
A Language for Behavioural Modelling of
Architectural Patterns

Alejandro Sanchez
Departamento de Informática
Univ. Nacional de San Luis

San Luis, Argentina
asanchez@unsl.edu.ar

Luis S. Barbosa
DI - HASLab

Universidade do Minho
Braga, Portugal

lsb@di.uminho.pt

Daniel Riesco
Departamento de Informática
Univ. Nacional de San Luis

San Luis, Argentina
driesco@unsl.edu.ar

ABSTRACT
The complexity of interactions governing the coordination
of loosely-coupled services, which forms the core of current
software, brought behavioural issues up to the front of ar-
chitectural concerns. This paper takes such a challenge se-
riously by lifting typical behaviour modelling techniques to
the specification of both types and instances of architectural
patterns in which the later ones are connected by ports that
behave according to a water flow metaphor. A specific lan-
guage is introduced for this purpose as well as a translator
to mCRL2 so that the simulation and analysis techniques
available in the corresponding toolset can be used to reason
about (the behavioural layer of) software architectures. The
approach is illustrated in a few examples.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design tools and techniques,
Software architectures, Software/program verification

General Terms
Software architecture

Keywords
Software architecture, Behaviour modelling, Architectural
Pattern

1. INTRODUCTION
Continuous evolution towards very large, distributed, het-

erogeneous, highly dynamic computing systems has shifted
both the focus and the method of Software Architecture as
a generic design discipline. On the one hand the diversity
and complexity of interactions governing the coordination
of loosely-coupled services, which forms the core of current
software, brought behavioural issues up to the front of ar-
chitectural concerns. Actually, it is consensual to recog-
nise that the overall structure of software systems [8], whose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BM-FA’11, Jun 06 2011, University of Birmingham, UK
Copyright 2011 ACM 978-1-4503-0617-1/11/06 ...$10.00.

study was defined as the specific domain of this discipline in
its founding papers, is essentially the structure of their in-
ternal interactions and the emergent macro behaviour they
entail. On the other hand, informal representations of ar-
chitectural designs, often relying on graphical notations with
poor semantics, are unsuitable for high-assurance software
development, precluding any form of rigorous analysis and
verification.

In this context the motivation for this paper is twofold:
emphasising behaviour modelling in architectural design and
doing so in a rigorous, mathematically sound way. Process
algebra [12, 4], broadly defined as the study of the behaviour
of parallel or distributed systems by algebraic means [3], pro-
vides a suitable conceptual framework not only to describe
software architectures, but also to reason about them either
equationally (on top of well studied notions of behavioural
equivalence), or through formulation and verification of be-
havioural requirements expressed in an associated modal
logic. Moreover, Process Algebra supports compositional
reasoning and abstraction with respect to internal activity
of services or components a system is composed of.

This paper introduces a language for specification of archi-
tectural patterns, on top of a mature and well-known Pro-
cess Algebra framework — mCRL2 [10, 9]. The language
provides mechanisms for defining types as well as instances
of them. A type in the language can be defined as a ba-
sic architectural element (typically a service/component or
connector) with an associated behaviour, or as a set of ele-
ments constituting an architectural pattern. In both cases,
ports, interaction points that behave according to the intu-
itive water flow metaphor, can be defined for them. The
language also supports hierarchical composition of architec-
tural patterns, allowing the definition of configurations by
indifferently attaching ports of pattern or element instances.

A translator of architectural specifications to the mCRL2
modelling language was developed, which brings up a collec-
tion of powerful tools for their simulation, graphical visual-
isations and analysis. mCRL2 is a process algebra, incorpo-
rating data and time information, with a number of features
which turn it suitable for flexible modelling of behaviour.
For example, the introduction of multiactions enables the
specification of (not necessarily related) actions that are to
be executed together. Most process algebras only allow a
single action to be executed atomically thus forcing an order
on the execution of actions. They also allow the separation
of parallelism and communication: a multiaction simply rep-
resents the simultaneous execution of a set of actions, action
synchronisation being specified separately.



After a brief background summary in section 2, the mod-
elling language is introduced in section 3. Section 4 dis-
cusses how behavioural analysis of architectural patterns
can be performed in this setting. After a presentation of
the translation process, analysis in the mCRL2 framework is
illustrated through a number of examples and the basis of
a patterns calculus is discussed. Section 5 concludes with
a comparison with related work and points some directions
for future work.

2. BACKGROUND
A language for software design at the architectural level

- Architectural Description Language (ADL), must provide
a minimum of modelling capabilities and tool support. It is
required to allow the explicit specification of both the struc-
tural and behavioural dimensions of components, connectors
and configurations, and it must also provide tool support to
develop and evolve systems in an architecture-based way. A
survey describing these requirements in detail can be found
in [11].

Among the modelling capabilities, we mention the ability
to specify semantics and types for components and connec-
tors — elements, and compositionality for configurations.
The semantics of an element is a description of its behaviour
in a formal language that enables tool-supported analysis.
Then, types allow to define reusable blocks of semantics.
Compositionality makes it possible to regard an architecture
as a single element in another architectural specification.

An ADL should also include a language feature for the
Architectural Pattern concept. The concept is largely ap-
plied in the software architecture community and it refers
to an architectural abstraction of a design solution to re-
curring problems. Available catalogs, such as [6] and [15],
propose architectural design and evolution by their applica-
tion. However, its characterisations remain largely informal.

Among the features that tools must provide we mention
multiple-views and analysis. The first refers to the possi-
bility of both a textual and a graphical representation. For
the second, we focus our attention in the possibility of two
checks: refinement — whether an architecture materialis-
ing an architectural pattern is a refinement of an element
in another pattern (the relevance of this verification is high-
lighted in [7]); and equivalence — whether an architecture is
behaviourally equivalent to another. The mCRL2 language
and tool set is a suitable platform to provide these features.

The mCRL2 language [10] is a specification language for
describing communication behaviour among systems, which
combines a process algebra [4], for the dynamic component,
with higher-order abstract equational data types, for the
data part. The language is supported by a toolset [9] en-
abling simulation, visualisation, behavioural reduction and
verification. A number of analysis techniques are imple-
mented; their execution resorting, in some cases, to human
guidance.

As usual in process algebras, behaviours are described by
means of process terms which compose elementary actions
(events, communications) through a number of combinators.
The reader is referred to [10] for a complete description of
mCRL2 and its semantics. For the moment, we limit our-
selves to recall the informal meaning of the main process
combinators and operators used in the sequel.

Among the combinators of the language we mention: al-
ternative composition p + q — indicates that either of two

behaviours p or q can occur; sequential composition p.q —
denotes that the process behaves as p and when p finishes it
behaves as q; parallel composition p ∣∣ q — indicates that the
actions in p occur independently of actions in q; conditional
c→ p◇ q — represents a process that behaves as p if c holds
or as q if it does not; multiactions — denote a set of actions
that occur simultaneously; and summand (shown below) —
indicates a choice among the processes p(c) for c ranging
over the possible values in the datatype D.

∑

c∶D
p(c)

Parallel processes can also be influenced by communica-
tion operators. We mention four of them: communication,
allow, rename, and hide. The communication operator Γc(p)
is used to indicate which actions communicate and synchro-
nise within a parallel process expression p. The set C con-
tains communication rules of the form a1∣...∣an → c with
n > 0 and ai and c actions. Each communication rule trig-
gers the replacement of a1(d)∣...∣an(d) with c(d) in p. The
allow operator ∇V (p) is used to enforce multi-actions in V
and block undesired ones. The rename operator ρR(p), with
R a set of renames of the form a→ b, is used to rename action
names in p. The hide operator τI(p) removes action names
in the set I from multi-actions and replace them with the
invisible action τ .

3. A LANGUAGE FOR ARCHITECTURAL
SPECIFICATIONS

An architectural specification is built with two basic con-
structs: pattern and architecture. The first is a for-
malisation of the concept of architectural pattern and con-
tains elements (connectors and components) showing some
behaviour. The second is an instance of a pattern, and de-
scribes a particular configuration of (element or pattern) in-
stances. A pattern can be specified without describing any
particular architecture. However, in order to be verified, a
description of the form Desc needs to contain an architec-
ture and a non empty set of patterns.

Desc = ⟨Set(Pat),Arch⟩, with patterns = π1 (1)

We use projection functions to access tuple components.
A projection πi allows us to retrieve the ith tuple compo-
nent. As a convention, each projection is given a name: the
component type name in lower cases. For instance, in (1),
π2 is named arch. When convenient, we also explicitly name
projections as we do in the case of π1 as patterns.

3.1 Pattern
The pattern construct groups descriptions of compo-

nents and connectors in a single unit, and adopts the form
Pat shown in (2). The first component of a tuple pat of
this type is a unique identifier and the second is a list that
contains its formal parameters. Each fp in fpars(pat) is a
tuple with the two components shown in (3): an identifier
and an mCRL2 data type. The example in Listing 1 describes
a pattern with ClientServer as id and no parameters.



Pat =⟨Id,List(Fp), Set(E)⟩,

with fpars = π2 ∧ elements = π3 (2)

Fp =⟨Id,DataType⟩ (3)

Listing 1: Client Server Pattern
1 pattern ClientServer()
2 elements
3 element Client()
4 act prcs, sreq, rres;
5 proc Client() = prcs.sreq.rres.Client();
6 interface
7 in rres;
8 out sreq;
9 element Server()

10 act rreq, sres, cres;
11 proc Server() = rreq.cres.sres.Server();
12 interface
13 in rreq;
14 out sres;
15 end

3.1.1 Element
The language construct element, allows us to define each

element in elements(pat). We use this construct to explic-
itly characterise both components and connectors. An ele-
ment e is a tuple that includes, as shown in (4), six compo-
nents: an identifier, a list of formal parameters fpars(e); a
set actions(e) of actions; a tuple mpd(e); a set procs(e) of
process declarations; and a set ports(e) of ports (its inter-
face). Each fp in fpars(e) adopts the same form as in (3),
and each act in actions(e) the one in (5).

E =⟨Id, List(Fp), Set(Act), Mpd,Set(Prc), (4)

Set(Prt)⟩, with fpars = π2 ∧ actions = π3

∧ procs = π5 ∧ ports = π6

Act =⟨Id, List(Datatype)⟩ with datatypes = π2 (5)

The element’s behaviour is described using a slightly mod-
ified subset of mCRL2. In particular, no init section is con-
sidered and process expressions cannot include summands,
parallel process combinators, nor communication operators.
The content of actions(e) are the actions declared in act
sections, and the mpd(e) and procs(e) correspond with pro-
cess declarations in proc sections. The example in Listing 1
shows for each element a section act declaring actions and
a section proc defining a process that uses these actions.

The first declared process within the element is the main
process declaration (MPD). It constitutes the entry point
for its behaviour, and is the one to be started when the
element is instantiated. We defer an explanation of what
do we mean with “instantiation” until section 4.1, where we
describe how instance behaviours are generated. For now,
we limit to mention that initial values must be specified for
all its formal parameters. The MPD form, shown in (6),
has as components: an identifier; a list of formal parameters
fpars(mpd); a list ivalues(mpd) of data expressions that
match in order and type fpars(mpd), and constitute their
initial values; and a process expression body(mpd). The data
expressions in ivalues(mpd) are defined with constants and
identifiers declared in fpars(e).

Mpd =⟨Id, List(Fp), List(Iv), Body⟩, (6)

with fpars = π2 ∧ ivalues = π3

Note that the declaration of initial values in formal pa-
rameters is not part of mCRL2. Also that sections const,
sort, var, eqn, and map can be part of an specification
but we do not include tuple components in e for them.

Each proc in procs(e) is a process declaration that may be
invoked from the main process body body(mpd(e)). Their
tuple components are of the form shown in (7), similar to
Mpd, with the difference that they do not have a list of
initial values for their formal parameters.

Prc =⟨Id,List(Fp),Body⟩, with fpars = π2 (7)

3.1.2 Interface
The interface keyword marks the declaration of the set

of ports ports(e) that constitute the element’s interface (see
interfaces for Client and Server respectively starting at lines
6 and 12). We adopt the underlying metaphor of water flow
in [2] for ports: an in port receives input from any port
connected to it and an out port sends output to all ports
connected to it. Ports are synchronous: actually a suitable
process algebra expression can be used to emulate any other
port behaviour. Each port constitutes a tuple port of the
form shown in (8) with a direction (either in or out), and
an action as components.

Prt =⟨Direction,Act⟩ (8)

3.2 Architecture
An architecture construct describes a configuration

that instances adopt. Its declaration is a tuple arch of the
form shown in (9). Its tuple components are: an identifier;
a pattern reference that must match a declared pattern, i.e.,
an id of a tuple pat in patterns(desc); a list apars(arch) of
actual parameters that match in order and type fpars(pat);
a set of instances instances(arch), a set of attachments
atts(arch), and a set of port renames rens(arch). An ex-
ample architecture is shown below line 15 of Listing 2.

Arch =⟨Id, Id,List(Ap), Set(Inst), Set(Att), (9)

Set(Ren)⟩, with idPat = π2 ∧ apars = π3

∧ instances = π4 ∧ atts = π5 ∧ rens = π6

Listing 2: Pipe and Filter Architecture
1 pattern PipeFilter()
2 elements
3 element Filter()
4 act rec, trans, send;
5 proc Filter() = rec.trans.send.Filter();
6 interface
7 in rec;
8 out send;
9 element Pipe()

10 act accept, forward;
11 proc Pipe() = accept.forward.Pipe();
12 interface
13 in accept;
14 out forward;



15 end
16 architecture clientServer = ClientServer()
17 instances
18 architecture s = PipeFilter()
19 instances
20 f1 = Filter(); f2 = Filter();
21 p1 = Pipe();
22 attachments
23 from f1.send to p1.accept;
24 from p1.forward to f2.rec;
25 interface
26 f1.rec as rreq;
27 f2.send as sres;
28 end
29 c1 = Client();
30 c2 = Client();
31 attachments
32 from c1.sreq to s.rreq;
33 from c2.sreq to s.rreq;
34 from s.sres to c1.rres;
35 from s.sres to c2.rres;
36 end

3.2.1 Instances
After the keyword instances the set instances(arch) is

defined. An instance inst in this set can be either an el-
ement instance or an architecture. In the former case, see
(10), the instance has an identifier, a reference to an element
idElem(inst), and a list apars(inst) of actual parameters
that coincide in order and type the element’s formal ones
fpars(e). In the later case, a new architecture construct
can be nested as an instance entry. This allows instances to
have an architecture as well, building grounds for hierar-
chically composing specifications. As an example, between
lines 18 and 28, an instance is specified as an architecture.

Inst =Ainst ∣ Einst

Ainst =Arch

Einst =⟨Id, Id,List(Ap)⟩ (10)

with (idElem = π2 ∧ apars = π3)

3.2.2 Attachments
The description of how instances are connected begins af-

ter the keyword attachments. Each line in the section
defines an attachment, a tuple att in atts(arch) of the form
shown in (11). Each attachment includes two port refer-
ences: one is the out port from(att), and the other the in
port to(att). They are respectively indicated with the from
and to keywords. For instance, the attachment in line 23
indicates that the out port rec of f1 communicates with
the in port accept of p1.

Att =⟨Pr,Pr⟩, with from = π1 ∧ to = π2 (11)

3.2.3 Interface
The architecture’s interface is the set rens(arch) of port

renames declared upon the keyword interface. Each re-
name ren contains a port reference pr(ren) and a new name
id(ren). Ports not included in rens(arch) are not visible
from the outside. Note that including the same port in an
attachment and in the interface is incorrect. An example
rename is shown in line 26. It indicates that the port rec
of f1 becomes the port rreq for the architecture s.

Finally, a port reference (used in (11) and (12)) is a tuple
pr adopting one of the two forms shown in (13). The first is
used when the reference is to an element instances, and the
second when it is to a pattern instances.

Ren =⟨Id,Pr⟩ (12)

Pr =⟨Inst,Prt⟩ ∣ ⟨Inst,Ren⟩ (13)

4. ARCHITECTURAL ANALYSIS

4.1 Generation of mCRL2 Specifications
In this section we briefly describe how a process specifi-

cation is automatically generated from an architectural one.
A detailed description can be found in [14].

A generated specification has three main mCRL2 sections:
act, proc and init. We do not mention other sections con-
cerning data expressions since they do not require processing
and are just copied. Each of the concatenated functions be-
low formats one of the three sections from a parameter.

gen(ainst ∶ Ainst) ≜ (14)

wrtActs(acts) ++wrtPds(pds) ++wrtInit(conf)

The first function wrtActs writes the declaration of all
actions from a set acts of tuples of the form Act. The second
writes the process declarations from a string pds. The third
does a similar thing for the initialisation of the system.

We generate the parameters for these functions from an
architectural declaration ainst by applying the recursive func-
tion genPA. The initial call to this function receives ainst
as parameter. Then, it is recursively called for each instance
i of ainst and a result ri is obtained. Therefore, we need
two versions, one for architectures (15), and one for element
instances (16). In both cases the result of its evaluation is
a four-component tuple: acts — is the set of actions to be
placed in the act section; pds — is a string containing all
process declarations and is to be placed in the proc section;
conf — is a string with the configuration the system adopts
and is to be placed in the init section; and allows — is a
set of strings representing action ids and is used for inter-
mediate calculations during recursive calls. In the next sub-
sections we describe how each of these values is calculated
for element instances first and then for pattern instances.

genPA(ainst ∶ Ainst) ≜ ⟨acts, pds, conf, allows⟩ (15)

∀ i ∈ instances(ainst), ri = genPA(i, ainst)

genPA(einst ∶ Einst) ≜ ⟨acts, pds, conf, allows⟩ (16)

4.1.1 Generation — Element instance
The generation of each instance einst of an element e is

calculated from the results of processing the bodies of all
process declarations defined in e with respect to einst. The
function genStep, invoked within genPA for each process
body p, carries out this processing and returns a tuple con-
taining: actsp — the set of actions to be placed in the act
section; pdsp — a string with the resulting process expres-
sion; allowsp — a set of strings used for intermediate cal-
culations; and hidesp — a set of strings used to build the
conf string for the element instance.

We need three rules for genStep. The first is for the alter-
native composition (17) of two process expressions p and q.



The result is the combination calculated by combineAC of
the tuples returned from the recursive call with p and q. The
function combineAC returns a tuple with the concatenation
of the respective pdsp, re-assembling the alternative compo-
sition expression, and the union of the respective allowsp,
actsp and hidesp sets. The second genStep is for condition-
als (18). It works in a similar way as the one for alternative
composition with the difference that it reassembles a condi-
tional. The third one is for sequential composition (19) and
uses another function (20) that processes the individual id.

genStep(”$p$ + $q$”, einst ∶ Einst) (17)

≜ combineAC(genStep(p, einst), genStep(q, einst))

genStep(”$c$→ $p$ ◇ $q$”, einst ∶ Einst) (18)

≜ combineCond(c, genStep(p, einst), genStep(q, einst))

genStep(”$id$($x$).$p$”, einst ∶ Einst) (19)

≜ combineSC(genStep(id, x, einst), genStep(p, einst))

genStep(i ∶ Id, x ∶ List(Ap), einst ∶ Einst) (20)

≜ ⟨actsp, pdsp, allowsp, hidesp⟩

The genStep for processing an id requires distinguishing
which of the three roles shown below is id assuming.

● Process Call. In this case pdsp becomes the concate-
nation of the id (the process name) with id(einst)
and with its actual parameters if present, and allowsp,
hidesp, actsP are empty sets.

● Port. In this case we first need to obtain the list of
attached port references attPrts. If the port is locally
attached, i.e. at the container architecture ainst, we
get it from the set of attachments atts(ainst). If the
port is attached at the upper level, and assuming that
gparent is the architecture containing ainst, we ob-
tain the set from atts(gparent), after considering the
corresponding rename in rens(ainst) (this may need
to be repeated). Then we generate the set of actions
actsp by creating a new action for each pr in attPrts.
The identifier for an action derived from a pr is the
concatenation of id with id(einst) and id(inst(pr)).
Since ports behave differently according their direc-
tion, we need to generate the process expression pdsp
according the cases as follows:

– In. The process expression is the alternative com-
position of all actions in actsp. When an action
receives parameters, we also need to surround the
expression with a summand as the one shown be-
low for each parameter d of datatype D not bound
to any value.

∑

d∶D
pdsp

– Out. The process expression is the alternative
composition of the multiactions generated from
the actions in each set of the power set P (actsp)
(the empty set must be removed first). An exam-
ple of the generated expression is shown in Listing
3, for the port in line 27 of Listing 2.

The allowsp is the set of the action ids taken from
actsp, and hidesp is the empty set.

● Internal Action or Unattached Port. Then pdsp is an
action named as the concatenation of id with id(einst).
The actsp is a set with this action, and allowsp and
hidesp are sets containing only the generated id.

Listing 3: Out Port Example
1 send_f2_c1 + send_f2_c2 +
2 send_f2_c2 | send_f2_c1

Note that the tactic for generating identifiers is a naive
solution in the sense that it ensures different ones when it
may not be necessary. An optimised solution aiming at the
minimisation of the LTS state number is part of future work.

Once we obtained a result (containing actsp, pdsp, allowsp,
and hidesp) from each process body, we combine them. With
the exception of the body corresponding to the main process,
all string expressions pdsp are concatenated into pds (pre-
viously adding their process headers). The sets (allowsp,
actsp and hidesp) are position-wise combined by applying
set union to become the sets allows, acts and hides.

Subsequently, we generate the conf string for the element
instance. For this, we concatenate the element name id(e),
with the instance name id(einst), and the actual parameters
apars(einst). For example, the conf generated from the line
29 in Listing 2 is Client c1. In the case that the element
instance has actual parameters, they are appended after the
instance id; e.g. c1 = Client(3) becomes Client c1(3). In
the case that we want to carry out behavioural comparisons
and the set hides is not empty, we generate another expres-
sion as shown in (21).

confh = τhidesconf (21)

We still need to concatenate to the pds the MPD mpd(e).
In order to use the initialisation values ivalues(mpd(e)),
two process declarations are required. The example MPD
in Listing 4 and the generated code in Listing 5 illustrate
how it is done. Subsequently, the process declaration for
the MPD can be concatenated to pds.

Listing 4: Example MPD
1 element Client(idC:Nat)
2 proc
3 Client(id:Nat = idC) = ...

Listing 5: Example MPD - Generated mCRL2
1 Client_c1(idC:Nat) = Client_mp_c1(idC);
2 Client_mp_c1(id:Nat) = ...

4.1.2 Generation — Pattern Instance
The result of evaluating genPA with an architecture ainst

is a tuple r of the form ⟨acts, pds, conf, allows⟩ as shown in
(15). The tuple components in r are generated upon the
set of results ri of recursively applying genPA with each
instance i in instances(ainst).

The tuple component conf in the result is a string with
the mCRL2 operators ρ, ∇, and Γ, nested in that order. The
communication operator Γ takes C as the set of communica-
tions and the parallel combination of the π3 of each ri (which
is the respective confi of each instance i). The allow oper-
ator ∇, taking as parameter the set V of action ids, is used



to enforce communications and to rule out undesired action
combinations. The rename operator ρ is applied then with
the set R of renamings. The confh string is calculated as the
hiding operator τ applied to conf taking H as argument. As
we will mention in Section 4.2, it is used when specifications
are generated to carry out behavioural comparisons.

conf = ρR(∇V (ΓC( ∏

ei ∈ insts(ainst)
π3(ri)))) (22)

confh = τH(conf) (23)

Each rule in the set C of communication rules is gener-
ated from each attachment in atts(ainst). Identifiers are
concatenated as it is shown in example (24), which is the
generated rule for the attachment in line 32 of Listing 2.

cr = ⟨sreq c1 s, rres s c1, sreq c1 rres s⟩ (24)

The calculation of the set R of rename rules requires more
work. For each ren in rens(ainst) we need the set attPrts
of attached port references in the upper level. Then, for
each prt in attPrts we generate a rename rule rr as shown
in (25). An example of the generated rename rules for the
lines 26 and 27 in Listing 2 is shown in Listing 6

rr = ⟨idold, idnew⟩ (25)

idold = id(pr(ren)) ++ id(inst(pr(ren))) ++ id(inst(prt))

idnew = id(ren) ++ id(inst(prt)) ++ id(inst(pr(ren)))

Listing 6: Rename Rules - Generated mCRL2
1 rename({
2 send_f2_c1 -> sres_s_c1,
3 send_f2_c2 -> sres_s_c2,
4 rec_f1_c1 -> rreq_s_c1,
5 rec_f1_c2 -> rreq_s_c2 }, ...)

The set V for the allow operator is calculated as the union
of three sets: the set of action ids resulting from the pro-
jection π3(cr) for each synchronisation rule cr in C; the set
of action ids resulting from the projection π1(rr) of each
rename rule in R; the set resulting from the union of each
set π4(ri), i.e., the allowsi set obtained from each instance
i of the architecture.

The set H for the hiding operator contains all ids of syn-
chronisation actions in C, i.e. {sid ∣ sid = π3(cr) ∀cr ∈ C}.

The last tuple component of r, acts, is the union of the
three sets as follows: the set of actions resulting from the
projection π3(cr) of each cr in C; the set of actions resulting
from the projection π1(rr) of each rr in R; and the set
resulting from the union of each set π1(ri) of each ri.

4.2 Analysis of Architectural Specifications
Once translated to mCRL2, an architectural specification

can be analysed and compared resorting to tools available in
the corresponding toolsuit. The envisaged analysis is based
on the following definition of architectural equivalence:

a ≡ b⇔ genh(a) ≈B genh(b) (26)

where genh refers to the same as gen in (14) but with
each occurrence of conf replaced by confh ,i.e., the set of

actions not involved in the interface are hidden; and ≈B

denotes branching bisimilarity. Branching bisimilarity [4]
relates behaviours differing in the amount of internal activity
but exhibiting similar branching structure. This equivalence
relation allows us to determine whether two architectures are
interchangeable with respect to their interface behaviour.

A weaker form of comparing architectural specifications
resorts to

a ⊑ b⇔ genh(a) ⊑W genh(b) (27)

where ⊑W is weak trace inclusion. A weak trace is a se-
quence of observable actions performed by a behaviour. This
relation allows us to answer if an architecture b has an in-
terface language allowing it to replace an architecture a.

Both ≈B and ⊑W are supported by the mCRL2 toolset. In
the sequel we illustrate the sort of envisaged analysis that
can be carried out in our framework.

In order to start our comparisons we define a base ar-
chitecture. We use the one in Listing 2 with the nested
architecture s replaced with s = Server() an instance of
the Server element defined in Listing 1.

Now suppose we want to charge the client each time the
server is used. We define a new element PaidServer that
after computing a response, calculates a cost for the service
(Listing 7). Then we define the architecture paid by replac-
ing s with an instance of PaidServer, and we use the tool
to check that both base ⊑ paid and paid ≡ base.

Listing 7: Paid Server
1 element PaidServer()
2 act rreq, sres, cres, ccost;
3 proc Server() =
4 rreq.cres.ccost.sres.Server();
5 interface
6 in rreq;
7 out sres;

A new version of the server, represented by the element
BuggyServer, is available. We define an architecture buggy
by replacing s with an instance of BuggyServer. Then we
use the tool to establish that base ⊑ buggy but buggy ≢ base.
The second result is because while base responds to every
request, buggy stops working in a non-deterministic way.

Listing 8: Buggy Server
1 element BuggyServer()
2 act rreq, sres, cres;
3 proc Server() =
4 rreq.(cres.delta + cres.sres.Server());
5 interface
6 in rreq;
7 out sres;

Now we want to compare base with an architecture in
which the server does not perform any processing but can
receive more than one request before responding. We name
this architecture buffered, and we obtain it by replacing s
in base with the s in Listing 9. Now we verify that base ⊑
buffered but buffered ≢ base. This is because s in base
has to respond to any received request before receiving a
subsequent one, but the s in buffered can receive up to 3
requests without responding to any.



Listing 9: Server with a 3-Position-Buffer
1 pattern Buffered()
2 elements
3 element Buffer()
4 act inb, outb;
5 proc Buffer() = inb.outb.Buffer();
6 interface
7 in inb;
8 out outb;
9 end

10 architecture s = Buffered()
11 instances
12 b1 = Buffer(); b2 = Buffer();
13 b3 = Buffer();
14 attachments
15 from b1.outb to b2.inb;
16 from b2.outb to b3.inb;
17 interface
18 b1.inb as rreq;
19 b3.outb as sres;
20 end

We define a different version of the server as a materiali-
sation of the Pipe and Filter Pattern. It is the one shown in
Listing 2 and we refer to such architecture as pf . Using the
tool we are able to establish that base ⊑ buffered ⊑ pf and
that pf ≡ buffered ≢ base. This means that the server in
pf can replace the server in base, and if we assume that the
server in buffered is behaviourally correct, we can safely
assume that the server in pf also is.

We can add to the system the ability to acknowledge ev-
ery communication. The architecture shown in Listing 10,
named ackBase, reflects this behaviour. The server receives
a request, computes a response, sends the response to the
client, waits for an acknowledge indicating that the response
was received, and then sends an acknowledge of receiving a
request. As expected, base /≡ ackBase and base /⊑ ackBase.

Listing 10: Server — Acknowledge
1 pattern AckClientServer()
2 elements
3 element Server()
4 act rreq, arreq, sres, asres, cres;
5 proc Server() =
6 rreq.cres.sres.asres.arreq.Server();
7 interface
8 in rreq; out arreq;
9 out sres; in asres;

10 element Client()
11 act prcs, sreq, asreq, rres, arres;
12 proc Client() =
13 prcs.sreq.rres.arres.asreq.Client();
14 interface
15 out sreq; in asreq;
16 in rres; out arres;
17 end
18 architecture ackBase = AckClientServer()
19 instances
20 s = Server();
21 c1 = Client(); c2 = Client();
22 attachments
23 from c1.sreq to s.rreq;
24 from s.arreq to c1.asreq;
25 from c2.sreq to s.rreq;
26 from s.arreq to c2.asreq;
27 from s.sres to c1.rres;
28 from c1.arres to s.asres;
29 from s.sres to c2.rres;
30 from c2.arres to s.asres;
31 end

A further improvement is to replace s in ackBase with
a server defined in terms of the Pipes and Filters pattern
in a similar way as done in pf . We call such configuration
ackPf and we show in Listing 11 the elements to create it.
We expect ackBase ⊑ ackPF and ackBase /≡ ackPF . The
later because we assume that, in a similar way as with pf ,
ackPF can receive up to three requests before answering
any. However, the result we obtain is ackBase ≡ ackPF .
The reason lies in the order in which events take place. In
the particular case of Filter (see line 6 in Listing 11) the
reception of a request, represented by rec, is only acknowl-
edged at the end of the process by arec. Since this is also
happening in Pipe and in Client (the initial communication
is acknowledged last, just before the recursive call), the first
filter in the chain is not free to receive a second request until
the client that issued the request receives his response. As a
consequence, the emergent behaviour turns out to be similar
to the one shown by ackBase. This can be easily resolved
by acknowledging a communication as soon as it occurs.

Listing 11: Pipes and Filters — Acknowledge
1 pattern AckPipeFilter()
2 elements
3 element Filter()
4 act rec, arec, trans, send, asend;
5 proc Filter() =
6 rec.trans.send.asend.arec.Filter();
7 interface
8 in rec; out arec;
9 out send; in asend;

10 element Pipe()
11 act accept, forward, aaccept, aforward;
12 proc Pipe() =
13 accept.forward.aforward.aaccept.Pipe();
14 interface
15 in accept; out aaccept;
16 out forward; in aforward;
17 end

5. CONCLUSIONS

5.1 Related Work
We can distinguish two approaches in the design of lan-

guages that provide support for both the behavioural and
structural dimensions in architectural design. One is to ex-
tend a structure-based language with a behavioural model,
and the other is to build the architectural language on top
of the behavioural model, by upgrading it with architectural
constructs.

The Architectural and Analysis Description Language —
AADL [13], widely adopted in the aeronautic and automo-
tive industry, is an example of the first approach. AADL
was mostly focused on the structural dimension but a be-
havioural annex [5] was included later. Subsequently, the an-
nex was precisely defined under different behavioural models
and the corresponding tools were developed.

The work in [1] is an example of the second approach. The
authors propose a set of guidelines to transform a process al-
gebra into a fully fledged architectural description language.
They refer to the resulting language as a Process Algebraic
Architecture Description Language — PADL. The guide-
lines describe how to include component-orientation into a



process algebra and in this way allow precise and analysable
architectural descriptions. They also argue that this ap-
proach enhances usability of process algebras.

AADL, PADL and the language we propose in this paper
have language constructs to specify components and config-
urations as first-class-citizens. In both PADL and the later
it is also possible to explicitly declare connectors. Moreover,
the same language construct is used for this.

Both PADL and AADL provide a variety of ports to in-
dicate different sorts of interactions. In contrast, we only
consider in and out ports, and resorts to the water-flow
metaphor, to informally indicate their semantics.

The three languages allow the specification of types. Since
AADL does not provide a language construct for connectors,
it also lacks a mean to declare connector types.

The three languages support patterns as a mechanism
to develop specifications from existing ones. PADL and
our own language differ from AADL in that they particu-
larly aim at formalising the concept of Architectural Pattern
[6][15]. PADL provides a mechanism to restrict possible con-
figurations that a system specified as an instance of a pat-
tern may adopt. It basically limits how configurations can
be built.

The three languages have specific tool support. Our lan-
guage inherits the existing mCRL2 toolset, PADL is sup-
ported by a tool named Two-Towers, and AADL has an
extensive tool support covering a wide range of needs.

5.2 Conclusions and future work
In this paper we presented an ADL that allows the be-

havioural modelling of architectural patterns and the com-
positional construction of architectures. We describe a trans-
lator from architectural specifications to mCRL2, enabling in
this way, tool-supported analysis of the formers. The analy-
sis considers two envisaged relations: equivalence and refine-
ment; which are illustrated with examples. As future work
we consider the development of a refinement calculus for ar-
chitectural patterns, exploring relations ≡ and ⊑ respectively
defined in (26) and (27). We also expect to improve the
translator in order to obtain process algebra specifications
better suited for tool analysis.

Acknowledgements
This research was partially supported by Fct (the Portuguese
Foundation for Science and Technology) under contract PTDC-
/EIA-CCO/108302/2008 — the Mondrian project, and
by QREN (the Portuguese National Strategy Reference Chart)
project 1621 — Evolve.

6. REFERENCES
[1] A. Aldini, M. Bernardo, and F. Corradini. A Process

Algebraic Approach to Software Architecture Design,
volume 54. Springer London, London, 2010.

[2] F. Arbab. Reo: a channel-based coordination model
for component composition.

Mathematical Structures in Computer Science,
14(3):329–366, June 2004.

[3] J. Baeten. A brief history of process algebra.
Theoretical Computer Science, 335(2/3):131–146,
2005.

[4] J. C. M. Baeten, T. Basten, and M. A. Reniers.
Process Algebra: Equational Theories of
Communicating Processes. Cambridge University
Press, 2010.

[5] J. P. Bodeveix, M. Filali, P. Gaufillet, and
F. Vernadat. The AADL real-time model A
behavioural annex for the AADL. In Proc. of the
DASIA 2006 – DAta Systems In Aerospace –
Conference, number May, Berlin, Germany, 2006.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture Volume 1: A System of
Patterns. Wiley, 1996.

[7] D. Garlan. Style-based refinement for software
architecture. Joint proceedings of the second
international software architecture workshop (ISAW-2)
and international workshop on multiple perspectives in
software development (Viewpoints ’96) on SIGSOFT
’96 workshops -, pages 72–75, 1996.

[8] D. Garlan and M. Shaw. An introduction to software
architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge
Engineering (volume I). World Scientific Publishing
Co., 1993.

[9] J. F. Groote, J. Keiren, A. Mathijssen, B. Ploeger,
F. Stappers, C. Tankink, Y. Usenko, M. Weerdenburg,
W. Wesselink, T. Willemse, and J. Wulp. The mcrl2
toolset. In Proc. International Workshop on Advanced
Software Development Tools and Techniques
(WASDeTT 2008), 2008.

[10] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko,
and M. van Weerdenburg. The formal specification
language mcrl2. In Methods for Modelling Software
Systems: Dagstuhl Seminar 06351, 2007.

[11] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. Software Engineering, IEEE,
26(1):70–93, 2002.

[12] R. Milner. Communication and Concurrency. Series in
Computer Science. Prentice Hall, 1989.

[13] SAE Development Team. AADL homepage, 2011.

[14] A. Sanchez, L. S. Barbosa, and D. Riesco. A Language
for Behavioral Modeling of Architectural Patterns -
Generation and Analysis in the mCRL2 Framework.
Technical Report DI-CCTC-11-02, Universidade do
Minho, Departamento de Informática, Campus de
Gualtar 4710-057, Braga, Portugal, 03 2011.

[15] M. Shaw and D. Garlan. Software architecture:
perspectives on an emerging discipline. Prentice Hall,
1996.


