
Bigraphical Modelling of Architectural Patterns

Alejandro Sanchez1, Luís S. Barbosa2, and Daniel Riesco1

1 Departamento de Informática, Universidad Nacional de San Luis,
Ejército de los Andes 950, D5700HHW San Luis, Argentina

{asanchez,driesco}@unsl.edu.ar
2 DI - HASLab, Universidade do Minho,

Campus de Gualtar, 4710-057 Braga, Portugal
lsb@di.uminho.pt

Abstract. Archery is a language for behavioural modelling of architec-
tural patterns, supporting hierarchical composition and a type discipline.
This paper extends Archery to cope with the patterns' structural dimen-
sion through a set of (re-)con�guration combinators and constraints that
all instances of a pattern must obey. Both types and instances of ar-
chitectural patterns are semantically represented as bigraphical reactive
systems and operations upon them as reaction rules. Such a bigraphical
semantics provides a rigorous model for Archery patterns and reduces
constraint veri�cation in architectures to a type-checking problem.

1 Introduction

In a number of contexts the term architectural pattern is used as an architectural
abstraction. The expression is taken in the usual sense in classical software archi-
tecture � a known solution to a recurring design problem. In [4] it is characterised
as a description of element and con�guration types, and a set of constraints on
how to use them. Available catalogs such as [8] provide a vocabulary for their use
at a high abstraction level. However, the lack of formality in their pattern doc-
umentation prevents its usage for developing precise architectural speci�cations
on top of them, and in consequence, any tool-supported analysis and veri�cation.

Such is the motivation behind Archery, a language to describe the behaviour
of pattern elements, a subset of which was recently presented at [13]. Its seman-
tics is given by translation to mCRL2 [10]. A pattern speci�cation in Archery

comprises a set of architectural elements (connectors and components) and their
associated behaviours. An architecture describes a particular con�guration that
instances of a pattern's elements assume. This con�guration has an emergent
behaviour and constitutes an instance of the pattern. Then, both patterns and
elements de�ne the types of behaviour expected from instances. The language
supports hierarchical composition of architectures.

This paper, extends Archery to the so-called structural dimension of archi-
tectural patterns. This comprises the usage of typed variables to contain and
reference instances, a set of scripting operations to build architectural con�gu-
rations, and a set of primitives to specify constrains over such con�gurations.

Constraints restrict the class of valid con�gurations that architectures, instances
of a particular pattern, may adopt. Then, recon�gurations are only enabled if
respecting the pattern constraints. For instance, a recon�guration script that
connects two clients in a Client-Server architecture violates the intended use of
the pattern and should be prevented.

A second contribution of this paper is a semantics for the structural dimen-
sion of Archery on top of Bigraphical Reactive Systems (BRS) [11]. The theory
of BRSs was developed to study systems in which locality and linking of com-
putational agents varies independently, and to provide a general unifying theory
in which existing calculi for concurrency and mobility can be represented. The
two main constituents of a BRS are a bigraph and a set of parametric reaction
rules. The former speci�es the BRS structure as two orthogonal graphs upon the
same set of nodes, one modelling locality, and another linking. Rules model its
dynamics, i.e., how the structure is recon�gured through reaction.

The theory of BRSs has a precise de�nition. A bigraph, expressed as a tuple of
functions, is an arrow in a category. Its domain and codomain are objects. A more
restrictive category can be de�ned for bigraphs by including in their de�nition
a mechanism, called sorting, that constrains the con�gurations they can adopt.
This setting allows the formal treatment of the encoded system. In particular,
if conditions are met [11], it allows to automatically derive a labelled transition
system (LTS) from a BRS, in which behavioural equivalence is a congruence.

The choice of BRS as a semantical framework for Archery arose naturally as
the language was expected to allow for independently modifying both placing
and linking of pattern instances. At a more fundamental level, the structural
dimension of patterns and architectures become encoded as arrows in a suitable
category3. Finally, the use of bigraphs reduces the problem of verifying whether
an architectural constraint holds for a pattern to a certain kind of type-checking.
Actually, once a structural constraint is encoded as a sorting, to check if it is
veri�ed by an architecture amounts to translating the latter to a bigraph and
prove that such a bigraph belongs to the category de�ned by the sorting.

The bigraphical encoding presented here is also the basis, along the work
in [5], to explore in [12] the automatic derivation of LTS whose states stand
for the di�erent con�gurations the corresponding architecture can adopt. This
makes possible to resort to behavioural equivalence to compare the application
of di�erent patterns in recon�guring systems.

The following sections illustrate how Archery can be endowed with a bigraph-
ical semantics. For such purposes we limit ourselves to a subset of the scripting
operations and an example constraint. The full version of the language can be
found in [12]. The rest of the paper is organised as follows: section 2 introduces
Archery. Section 3 brie�y recalls the basic theory of BRS and section 4 develops a
formal semantics for the structural dimension of the presented language. Finally,
section 5 concludes and discusses future work.

3 In fact, the name Archery comes from a comment in Steve Awodey's book [3] em-
phasising the importance of arrows in category theory: � ...the subject might better

have been called abstract function theory, or perhaps even better: archery.�

2 The Archery Language

We structure Archery as a core and two extensions, respectively named Archery-

Core, Archery-Script, and Archery-Structural-Constraint. The �rst is a slightly
modi�ed version of the language presented in [13], the second adds the oper-
ations for building con�gurations, and the third incorporates the primitives for
de�ning structural constraints. The structure follows the di�erences in how their
semantics are de�ned. While both behavioural and structural semantics are de-
�ned for Archery-Core, only structural semantics are given to Archery-Script and
Archery-Structural-Constraint. The three language subsets are endowed structural
semantics by translations to bigraphs. However, the codomain of each translation
di�ers, and the third subset requires a more involved approach.

2.1 Archery-Core

A speci�cation in Archery-Core comprises one or more patterns and a main ar-
chitecture. The �rst rule of the grammar, shown in Figure 1, indicates this by
equating the Spec non-terminal to one or more Pat and a Var non-terminals.
Note that several non-terminal are unde�ned; the grammar leaves out the de�-
nition of the ones that are not relevant to the structural dimension.

Spec ::= Pat+ Var

Pat ::= pattern TYPEID (PatPars?) elements Elem+ end

Elem ::= element TYPEID (ElemPars?) Behaviour ElemInterface

ElemInterface ::= interface Port+

Port ::= (in|out) ID ;

Var ::= ID : TYPEID = Inst ;

Inst ::= (ElemInst |PatInst)

ElemInst ::= TYPEID (ElemInstPars?)

PatInst ::= architecture TYPEID (PatInstPars?) ArchBody end

ArchBody ::= Instances Attachments? ArchInterface?

Instances ::= instances Var+

Attachments ::= attachments Att+

Att ::= from PortRef to PortRef ;

ArchInterface ::= interface Ren+

Ren ::= PortRef as ID ;

PortRef ::= ID.ID

Fig. 1: Grammar Fragment for Archery-Core

A pattern is speci�ed according to the rule expanding the Pat non-terminal.
Its de�nition contains, a TYPEID token that represents the identi�er for it, an
optional list of formal parameters, and one or more architectural elements Elem,

i.e., speci�ed according to the Elem non-terminal. For instance, the speci�cation
in Listing 1 includes two patterns: ClientServer and PipeFilter.

Each architectural element in a pattern is speci�ed as described by Elem.
Its de�nition comprises: a TYPEID token as its identi�er, an optional list of
formal parameters, a description Behaviour of its behaviour, and a description
ElemInterface of its interface. The behaviour is speci�ed with a slightly modi�ed
subset of mCRL2 limiting its expressivity to sequential processes. Its description
must contain one ore more process expressions, as the one shown in line 5, and
a list of action de�nitions, like in line 4. The �rst process is the initial behaviour
of the instance and may call other processes de�ned within the element. The
interface contains one or more ports Port. A port is de�ned by a direction indi-
cator, either in or out, and an ID token that must match an action name in
the list of action de�nitions. For instance, the interface of Server de�nes two
ports in line 6. We adopt the underlying metaphor of water �ow in [2] for ports:
an in port receives input from any port connected to it, and an out port sends
output to all ports connected to it. Ports are synchronous: actually a suitable
process algebra expression can be used to emulate any other port behaviour.

Listing 1: Example Patterns and Architectures

1 pattern ClientServer()
2 elements
3 element Server()
4 act rreq, sres, cres;
5 proc Server() = rreq.cres.sres.Server();
6 interface in rreq; out sres;
7 element Client()
8 act prcs, sreq, rres;
9 proc Client() = prcs.sreq.rres.Client();

10 interface in rres; out sreq;
11 end
12 pattern PipeFilter()
13 elements
14 element Pipe()
15 act accept, forward;
16 proc Pipe() = accept.forward.Pipe();
17 interface in accept; out forward;
18 element Filter()
19 act rec, trans, send;
20 proc Filter() = rec.trans.send.Filter();
21 interface in rec; out send;
22 end
23 cs : ClientServer = architecture ClientServer()
24 instances
25 s1 : Server = architecture PipeFilter()
26 instances
27 f1:Filter=Filter(); f2:Filter=Filter();
28 p1:Pipe=Pipe();
29 attachments

30 from f1.send to p1.accept;
31 from p1.forward to f2.rec;
32 interface
33 f1.rec as rreq;
34 f2.send as sres;
35 end
36 c1 : Client = Client(); c2 : Client = Client();
37 attachments
38 from c1.sreq to s1.rreq; from c2.sreq to s1.rreq;
39 from s1.sres to c1.rres; from s1.sres to c2.rres;
40 end

A variable and its value is de�ned according to Var. The variable has an
ID token as its identi�er, followed by a TYPEID token that must match an
element or pattern name. The value can be either a pattern PatInst or an element
ElemInst instance. Note that the variable that follows the pattern de�nitions,
as indicated in the �rst grammar rule, and as shown in line 23 of the example,
must contain an architecture (the main one).

An architecture de�nes a set of variables and describes the con�guration
adopted by the instances in them. It contains: a TYPEID token that must match
a pattern name, an optional list of actual arguments, a set of variables Var,
an optional set of attachments Att, and an optional interface ArchInterface.
Each variable in the set must have as type an element de�ned in the pattern
the architecture is instance of. If the variable has as assigned value an element
instance ElemInst, it is de�ned by a TYPEID and a list of actual parameters. If
it has a pattern instance, like between lines 25 and 35 of the example, a nested
architecture is de�ned. Each attachment Att includes a port reference PortRef

to an out port, and another to an in port. A port reference is an ordered pair
of ID tokens, with the �rst matching a variable identi�er, and the second a
port of the variable's instance. Then, an attachment indicates that the out port
communicates with the in port, such as in the case of f1.send with p1.accept
in line 30. The architecture interface is a set of one or more port renames Ren.
Each port rename contains a port reference and an ID token with the external
name for the port. Ports not included in the set are not visible from the outside.
Including the same port in an attachment and in the interface is incorrect. An
example interface with two renames is shown in lines 33 and 34.

2.2 Archery-Script

Archery-Script is used to specify scripts for creating architectures or for recon�g-
uring existing ones. It assumes the existence of a process that triggers a scripts
under some conditions. Its operations (informally described in Table 1), are de-
�ned independently of any pattern. The design principles of patterns are enforced
through constraints, as it is shown in Section 2.3. This independence, and the
fact that a variable may contain an instance whose type may not necessarily
match the variable's type, allows the reuse of a script in an open family of pat-

terns (related by some re�nement relation). We illustrate the operations through
the example in Listing 2.

Table 1: Set of Operations in Archery�Script
Name Format Description

Import import(s) Receives as a parameter a reference s to an Archery

speci�cation and imports it to the environment of the
executing script (e.g., line 2 in Listing 2)

Create
Variable

v:type Creates a variable with name v and type type (line
3)

Create
Instance

v=type() Creates a new instance of type type and assigns it
to a variable v (line 4)

Add
Instance

addInst(a,v) Adds a variable v and the instance in it, to the archi-
tecture in variable a (line 5)

Attach attach(f.o,
t.i)

Attaches the port o of the instance in variable f to
the port i of the instance in variable t (line 8)

Deattach deattach(f.o,
t.i)

Removes the attachment between the port o of the
instance in variable f and the port i of the instance
in variable t (line 6)

Add
Rename

addRen(v.p,q) Renames port p in variable v with name q (line 15)

Remove
Rename

remRen(v.q) Removes rename q in the architecture in variable v
(line 14)

Move move(s,t) Moves the instance in variable s to the variable t
(line 16); the reference to the contents of t are lost,
but its attachments and renames remain

The example is divided in three parts and assumes the existence of an initial
con�guration we call csinitial. The con�guration is similar to the one in Listing
1, but di�ers in that the nested architecture (between lines 25 and 35) is replaced
by a Server instance (in a single line s1:Server=Server();).

The �rst part of the example recon�gures csinitial by adding and connecting a
second server. It starts with an import operation that leaves the con�guration in
variable cs. The operations in lines 3 and 4, create a new variable s2 and assign
a fresh instance of Server to it. Upon that, s2 is included in the architecture
in cs. Then the operations in the next two lines remove the attachments among
the instances in variables cs.c2 and cs.s1. Subsequently, new attachments
are created between the instance in variable cs.c2 with the instance in variable
cs.s2. We will refer to the obtained con�guration as csfirst.

Listing 2: Example Script

1 script
2 import("initial"); // first part
3 s2 : Server;
4 s2 = Server();

5 addInst(cs, s2);
6 deattach(cs.c2.sreq, cs.s1.rreq);
7 deattach(cs.c2.rres, cs.s1.sres);
8 attach(cs.c2.sreq, cs.s2.rreq);
9 attach(cs.c2.rres, cs.s2.sres);

10 import("pf"); // second part
11 f3 : Filter = new Filter();
12 addInst(pf, f3);
13 attach(pf.p1.forward, pf.f3.rec);
14 remRen(pf.sres);
15 addRen(pf.f3.send, sres);
16 move(pf, cs.s2);
17 c3 : Client = Client(); // third part
18 addInst(cs, c3);
19 deattach(cs.c2.sreq, cs.s2.rreq);
20 deattach(cs.c2.rres, cs.s2.sres);
21 attach(cs.c2.sreq, cs.c3.rres);
22 attach(cs.c2.rres, cs.c3.sreq);
23 end

The second part of the example starts in the line 10 and shows how the
interface of an architecture is modi�ed and then a server is replaced. It assumes
the existence of a con�guration pf , similar to the one described between the lines
25 and 35 in Listing 1, but contained in a variable pf of type PipeFilter.
The script imports such con�guration, creates a new instance of Filter in
variable f3 and includes it in pf. Line 14 removes rename sres from pf. This
removal has the same e�ect as deleting line 34 from Listing 1. Then, a new
rename is included in the interface, but now for port send in variable pf.f3.
Subsequently, the instance in pf is moved to the variable cs.s2. The instance in
the variable cs.s2 is now the architecture of type PipeFilter but connected
as it was the previous instance in such variable.

The third part begins upon line 17. It creates a new client and connects it in a
wrong way. A new variable c3 is created and a new instance of the type Client
is assigned to it. Next, the fresh variable is included in the architecture in cs.
Subsequently, the attachments between the instances in variables cs.c2 and
cs.s2 are removed. Then, the script creates two attachments between instances
in variables cs.c3 and cs.c2. The resulting con�guration violates the design
principle behind a Client-Server architecture by connecting two clients. We refer
to the con�guration obtained upon the script execution as cswrong.

2.3 Archery-Structural-Constraint

To rule out con�gurations such as cswrong, entails the need for mechanisms to
constrain what may count as valid instances of a pattern. Since the variable cs
in the script of Listing 2 is of type ClientServer, we could add to the pattern
speci�cation a constraint ϕ to express that clients can only connect to servers
and vice versa. We de�ne ϕ for all attachments att in an architecture of type

ClientServer as follows

client(from(att))⇔ server(to(att)) ∧ client(to(att))⇔ server(from(att))

with from (respectively, to) a function that returns the variable with the out
(respectively, in) port in att, and with client (respectively, server) a predicate
yielding true when its argument is of type Client (respectively, Server).

By constraining patterns in this way, we can prevent an operation in a script
that generates an invalid con�guration. Clearly, cswrong does not satisfy it. In
contrast, the con�guration csfirst does. Given a con�guration c and a constraint
ϕ, the satisfaction problem can be formulated as c |= ϕ, which can be rendered
as a type checking assertion in the bigraphical semantics for Archery. Such is the
the topic of the following sections.

3 Bigraphical Reactive Systems

A Bigraphical Reactive System (BRS) is an inhabitant of a category. The opera-
tions and the elementary bigraphs in such category enable an algebraic treatment
of BRSs. In the next sections we brie�y describe the notions of bigraphs, their
algebra, and the parametric reaction rules that make them dynamic. We refer
the reader to [11] for more detail on these notions and their precise de�nitions.

3.1 Bigraphs

A bigraph contains a set of nodes related through a parent-child relationship
and through edges. The former gives rise to a forest structure called place graph,
in which the roots of the trees are the nodes without parent. The latter de�nes
a hypergraph called link graph: a node is related to others by an edge, if each
one has a port linked to an end of such edge. A bigraph is said to be concrete

if its nodes and edges have identity, and abstract if they not. Figure 2 shows
the structure of bigraphs following the anatomy style used in [11]. The abstract
bigraph in it has a forest with two trees and a hypergraph with two edges.

The encoding of a system is enabled by the basic signature of a bigraph.
Every node has an associated control from a set K that distinguishes its kind of
contribution to the encoding. The control also establishes the number of ports
the node has with an arity function ar : K → N. The tuple (K, ar) is the basic
signature of a bigraph and in the case of our example K = {L : 2,M : 3}.

New bigraphs can be built from existing ones by plugging one into another.
The interface of a bigraph de�nes the form of bigraphs it can contain � inner

face, and the form that containers must accept � outer face. Suppose we divide
a bigraph into two parts. A division in a tree leaves a site in one part, and a
new root on the other. A division in an edge generates two open links: one called
inner name and another called outer name The roots and outer names are the
outer face, and the sites and inner names the inner face of a bigraph. Figure 2
shows the graphic conventions to depict them.

0

L

0

M

1

1

L

M

u

w

y z

Inner Name

Root

Control Node Site

Outer Name

EdgePort

u/{w} /x (/y (L{xy}.(id0) | y/{x} /z M{wxz}) ‖ idw ‖ /w M{wxz}.(L{xy} | id1))

Fig. 2: Anatomy of Bigraphs

The category in which a bigraph lives depends on whether it is abstract or
not and the signature K over which it is de�ned. An abstract bigraph becomes
an arrow F : I → J in a category Bg(K). Its domain I and codomain J are
objects in such category. The domain is a tuple I = 〈n,X〉, in which n is a set
of ordinals {0, 1, ..., n − 1} that index its sites, and X is its set of inner names.
Similarly, the codomain is a tuple J = 〈m,Y 〉 with m indexing its roots, and
Y its set of outer names. If the bigraph is concrete, the space is a precategory
8
Bg(K) instead. The reason for using a precategory is that composition is not
always de�ned when nodes and edges have identity.

Undesired arrangements of controls can be ruled out by de�ning a sorting

Σ = (Θ,K, Φ). The controls in K are classi�ed in a set of sorts Θ = {θ0, ..., θn},
and valid arrangements of sorts are restricted with a formulation rule Φ. The
sorts can be assigned to the controls � place sorting, or to the links according
to the ports in controls � link sorting. Abstract (respectively, concrete) bigraphs
over a sorting Σ inhabit a category Bg(Σ) (respectively, precategory 8

Bg(Σ)).

3.2 Algebra

All bigraphs can be built from elementary ones by applying three basic oper-
ations: composition, product and identities. The composition G ◦ F : I → K,
also denoted G F , of two bigraphs F : I → J and G : J → K, represents
a new bigraph obtained by plugging F into G. This operation is only de�ned
when the inner face of G matches the outer face of F . The set |F | of node
and edge identi�ers of F needs to be disjoint with |G| if bigraphs are con-
crete. When G ◦ F is de�ned, we say that G is a context for F . The prod-

uct of two bigraphs Fi : 〈mi, Xi〉 → 〈ni, Yi〉 (i = 0, 1), is a new bigraph
F0 ⊗ F1 : 〈m0 + m1, X0] X1〉 → 〈n0 + n1, Y0] Y1〉, (with] the union of

disjoint sets) that represents placing F0 besides F1. |F0| ∩ |F1| = ∅ also needs to
hold for concrete bigraphs. The identity bigraph (arrow) of an interface (object)
I = 〈m,X〉 is a tuple 〈idm, idX〉. In practice, a set of derived operations de�ned
on top of the basic ones and elementary bigraphs is actually used.

The elementary bigraphs that do not have nodes are divided in the ones that
only have roots and sites � placings (φ), and the ones that only have (outer and
inner) names � linkings (λ). Placings can be generated from three elementary
forms: a root with no sites 1 : 0→ 1; a symmetry γ1,1 : 2→ 2 that exchanges the
indexes of roots with the ones of sites; and a join join : 2 → 1 of two sites into
one root. A merge bigraph can be derived as mergen+1 = join◦ (id1⊗mergen).
Similarly, linkings can be generated from two elementary forms: the substitution
y/X of a set of names X with one name y; and the closure /x of a link x. The
only elementary bigraph that introduces nodes is K #»x : 1→ 〈1, { #»x}〉, de�ned for
each control K : n (with n ports), gives rise to a bigraph with a single node
whose n ports are bijectively linked to n names in #»x .

Some abbreviations for operations we may use are as follows: we may write
F ◦ G instead of (F ⊗ idI) ◦ G when there is no ambiguity; given a linking
λ : Y → Z and a bigraph G : I → 〈m,X〉 with Y = X]X ′, we may write λ ◦G
instead of (idm ⊗ λ) ◦ (G⊗X ′) when m and X are clear from the context.

The derived operations are: parallel product, nesting and merge product. The
parallel product of two bigraphs Fi : 〈mi, Xi〉 → 〈ni, Yi〉 (i = 0, 1) is de�ned as
F0 ‖ F1 : 〈m0 +m1, X0 ∪X1〉 → 〈n0 + n1, Y0 ∪ Y1〉, a tensor product of the two
bigraphs, with the exception that the link map allows name sharing. The result of
the nesting of two bigraphs F : I → 〈m,X〉 and G : m→ 〈n, Y 〉 that may share
names is a bigraph G.F : I → 〈n,X∪Y 〉 de�ned by the expression (idX ‖ G)◦F .
The merge product of two bigraphs Gi (i = 0, 1) is merge ◦ (G0 ‖ G1), i.e.,
the merge of the parallel product of them. Abbreviations that we may use are
as follows: y/X ◦G instead of (y/X ‖ idI) ◦G with I = 〈n,Z〉, when G has outer
face 〈n,X] Z〉; A for the bigraph A.1 when the control A has no children.

The algebraic expression in Figure 2 represents the bigraph shown above it,
and is de�ned in terms of these elementary bigraphs and operations.

3.3 Reaction Rules

A parametric reaction rule is a tuple 〈R : m → J,R′ : m′ → J ′, η〉, with R
and R′ bigraphs respectively called redex and reactum, and η an instantiation
map. Map η assigns to each ordinal in m′ = {0, 1, .., i, ..,m′ − 1} an ordinal
m = {0, 1, .., j, ..,m − 1}. When a bigraph F matches the redex, it is replaced
with the reactum. The sites in F are placed in the sites of the reactum according
to η. If we name the bigraphs contained by F according to the sites m in the
redex in which they are placed, we obtain a sequence d0, d1, .., dj , .., dm. Then,
the expression η(i) = j tells that dj will be placed in the ith site of the reactum.

Bigraphs that have an associated set of reaction rules are de�ned over a
dynamic signature. It di�ers from the basic in that each control is assigned one
of the three values as follows: atomic � for controls of nodes without children
(barren), active � for non-atomic controls that allow reactions to occur among

the nodes inside, passive � for non-atomic and non-active controls. A reaction
only takes place if the bigraph matching the redex is in an active context, i.e.,
in a root, or in an active node with all ancestors active as well.

The abstract (respectively concrete) BRS with sorting Σ and parametric
reaction rules R (8R) live in a category Bg(Σ, R) (8Bg(Σ,8R)).

4 Bigraphical Modelling of Archery Speci�cations

In this section we provide a bigraphical semantics for Archery. We respectively
translate Archery-Core and Archery-Script speci�cations into bigraphs in cate-
gories Bg(ΣArch−Core, RArch−Core) and Bg(ΣArch−Script, RArch−Script). Since
each Archery-Structural-Constraint constraint generates a di�erent category, we
limit to de�ne Bg(Σϕ,RArch−Core) for the example constraint ϕ described in
Section 2.3 and leave a generic method to [12].

4.1 Archery-Core

Function T (1) translates an Archery-Core speci�cation into a bigraph in category
Bg(ΣArch−Core, RArch−Core). It takes a Spec and returns the parallel product
of bigraphs that result of translating each Pat in Pat+, and a variable V ar
containing the main architecture. Table 2 lists the controls in ΣArch−Core and
the sort assignment to their ports, and Table 3 the rules in RArch−Core. We
describe the signature and rules as we describe the encoding of an example
pattern and architecture, and leave the sorting for the end of the section.

T (Spec) =
n

Pat+

T (Pat) ‖ T (V ar) (1)

T (Pat) = PatTY PEID.(
∣∣∣

Elem+

T (Elem)) (2)

T (Elem) = ElemTY PEID.(
∣∣∣

Port+

T (Port)) (3)

T (in ID) = NewInID, T (out ID) = NewOutID (4)

T (V ar) = T (V ar, 1) (5)

T (V ar,B) = NewVarID,TY PEID.(T (Inst, ID,B))

T (ElemInst, idV ar,B) = NewInstTY PEID,idV ar.(B) (6)

T (PatInst, idV ar,B) = NewInstTY PEID,idV ar.(

T (idV ar, V ar+, Att∗, Ren∗, B))

T (idV ar, V ar V ar∗, Att∗, Ren∗, B) = (7)

T (V ar,AddVaridV ar,ID.(T (idV ar, V ar∗, Att∗, Ren∗, B)))

T (idV ar, [], Att∗, Ren∗, B) = T (Att∗, Ren∗, B)

T (idIF idPF idIT idPT Att∗, Ren∗, B) = (8)

NewAtt idIF, idPF, idIT, idPT, uniqueId().(T (Att∗, Ren∗, B))

T ([], Ren∗, B) = T (Ren∗, B)

T (idInst idPrt idNew Ren∗, B) = (9)

NewRenidInst, idPrt, idNew, uniqueid().(T (Ren∗, B))

T ([], B) = B

Table 2: Sorting for Archery-Core
Ctrl Arity Activeness Sorts Represented Item

Pat 1 passive u A pattern
Elem 1 passive u An element
NewIn 1 passive u An in port within an element de�nition
In 1 atomic i An in port within an instance

NewOut 1 passive u An out port within an element de�nition
Out 1 atomic o An out port within an instance

NewInst 2 passive uu Instance creation and assignment
Inst 1 active u An Instance

NewVar 2 passive uu Variable creation
Var 2 active uu A variable

AddVar 2 passive uu Movement of one variable into another
NewAtt 5 passive uuuuu Attachment creation
From 2 atomic fu Attachment end for out port
To 2 atomic tu Attachment end for in port

NewRen 4 passive uuuu Rename creation
Int 2 passive rr Rename end for internal variable
Ext 2 passive rr Rename end for external instance

The result of applying Function T (2) to pattern ClientServer in Listing
1 is the bigraph shown in Figure 3a and in (10): a Pat node with ClientServer as
outer name and the nesting of the merge product of applying (3) to each element.
In the case of element Client, (3) creates an Elem node with the element
identi�er as outer name and the nesting of the merge product of respectively
calling �rst and second functions in (4) with each in and out port of the element.
The former function creates a NewIn node with rres as outer name, and the latter
a node NewOut with sreq as outer name.

PatClientServer.(ElemClient.(NewInrres | NewOutsreq) |
ElemServer.(NewInrreq | NewOutsres)) (10)

The result of applying Function T (5) to the architecture between lines 25
and 35 is shown in Figure 3b and in (11). The translation involves Rules in
Table 3 triggered by intermediate bigraphs generated by Function T (5) to (9).
It begins when (5) receives the example architecture and in combination with (6)

Table 3: Parametric Reaction Rules for Archery-Core
1 New Variable NewVaryx.d0 _ Varyx.1 ‖ d0
2 Create Element

Instance
Elemx.d0 ‖ Vary−.1 ‖ NewInstyx.d1 _
Elemx.d0 ‖ Vary−.(Instx.d0) ‖ d1

3 Create Pattern
Instance

Patx.d0 ‖ Vary−.1 ‖ NewInstyx.d1 _
Patx.d0 ‖ Vary−.Instx.1 ‖ d1

4 Create In Port Var−−.(Inst−.(NewIny | d0) | d1) _
/y Var−−.(Inst−.(Iny | d0) | d1)

5 Create Out Port Var−−.(Inst−.(NewOuty | d0) | d1) _
/y Var−−.(Inst−.(Outy | d0) | d1)

6 Add Instance Varx−.(Inst−.d0 | d1) ‖ Vary−.d2 ‖ AddVarxy.d3 _
Varx−.(Inst−.(Vary−.d2 | d0) | d1) ‖ d3

7 Add Attachment Varf−.(Inst−.(Outo | d0) | d1) ‖
Vart−.(Inst−.(Ini | d2) | d3) ‖ NewAttfotia.d4 _
Varf−.(Inst−.(Outo | d0) | Fromoa | d1) ‖
Vart.(Inst−.(Ini | d2) | Toia | d3) ‖ d4

8 Add Rename Out Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | d1) | d2) | d3) ‖
NewRenvpqr.d4 _
/q Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | Intpr | d1) |
Extqr | Outq | d2) | d3 ‖ d4

9 Add Rename In Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | d1) | d2) | d3) ‖
NewRenvpqr.d4 _
/q Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | Intpr | d1) |
Extqr | Outq | d2) | d3 ‖ d4

and Rules 1 and 3 creates a Var node with a nested Inst. The former has s1 and
Server, and the later PipeFilter, as outer names. This node nesting is used to
represent variable-instance pairs in general, and in particular corresponds to the
variable s1 of type Server containing a pattern instance of type PipeFilter.
In turn, the latter nests the merge product of the encoding of each of the three
variable-instance pairs of the architecture, obtained after successive applications
of (5), (6) and (7) and the e�ects of Rules 1, 2, and 6.

/rreq /sres Vars1,Server.(InstPipeFilter.(

/rec /send Varf1,F ilter.(InstFilter.(Inrec | Outsend) |
Fromsend,att1 | Intrec,ren1) |

/accept /forward Varp1,P ipe.(InstPipe.(Inaccept | Outforward) |
Toaccept,att1 | Fromforward,att2) |

/rec /send Varf2,F ilter.(InstFilter.(Inrec | Outsend) |
Torec,att2 | Intsend,ren2) |

Inrreq | Extrreq,ren1 | Outsres | Extsres,ren2)) (11)

For instance, the encoding of f1 has closures for outer names rec and send,
and a Var with a nested Inst, that in turn nests one In and one Out node, with

0

Pat

ClientServer

Elem

Client

NewIn

rres

NewOut

sreq

Elem

Server

NewIn

rreq

NewOut

sres

(a) Pattern

0

Var

Inst

Var

Inst

In Out
i o

To
tu

From
u

f

Var

Inst

In
i

Int
r

r

Ext
r r

In

i

Out
o

From

f
u

Var

Inst

In
i

To
tu

Out
o

Int
r

r

Ext

r
r

Out

o

Server
s1att1 att2

PipeF ilter P ipe
p1

Filter
f1 ren2ren1 f2

(b) Architecture

Fig. 3: Bigraphs for the Client-Server Example

respective rec and send names. The encoding of attachments is generated by
(8) and Rule 7. In the case of the one between f1.send and p1.accept, it
respectively includes in each Var, a From and a To node. The created nodes share
as outer name a unique identi�er att1 that establishes a link between them. The
renames are translated by (9) and Rules 8 and 9. The encoding for the renaming
of f1.rec as rreq of s1 respectively includes an Int and an Ext nodes inside
their Var nodes representing f1 and s1. An In node is also created inside the
latter. These three nodes have shared outer names: Int and Ext have the unique
identi�er ren1, Int and (internal) In have rec, and Ext and (external) In have rreq.

The link sorts Θ = {o, f, t, i, r, u} and the formulation rule Φ ensure valid
con�gurations representing attachments: they can only connect ports with op-
posite direction. Rule Φ restricts the structure as follows: a link with a point o
(port or inner name with sort o) can only have other points f or r; a link with
a point i can only have other points t or r; a link with a point u has sort u

and no constraints. The sorting assignment in Table 2 and Φ prevent a bigraph
representing attachments between two ports with the same direction. Figure 3b
shows two edges (with respective sort assignments) satisfying Φ.

4.2 Archery-Script

We translate a script into a bigraph in Bg(ΣArch−Script,RArch−Script). Both the
sorting and the parametric reaction rules extend the ones de�ned for Archery-
Core. ΣArch−Script includes three more controls and RArch−Script adds the para-
metric reaction rules in Table 4.

Table 4: Parametric Reaction Rules for Archery-Script
10 Remove

Attachment
Varf−.(Inst−.(Outo | d0) | Fromoa | d1) ‖
Vart,−.(Inst−.(Ini | d2) | Toia | d3) ‖ RemAtta.d4 _
Varf−.(Inst−.(Outo | d0) | d1) ‖
Vart−.(Inst−.(Ini | d2) | d3) ‖ d4

11 Remove
Rename Out

/q Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | Intpr | d1) |
Extqr | Outq | d2) | d3) ‖ RemRenr.d4 _
Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | d1) | d2) | d3) ‖ d4

12 Remove
Rename In

/q Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | Intpr | d1) |
Extqr | Inq | d2) | d3) ‖ RemRenr.d4 _
Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | d1) | d2) | d3) ‖ d4

13 Move
Instance

Vard−.d0 ‖ Varo.(Inst−.(d1) | d2) ‖ MoveInstod.d3 _
Vard−.Inst−.(d1) ‖ Varo−.(d2) ‖ d3

Function T S carries out the translation of a script t = [t1 t2 ... tn] by
processing the �rst operation and returning a combination of the result and the
recursive call with the tail of the sequence. Each operations ti has as type one
of the listed in Table 1. Expression (12) translates an import operation into
the parallel product of the application of T to the speci�cation Spec, and the
recursive call with the rest of the script. Expressions (13) to (19) translate t by
nesting the translation of the tail of t in a node that results from translating t1.
The created node partially triggers one of the reaction rules in RArch−Script.

We introduce the (passive) controls and rules related to expressions (17), (18)
and (19) since they are not present in ΣArch−Core and RArch−Core. The �rst
expression creates a RemAtt node that represents a remove attachment operation
and has one port of sort u. The outer name of the port is a unique id that matches
the nodes involved in the encoding of the attachment. RemAtt partially triggers
Rule 10, that removes such nodes, making the edge representing the attachment
disappear. It also places the contents of RemAtt, matching parameter d4, in a
parallel root. The second (18) creates a RemRen node that represents a remove
renaming operation and has one port of sort u. In a similar way, the outer
name is a unique id that matches the nodes involved in the representation of
the renaming. RemRen triggers either Rule 11 or 12, depending on whether
the renaming is respectively over an out or an in port. Both rules have the
same e�ect: the removal of all nodes encoding the renaming and placing the
contents of RemRen in a parallel root. The third (19) creates a node MoveInst

that represents an instance movement operation. The control has two ports with

sort u: one identi�er vo representing the original container for the instance, and
another vd for the container to where it is moved. The node partially matches
the redex of Rule 11. The reaction nests the contents of Varvo, −, matching
Inst−.(d1), into Varvd, −. The former contents of the destination are lost. The
original variable keeps the contents matching d2 (outside the instance), and the
contents matching d3 are place in a parallel root.

T S([import(Spec); t]) = T (Spec) ‖ T S(t) (12)

T S([v : type; t]) = NewVarv, type.T S(t) (13)

T S([v = type(); t]) = NewInstv, type.T S(t) (14)

T S([addInst(a, v); t]) = AddVara, v.T S(t) (15)

T S([attach(vf.pf, vt.pt); t]) = NewAttvf, pf, vt, pt, uniqueId().T S(t) (16)

T S([deattach(vf.pf, vt.pt); t]) = RemAttid(vf, pf, vt, pt).T S(t) (17)

T S([remRen(v.q); t]) = RemRenid(v, q).T S(t) (18)

T S([move(vo, vd); t]) = MoveInstvo,vd.T S(t) (19)

T S([]) = 1

4.3 Archery-Structural-Constraint

The way constraints are dealt within the bigraphical framework discussed in this
paper is now illustrated through an example. Let us consider the constraint ϕ
formulated in Section 2.3. We derive from it a place sorting Σϕ. Note that, in
general, this derivation can be automated [12]. Then, a speci�cation that ful�ls
ϕ is translated to a bigraph in Bg(Σϕ, RArch−Core).

For this example, we de�ne Θ as {cli, ser, att, oth} and Φ. The sort of a
Var−, type node depends on type: cli if it is Client, and ser if it is Server.
From and To nodes have sort att, and other nodes have sort oth. Φ is as follows:
a node att immediately in a node cli can only have an edge to an att immedi-
ately in a node ser. Given two nodes w and w′, w is in w′ if the former has w′

as ancestor in the parent-child relationship.
It can now be veri�ed whether a speci�cation V ar of a ClientServer

instance preserves constraint ϕ, by checking if the type of bigraph T (V ar) is
Bg(Σϕ, RArch−Core). In Section 2.2 we described csfirst and cswrong as two
con�gurations. Figure 4 partially shows the bigraphs that encode them. Only
the sorts att, cli and ser, and nodes that participate in attachments are shown.
Figure 4a contains a bigraph that partially encodes csfirst. It can be observed
that all four nodes att in cli (respectively, ser) only have edges to nodes att

in nodes ser (respectively, cli). Then, the bigraph is Bg(Σϕ, RArch−Core) and
con�guration csfirst satis�es ϕ. In contrast, the encoding of cswrong shown in
Figure 4b, does not ful�l formation rule Φ: the nodes att in the node cli with
outer name c1, have edges with nodes att in another node cli. Therefore, the
bigraph is not an inhabitant of Bg(Σϕ, RArch−Core).

ser

seratt

att

ser

seratt

att

cli

cli att

att

cli

cli att

att

c2 Client c1 s1 Server s2

(a) csfirst

ser

seratt

att

cli

cliatt

att

cli

cli att

att

cli

cli

att

att

c2 Client c1 s1 Server c3

(b) cswrong

Fig. 4: Bigraphs for Example Con�gurations

5 Conclusions

In this paper we introduced Archery, a modelling language for software archi-
tectural patterns rooted in the process algebra trend [10]. The language allows
the speci�cation of both structural and behavioural dimensions of architectures
(Archery-Core), scripts to (re)con�gure such architectures (Archery-Script), and
constraints to ensure that they obey the design principles of the pattern they
are instance of (Archery-Structural-Constraint).

A second contribution of the paper was the development of a bigraphical se-
mantics for Archery. To respect space limits, this was fully presented for Archery-
Core, partially for the scripting component and illustrated through an example
for constraints. By doing so, we were able to reduce the constraint satisfaction
veri�cation to a type checking problem.

We can distinguish two approaches in the design of languages that provide
support for both the behavioural and structural dimensions, in architectural
design. One is to extend a structure-based language with a behavioural model
[6], and the other is to build the architectural language on top of the behavioural
model [1], by upgrading it with architectural constructs. Our work is along the
lines of the latter approach but with the di�erence that we used bigraphs as a
foundation for the structural dimension. Bene�ts of using the bigraphical theory
include its solid categorical framework, its independent treatment of locality and
linking of computational agents, and its role of unifying theory for concurrency
and mobile calculi. The work in [9] also provides a bigraphical semantics to an
architectural description language. While our encoding uses a single signature
to encode any pattern, theirs requires di�erent signatures for di�erent patterns.
There are two main approaches to the recon�guration of pattern instances: one
is to de�ne a generic set of operations and re�ect a pattern's design principles
with constraints that prevent illegal con�gurations; and another is to design a

pattern-speci�c set of operations that allow to correctly (re)con�gure instances
[7]. Our work is aligned with the former.

As part of future work we mention the derivation process for sortings that
encode constraints. The process must ensure that the resulting sorting does
not prevent the automatic derivation of an LTS for a BRS, and consider the
decidability and complexity of type-checking.

Acknowledgements

This research was partially supported by the project Evolve (Evolutionary
Veri�cation, Validation and Certi�cation) under contract QREN 1621.

References

1. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software
Architecture Design, vol. 54. Springer London (2010)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329�366 (Jun 2004)

3. Awodey, S.: Category Theory (Oxford Logic Guides). Oxford University Press,
USA, second edn. (Aug 2010)

4. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Longman Publishing Co., Inc., second edn. (2003)

5. Birkedal, L., Debois, S., Hildebrandt, T.: On the construction of sorted reactive sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008 - Concurrency Theory,
Lecture Notes in Computer Science, vol. 5201, pp. 218�232. Springer Berlin/Hei-
delberg (2008)

6. Bodeveix, J.P., Filali, M., Gau�llet, P., Vernadat, F.: The AADL real-time model
A behavioural annex for the AADL. In: Proceedings of the DASIA 2006 � DAta
Systems In Aerospace � Conference (2006)

7. Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D., Lluch Lafuente, A.: Concurrency,
graphs and models. chap. Graph-Based Design and Analysis of Dynamic Software
Architectures, pp. 37�56. Springer-Verlag, Berlin, Heidelberg (2008)

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture Volume 1: A System of Patterns. Wiley (1996)

9. Chang, Z., Mao, X., Qi, Z.: An Approach based on Bigraphical Reactive Systems to
Check Architectural Instance Conforming to its Style. In: First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering, 2007. TASE '07. pp.
57 � 66. IEEE Computer Society (2007)

10. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The
formal speci�cation language mCRL2. In: Methods for Modelling Software Sys-
tems: Dagstuhl Seminar 06351 (2007)

11. Milner, R.: The space and motion of communicating agents, vol. 54. Cambridge
University Press (2009)

12. Sanchez, A.: A Calculus of Architectural Patterns (to appear). Ph.D. thesis, Uni-
versidad Nacional de San Luis (2012)

13. Sanchez, A., Barbosa, L.S., Riesco, D.: A Language for Behavioural Modelling
of Architectural Patterns. In: Proceedings of the 3rd Workshop on Behavioural
Modelling - Foundations and Applications (BM-FA 2011). ACM DL (2011)

	Bigraphical Modelling of Architectural Patterns
	Introduction
	The Archery Language
	Archery-Core
	Archery-Script
	Archery-Structural-Constraint

	Bigraphical Reactive Systems
	Bigraphs
	Algebra
	Reaction Rules

	Bigraphical Modelling of Archery Specifications
	Archery-Core
	Archery-Script
	Archery-Structural-Constraint

	Conclusions

