows graphically the distributions functions of each event.

The interfaces for each function are described in appendix B. This GUI was developed due

to a lack of Matlab to show graphically timed automatas and stochastic timed automatas.



4.6. SDES TOOLBOX - SIMULATION, LEARNING, VERIFICATION AND TESTING53

Language files blank lines comment lines code lines

C/C++ Header 24 403 501 3014

C 20 876 822 2338

MATLAB 16 395 544 2096

C++ 9 422 289 962

Bourne Shell 1 115 141 789

Objective C 1 3 0 61

SUM 71 2214 2297 9260

Table 4.1: Code lines analysis of SDES toolbox for Matlab.

So, we created a Matlab diagram designer for Markov chains in a general way. The GUI

is created with Qt toolkit for binding C++ language.

To understand how our framework works we made a high level diagram that approaches

the previously theoretical presented solutions and the constructed application for Matlab.

Diagram 4.9 shows the correspondence between applied methods and used data structures

in it.

The learning process basically starts by generating a set of sample executions from a

known GSMP model and simulating it. This simulation generates the sample executions

that can be used for the learning algorithm. So, the essential of learning algorithm are the

Schedule Estimator, Probabilistic Similarity of States, and lastly the Model Selection. As

we can see the SE receives a event-driven prefix tree constructed from sample executions,

producing as output an event-driven prefix tree with clocks changed (to original samples).

The PSS use its data structure to establish a stable relation between states. The event-

driven prefix tree is a particular case of one stochastic automaton so we assume that and

merge equivalent states. As output we produce a stochastic automaton. Now, we could

apply the model selection in order to estimate the parameters of distributions for each

event. Lastly, after these steps we can have one equivalent GSMP model similar to the

original (the model recognizes at least the same language).

The perturbation models are quite different from the presented previously. The gen-

eration of perturbation models have the following process. First, we have a continuous

state space and not a discrete state space that is a notorious difference. So, we need to

setup an efficient mechanism to learn stochastic processes from a continuous dynamics.

This mechanism is base on the application of stochastic polynomials between each discrete

state. For that we need to apply one discretization. The diagram of the figure 4.10 illus-



54 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS

Figure 4.8: An overview of SDES framework with Matlab environment on background and in

the top window our learning front end. The top window shows graphically the automaton (left),

probabilistic distribution shape of selected event/s (top right), and the event-language production

that corresponds to graphical automaton (top bottom).

trates how our toolbox makes it in practice. Several continuous dynamics are discretized

in the same discrete state space and it formulate a stochastic polynomial coefficients for

each event.

In this chapter, we have proposed the learning approach for GSMP, the abstraction

for continuous systems, and also two test generation approaches. In the next chapter we

present practical case studies that take advantage of the methods proposed here.



4.6. SDES TOOLBOX - SIMULATION, LEARNING, VERIFICATION AND TESTING55

GSMP model
Sample

executions

SA with esti-

mated distributions

Event driven

prefix tree

EDPT with

changed clocks

SA with equiva-

lent states merged

GSMP learning method.

ISE

PSS

MS

Producing

Simulate

Creating

Figure 4.9: Diagram of learning a GSMP model from sample executions. The gray rounded

rectangle show the three processes (SE, PSS, MS) involved in this model learning method and our

interaction. The white rounded rectangles are the data structure involved in its particular step.

Stochastic

dynamics of

continuous

system

SDES

without event

coefficients

SDES

with event

coefficients

SDES
Sample

executions

Sample exe-

cutions plus

coefficients

Stochastic

dynamics of

continuous

system

Figure 4.10: The diagram depicts the high-level sequence of the process to learn deterministic and

stochastic continuous systems as SDES.



56 CHAPTER 4. LEARNING AND TESTING STOCHASTIC MODELS



Chapter 5

Evaluation of GSMP learning

In the previous chapter, we have described a learning approach, abstractions, and test

generation for generalized semi-Markov processes. In practice our proposal covers a set

of practical case studies. Here, we evaluate three case studies. We also show that our

solution is more useful than other solutions that are used to solve the process with a

hand made process. As we will see in the literature of performance analysis for land-

satellite communication these methods are error prone. We solve this problem here with

our proposed method.

The evaluations that we present in this chapter are meant as an aid to practitioners

who want to use and applying GSMP learning. Our learning algorithm allows us to analyze

the learned model and further if it is needed verify it by a statistical model checker like

Ymer Younes [2004].

5.1 Case studies

The first case study is an empirical analysis of a learned model from a set of sample

executions generated from a known GSMP, we also compare the produced models with

the variation of sample executions size. The second case study is an analysis with our

learning algorithm for a DVB-S communication with a fast train, i.e., a land mobile

satellite communication performance analysis.

5.1.1 Learning from a known model: performance analysis

A practical analysis of the previously proposed method is presented in this section for two

different empirical models. These two models were created to show in practice how our

algorithm evolves, its performance, and also analyze how the outputs change according to

different sizes of the sample execution set. The first empirical model is a simple GSMP with

57



58 CHAPTER 5. EVALUATION OF GSMP LEARNING

A

B

C

a

b

b

a

Figure 5.1: Empirical

GSMP model as a stochas-

tic automaton with three

states and two events.

, , abc

, ab, c

, ac, b

, bc, a

A, bc,

B, ac,

C, ab,

AB, c,

BC, a,

AC, b, ABC, ,

ab
ac

bc

a

b a

c

b

c

a

c

b
c b

a

c

a

b

Figure 5.2: The empirical GSMP model of the two-core scheduler

for three different tasks a, b, c. It is composed by 11 states and three

CDF for each task, respectively, Weibull(1, 1.5), Exponential(0.8),

and Log-Normal(3, 0.9).

three states and two events, which we use mainly to illustrate the scheduler behavior of the

GSMP and its inverse estimation in our learning process. We describe also a performance

analysis for learned model with sample execution sets of different sizes and an analysis

of the distribution parameters estimator for learned clock structure. The second model

was created to show an analysis of a two-processor system scheduler, in order to find a

makespan optimal scheduler (i.e., the minor time difference between the start and finish

of a sequence of tasks). We use this model to show that our method can produce the same

output model and can be checked by a statistical model checker like Ymer Younes [2004].

Furthermore, we can use a similar approach in UPPAAL extended with statistical model

checking David et al. [2011]. At the moment of writing this thesis, the tool still has some

limitations due to its recent development. The model checking allows the verification of

one or more properties. For instance what is the probability that a scheduler (for two

processors and three tasks) attributing the tasks in an execution order that take less

execution time.

Empirical model. The model M = (S, E , f,Γ , x0 ,G) is defined according the figure

5.1 by a set of three states S = {A,B,C}, two unique events E = {a, b}, four transitions

f(A, a) = B, f(A, b) = C, f(B, b) = C, f(C, a) = A, three active events set one for

each state Γ (A) = {a, b},Γ (B) = {b},Γ (C ) = {a}, the initial state A, and lastly two



5.1. CASE STUDIES 59

PDF G(a) = Exp(0.1) and G(b) = Weibull(0.4, 1.25). This model stochastically identify

the event language ’aba’ or ’ba’, as regular expression ([aba] + [ba])∗. This GSMP have

one particularity that are exploited, which is supposing that GSMP starts in state A and

trigger the event κ[a,A], the next event κ[b, B] is an old clock of κ[b, A], i.e., κ[b, B] =

κ[b, A]− κ[a,A].

Semi-empirical two-processors scheduler model. An optimal scheduler design for

multi-processor systems with uncertain task duration is a difficult challenge [Ng et al.,

2009, Pinedo, 2008]. We present a model in figure 5.2, from which it is possible to

achieve statistically answers about worst case sequence and optimal case sequence of a two-

processors scheduler system. The GSMP can run at the same time two concurrent tasks,

so we need to know stochastically what is the more probable start sequence and further

view what is the worst or optimal sequence. This GSMP is composed by eleven states and

six events, three start events ab, ac, bc and other three events/tasks a, b, c. The empirical

distributions to this model are Exponential(1), Exponential(1.15), Exponential(1.25),

for first three events and Weibull(), Exponential(), and Log-Normal(), respectively. So,

the task to be processes first probabilistically is the ab, the second ac and lastly the bc.

We compare the performance of these two models, as the sample size grows. We

present in the following steps to simulate and learn the two GSMP model from a sample

executions. For each GSMP we perform a discrete event simulation in order to get a large

set of sample executions and then learning the GSMP with our algorithm. We ensure

that the sample execution set is a structurally complete sample, i.e., all of those states

are contemplated at least with one passage and all of those transitions are triggered at

least one time in the set of sample executions. Lastly, we conclude that our algorithm

allows the same stochastic event language as the original. Now, after we try some times

to view if the produced model is equal for various simulations. If the sample is enough,

with different simulations our algorithm produces the same learned model.

We have made some tests in a machine with an Intel Core 2 Duo CPU T7500 @ 2.2Ghz

with 4Gb of memory. The results of our approach are shown in figure 5.3.

5.1.2 Analysis of DVB-S communications for fast trains: a model

The railway environment constitutes an extremely challenging scenario for satellite based

communications. As land mobile satellite communication (LMSC) Csurgai-Horváth and

Bitó [2007], the railway satellite based communications (RSBC) is characterized also by

three states: blockage state due to large obstacles like buildings, bridges , tunnels and



60 CHAPTER 5. EVALUATION OF GSMP LEARNING

101 102 103 104
0

1

2

3

4

5

6

7

Number of samples

T
im

e
(s
)

Performance analysis

102 103 104
0

1

2

3

4

Number of samples

N
u
m
b
er

o
f
st
a
te
s

Convergence analysis

Figure 5.3: The performance and convergence evaluation of our method. The graph (left) is the

performance analysis of our method to learn the previous empirical models, and the other graph

(right) is the convergence analysis of our methodology.

train stations; shadowing state due to small or light objects like trees plus catenaries,

electrical posts and trellises; and lastly LOS state when there is an absence of effects, the

line of sight. For the long tunnels and train stations, proper gap fillers (e.g., terrestrial

repeaters) have to be contemplated. The RSBC allows broadband Internet connections

and multimedia services (e.g., digital TV) to be provided for passengers.

In this case study, we construct a model and we make a further analysis in order to

show how useful is the proposed algorithm. So, we can verify some claims about our model

as simple as saying that the occurrence of small obstacles is less than 15% or the occurrence

of LOS is greater than 90%. The data used in this case study is provided by a complete

statistical analysis from Sciascia et al. [2003a] and Sciascia et al. [2003b]. Through this

analysis we construct a sample generator in order to produce a similar dataset. With this

dataset we show that the constructed model have the same particularities as first order

analysis as referred.

The main advantage in this case study using our methodology is the full automation of

the modeling and verification process versus hand made process. The hand made process

is error prone. However, our learning algorithm ensures guaranties about the learning

process, which it is the same as say that the process is not error prone.

Reconstructing data samples. In this case study, we do not use a genuine dataset

instead we use graphical plotted results from a statistical analysis from Sciascia et al.

[2003a] in order to produce a complete dataset. From a given distribution, we can ap-

proximately produce outputs like the original data samples. Given the PDF from figure

5.4, we can identify easily three peaks around -61dBm, -71.4 dBm and -74dBm where

the distribution of the received signal level is more concentrated. This effect is due

to some repetitive situations along the railway path. So, we can subdivide it in three



5.1. CASE STUDIES 61

−84 −82 −80 −78 −76 −74 −72 −70 −68 −66 −64 −62 −60 −58 −560

0.1

0.2

0.3

0.4

Signal level (dbm)

P
D
F

Received power level

−84 −82 −80 −78 −76 −74 −72 −70 −68 −66 −64 −62 −60 −58 −560

0.2

0.4

0.6

0.8

1

Signal level (dbm)

C
D
F

Received power level

Figure 5.4: Graphs of PDF (left) and CDF (right) for the received power level of the land-satellite

communication system in one trip from a high speed Italian railway (from Florence to Campiglia

M.).

segments like the above mentioned states: shadowing, blockage and LOS. The intervals

[−81dBm,−72dBm], ] − 72dBm,−67dBm] and ] − 67dBm,−56dBm] characterizes re-

spectively the blockage state (north west lines), the shadowing state (dots) and LOS state

(north east lines).

The samples are calculated using the inverse transform sampling (ITS) method. Let

X be a random variable and F a cumulative distribution function. The ITS method starts

by generating a random number u from the uniform distribution in the interval [0, 1], and

then computes the value x such that F (x) = u, where x is a sample from distribution

F . The F (x) = u can be used as inverse cumulative distribution function X = F−1(U),

where X distribute F and U ∼ U(0, 1).

After the reconstruction of states, we can estimate the holding time tn for each event en

in order to produce a sequence of events (e.g., blockage
e1,t1−−−→ LOS

e2,t2−−−→ shadowing
e3,t3−−−→

LOS
en,tn−−−→ · · · ). We known the fade time distribution and the non-fade time distribution,

in figure 5.5, and also some time rates between LOS state and blockage state, and between

LOS state and shadowing state. Applying this distributions to the estimated states we

obtain the sample paths as described below. The probability of these three states are

respectively 0.1023 (blockage state), 0.1399 (shadowing state), and 0.7578 (LOS state).

In general, the fading time and non-fading time are the time interval that is needed to

cross in upper-ward (non-fading time) or down-ward (fading time) direction a threshold.

For example, supposing two thresholds −72dBm and −67dBm, we know that non-fading

time is the time interval that staying in the state shadowing crossing the −67dBm and

comes again in a down-ward direction to state shadowing or blockage. The fading time is

precisely the inverse, and also the same happens to the −72dBm threshold.



62 CHAPTER 5. EVALUATION OF GSMP LEARNING

10−1 100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time(s)

P
D
F

The fadding and non fadding PDF at threshold level -67dBm and -72dBm

Fading −72dBm
Non-fading −72dBm
Fading −67dBm
Non-fading −67dBm

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time(s)

C
D
F

The fadding and non fadding CDF at threshold level -67dBm and -72dBm

Fading −72dBm
Non-fading −72dBm
Fading −67dBm
Non-fading −67dBm

Figure 5.5: The PDF (left) and CDF (right) of the fading and non-fading distributions for two

thresholds parameters respectively −72dBm and −67dBm. The dash line (blue) represents the em-

pirical PDF from original sample values, and the solid lines (yellow, blue, red and green) represents

the estimated PDF, as we seen the estimated distribution are very close to empirical.

Learning the land-satellite communication model. The previously proposed learn-

ing algorithm for GSMP can be applied directly in this case study with small changes on

data preprocessing. The learning algorithm basically consists of using set of sample ex-

ecutions to construct a SA without knowing the labels of states. The samples collected

from land-satellite communication system provide information about the label of states,

but not of the identifier of events. As we seen previously, we know that in a DES there is

a state space change when an event occurs. So, we consider an event when a state change

occurs in the output measures of this system (e.g., change blockage state to shadowing

state, blockage state to LOS state, etc.).

The sample executions from the realistic system (i.e., the land-satellite communication

system) can be achieved directly by measures of signal level. Now, we have a sample path

of 9600 seconds provided by the above reconstruction process. We know that the sequence

of measures depends from time and it is needed to apply a simple preprocessing technique

to label the events as the state of model changes. So, it finding the events and known the

states, we need only to divide the path in a set of equal segments with a given size but

always starting in the same state. After this step, the sample data can be learned by our

learning algorithm and constructing the land-satellite communication model of the Italian

railway.

Analyzing the graphs of the figure 5.5 it is possible to view that there is an algebraic

composition between distributions with different thresholds. We describe the relation

between distributions and events as follows: the non-fading distribution at −72dBm rep-

resents the holding time distribution of event LB when state LOS (L) changes for state

blockage (B); the non-fading distribution at −64dBm represents the holding time distri-

bution of event LS when state L changes for state shadowing (S); the fading distribution



5.1. CASE STUDIES 63

B S L

BS

LB

BL

LS

LB

1 module dvbs
2 state: [0..2];
3 [] (state=0) ->
4 L(-7.389563,2.872699) : (state’=1);
5 [] (state=1) ->
6 W(24.451307,0.459428) : (state’=0) +
7 L(3.729935,1.185887) : (state’=2);
8 [] (state=2) ->
9 W(24.451307,0.459428) : (state’=0) +

10 W(0.055173,0.187233) : (state’=1);
11 endmodule

Figure 5.6: The known model with three states and two events respectively W(5,1) and W(1,1).

at −72dBm represents the holding time distribution of event BS when state B changes

for state S; and lastly the fading distribution at −64dBm represents the holding time

distribution of event BL when state B changes for state L. So, there are six events, the

last four and two more events SB and SL as algebraic compositions from last ones. The

SB is the difference between events LB and LS, and SL is the difference between events

BS and BL.

For example, suppose the sequence of states B S B S L B S B S L the according events

are respectively BS SB BS SL LB BS SB BS SL, where B is the start state and L the last

state with respective initial event BS and final event SL.

Figure 5.6 illustrates the learned SA without event BL. This absence is due to the

nonexistence of a passage from state B to L due to constrains from a signal level indicator

of the common receivers. This is one interesting thing that our learning algorithm has

detected. The box with code show in figure 5.6 is an event language interpreted by the

model checker Ymer (as referred in appendix B.1) that was represented graphically on

left. We show in the following paragraph that the learned model has the same probability

distributions than the ones that have generated then.1

Analyzing the model. In a long execution run we can verify that the probability that

the model stays in LOS state is similar to the probability referred in the graph of the

figure 5.4. The same occur for the other two states. We can prove properties like this one:

P≤p [trueU96 LOS]. It says that the model has one probability less than or equal to p of

LOS is achieved until 96 seconds. However, this can be used to achieve the probability of

system makes some sequence of events.

1Note that we show that our learning algorithm produces an equivalent model based on measured

samples that producing the probabilistic distributions from the literature, obviously a real situation will

be more appropriate.



64 CHAPTER 5. EVALUATION OF GSMP LEARNING

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y
(t
)

Figure 5.7: Discrete state space partition (the horizontal dotted lines) from 11 second-order differ-

ential equations, with states change interval (the red vertical lines).

5.1.3 Learning a set of second-order differential equations as perturba-

tion model to CVDS

We present here a simple example of a creation of a linear perturbation model for one

particular CVDS (inverted pendulum). At the time of writing this thesis the stochastic

polynomials were addressed as further work.

We explain now the figure 5.7. There are represented eleven second-order equations

with different parameters. The goal is to produce a model that can be abstract this

behavior and produce linear random paths. We have learned the model with several

paths. The dynamic system are simulated with hundred different parameters. Next, we

have applied a non-uniform quantization in order to convert the continuous space state

on a discrete space state. This can views on several vertical (red) lines. Each state have

different lifetimes. With this lifetimes we can estimate a probabilistic distribution with

the help of our learning algorithm. Lastly, we have processed a set of paths to create

the model of the figure 5.8. This model is a stochastic timed automaton. It is clearly a

generalized semi-Markov process.

Non-Uniform discretization. This discretization is made with the help of a clustering

algorithm (K-Means) like the method exemplified in section 4.4.2. In this case clustering

the points between the range of −0.8 and 1 with a cluster parameter of twelve. We archive

twelve states defined by the horizontal dashed lines (that are boundaries) of the figure 5.7.

So, we have a state space with twelve states {s1, s2, s3, s4, ..., s12} that represents each pair

of boundary values on table 5.1.



5.1. CASE STUDIES 65

Range of states

s0 -0.6 -0.4

s1 -0.4 -0.25

s2 -0.25 -0.1

s3 -0.1 -0.04

s4 -0.04 0.02

s5 0.02 0.14

s6 0.14 0.3

s7 0.3 0.48

s8 0.48 0.66

s9 0.66 0.86

Table 5.1: The boundary values of dis-

cretization of several second-order equation

simulations.

Estimated parameters

µ1 3.01
µ2 2.96
µ3 3.43
σ1 0.17
σ1 0.19
σ1 0.09
λ1 0.73
λ2 1.05
λ3 4.85
k1 6.89
k2 5.68

Table 5.2: The estimated parameters of the

learned (hundred) second-order simulations.

It has eleven parameters.

0 1 2 3 4
e4, N(µ1, σ1)

e1, N(µ2, σ2)

e3,W (λ1, k1)e2, N(µ3, σ3)

e2,W (λ2, k2)

e∗, Exp(λ3)

Figure 5.8: Stochastic automaton learned with our proposed method.

The values of table 5.1 will be used and managed to reconstruct linearly the continuous

domain. We describe here the two sample paths that exemplify the inputs for our algorithm

that have generated the stochastic automaton of the figure 5.8. They are the following:

− φ1 = s5
e1,t1−−−→ s6

e2,t2−−−→ s7
e3,t3−−−→ s8

e4,t4−−−→ s9
e5,t5−−−→ s10

e6,t6−−−→ s9
e7,t7−−−→ s8...

− φ2 = s5
e1,t1−−−→ s6

e2,t2−−−→ s7
e3,t3−−−→ s6

e4,t4−−−→ s5
e5,t5−−−→ s4

e6,t6−−−→ s3
e7,t7−−−→ s4...

We repeat this process recursively for several simulations (one hundred). Applying

the scheduler estimator and the probabilist similarity of states algorithms we obtain the

model of the figure 5.8 without estimated parameters. The parameters of the table 5.2

are obtained using the model selection algorithm. With this information we can produce

several random paths.

In this chapter, we have discussed three case studies. The first empirical evaluations

are judged to be successful and show that it can be applied to real scenarios like a real-time

scheduler system tasks. Next, a realistic case study based on real data statistics revealed

that our method is capable of the analysis of real-time systems. Lastly, we have described

a stochastic approach to generate linear perturbation models. We have addressed the

learning of polynomial stochastic perturbation models for further work, which were our

goal initially. In the next chapter we conclude our thesis and propose further work.



66 CHAPTER 5. EVALUATION OF GSMP LEARNING



Chapter 6

Conclusion and Future Work

At the outset of this thesis we embarked on an ambitious endeavor to develop algorithms for

learning GSMP and abstractions for continuous systems. We believe our research effort to

be a good start towards practical solution techniques for stochastic discrete events systems,

but we most certainly acknowledge that we have only scraped the surface of this vast area

of research.

In the area of learning stochastic discrete event systems, we have established an equiva-

lence between this model and a more abstract model (generalized semi-Markov processes).

We have implemented a new and the first algorithm to learn GSMP. This learning al-

gorithm allows us to construct models given data from realistic sensor networks or even

samples from real environments. With this we can provide a set of features such as the

possibility of statistically verifying these models using statistical model checking and test-

ing deterministic models or even creating stochastically a suite of tests. We have ensured

that our learning algorithm, in the limit, is equal or similar to the one that was used

for learning. We demonstrate the proposition that merging two equivalent states is cor-

rect when sample executions grow infinitely. We also show that the convergence of the

Kolmogorov-Smirnov test is reachable (i.e., a exponential convergence). We also have

proposed an algorithm to estimate the scheduler of events of a GSMP. This allows us to

estimate the original clock values and estimate the parameters of the probabilistic distri-

butions coupled to each event. A potential benefit of discrete event systems is that they

tend to be highly amenable to parallelization in comparison to other common systems.

We have exemplified one real case study that can be amenable for analysis and simulation.

We can use this model to simulate the high speed train availability to the satellite and

test the new land-satellite communication protocols. We have exemplified an analysis of

scheduling algorithms for real-time systems when the uncertainty govern the execution

time of tasks.

67



68 CHAPTER 6. CONCLUSION AND FUTURE WORK

Our contribution to the abstraction of continuous systems addresses the conversion of

dynamic systems (modeled by differential or difference equations) to the discrete event

systems. We base this method on an established non-uniform quantization. Non-uniform

quantization methods have been absent in quantization and simulation of ordinal differen-

tial equations. We have presented two approaches. The first for deterministic system like

second-order differential equation and other not quite a complete solution but a beginning

of one for stochastic systems. Thus, the discrete event system model for second-order

differential equation has demonstrated that abstractions of continuous systems with non-

uniform quantization and piecewise of polynomials are very accurate. On the other hand,

this discrete event model could be simulated with less resources. Also we have described

that, due to polynomial piecewise events, we can reduce drastically the size of state space

of the system.

The complete stochastic test generation, as referred as a generic goal of thesis, was

addressed partially. The completion of this task is clearly future work. We propose testing

stochastically using the aid of deterministic models to generate a set of tests for common

deterministic systems.

It is clear that there are systems in the real world for which our assumptions are inap-

propriate. Widening the extensions of our framework is definitely future work. We have

provided practical techniques for learning generalized semi-Markov processes, abstractions

of continuous systems and testing using stochastic models. We also have presented a set

of evaluation case studies that are all solved with success. The possibility to verify sta-

tistically the learned stochastic models is a great advantage. Use an approximate model

amenable to numerical verification techniques it is generally hard to quantify the effect

that a model approximation has on the validity of the verification result. With our ap-

proach this does not occur. As more sample available more probable is that our model

is similar to the unknown or original model (in the limit, the decisions that made by our

algorithm are correct, in the sense that they are indistinguishable from the original one).

In future research, we plan to identify several complex and real-world applications for

the techniques that we have developed. We also address as future work the creation of a

framework for test generation. We conclude by saying that our contributions have greatly

expanded the actual state of the art of stochastic discrete event systems, thus allowing a

much wider covering of systems such as the analysis of real models, verification of learned

models, and testing them as realistic perturbation models.



Appendix A

Statistical background

A.1 Random number generators

An excellent reference for background on event simulation, random generation and sta-

tistical validation techniques is the book by Ross [2006]. The book describes Uniform

distribution, Exponential distribution, Weibull distribution, and Log-Normal distribution

generation. Another great reference is Soong [2004].

A.2 Statistical validation techniques - model verification

A statistical hypothesis test is a method of making decisions using data, whether from

distributions that may be specified completely with prespecified values for their parameters

or that may be specified with parameters yet to be estimated from the sample. We use

the definition of Type-I and type-II errors according to Soong [2004]. We also expose one

decision method, namely, the Kolmogorov-Smirnov test.

A.2.1 Preliminaries

Let X1, X2, ..., Xn be an independent sample of size n from a population X with a hy-

pothesized probability density function (pdf) f(x; ) or probability mass function (pmf)

p(x; ), where may be specified or unspecified. We denote by hypothesis H the hypothesis

that the sample represents n values of a random variable with pdf f(x; ) or p(x; ). This

hypothesis is called a simple hypothesis when the underlying distribution is completely

specified; that is, the parameter values are specified together with the functional form of

the pdf or the pmf; otherwise, it is a composite hypothesis. To construct a criterion for

hypotheses testing, it is necessary that an alternative hypothesis be established against

which hypothesis H can be tested. An example of an alternative hypothesis is simply

69



70 APPENDIX A. STATISTICAL BACKGROUND

another hypothesized distribution, or, as another example, hypothesis H can be tested

against the alternative hypothesis that hypothesis H is not true.

In our applications, the latter choice is considered more practical and we shall in

general deal with the task of either accepting or rejecting hypothesis H on the basis of a

sample from the population.

A.2.2 Type-I and type-II errors

As in parameter estimation, errors or risks are inherent in deciding whether a hypothesis

H should be accepted or rejected on the basis of sample information. Tests for hypotheses

testing are therefore generally compared in terms of the probabilities of errors that might

be committed. There are basically two types of errors that are likely to be made – namely,

reject H when in fact H is true or, alternatively, accept H when in fact H is false. We

formalize the above with definition 12.

Definition 12. In testing hypothesis H, a Type-I error is committed when H is rejected

when in fact H is true; a Type-II error is committed when H is accepted when in fact H

is false.

In hypotheses testing, an important consideration in constructing statistical tests is

thus to control, insofar as possible, the probabilities of making these errors. Let us note

that, for a given test, an evaluation of Type-I errors can be made when hypothesis H is

given, that is, when a hypothesized distribution is specified. In contrast, the specification

of an alternative hypothesis dictates Type-II error probabilities. In our problem, the

alternative hypothesis is simply that hypothesis H is not true. The fact that the class

of alternatives is so large makes it difficult to use Type-II errors as a criterion. In what

follows, methods of hypotheses testing are discussed based on Type-I errors only.

The table of probability errors in a test hypotheses is described following.

Table A.1: Relations between truth/falseness of the null hypothesis and outcomes of the test.

Null hypothesis (H0) is true Null hypothesis (H0) is false

Reject null hypothesis Type I error Correct outcome

Fail to reject null hypothesis Correct outcome Type II error

A.2.3 Kolmogorov-Smirnov

The Kolmogorov-Smirnov (K-S) test [DeGroot, 1989, Stewart, 2009, p. 552,p. 625] is used

to detect differences between two distributions. We use this test for the algorithm 2.



A.2. STATISTICAL VALIDATION TECHNIQUES - MODEL VERIFICATION 71

Let {Xn}n≥1 and {Yn}n≥1 two independent successions of independent real random

variables with a common distribution functions, respectively F1 and F2. The Kolmogorov-

Smirnov test allows testing,

H0 : F1(x) = F2(x), for all x ∈ R against (A.1)

H1 : F1(x) 6= F2(x), for some x ∈ R

using the statistic test

Tn1,n2 =

√
n1n2
n1 + n2

sup
x∈R
|Fn1(x)− Fn2(x)| (A.2)

where Fn1 and Fn2 denotes respectively the empirical distribution functions associated to

the samples (X1, ..., Xn1) and (Y1, ..., Yn2). The real random variable Tn1,n2 converges into

lay of Kolmogorov-Smirnov with distribution function,

G(t) =

(
1− 2

∞∑
i=1

(−1)i−1 exp(−2i2t2)

)
I]0,+∞[(t) (A.3)

whose values are tabled in [DeGroot, 1989, p. 555].

For a significance level α we reject H0 when the observed value T̂n1,n2 of the test

statistic for the particular samples (x1, ..., xn1) and (y1, ..., yn2) exceeds the value Kα, with

G(kα) = 1− α.



72 APPENDIX A. STATISTICAL BACKGROUND



Appendix B

Semantics

B.1 Event language

This section presents the syntax of a module like Ymer input language, characterizing a

GSMP. The extended BNF of Ymer input language have the following conventions:

− Each rule is of the form 〈non-terminal〉 ::= expansion.

− Alternative expansions are separated by a vertical bar (”|”).

− An asterisk (”*”) following a syntactic element x means zero or more occurrences of

x.

− Terminals are written using typewriter font.

− Case is significant. For example, X and x are separate identifiers.

− Parentheses and square brackets are an essential part of the syntax and have no

semantic meaning in the extended BNF notation.

− Any number of whitespace characters (space, newline, tab, etc.) may occur between

tokens.

There are two top-level syntactic elements that may occur in an input file: 〈model〉
and 〈property〉. A 〈name〉 is a string of characters starting with an alphabetic character

followed by a possibly empty sequence of alphanumeric characters, hyphens (”-”), and

underscore characters (” ”). A 〈pname〉 is a name immediately followed by a prime symbol

(”’”). An 〈integer〉 is a non-empty sequence of digits. A 〈number〉 is a sequence of numeric

characters, possibly with a single decimal point (”.”) at any position in the sequence, or

two integers separated by a slash ”/”. A 〈probability〉 is a number with a value in the

interval [0, 1].

73



74 APPENDIX B. SEMANTICS

B.1.1 BNF

〈model〉 ::= 〈model-type〉 〈declaration〉* 〈module〉*
〈model-type〉 ::= stochastic | ctmc | gsmp

〈declaration〉 ::= const 〈name〉 = 〈integer〉;
| rate 〈name〉 = 〈number〉 ;

| global 〈name〉 : 〈range〉 ;

| global 〈name〉 : 〈range〉 init 〈expr〉 ;

〈range〉 ::=[ 〈expr〉 .. 〈expr〉 ]

〈module〉 ::= module 〈name〉 〈variable-decl〉* 〈command〉* endmodule

| module 〈name〉 = 〈name〉 [ 〈substitution-list〉 ] endmodule

〈substitution-list〉 ::= 〈name〉 = 〈name〉 | 〈name〉 = 〈name〉 ,〈substitution-list〉
〈variable-decl〉 ::= 〈name〉 : 〈range〉 ;

| 〈name〉 : 〈range〉 init 〈expr〉 ;

〈command〉 ::= 〈synchronization〉 〈formula〉 -> 〈distribution〉 : 〈update〉 ;

〈synchronization〉 ::= [ ] | [ 〈name〉 ]

〈formula〉 ::= 〈formula〉 & 〈formula〉 | 〈formula〉 | 〈formula〉 | ! 〈formula〉
| 〈expr〉 〈binary-comp〉 〈expr〉 | ( 〈formula〉 )

〈binary-comp〉 ::= < | <= | >= | > | = | ! =

〈distribution〉 ::= 〈rate-expr〉
| Exp ( 〈rate-expr〉 )

| W ( 〈rate-expr〉 , 〈rate-expr〉 )

| L ( 〈rate-expr〉 , 〈rate-expr〉 )

| U ( 〈rate-expr〉 , 〈rate-expr〉 )

〈update〉 ::= 〈name〉 = 〈expr〉 | 〈update〉 & 〈update〉 | ( 〈update〉 )

〈expr〉 ::= 〈integer〉 | 〈name〉 | 〈expr〉 〈binary-op〉 〈expr〉 | ( 〈expr〉 )

〈binary-op〉 ::= + | - | *

〈rate-expr〉 ::= 〈integer〉 | 〈name〉 | 〈rate-expr〉 〈rate-op〉 〈rate-expr〉 | ( 〈rate-expr〉 )

〈rate-op〉 ::= * | /



Appendix C

A Matlab interface of SDES

toolbox

Our application has a set of Matlab functions. Now, we describe the interface of these

functions followed by a brief description of the input/output data types. Our toolbox

has more functions that not are described here (they are experimental functions) for

perturbation model generation, testing GSMP, and some examples for Matlab. These

examples are generated automatically for the case studies presented in chapter 5 (at the

present moment there are three case studies).

C.1 Examples

To understand how the GSMP with our toolbox could be learned we made some exem-

plifications that will present below. So, adopting the Matlab code of the figure C.1 we

show the creation of a stochastic automaton that is composed by three states declared

in Mc.S with respective labels in Mc.Sl, two events declared in Mc.E with also respective

labels Mc.El, the boolean matrix Mc.ES that indicates the active events in each state, the

3-dimensional p matrix with probability of transit from state s to state s′ given the event

e, and finally the definition of parameters for each distribution of events. We also show

in figure C.1 its graphic representation to understand easily the definition of the GSMP.

We can easily use this model for simulation, producing sample executions, which can be

applied on a further learning process. For example as follows:

>> [hsclk symbpath] = SDES simulator(MC.S,MC.E,MC.ES,MC.p,MC.G, 10, seed);

or simply as,

>> [path] = SDES simulator(MC, 10, ’path’, 1);

to simulate the showed example. Given a set of paths from several simulations (executing

75



76 APPENDIX C. A MATLAB INTERFACE OF SDES TOOLBOX

1 MC = MarkovChain_handler;
2

3 MC.S = [1,2,3];
4 MC.Sl = {’s1’, ’s2’, ’s3’};
5 MC.E = [1,2];
6 MC.El = {’t1’,’t2’};
7 MC.ES = [1 1; 1 0; 0 1];
8 MC.p(:,:,1) = [0 0 1; 1 0 0; 0 0 0];
9 MC.p(:,:,2) = [0 1 0; 0 0 0; 0 1 0];

10 MC.G = {’exp’, {1}; ’wbl’, {1,1}};
11

12 % Inverse the matrices
13 MC.p(:,:,1) = MC.p(:,:,1)’;
14 MC.p(:,:,2) = MC.p(:,:,2)’;
15

16 SDES_show(mc);

Figure C.1: Code example (left) and its respective Markov chain (right) that showing a simple

example to understand the Markov chain declaration and visualization within Matlab.

SDESsimulator function) we can use these sample executions as input for the learning

process.1 This can be made typing the following command to the learning the model:

>> [x,y,z,a,b,t] = SDES psa(path);

or with,

>> [x,y,z,a,b,t] = SDES psa(path,’method’,0,’gui’,1);

to aid graphically the learning process without applying any method, or also with,

>> [mc] = SDES psa(path,’gui’,1);

to aid graphically the learning process with the PSS algorithm applied. The outputs

[x,y,z,a,b,t] are the learned model from a set of matrices as, respectively, the states

matrix, the events matrix, the active events 2-dimensional matrix, the probability 3-

dimensional matrix, the matrix that includes the distribution parameters of clocks, and

lastly the time spent in the learning process. The graphic user interface (gui) is enough

to debug or verify the overall process.

C.2 Alphabetical function list

C.2.1 Function ’SDES psa’.

Purpose. This function learns a GSMP model from sample executions. For example,

it can be used with path structure as SDES psa(path), where path is a cell array with

dimension n that contains in each element two-dimensional matrix respectively with the

event id and its time duration.

1Note that all paths can be inserted in a cell array before submitting it to the learning algorithm.



C.2. ALPHABETICAL FUNCTION LIST 77

Description. The front-end of learning GSMP algorithm for Matlab. Using Qt to dis-

play windows and diagrams, and Graphviz to arrange graphically the nodes, the transitions

and the labels before showing in Qt environment. As output produces a learned model

from sample executions in two formats, first on a language interpreted by model-checker

Ymer, and second, stores a set of matrices in the Matlab environment.

Syntax.

>> SDES psa(path)

>> [stts,evts,E,P,G] = SDES psa(path,’method’,mid,’gui’,guion)

Outputs

stts The finite state set.

evts The finite event set.

E The binary matrix NxM of active events (N) for M states.

P The 3-dimensional probability matrix (NxMxE).

G The cell array of stochastic distributions.

Inputs

path The path structure.

mid Using ’0’ does not apply any method and ’1’ applies the PSS algorithm.

guion A boolean variable to active and inactive GUI.

C.2.2 Function ’SDES show’.

Purpose. This function graphically displays a Markov chain or any stochastic automa-

ton from a set of matrices. For example, it can be used with defined Markov chain object

as SDES show(mc).

Description. This function is implemented using the Qt toolkit to display any Markov

chain or stochastic automaton in a window of Matlab. Note that Matlab has a lack of

support for displaying graphs or classical automatons. So, we have implemented this

function to view graphically the data from Markov chain object and if the displayed graph

is the desired, the user feels more comfortable.

Syntax.

>> SDES show(mc)

Outputs

Without functional outputs.



78 APPENDIX C. A MATLAB INTERFACE OF SDES TOOLBOX

Inputs

mc A Markov chain object handle.

C.2.3 Function ’SDES simulate’.

Purpose. This function simulates a GSMP from a defined model and produces a path as

output. For example, it can be used with one Markov chain as the first parameter and the

number of steps to simulate the GSMP as the second argument; SDES simulate gsmp(mc, 10).

Description. This function implements the interface with the simulator for the GSMP.

In other words this is a stochastic discrete event system simulator based on the relaxed

Markov property. So, the simulator uses one scheduler to store the age of events.

Syntax.

>> [path] = SDES simulate(mc,size)

Outputs

path The produced path from GSMP simulation.

Inputs

mc A Markov chain object handle.

size The number of steps to simulate.



Bibliography

Husain Aljazzar, Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. Directed and

heuristic counterexample generation for probabilistic model checking: a comparative

evaluation. In Proceedings of the 2010 ICSE Workshop on Quantitative Stochastic Mod-

els in the Verification and Design of Software Systems, QUOVADIS ’10, pages 25–32,

New York, NY, USA, 2010. ACM. ISBN 978-1-60558-972-5.

Husain Aljazzar, Florian Leitner-Fischer, Stefan Leue, and Dimitar Simeonov. Dipro: a

tool for probabilistic counterexample generation. In Proceedings of the 18th international

SPIN conference on Model checking software, pages 183–187, Berlin, Heidelberg, 2011.

Springer-Verlag. ISBN 978-3-642-22305-1.

S. Asmussen and P. W. Glynn. Stochastic simulation: algorithms and analysis. Springer,

New York, 2007.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation

and Mind Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499.

Jerry Banks. Handbook of Simulation : Principles, Methodology, Advances, Applications,

and Practice. Wiley-Interscience, September 1998. ISBN 0471134031.

V. Barbu and N. Limnios. Semi-Markov Chains and Hidden Semi-Markov Models. Toward

Applications. Their use in Reliability and DNA Analysis, volume 191. Lecture Notes in

Statistics, 2008.

Ananda Basu, Saddek Bensalem, Marius Bozga, Benôıt Caillaud, Benôıt Delahaye, and

Axel Legay. Statistical abstraction and model-checking of large heterogeneous systems.

Research Report RR-7238, INRIA, March 2010.

Jean Claude Carmona and Norbert Giambiasi. New design and simulation of the gdevs

abstraction of an integrator. In SCSC, pages 331–338, 2007.

Rafael C. Carrasco and José Oncina. Learning stochastic regular grammars by means

of a state merging method. In Proceedings of the Second International Colloquium on

79



80 BIBLIOGRAPHY

Grammatical Inference and Applications, pages 139–152, London, UK, 1994. Springer-

Verlag. ISBN 3-540-58473-0.

Rafael C. Carrasco and Jose Oncina. Learning deterministic regular grammars from

stochastic samples in polynomial time. RAIRO (Theoretical Informatics and Appli-

cations, 33:1–20, 1999.

Rafael C. Carrasco, Mikel L. Forcada, and Laureano Santamaŕıa. Inferring stochastic

regular grammars with recurrent neural networks. In Proceedings of the 3rd International

Colloquium on Grammatical Inference: Learning Syntax from Sentences, pages 274–281,

London, UK, 1996. Springer-Verlag. ISBN 3-540-61778-7.

Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387333320.

Rodrigo Castro, Ernesto Kofman, and Gabriel A. Wainer. A formal framework for stochas-

tic devs modeling and simulation. In SpringSim, pages 421–428, 2008.

Rodrigo Castro, Ernesto Kofman, and Gabriel A. Wainer. A formal framework for stochas-

tic devs modeling and simulation, February 2009.

François E. Cellier, Ernesto Kofman, Gustavo Migoni, Mario Bortolotto, and Laboratorio

De Sistemas Dinámicos. Quantized state system simulation, 2007.

F. Cicirelli, A. Furfaro, L. Nigro, and F. Pupo. Temporal verification of rt-devs models with

implementation aspects. In Proceedings of the 2010 Spring Simulation Multiconference,

SpringSim ’10, pages 130:1–130:8, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-

0069-8.

László Csurgai-Horváth and János Bitó. Attenuation time series synthesis for land mobile

satellite links. In Proceedings 16th IST Mobile & Wireless Communications Summit,

2007.

Vincent Danos, Josee Desharnais, François Laviolette, and Prakash Panangaden. Bisimu-

lation and cocongruence for probabilistic systems. Inf. Comput., 204(4):503–523, 2006.

Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Zheng Wang. Time

for statistical model checking of real-time systems. In CAV, pages 349–355, 2011.

André de Matos Pedro, Maria João Frade, Ana Paula Martins, and Simão Melo de Sousa.

Learning generalized semi-markov processes: From stochastic discrete event systems to

testing and verification. INForum - SOFTPT, 2011.



BIBLIOGRAPHY 81

Morris H. DeGroot. Probability and Statistics, 2nd edition. Carnegie-Mellon University,

Addison Wesley, 1989.

Arabin Kumar Dey and Debasis Kundu. Discriminating among the log-normal, weibull,

and generalized exponential distributions. IEEE Transactions on Reliability, 58(3):416–

424, 2009.

Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model checkers: a

survey. Softw. Test. Verif. Reliab., 19:215–261, September 2009. ISSN 0960-0833. doi:

10.1002/stvr.v19:3.

P. W. Glynn. A gsmp formalism for discrete event systems. Proceedings of The IEEE, 77:

14–23, 1989. doi: 10.1109/5.21067.

E. Mark Gold. Language identification in the limit. Information and Control, 10(5):

447–474, 1967.

Tingting Han, Joost-Pieter Katoen, and Berteun Damman. Counterexample generation

in probabilistic model checking. IEEE Trans. Software Eng., 35(2):241–257, 2009.

Mor Harchol-Balter and Allen B. Downey. Exploiting process lifetime distributions for

dynamic load balancing. ACM Trans. Comput. Syst., 15:253–285, August 1997. ISSN

0734-2071.

Robert M. Hierons and Mercedes G. Merayo. Mutation testing from probabilistic and

stochastic finite state machines. J. Syst. Softw., 82:1804–1818, November 2009. ISSN

0164-1212. doi: 10.1016/j.jss.2009.06.030.

Moon Ho Hwang and Bernard P. Zeigler. Reachability graph of finite and deterministic

devs networks. IEEE T. Automation Science and Engineering, 6(3):468–478, 2009.

Sumit Kumar Jha, Edmund M. Clarke, Christopher James Langmead, Axel Legay, André

Platzer, and Paolo Zuliani. A bayesian approach to model checking biological systems.

In CMSB, pages 218–234, 2009.

David G. Kendall. Stochastic Processes Occurring in the Theory of Queues and their

Analysis by the Method of the Imbedded Markov Chain. The Annals of Mathematical

Statistics, 24(3):338–354, 1953. ISSN 00034851. doi: 10.2307/2236285.

Christopher Kermorvant and Pierre Dupont. Stochastic grammatical inference with multi-

nomial tests. In Proceedings of the 6th International Colloquium on Grammatical Infer-

ence: Algorithms and Applications, ICGI ’02, pages 149–160, London, UK, UK, 2002.

Springer-Verlag. ISBN 3-540-44239-1.



82 BIBLIOGRAPHY

Jerome Klotz. Asymptotic efficiency of the two sample kolmogorov-smirnov test. Univer-

sity of Wisconsin at Madisom, 1967.

M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Modeling and Verification of

Real-Time Systems: Formalisms and Software Tools, chapter Verification of Real-Time

Probabilistic Systems, pages 249–288. John Wiley & Sons, 2008.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of

probabilistic real-time systems. In CAV, pages 585–591, 2011.

Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model checking: An

overview. In RV, pages 122–135, 2010.

Will Leland and Teunis J. Ott. Load-balancing heuristics and process behavior. SIGMET-

RICS Perform. Eval. Rev., 14:54–69, May 1986. ISSN 0163-5999.

Daniel Lowd and Jesse Davis. Learning markov network structure with decision trees.

In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10,

pages 334–343, Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-

7695-4256-0.

Ming-Wei Lu and Cheng Julius Wang. Weibull data analysis with few or no failures. In

Hoang Pham, editor, Recent Advances in Reliability and Quality in Design, Springer

Series in Reliability Engineering, pages 201–210. Springer London, 2008. ISBN 978-1-

84800-113-8.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous

activity, pages 15–27. MIT Press, Cambridge, MA, USA, 1988. ISBN 0-262-01097-6.

URL http://dl.acm.org/citation.cfm?id=65669.104377.

Mercedes G. Merayo, Iksoon Hwang, Manuel Núñez, and Ana Cavalli. A statistical ap-

proach to test stochastic and probabilistic systems. In Proceedings of the 11th Interna-

tional Conference on Formal Engineering Methods: Formal Methods and Software En-

gineering, ICFEM ’09, pages 186–205, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN

978-3-642-10372-8.

C. T. Ng, Natalja M. Matsveichuk, Yuri N. Sotskov, and T. C. Edwin Cheng. Two-

machine flow-shop minimum-length scheduling with interval processing times. Asia-

Pacific Journal of Operational Research (APJOR), 26(06):715–734, 2009.

James Nutaro. Discrete event simulation of continuous systems. In Handbook of Dynamic

Systems Modeling, 2005.

http://dl.acm.org/citation.cfm?id=65669.104377


BIBLIOGRAPHY 83

James Joseph Nutaro. Parallel discrete event simulation with application to continuous

systems. PhD thesis, 2003. AAI3119971.

H.A. Oldenkamp. Probabilistic model checking : a comparison of tools, May 2007.

Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Publishing

Company, Incorporated, 3rd edition, 2008. ISBN 0387789340, 9780387789347.

Diana El Rabih, Gael Gorgo, Nihal Pekergin, and Jean-Marc Vincent. Steady state prop-

erty verification for very large systems. International Journal of Critical Computer-

Based Systems, 2011.

Lawrence R. Rabiner. Readings in speech recognition. chapter A tutorial on hidden

Markov models and selected applications in speech recognition, pages 267–296. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1990. ISBN 1-55860-124-4.

Sheldon M. Ross. Simulation. Academic Press, 4 edition, August 2006. ISBN 0125980639.

AG. Sciascia, S. Scalise, H. Ernst, and R. Mura. Statistical characterization of the railroad

satellite channel at ku-band. In proceedings of the International Workshop of Cost

Actions, pages 272–280, 2003a.

AG. Sciascia, S. Scalise, H. Ernst, and R. Mura. Link performance for mobile satellite based

services in ku-band. In proceedings of the 21st AIAA International Communications

Satellite System Conference, 2003b.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-box

probabilistic systems. In CAV, pages 202–215, 2004a.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. Learning continuous time markov

chains from sample executions, 2004b.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. Vesta: A statistical model-checker and

analyzer for probabilistic systems. In Proceedings of the Second International Conference

on the Quantitative Evaluation of Systems, pages 251–, Washington, DC, USA, 2005.

IEEE Computer Society. ISBN 0-7695-2427-3. doi: 10.1109/QEST.2005.42.

T. T. Soong. Fundamentals of Probability and Statistics for Engineers. Wiley-Interscience,

1 edition, April 2004. ISBN 0470868147.

William J. Stewart. Probability, Markov Chains, Queues, and Simulation: The Mathemat-

ical Basis of Performance Modeling. Princeton University Press, Princeton, NJ, USA,

2009. ISBN 0691140626, 9780691140629.



84 BIBLIOGRAPHY

Hana Ševč́ıková, Alan Borning, David Socha, and Wolf-Gideon Bleek. Automated testing

of stochastic systems: a statistically grounded approach. In Proceedings of the 2006

international symposium on Software testing and analysis, ISSTA ’06, pages 215–224,

New York, NY, USA, 2006. ACM. ISBN 1-59593-263-1.

Gabriel A. Wainer. Discrete-Event Modeling and Simulation: a Practitioner’s approach.

CRC Press. Taylor and Francis, 2009.

Wei Wei, Bing Wang, and Don Towsley. Continuous-time hidden markov models for

network performance evaluation. Perform. Eval., 49:129–146, September 2002. ISSN

0166-5316.

H̊akan L. S. Younes. Probabilistic verification for ”black-box” systems. In CAV, pages

253–265, 2005.

H̊akan L. S. Younes, Edmund M. Clarke, and Paolo Zuliani. Statistical verification of

probabilistic properties with unbounded until. In SBMF, pages 144–160, 2010.

Hakan Lorens Samir Younes. Verification and planning for stochastic processes with asyn-

chronous events. PhD thesis, Pittsburgh, PA, USA, 2004. AAI3159989.

C. S. Yu. Pitman efficiencies of kolmogorov-smirnov test. The Annals of Mathematical

Statistics, 42(5):1595–1605, 1971.

Bernard P. Zeigler, Herbert Praehofer, and Tag G. Kim. Theory of Modeling and Simula-

tion, Second Edition. Academic Press, 2 edition, January 2000. ISBN 0127784551.

Armin Zimmermann. Stochastic Discrete Event Systems: Modeling, Evaluation, Applica-

tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. ISBN 3540741720.


	Introduction
	Problem
	Summary of research contribution
	Overview of this thesis

	Systems and models
	An introduction to discrete event systems
	The concept of event
	The model characterization and its abstractions
	Hybrid models
	Examples

	Timed automata
	The clock structure

	Stochastic process basics
	Stochastic timed automata
	The stochastic clock structure

	The stochastic discrete event system
	Equivalence between stochastic timed automata and discrete event systems
	The generalized semi-Markov process


	Related work
	Learning stochastic and probabilistic models
	Learning continuous-time Markov chains
	Learning hidden Markov chains
	Learning stochastic languages with artificial neural networks

	Discrete event systems specification
	Probabilistic/Statistical model checking
	Statistical model-base testing generation

	Learning and testing stochastic models
	Preliminary definitions
	Learning generalized semi-Markov processes
	Scheduling as state age memory
	Testing similarity of states
	Model selection applied to the generalized semi-Markov process

	Correctness of our learning methodology
	Abstractions of discrete event systems
	Comparing discrete event specification with stochastic timed automaton
	Discrete and stochastic abstraction approaches

	Model-based testing of stochastic discrete event systems
	SDES toolbox - Simulation, learning, verification and testing

	Evaluation of GSMP learning
	Case studies
	Learning from a known model: performance analysis
	Analysis of DVB-S communications for fast trains: a model
	Learning a set of second-order differential equations as perturbation model to CVDS


	Conclusion and Future Work
	Statistical background
	Random number generators
	Statistical validation techniques - model verification
	Preliminaries
	Type-I and type-II errors
	Kolmogorov-Smirnov


	Semantics
	Event language
	BNF


	A Matlab interface of SDES toolbox
	Examples
	Alphabetical function list
	Function 'SDES_psa'.
	Function 'SDES_show'.
	Function 'SDES_simulate'.



