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Abstract

Parser combinators elegantly and concisely model generalised LL parsers
in a purely functional language. They nicely illustrate the concepts of
higher-order functions, polymorphic functions and lazy evaluation. In-
deed, parser combinators are often presented as a motivating example
for functional programming. Generalised LL, however, has an important
drawback: it does not handle (direct nor indirect) left recursive context-
free grammars.

In a different context, the (non-functional) parsing community has
been doing a considerable amount of work on generalised LR parsing.
Such parsers handle virtually any context-free grammar. Surprisingly, lit-
tle work has been done on generalised LR by the functional programming
community ( [9] is a good exception).

In this report, we present a concise and elegant implementation of an
incremental generalised LR parser generator and interpreter in Haskell.
For good computational complexity, such parsers rely heavily on lazy
evaluation. Incremental evaluation is obtained via function memoisation.

An implementation of our generalised LR parser generator is available
as the HaGLR tool. We assess the performance of this tool with some
benchmark examples.



1 Motivation

The Generalised LR parsing algorithm was first introduced by Tomita [14]
in the context of natural language processing. Several improvements have
been proposed in the literature, among others to handle context-free
grammars with hidden left-recursion [11, 7]. An improved algorithm has
been implemented in scannerless form in the SGLR parser [3]. More re-
cently, GLR capabilities have been added to Yacc-like tools, such as Bison.

The advantage of GLR over LR is compositionality. When adding rules
to grammars, or taking the union of several grammars, the LR parsing
algorithm will stumble into conflicts. These conflicts must be eliminated
by massaging the augmented grammar before parsing can proceed. This
massaging effort is a pain by itself, but even more so because of its ef-
fect on the associated semantic functionality. It precludes as-is reuse of
AST processing components developed for the initial grammar1. GLR re-
quires no such grammar changes. It tolerates conflicts, just forking off
alternative parsers as necessary. These alternative parsers will either be
killed off when they run into parse errors or merged when they converge
to the same state. In the end, a single parser may survive, indicating
a non-ambiguous global parse. When several parsers survive, additional
disambiguation effort is needed to select a parse tree from the resulting
parse forest. GLR’s performance can be lower than LR’s, but not too
dramatically so [11].

In the context of Haskell, two general approaches to parsing are in
vogue. One approach is offered by the Happy parser generator which
produces bottom-up parsers in Haskell from grammar definitions, much
like Yacc does for C. Like Yacc, Happy is resctricted to LALR parsing,
thus lacking compositionality as explained above. The other approach is
offered by several libraries of parser combinators. With these, top-down
parsers can be constructed directly in Haskell. The main disadvantages of
this approach, and of LL parsing in general, is that it fails to terminate on
left-recursive rules. To eliminate left-recursion, the LL parser developer
is forced to massage his grammar, which requires quite some effort, and
makes the grammar less natural.

Given the above considerations, it is natural to long for GLR sup-
port in Haskell2. One approach would be to extend Happy from LALR to

1 For a more in-depth analysis of the draw-backs of traditional parsing methods, we
refer the reader to [4].

2 In earlier work, one of the authors provides GLR support for Haskell in a not fully
integrated fashion, c.q. by invoking an external GLR parser [5, 8].



GLR3. In this report we embark on a more challenging approach: to pro-
vide GLR support directly in Haskell in the form of parser combinators.
Our solution extends our previous work on regular languages avaliable
in the HaLeX library [12]. In brief, our solution will run as follows. We
provide a datatype for context-free grammar representation, which the
Haskell developer will use to define syntax (Section 3). We will provide
functions that from these grammars construct deterministic and non-
deterministic automata, which subsequently are turned into action tables
which can be fed to a generalized LR acceptance function (Section 4). To
faithfully model the GLR algorithm, including its state merging, we intro-
duce function memoization at the appropriate place (this and other pos-
sible optimizations are described in Section 5). In this report, we consider
only Tomita’s original algorithm, allowing us to handle left-recursion, but
not hidden left recursion. In future, we also hope to capture known im-
provements of Tomita’s algorithm.

To compare our solution with other parsing approaches, we integrated
our GLR parsing support into a stand-alone tool (Section 6), and we
performed a series of benchmarks (Section 7).

2 Ambiguities in Languages

The popularity of Generalized Parsing is growing since it is able solve
many problems that are common in other technologies based on LL and
LR algorithms, and since it is able to handle both real programming
languages and domain specific languages.

There are syntactic features in real programming languages (e.g.,
C,Haskell, JAVA, etc) that do not fit the restricted classes LL(K) or
LALR(k) at all. The main reason this is that they are ambiguous in one
way or the other.

Some grammars have simple conflicts that can be solved either by
computing more look-ahead or by throwing alternative derivations in par-
allel. What Generalized Parsing offers is exactly this functionality. Other
grammars, with some more serious ambiguities, may lead to all derivations
being accepted as valid. As result of parsing, a collection of derivations (a
parse forest) may be obtained instead of a single derivation (a parse tree).

Many of these more serious ambiguities are present in real program-
ming languages. We will briefly analise ambiguities in two of these cases:

3 During the development of this project, such an extension was pre-announced in the
Haskell mailing list. Although, and still today, the tool is not publicly available.



the C programming language type definition ambiguity and the indenta-
tion ambiguity in Haskell.

– Type-definition in C

The hardest problem that a C parser has to solve is to distinguish type
names (introduced via a typedef) from variable names. This means
that is it possible that certain identifiers can be parsed as either type
identifiers or variable identifiers due to the overloading possibility of
certain operators. Let’s take a quick look at the following piece of C
code:

{Bool *b1;}

This statement above can be interpreted in two different ways: the
first would be to interpreter it as multiplying the Bool and b1 vari-
ables; the second as a declaration of a variable b1 to a Bool. The
C compiler would always choose the first alternative unless Bool was
declared earlier in the program to be a type using a typedef statement.

Also associated with this kind of ambiguity, let’s now examine the
following piece of C code:

(a)&(b)

This code could again lead to the following ambiguity: it could be
parsed as the bitwise-and of a and b (if a is the name of a variable),
or as the type-cast of the expression &b to type a if a is the name of
a type.

– Indentation in Haskell

Some languages, specially functional programming ones, are designed
to use indentation to indicate blocks of code. This or any other kind
of line-by-line oriented position information is not expressible in any
context-free grammar, but without it the syntax of such a language is
ambiguous.

To demonstrate this type of ambiguity, let’s analyse the following
pieces of code that would be written in any typical functional pro-
gramming style:



a = b a = b

where b = d where b = d

where d = 1 where d = 1

c = 2 c = 2

In the left-hand piece of code, the c variable is meant to belong to
the first where clause. Without layout interpretation, c could as well
belong to the second where clause, as shown in the right-hand side
piece of code.

For more details on these aspects, we refer the reader to [10] and
[15].

These two examples, or more generally, the ambiguities ocurring in
real Programming Languages, can be solved using context (or semantic)
information.

There are other kinds of ambiguities that indeed can be solved at
parse time. Consider, for example, the following context-free grammar
that defines a simple example language for expressions.

E → E + E

E → E ∗ E

E → i

Considering that i represents the class of integer numbers, we could
try to parse the sentence 4 + 5 ∗ 6. There would be 2 different ways of
doing it. We could either parse the sentence (4 + 5) ∗ 6 or the sentence
4 + (5 ∗ 6), which obviates the fact that the grammar is an ambiguous
one.

Although this grammar is ambiguous it can be parsed as a non-
ambiguous one, using standard techniques, if we provide the parser with
the aditional (semantic) information: the priority and precedence rules of
the + and ∗ operators. With such information, traditional parser tech-
niques (e.g., LALR(1)) and parser generators (e.g., YACC) can parse ex-
pressions deterministically. For example, the YACC parser generator has
a special notation (presented next) to define the precedence and priority
rules of operators.



%left ’+’

%left ’*’

%%

expr : expr ’+’ expr

| expr ’*’ expr

| ’i’

;

So, the first two lines stand for the + and ∗ operators being left
associative; the lines are listed in order of increasing precedence. This
means that the ∗ operator has greater priority over the + operator. With
such rules, the parsers produced by YACC will parse the example sentence
correctly, producing as result a single solution.

In the context of GLR parsing, these rules are known as disambigua-
tion rules. This rules are used to disambiguate the parsers results. The
definition of a powerful disambiguation language is defined in [3].

What generalized parsing proposes to solve is the problem of working
(also) with this ambiguous kind of grammars (that define in some cases,
as seen before, real languages).

3 Representing Context-free Grammars

A Context-Free Grammar (CFG) G is a 4-tuple G = (T,N, S, P ) where T
is the set of terminal symbols or vocabulary, N is the set of non-terminal
symbols, S is the root (non-terminal) symbol, and, finally, P is the set of
productions (or rewrite rules). Rather then using Haskell’s predefined tu-
ples, we introduce the following algebraic datatype for context-free gram-
mars, called Cfg:

data Cfg t nt
= Cfg {terminals :: [Symb t nt ]

,nonterminals :: [Symb t nt ]
, root :: Symb t nt
, prods :: [Prod t nt ]}

Here we use Haskell built-in lists to model sets (of symbols). The data
type Cfg is parameterised with both the types of grammar terminal and
non-terminal symbols, so that we can define grammars where symbols
can not only be strings, but also characters, integers, etc.



Productions have a name and consist in a list of grammar symbols.
This name and symbols list are grouped in Haskell pairs.

type Prod t nt
= (ProdName , [Symb t nt ])

The predefined Haskell String type is used to represent production
names.

type ProdName
= String

A production is a list of terminal symbols (constructor T) and non-
terminal symbols (constructor NT). To be able to produce (GLR) parsers
for a given context-free grammar, we need to expand it with a new root
symbol (constructor Root) and a terminal symbol (usually named Dol-
lar, constructor Dollar). Thus, we include two constructors to explicitly
model such symbols.

data Symb t nt
= Dollar
| Root
| T t
| NT nt

A production is defined as a list of grammar symbols with a name.
Thus, the left and right-hand sides of a production are easily defined
as the pre-defined head and tail functions. To make the notation of our
grammars as similar to BNF as possible we define an infix operator 7−→

to denote the usual “derives to” operator:

lhs prod = head
rhs prod = tail
l 7−→ r = l : r

Using this data types and these functions, we are able to write context-
free grammars in Haskell. For example, the language of arithmetic expres-
sions with the operators addition and multiplication is written as:



expr = Cfg [T ’i’,T ’+’,T ’*’]
[NT ’E’]
(NT ’E’)
[("add",NT ’E’ 7−→ [NT ’E’,T ’+’,NT ’E’])
, ("mul",NT ’E’ 7−→ [NT ’E’,T ’*’,NT ’E’])
, ("val",NT ’E’ 7−→ [T ’i’])]

where the terminal symbol i represents the lexical class of integer num-
bers.

One of the possible ways to visualize this grammar would be as the
graph shown in Figure 1.

E

::=  ’i’ 

::=  E  ’*’  E 

::=  E  ’+’  E 

Fig. 1. Graphical Representation of the expr grammar

Having defined grammars in Haskell, the standard functions that test
for grammar (or symbol) properties are elegantly and concisely written
in this language. For example, the function that computes the lookahead
of a production of a CFG is written in Haskell very much like its formal
defintion:

lookahead :: (Eq t ,Eq nt)⇒ Cfg t nt → [Symb t nt ]→ [Symb t nt ]
lookahead g p
| nullable g [ ] (rhs prod p) = first g (rhs prod p) ++ follow g (lhs prod p)
| otherwise = first g (rhs prod p)



where the functions first and follow compute the first and follow sets
of a given symbol. The predicate nullable defines whether a sequence of
symbols may derive the empty string or not. We omit here the definitions
of these functions, since they also follow directly from their formal defini-
tion [1]. Several other functions are also easily expressed in Haskell (e.g.,
testing for the LL(1) condition).

4 Generalised LR Parsing

This section presents the implementation of a Haskell-based Generalised
LR (GLR) parser. Before we discuss the generalised LR parser, let us
briefly recall the well-known LR parsing algorithm [1].

The LR parsing algorithms parse sentences following a bottom-up
strategy. The derivation tree for a sentence f is built by starting from
the leaves until the root is reached. This process can be seen as the re-
duction of the sentence f to the root of the grammar. This reduction
process is performed as a sequence of reduction steps, where in each step
a sub-sentence of f , that matches the right-hand side of a production p,
is replaced by (or reduced to) the left-hand side non-terminal.

Let us consider our running example grammar. The sentence 12+5*6

is reduced to the root E through the following reducing steps:

12+5*6 reduce by production val

E+5*6 reduce by production val

E+E*6 reduce by production add

E*6 reduce by production val

E*E reduce by production mul

E accept

Although it is easy to perform the right sequence of reduction steps
by-hand, we wish to define a function (i.e., a LR parser) that performs
the right reduction steps automatically. There are well-known techniques
to construct such a LR parser. In Figure 2 we show the architecture of
an LR parser (taken from [1]).

It consists of a generic LR acceptance function that is parameterised
with the input sentence, the parsing tables (action and goto tables), and
an internal stack. The parsing tables represent the grammar under con-
sideration and they define a deterministic finite automaton (goto table)
whose states contain the information needed to decide which actions to
perform (action table). Before we explain the LR parsing algorithm, let
us discuss how those tables are constructed.
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Fig. 2. The architecture of an LR parser

4.1 Representing Grammars as Automata

There are well-known techniques to represent context-free grammars as
LR(0) automata. The idea is to define productions as LR(0) items and to
use them as automaton states. A LR(0) item is a production with a dot
in its right-hand side. Informally, it indicates how much of a production
has been seen at a given point in the parsing process.

For example, production E → E + E induces the four LR(0) items

E → .E + E,E → E. + E,E → E + .E,E → E + E.

The last item is called a reducing item, since the dot is on its rightmost
position. This means that all the symbols of the right-hand side of a
production have been seen and, thus, they can be reduced to the left-
hand side.

LR(0) items can be modelled in Haskell as pairs of productions and
(dot) positions, as defined next:
type Item sy = ([sy ], Int)

is reducing it (p, i) = i ≡ length p

The construction of the LR(0) automaton is performed in three steps:
first the grammar is extended with a new root symbol, then the LR(0)
items are induced, and, finally, a non-deterministic finite automaton is
constructed. To construct the LR(0) automaton we use the support to
model, manipulate and animate regular languages in Haskell, as provided
in the HaLeX library [12]. Using this library, the construction is concise



and easily modelled in Haskell. Figure 3 shows the graphical representa-
tion (produced by HaLeX) of the Non-Deterministic Finite Automaton
(NDFA) induced by our running example.

’S’’ -> . ’E’ ’$’

’E’ -> . ’E’ ’+’ ’E’

Epsilon
’E’ -> . ’E’ ’*’ ’E’

Epsilon

’E’ -> . ’i’

Epsilon

’S’’ -> ’E’ . ’$’

’E’

Epsilon

Epsilon

Epsilon

’E’ -> ’E’ . ’+’ ’E’
’E’

Epsilon

Epsilon
Epsilon

’E’ -> ’E’ . ’*’ ’E’

’E’

’E’ -> ’i’ .
’i’

’S’’ -> ’E’ ’$’ .
’$’

’E’ -> ’E’ ’+’ . ’E’
’+’

’E’ -> ’E’ ’*’ . ’E’
’*’

Epsilon

Epsilon

Epsilon

’E’ -> ’E’ ’+’ ’E’ .’E’

Epsilon

Epsilon

Epsilon

’E’ -> ’E’ ’*’ ’E’ .
’E’

Fig. 3. Non-deterministic LR(0) Automaton.

The LR(0) automaton is obtained by simply converting this NDFA
into a deterministic one. Figure 4 shows the LR(0) automaton.

’S’’ -> . ’E’ ’$’ 
’E’ -> . ’E’ ’*’ ’E’ 
’E’ -> . ’E’ ’+’ ’E’ 

’E’ -> . ’i’ ’E’ -> ’i’ .

’i’

’S’’ -> ’E’ . ’$’ 
’E’ -> ’E’ . ’*’ ’E’ 
’E’ -> ’E’ . ’+’ ’E’

’E’
’E’ -> . ’E’ ’*’ ’E’ 
’E’ -> . ’E’ ’+’ ’E’ 
’E’ -> ’E’ ’+’ . ’E’ 

’E’ -> . ’i’

’+’

’E’ -> . ’E’ ’*’ ’E’ 
’E’ -> ’E’ ’*’ . ’E’ 
’E’ -> . ’E’ ’+’ ’E’ 

’E’ -> . ’i’

’*’

’S’’ -> ’E’ ’$’ .
’$’

’i’

’E’ -> ’E’ . ’*’ ’E’ 
’E’ -> ’E’ . ’+’ ’E’ 
’E’ -> ’E’ ’+’ ’E’ .’E’

’i’

’E’ -> ’E’ . ’*’ ’E’ 
’E’ -> ’E’ ’*’ ’E’ . 
’E’ -> ’E’ . ’+’ ’E’

’E’

’+’

’*’

’+’

’*’

Fig. 4. Deterministic LR(0) Automaton.

The goto table used by the LR acceptance function is just a table
representation of the transition function of this automaton.

4.2 From Automata to Action Tables

The LR acceptance function works as follows: with the state on the top of
the stack and the input symbol, it consults the action table to determine
which action to perform. Thus, we need to compute the actions to be
performed in each state of the (deterministic) LR(0) automaton. There
are four types of actions:



– Shift : the next state is shifted into the parsing stack.
– Accept : the parsing terminates with success.
– Reduce by production p: the parsing stack is reduced. The states cor-

responding to the symbols of the right-hand side of p are popped and
the new state is pushed into the stack.

– Error : the parsing terminates with a parsing error.

To model these actions in Haskell we introduce a new data type,
named Actions, with four constructor function, one per action.

data Action st pr = Shift st -- Move to state st
| Accept -- Accept the sentence
| Reduce pr -- Reduce the stack
| Error -- Error

The action table is defined as a list of rows, where each row consists
of the DFA state (first column) and the remaining columns define the
(unique) action to be performed for each symbol of the vocabulary.

type AT st pr = [(st , [Actions st pr ])]

In the classical LR parsing algorithm, there is a single action in each
entry of this table. In other words we say that there are no conflicts in the
action table. A conflict occurs when there is more than one possible action
in a state s for a particular symbol a. For example, if in s for symbol a we
can do both a shift and a reduce action, then we say that there is shift-
reduce conflict. In the case that we can reduce by two different productions
we say that there is a reduce-reduce conflict. The LR algorithm handles
conflict free grammars only.

There are several techniques to construct the action tables, namely,
LR(0), SLR(1), LALR(1) and LR(1). They differ in terms of their com-
plexity and power to express grammars. By power we mean the ability to
construct conflict-free action tables. For example, the SLR - simple LR
- is the easiest to implement, but the least powerful of the three. This
means that it may induce non-conflict free action tables where the others
do not.

4.3 The Generalised LR Algorithm

A generalised LR (GLR) parser, as originally defined by Tomita, starts
the parsing process as a classical LR parser, but during parsing when



it encounters a shift-reduce or reduce-reduce conflict in the action table
it forks the parser in as many parallel parsers as there are possibilities.
These independently running simple parsers are fully determined by their
parse stack and (equal) parsing tables.

In order to model GLR parsers in Haskell we start by defining the
type of the action table. In the generalised version, the action table has
to contain all possible (conflicting) actions to be performed on a state for
a vocabulary symbol. Thus, each entry of the table consists of a list of
actions and not by a single one (as defined previously).

type AT st pr = [(st , [ [Actions st pr ] ])]

To construct the action table, we may use any of the techniques dis-
cussed previously, i.e., LR(0), SLR(1), etc. The correctness of the GLR
algorithm is not affected by the technique used, but only its performance.
Note that fewer conflicts mean in this case fewer forks of the parser.

Next, we show the action table constructed for our expression gram-
mar. It is easy to see that this grammar has four shift-reduce conflicts:
the entries containing non-singleton lists.

i + * $

[S’→.E$,E→.E*E,E→.E+E,E→.i] [Shift E→i.] [Error] [Error] [Error]

[E→i.] [Error] [Reduce E→i] [Reduce E→i] [Reduce E→i]

[S’→E.$,E→E.*E,E→E.+E] [Error] [Shift E→.E*E,E→E+.E,E→.E+E,E→.i] [Shift E→.E*E,E→E*.E,E→.E+E,E→.i] [Accept]

[E→.E*E,E→.E+E,E→E+.E,E→.i] [Shift E→i.] [Error] [Error] [Error]

[E→.E*E,E→E*.E,E→.E+E,E→.i] [Shift E→i.] [Error] [Error] [Error]

[S’→E$.] [Error] [Error] [Error] [Error]

[E→E.*E,E→E+.E,E→E*E.] [Error]
[Shift E→.E*E,E→.E+E,E→E+.E,E→.i
,Reduce E → E+E]

[Shift E→.E*E,E→E*.E,E→.E+E,E→.i
,Reduce E → E+E ]

[Reduce E → E+E ]

[E→E.*E,E→E*E.,E→E.+E] [Error]
[Shift E→.E*E,E→.E+E,E→E+.E,E→.i
,Reduce E → E*E]

[Shift E→.E*E,E→E*.E,E→.E+E,E→.i
,Reduce E → E*E]

[Reduce E → E*E]

We are now in a position to model the GLR acceptance function in
Haskell. The function glraccept gets as parameters the grammar and the
input sentence. It returns a list with all possible (boolean) solutions as
the result.

glraccept :: (Eq t ,Ord t ,Ord nt)⇒ Cfg t nt → [t ]→ [Bool ]
glraccept g inp = glr lookupTT lookupAT [State s ] inp

where

eg@(Cfg t nt r p) = expand cfg g -- The expanded grammar
dfa@(Dfa v q s z d) = ecfg2LR 0Dfa eg -- The LR 0 DFA

at = e gslr at eg -- The Action Table

lookupAT = lookupAT t at -- The lookup fun. for the AT
lookupTT = d -- The lookup fun. for the TT



This function works as follows: first, the grammar is extended with a
new root symbol, and, then the LR(0) automaton is constructed. After
that, the generalised action tables are constructed, and, finally the lookup
function on the action and goto tables are defined.

The acceptance of the sentence is performed by function glr. As shown
in Figure 2, this function is parameterised with the goto and action tables
(i.e., their lookup functions), the parser stack (starting the parsing pro-
cess with the initial state of LR(0) on the stack) and the input sentence.

glr l tt l at sk [ ] = [ res
| ac ← acs
, res ← glr ′ l tt l at sk [ ] ac ]

where st = top sk
acs = l at st Dollar

glr l tt l at sk inp@(h : t) = [ res
| ac ← acs
, res ← glr ′ l tt l at sk inp ac ]

where st = top sk
acs = l at st (T h)

Here we see the distinctive behaviour of the GLR algorithm. The
function glr’ is invoked on all possible conflicting actions, not just on
one.

The auxiliary function glr’ models in Haskell the usual operations as-
sociated to each of the parser actions. Actually, this function is also used
by the classical LR acceptance function (library function lraccept).

glr ′ l tt l at sk inp (Reduce pr ) = glr l tt l at sk ′′ inp
where sk ′ = popN (sizeProd pr) sk -- reducing the stack

st = top sk ′ -- acessing the state on its top
st ′ = l tt st (lhs prod pr) -- moving to a new state
sk ′′ = push st ′ sk ′ -- pushing the new state

glr ′ l tt l at sk (h : t) (Shift st) = glr l tt l at sk ′ t
where sk ′ = push st sk

glr ′ l tt l at sk inp Accept = [True ]



glr ′ l tt l at sk inp Error = [False ]

Let us return to our running example and use our GLR parser to parse
a simple expression:

Expr> glraccept expr (scanner "12+5*6+8")

[True,True,True,True,True]

Indeed, the result of the GLR parser is a list of solutions (all accepting
the sentence in this case). Rather than just returning a list of boolean so-
lutions, parsers usually construct an abstract syntax tree used for further
analysis. A GLR parser produces a forest of such parse trees.

In order to produce more useful results, we have extended the GLR
parser to produce XML trees - by using the HaXml library [16]- and
ATerms [2]. Furthermore, we have also extended the HaXml library with
a graphical representation of XML trees using the external tool graphviz

- a graph vizualization system available from AT&T. For the example
above, we would get the XML forest shown in figure 5.

As a result of building XML trees and ATerms, we can use the HaXml
combinators or the Strafunski library [8] to perform transformations on
such trees. For example, we may express disambiguation rules to select
correct abstract trees from the resulting forest.

Regarding the example, the correct parse tree to select among the
forest would be the one presented in figure 6, which respects the well
known mathematical priority of operations.

4.4 Limitations

Tomita’s algorithm, as implemented above has some limitations. The
most important one is that it will fail to terminate on grammars that
have hidden left-recursion. An example of such a grammar is the follow-
ing:

hiden left recursive = Cfg [T ’x’,T ’b’]
[NT ’S’,NT ’A’]
(NT ’S’)
[("p1",NT ’S’ 7−→ [NT ’A’,NT ’S’,T ’b’])
, ("p2",NT ’S’ 7−→ [T ’x’])
, ("p3",NT ’A’ 7−→ [ ])]

Bison’s implementation of generalised LR parsing also fails to termi-
nate on such grammars. For an explanation of these issues see [11, 7]. As
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Fig. 5. The resulting parse forest

for Elkhound’s implementation, it produces an error (not a parse one!)
and aborts when trying to parse, for example, the sentence xbbb, which
obviously belongs to the language defined by this grammar.

5 Optimisation

In this section we discuss two important optimisations of the GLR algo-
rithm: the use of lazy evaluation not only to avoid the construction of all
possible solutions, but also to schedule parallel parsers space efficiently,
and the use of function memoisation to join two parsers.
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Fig. 6. The correct parse tree

5.1 Lazyness

Functional (top-down) parser combinators rely on lazy evaluation to avoid
the construction of all the alternative solutions. If only a single parsing
result is required, we can take the head of the list and all the other pos-
sible results are not computed at all. In GLR we can also rely in lazy
evaluation to not compute all possible solutions (or parse trees), but only
the ones we are interested in. For example, if we are interested in the first
accepted solution we can define the following lazy GLR parser:

glracceptLazy :: (Eq t ,Ord t ,Ord nt)⇒ Cfg t nt → [t ]→ Bool
glracceptLazy g inp = or $ glraccept g inp

5.2 Function Memoisation

Generalised LR splits the parser in other parsers when conflicts are en-
countered in the action table. These parsers then run in parallel; some
may not accept the sentence while others may accept it. Some of these
independent parsers, however, may converge exactly to the same pars-
ing state after processing an ambiguous part of the input. In this case,
an important optimisation would be to merge these parsers into a single
one.



There are techniques to implement this optimisation in the context
of imperative programming [11]. In functional programming, however, we
can achieve this re-joining of parser functions by using standard function
memoisation. Using this technique we memoise calls to the parser func-
tions. Thus, if two parsers converge to the same parsing state, then the
second parser to reach that state will find in the memo table the results
of the previous one. In this case it will reuse such a result and will not
compute it again.

Function memoisation can be implemented by using ghc primitive
function memo. Thus, an incremental generalised LR parser is defined in
Haskell as follows:

inc glr l tt l at s inp@(h : t) = [ res
| ac ← acs
, res ← memo (glr ′ l tt l at) s inp ac
]

where a = top s
acs = l at a (T h)

6 The HaGLR library and tool

A library to provide support for GLR parsing in Haskell has been devel-
oped and it is available as part of the Haskell UMinho Libraries (HUL)
at http://wiki.di.uminho.pt/documentation/. The API of this library is in-
cluded in appendix A.

Having defined this GLR library, we can now construct useful tools to
manipulate context-free grammars in Haskell. We have constructed two
tools: a grammar interpreter and a parser generator. Both tools have the
following features:

– they can use a standard LR or (incremental) GLR algorithm.
– they produce either ATerm or XML forests (trees) as result.
– they produce graphical representations of the LR(0) automata. In-

deed the automata displayed in Figures 3 and 4 were automatically
produced by our tools.

– they produce pretty-printing representation of the parse and action
tables (see the table on page 12) by using the table pretty-printing
algorithm included in the HUL [13].

– they produce a graphical representation of the XML trees. Actually
the trees shown in Figure 5 were produced by our tools.



We have also developed a Web interface for the library. This interface
provides all the funcionality described above and displays outputs in a
graphical way.

6.1 Grammar interpreter

The grammar interpreter follows the architecture shown in figure 2, and
is based on the function glraccept of page 12. Thus, given a grammar
and a sentence, it computes the parsing tables and only after computing
these tables the acceptance of the sentence (i.e., the parsing process) is
performed.

As for using this grammar interpreter, it will only require to load
parsing modules from the library into a Haskell interpreter such as GHCi.
Afterwards, all the funcionality listed in appendix A will be available.

We can use the glraccept function to check whether the expression
grammar accepts the sentence ”i+i*i+i”.

HaGlr> glraccept expr "i+i*i+i"

[True,True,True,True,True]

As expected there are five different parsing derivations, all of them
conducting to an acceptance result.

6.2 Parser Generator and Parsing

with generated parsers

The parser generator works in two phases, very much like any parser gen-
erator does: first, given a grammar, it computes the parse tables. Such
parse tables are written in a file as a Haskell module. In the second phase,
the parse tables (for a particular language) are compiled and linked to a
previously defined main function.

Let’s now describe in detail the usage of this tool.

– Parser Generator

Let’s first explain the process of generating parse tables and parsers
themselves.

We have produced a tool named Table Generator, that displays,
when requested, the following help message:



Table Generator: a Haskell-based Parser Generator for HaGLR

version 0.0 (by Joao Saraiva, Joao Fernandes & Joost Visser)

Usage: TableGenerator [options] [file] ...

List of options:

-g,-G FilePath .CFG Grammar Parsing from a Cfg Productions List

-d,-D FilePath .SDF Grammar Parsing from a SDF Grammar definition

-s,-S string .Cfg starting symbol Specifying Grammar Starting Symbol

-h,-? .help output a brief help message

So, this tool provides three alternatives. The first one is to use a
compiled-in grammar, i.e., a grammar defined in the examples source of
the library. To choose this way of building LR tables and parsers, just
invoke the tool with no options, like:

$ tablegenerator

The second alternative is to feed the Table Generator with a Cfg
grammar, as defined earlier. For simplicity purposes, it is actually enough
to provide the list of productions and the starting symbol of the grammar.
So, supposing Expr.cfg file contained the following list of productions:

[("plus", [NT "E",NT "E",T ’+’,NT "E"]),

("times",[NT "E",NT "E",T ’*’,NT "E"]),

("value",[NT "E",T ’i’])]

For table and parsers generation, in this case, just do:

$ tablegenerator -g Expr.cfg -s "E"

The last alternative specifies that the context-free grammar is written
in the SDF notation. That is to say that Table Generator can be fed
with an SDF grammar definition. Before explaining how to proceed with
the table generation in this way, we will explain on how to build an SDF
definition.

– The SDF formalism
SDF is a formalism for the definition of syntax used for defining
Context-Free Grammars. Indeed, there is available a large library of
SDF grammars for many languages (e.g. JAVA, COBOL, BibTex).
The idea behind the development of this front-end for HaGlr is to be
able to use them and integrate real languages with our tool.



SDF is described in detail in [6] and this section is based on it.

An SDF definition consists of five sections and has the following overall
structure:

1. sorts: names of domains or non-terminlas to be used in the other
sections of the specification

2. lexical syntax: the rules of the lexical syntax
3. contex-free syntax: the rules of the concrete and abstract syntax
4. priorities: definition of priority relations between rules of context-

free syntax
5. variables: naming schemes for variables

We introduce the most significant features of SDF by means of an
example in which we define the lexical, concrete and abstract syntax
of a simple programming language (see Figure 7). In the sorts section,
six names are declared. These names can be interpreted in two ways:

• as non-terminlas of a lexical or a context-free grammar, and
• as names of the domains used to construct abstract syntax trees.

We will use this dual interpretation of sorts to achieve an automatic
mapping between sentences and abstract syntax trees. In the lexical
syntax section, we define a space, a tabulation, and a newline character
as layout characters (line 3). In addition, the form of identifiers (line
4) and numeric constants (line 5) is defined.
In the context-free syntax section, the concrete and abstract syntax
are defined:

• The concrete syntax is obtained by using the ”non-terminal” in-
terpretation of sorts and reading the rules from ”right to left” as
ordinary grammar rules.

• The abstract syntax is obtained by using the ”domain” interpreta-
tion of sorts and reading the rules from left to right as definitions
of (typed) constructor functions for abstract syntax trees. The sort
names appearing in function definitions define the types of the ar-
guments as well as of the result of these functions.

Some other features illustrated by the context-free syntax in Figure 7
are:

• Rules can define lists with or without separators (line 9).
• Rules may have a bracket attribute. Such rules are used only

for grouping language constructs, but do not contribute to the
abstract syntax (lines 8 and 17).



1. sorts ID NAT PROGRAM STATEMENT SERIES EXP

2. lexical syntax

3. [ \t\n\r] -> LAYOUT

4. [a-z] [a-z0-9]* -> ID

5. [0-9]+ -> NAT

6. context-free syntax

7. program SERIES -> PROGRAM

8. begin SERIES end -> SERIES {bracket}

9. { STATEMENT ";" }* -> SERIES

10. ID ":=" EXP -> STATEMENT

11. if EXP the SERIES else SERIES -> STATEMENT

12. until EXP do SERIES -> STATEMENT

13. EXP "+" EXP -> EXP {left}

14. EXP "-" EXP -> EXP {non-assoc}

15. EXP "*" EXP -> EXP {left}

16. EXP "/" EXP -> EXP {non-assoc}

17. "(" EXP ")" -> EXP {bracket}

18. ID -> EXP

19. NAT -> EXP

20. priorities

21. {left: EXP "*" EXP -> EXP, EXP "/" EXP -> EXP} >

{left: EXP "+" EXP -> EXP, EXP "-" EXP -> EXP}

22. variables

23. Exp -> EXP

24. Series -> SERIES

Fig. 7. A simple programming language

• Rules may have various attributes defining their associativity prop-
erties (lines 13-16). We allow the definition of associative and left-,
right-, or non-associatie operators.

In the priorities section, priority relations between rules in the context-
free syntax are defined as well as the associativity of groups of different
operators. As shown here, the operators ∗ and / have a higher priority
than the operators + and −.

Finally, in the variables section, naming schemes for variables are
given. These variables can be used in two ways:

• as variables in semantics definitions added to the SDF definition,

• as ”holes” in programs during syntax-directed editing.

The line numbers in the SDF definition are just for ease of reference
in the text. They are not a part of the SDF definition proper.



In this way, and supposing Expr.def file contained the following SDF
grammar definition, which defines the same toy expression language as
the Cfg grammar given as example:

definition

module Main

exports

sorts

Expression

context-free syntax

"i" -> Expression

Expression "+" Expression -> Expression

Expression "*" Expression -> Expression

Now, invoking:

$ tablegenerator -d Expr.def

would generate, as desired, the parsers and the needed tables.
This process works as follows: first, SDF grammar’s character classes

and layout are normalized by externally invoking a normalization com-
mand (SDF2 bundle needs to be instaled!). Then, the Cfg productions
that correspond to the SDF productions are computed. After computing
the list of Cfg productions, the complete grammar is calculated so that
the table and parsing generation proceeds like if a Cfg grammar had been
provided to Table Generator.

– Parsing with generated parsers

Let’s now describe briefly how to use the generated parsers to parse
sentences.

We have produced another tool for this purpose. It is called HaGlr,
and is an Incremental and Lazy Haskell-based Generalised LR Parser. It
would display the following help message, when required:

HaGlr: an Incremental and Lazy Haskell-based

Generalised LR Parser

version 0.0 (by Joao Saraiva & Joao Fernandes)

Usage: HaGlr options [file] ...

List of options:

-N,-n .NDFA Non-Deterministic LR_0 Automaton (graphviz)



-D,-d .DFA Deterministic LR_0 Automaton (graphviz)

-T,-t .Action Table SLR_1 Action Table

-G,-g .GLR Use Generalised LR Parsing

-C,-c .Conflicts Conflicts (SLR_1)

-M,-m .Memoisation Incremental Parsing

-S,-s .Strict "Strict" Parsing

-L,-l .Lazy Lazy Parsing

-X,-x .Xml Semantics Xml Tree building and visualization

-A,-a .ATerm Semantics Aterm Tree building and its nodes counting

-I,-i string .input=string specify input sentence

-o file .output=file specify output file

-h, -? .help output a brief help message

As we have seen, HaGlr is able to generate graphical representations of
LR(0) automata, is able to pretty-print the parsing tables and to produce
ASTs in XML or ATerm format. It is also able of computing SLR(1)
conflicts and, of course, is yet able to parse sentences, and in various
ways.

Parsing with ”-G” or ”-g” option will turn GLR parsing on; using the
”-L” or ”-l” parsing option will compute no solution but the first valid
parsed one; ”-M” and ”-m” options will demand on parsers to memoise
computations in the way described in Section 5.2. As for semantics, ”-X”
and ”-x” options will build XML abstract syntax trees and ”-A” or ”-a”
will build ATerm abstract syntax trees.

All the combinations of parser options are supported.

So, for example, to parse the sentence ”i+i*i”, which obviously be-
longs to the expression language, and using a lazy parser with XML tree
builiding, we would just invoke (after generating the parsing tables in one
of the ways described):

./glr -G -L -X -I"i+i*i"

The tool would say True, confirming that the sentence belongs to the
language defined, and would provide the tree visualization of the solution
found, which is presented in Figure 8.

6.3 HaGlr’s WEB Interface

As mentioned, we have developed a WEB interface for the HaGlr tool. It
is available online at the Online demos section of:

http://wiki.di.uminho.pt/twiki/bin/view/PURe/PUReSoftware



 

<plus>  </plus>

<value>  </value> ’+’ <times>  </times>

’i’ <value>  </value> ’*’ <value>  </value>

’i’ ’i’

Fig. 8. XML AST resulting from parsing ”i+i*i”

The point of any GUI is to make things easy on the user side. HaGlr’s
WEB interface is not an exception and is quite self-explanatory on its
usage.

We will describe a possible interaction with this interface by running
an example and presenting the graphical outputs produced.

When loading the interface, the user will be asked to provide a file
containing a grammar definition. Once again, the grammar may be rep-
resented in this file by a list of Cfg productions or by an SDF definition.

In this example, we have chosen to load the expression grammar (in
the list of Cfg productions representation), as can be seen in Figure 9.

Fig. 9. The WEB Interface initial menu



Upon loading, the interface displays a graphical representation of the
loaded grammar (Figure 10). By asking for the grammar graph the user

Fig. 10. The graphical representation of the expression grammar

would be shown, in this case, the graph presented in Figure 1.

It is also possible to view both the non-deterministic and determinis-
tic LR(0) finite automata. For this example, the non-deterministic finite
automaton would be like the automaton shown in Figure 3 and the de-
terministic one would be like the automaton shown in Figure 4.

The other functionalities provided by the interface are: test whether
a sentence belongs to a language and parse sentences. In order to acess
these functionalities, the user would first need to type an input sentence,
in the way shown in Figure 11.

Fig. 11. The user interface menu for providing a sentence



Then, suposing he wanted to use GLR parsing, the user would be
presented the parsing forest partially show in Figure 12, along with the
acceptance information.

Fig. 12. The WEB Interface graphical displaying of the parse forrest

7 Benchmarking

7.1 Ambiguous Grammars

We have benchmarked our algorithm and other implementations of GLR
parsing with three ambiguous grammars. Two of these grammars have
been taken from the GLR literature [7]:



aj = Cfg [T ’b’]
[NT ’S’]
(NT ’S’)
[("tresS",NT ’S’ 7−→ [NT ’S’,NT ’S’,NT ’S’])
, ("doisS",NT ’S’ 7−→ [NT ’S’,NT ’S’])
, ("umb", NT ’S’ 7−→ [T ’b’])]

aj2 = Cfg [T ’b’]
[NT ’S’,NT ’T’,NT ’A’]
(NT ’S’)
[("start",NT ’S’ 7−→ [NT ’T’])
, ("t1", NT ’T’ 7−→ [NT ’A’,T ’b’])
, ("t2", NT ’T’ 7−→ [NT ’T’,NT ’T’,NT ’T’])
, ("a1", NT ’A’ 7−→ [NT ’T’,T ’b’,NT ’A’,NT ’A’,NT ’A’])
, ("a2", NT ’A’ 7−→ [NT ’T’,NT ’T’,T ’b’])
, ("a3", NT ’A’ 7−→ [ ])]

Both of these grammars are highly ambiguous. As the input term gets
longer, the number of ambiguities grows explosively. The third grammar
contains only local ambiguities:

la = Cfg [T ’a’,T ’b’]
[NT ’S’,NT ’A’,NT ’C’,NT ’T’]
(NT ’S’)
[("P0",NT ’S’ 7−→ [NT ’T’]),
, ("P1",NT ’S’ 7−→ [NT ’T’,NT ’S’]),
, ("P2",NT ’T’ 7−→ [NT ’A’,T ’b’,NT ’C’]),
, ("P3",NT ’A’ 7−→ [T ’a’]),
, ("P4",NT ’C’ 7−→ [NT ’A’]),
, ("P5",NT ’C’ 7−→ [NT ’A’,NT ’C’])]

The ambiguities of this grammar are local in the sense that all but a
single parser will survive when the input string is accepted.

Time behaviour The results of parsing various input strings with these
three grammars with various tools is shown in Figure 13. Four variations
of our algorithm have been benchmarked. An M indicates that memo-
isation was turned on. An L indicates that only the first solution was
computed. The other implementations we tested are Bison with GLR
support, Elkhound, Happy with GLR support and SGLR.



command aj aj2 la

glr L 0.24 0.28 0.28
glr L M 0.36 1.32 1.96
glr 3.25 2.44 0.36
glr M 46.54 68.18 5.54
bison 1.24 16.12 0.11
elkhound 1.69 1.53 0.49
happy-glr 4.80 8.45 3.18
sglr 10.56 2.23 0.76

Fig. 13. Grammar aj, Input: bbbbbbbb, Grammar=”aj2”, input=”bbbbbbbb”, Gram-
mar=”la”, input=”abaaabaaaaaaaaabaaaaaaaaaaaaaaaabaaaaaabaabaaaaaaa”

When comparing the various variations of our implementation, we can
make the following observations. Firstly, the running times for the varia-
tions where we only search for the first successful solution are significantly
better than those where we search for all solutions. This demonstrates
that the lazy evaluation delivers its promise of doing less work when less
results are needed. Secondly, memoisation is not paying of in all tested
cases. So, the amount of work that is being saved by function memoisa-
tion seems to be, for the work intensity requested in these cases, inferior
to the amount of work that has to be done to implement memoisation.

Now, regarding our tool’s best performanced variation and the other
tools’ performance, we can observe the following. In almost all cases, our
runtimes are significantly better than the runtimes of all the others. Even
the runtimes of our tool’s second best performanced variation are, nearly
half the times, better than the runtimes of the other tools.

Space behaviour The space behaviour of our implementation is vastly su-
perior to those of some other implementations, namely Bison and SGLR.
This is due to lazyness. Both Bison and SGLR can not parse input strings
of more than 11 characters for the explosively ambiguous grammars. Be-
yond that number, the number of parallel parsers outgrows the default
stack sizes of these tools. Of course, stack sizes can be increased to push
the limits a little, but the non-linearity of the ambiguities renders this
approach finite. Our implementation can handle input strings of many
hundreds of characters, due to lazy evaluation. Not all parsers will be
forked off at the same time, but only on demand. As for Elkhound and
Happy, the space behaviour of these implementations is comparable with
ours. Yet, since their time behaviour is significantly worst that our im-



plementation’s, it’s hard to determine exactly the input string size limit
regarding space consumption for them!

Memoization In order to fully understand the runtimes of the memoized
variations of out tool, we have produced some statistics on the number of
times that two parsers get merged into a single one and on the number
of times that we are trying to merge different parsers. We are using the
same global ambiguous grammars and the same input strings we have
used above.

aj aj2

Cache hits 71 111

Cache misses 86 700

Fig. 14. Number of sucessfully and unsuccesfully merged parsers

So, in both cases, there is a significant number of parsers being suc-
cessfully merged. That is to say that, for ambiguous grammars, some
forked parsers really end up converging into the same state, and that’s
when they are merged. For this examples, though, the effort of continu-
ously keep track of the parsing work already done is actually higher than
the effort that would be done repeatedly if memoisation wasn’t used.

7.2 Non-Ambiguous Grammars

In order to benchmark the overhead of our GLR parser when processing
non-ambiguous grammars, we consider the grammar of BibTeX: a lan-
guage to define bibliographic databases. As input file we use the AG.bib,
a large bibliographic database of attribute grammars related literature
(compiled and available at INRIA). We compare the perfomance of our
implementations with Happy. Both share the same scanner.

These results show that the Happy parser generator is faster than our
LR and GLR implementations, for non-ambiguous grammars. Further op-
timisations have to be implemented in our library in order to approach
Happy performance. Yet, the overhead of using GLR Happy parser gen-
erator over using LR Happy parser generator (runtimes become 3.5 times
slower when using GLR support) seems to be greater than the overhead of
using our GLR parser implementation over our LR parser implementation
(runtimes become 2 times slower in the GLR implementation)!



AG.bib

scanning scanning+parsing parsing

Happy 0.15 0.37 0.22

Happy with GLR support 0.15 0.91 0.76

LR 0.15 1.71 1.56

GLR 0.15 3.03 2.88

Fig. 15. Time in seconds.

7.3 The SDF Front-end

Now, we wanted to compare the performance of parsers generated via
SDF front-end with the performance of parsers generated directly from
Cfg grammars. So, we performed the following exercise: we had the toy ex-
pression grammar available in both SDF and Cfg representations; we just
generated parsers for the expression language for both of the representa-
tions and tested their performance by repeting 1000 times the parsing of
the sentence ”i+i*i*i+i” for each of them. Results found are displayed in
the next table.

command Parsing via Cfg Grammar Parsing via SDF front-end

glr L 2.46 2.64

glr L M 3.60 6.98

glr 2.71 4.38

glr M 10.43 26.59

Fig. 16. Input=”i+i*i*i+i”, time in seconds.

The results show that there is in fact some overhead resulting from
working via SDF. As reasonable, the overhead is greater when more work
is being requested, namely in the strict parser versions and in the mem-
oised parser versions.

This results suggest that the Cfg grammar that is being computed
from the SDF grammar is in fact ”fatter” than it needs to be. This will
lead to bigger action and go-to tables, which will lead to greater table
generation and compilation times! Obviously, parsing times will also be
affected by this facts.



This is more worrying if we recall that these results were obtained
with tiny example grammars (recall Chapter 3 for the Cfg grammar and
Chapter 6.2 for the SDF grammar).

The main interest of having developed this SDF front-end would be to
use real language examples within the HaGlr tool. That was done next.

Firstly, we tried to parse sentences in the Java language. We picked
up Java’s SDF grammar definition and used as described the front-end in
order to try to produce the needed parsing tables. Due to the dimension
of this language and also to the overhead of using the SDF front-end, this
process failed to terminate in the first 20 hours(!).

Given this situation, we decided to use a smaller (yet real) language.
This time we used BibTeX language. Again we found the SDF grammar
for this language and tried to generate the parsing tables for it. After
normalization, this grammar has 80 SDF productions which should not
be too many to work with. In fact, we managed to create the parsing
tables and parsers into Haskell source code files (although this process
took hours, which is beyond reasonable!). The problem was that, when
trying to compile this source files in order to produce HaGlr tool, again
we failed to terminate within the 24 hour bound.

Given so, we will have to work on one of the following situations,
or maybe on both combined: the first possible improvment to be done
would be to change the data-types in the generated Haskell source files
(move List elements to Array elements, for example); the other possible
improvment to work on would be to try to make each generated Cfg
grammar thinner, in the sense that they would result in smaller parsing
tables which will result in decreased compilation and parsing times.

Furthermore we can combine such approaches with well-known tech-
niques to reduce the size of the parser tables: there are techniques to
eliminate automaton states and as a result eliminate rows on those tables.

In order to determine the number of productions above which parsing
generation and compilation times fall out of reasonable, we thought about
extending the SDF’s expression grammar more and more and see where
this would leed us. The values we were getting are presented next.

What we can clearly see is that parsers and tables generation and
compilation times are growing exponentially in the SDF productions of



Number of SDF Productions Tables and Parsers Tables and Parsers
after normalization Generation Compilation

13 0.77 8.22

29 10.83 42.04

48 275.46 600.43

67 705.14 11353.72

Fig. 17. Time in seconds.

the normalized grammars. This is most obvious for the generation of the
parsers and the tables.

In this way, and considering 3 hours (11300 seconds) the reasonability
limit, trying to use the SDF front-end for grammars with more than 70
productions will stumble into huge generation and compilation times.

The extended expression grammar turned out to look like the gram-
mar presented in appendix B.

With this grammar we could parse sentences like:

$glr -G -L -X -I" if (x=0) then (y <- z+1); else (y <- z-1);"

True

7.4 Conclusions

We have defined and publicly released a Haskell based tool which imple-
ments the GLR parsing algorithm. After benchmarking its performance
we can say that this tool seems to be faster, for ambiguous grammars,
when comparing it with other well known implementations. This is (as ex-
pected) more clear when we compute only the first solution rather than all
of the solutions. As for non-ambiguous grammars, our implementations’
performance is, according to the results obtained, worst than Happy’s, for
the (real) example benchmarked. Either way, we are still working on im-
plementing performance optimizations so that the time behaviour ofour
tool can still be lowered.

We also compared the space behaviour of our implementation with
others’. The tests performed indicate that our tool’s space behaviour is
significantly better than the other implementations’. This is again more
obvious in the case where we are interested only in the first solution rather
than all. But also in the case where all solutions are computed, the lazy
evaluation of our algorithm ensures that memory consumption remains
within bounds.



As described, we are also releasing an SDF Front-end within our tool,
which we have benchmarked. The results obtained show that this tool is
yet in need of some studying and developing effort in order to become a
real integration tool for real languages (available as SDF grammars).

8 Future work

We have presented an implementation of GLR parsing in Haskell. We
have explained the role of lazy evaluation and function memoisation in
our approach. We have developed a SDF front-end for HaGlr. We have
run benchmarks to assess performance issues.

We intend to pursue various directions of future work:

– Keep implementing well-known LR optimizations [1], in order to in-
crease the performance of our tool and by this to achieve other tools’
performance for all kinds of grammars.

– Implement well-known improvements of the Tomita algorithm, in par-
ticular Rekers’ approach to handle hidden left-recursion.

– Study and implement optimizations in the SDF front-end, so that this
front-end can really be an integration interface, within HaGlr, for real
languages, whose grammars are available in SDF.

– Define grammar combinators that include EBNF style operators, to
provide the CFG writter with a modular and incremental way to im-
plement languages.



A The Library’s API

– Context-Free Grammars

-- Data Type synonym for the Right Hand Side of a production
type RHS t nt = [Symb t nt ]

-- The ”derives to” operator
(|− >) :: sy → [sy ] → [sy ]

-- Computes a Dot Graph representation of a grammar
cfg2dotGraph :: (Eq t ,Eq nt , Show t , Show nt) ⇒ Cfg t nt → String

-- Computes a Dot List representation of a grammar
cfg2dotList :: (Eq t ,Eq nt , Show t , Show nt) ⇒ Cfg t nt → String

-- Selects the left-hand side of a production
lhs prod :: [Symb t nt ] → Symb t nt

-- Select the right-hand side of a production
rhs prod :: [Symb t nt ] → RHS t nt

-- Tests whether a symbol is a terminal symbol
is terminal :: (Eq t ,Eq nt) ⇒ Symb t nt → Cfg t nt → Bool

-- Selects the productions that have a common non-terminal as left-hand side
prods nt :: (Eq t ,Eq nt) ⇒ Cfg t nt → Symb t nt → [[Symb t nt ]]

-- Selects the produtions RHSs that have a common non-terminal as left-hand side
rhs nt :: (Eq t ,Eq nt) ⇒ Cfg t nt → Symb t nt → [RHS t nt ]

-- Tests if a sequence is nullable
nullable :: (Eq t ,Eq nt) ⇒ Cfg t nt → [Symb t nt ] → [Symb t nt ] → Bool

-- Computes the first of a sequence of symbols
first :: (Eq t ,Eq nt) ⇒ Cfg t nt → RHS t nt → [Symb t nt ]

-- Computes the first of a non-terminal symbol
first N :: (Eq nt ,Eq t) ⇒ Cfg t nt → Symb t nt → [Symb t nt ]

-- Computes the follow of a non-terminal symbol
follow :: (Eq t ,Eq nt) ⇒ Cfg t nt → Symb t nt → [Symb t nt ]

-- Calculates the lookahead of a production
lookahead :: (Eq t ,Eq nt) ⇒ Cfg t nt → [Symb t nt ] → [Symb t nt ]

-- Calculates the lookaheads of a non-terminal symbol
lookaheads nt :: (Eq t , Eq nt) ⇒ Cfg t nt → nt → [[Symb t nt ]]

-- Testing a non-terminal for the ll 1 condition
ll 1 nt :: (Eq nt ,Eq t) ⇒ Cfg t nt → Symb t nt → Bool

-- Testing the grammar for the ll 1 condition
ll 1 :: (Eq t ,Eq nt) ⇒ Cfg t nt → Bool

-- Computing the complete Cfg grammar from its list of productions



prods2cfg :: (Eq t ,Eq nt) ⇒ [Prod t nt ] → nt → Cfg t nt

– LR Parsing

-- Expands a Cfg with a new root symbol and a new production
expand cfg :: Cfg t nt → Cfg t nt

cfg2ct :: (Eq t , Eq nt) ⇒ Cfg t nt → CT (Symb t nt)

-- Computes the LR(0) Ndfa equivalent to a grammar
cfg2LR 0Ndfa :: (Eq t , Eq nt) ⇒ Cfg t nt → Ndfa (Item (Symb t nt)) (Symb t nt)

-- Computes the LR(0) Dfa equivalent to a grammar
cfg2LR 0Dfa :: (Ord t ,Ord nt) ⇒ Cfg t nt → Dfa [Item (Symb t nt)] (Symb t nt)

saveLR 0Ndfa :: (Show t , Show nt ,Ord t , Ord nt ,Eq t , Eq nt) ⇒ Cfg t nt → [Char ]

saveLR 0Dfa :: (Show nt , Show t ,Ord t ,Ord nt ,Eq t , Eq nt) ⇒ Cfg t nt → [Char ]

-- Computes the SLR(1) action tables
slr at :: (Ord t ,Ord nt) ⇒ Cfg t nt → AT [Item (Symb t nt)] [Symb t nt ]

-- Pretty prints the slr action table
slrPPTable :: (Show t , Show nt ,Ord t ,Ord nt) ⇒ Cfg t nt → [Char ]

-- Look up function for the action table
lookupAT :: (Eq t , Eq nt ,Eq st) ⇒ [Symb t nt ] → AT st pr → st →

Symb t nt → Action st pr

-- LR acceptance function
lraccept :: (Ord t ,Ord nt) ⇒ Cfg t nt → [t ] → Bool

-- LR acceptance function with XML tree building
lr xml :: (Ord t ,Ord nt , Show t , Show nt) ⇒ Cfg t nt → [t ] → (Bool ,Element)

-- LR acceptance function with ATerm building
lr aterm :: (Ord t ,Ord nt , Show t , Show nt) ⇒ Cfg t nt → [t ] → (Bool ,ATerm)

– GLR parsing

-- Computes SLR(1) action table
gslr at :: (Ord t , Ord nt) ⇒ Cfg t nt → AT [Item (Symb t nt)] [Symb t nt ]

-- Pretty prints the gslr action table (ASCII)
gslrPPTable :: (Show t , Show nt ,Ord t , Ord nt) ⇒ Cfg t nt → [Char ]

-- Pretty prints in a file the gslr action table
gslrPPTable2File :: (Show t , Show nt ,Ord t , Ord nt) ⇒ Cfg t nt → FilePath → IO ()

-- Look up function for the action table
glookupAT :: (Eq a1 ,Eq a) ⇒ [a ] → [(a1 , [a2 ])] → a1 → a → a2

-- GLR acceptance function
glraccept :: (Eq t , Ord t , Ord nt) ⇒ Cfg t nt → [t ] → [Bool ]

-- incremental GLR acceptance function



inc glraccept :: (Eq t , Eq nt ,Ord t , Ord nt) ⇒ Cfg t nt → [t ] → [Bool ]

-- GLR acceptance function with ATerm building
glr aterm :: (Ord t , Ord nt , Show t , Show nt) ⇒ Cfg t nt → [t ] → [(Bool ,ATerm)]

-- GLR acceptance function with XML tree building
glr xml :: (Ord t , Ord nt , Show t , Show nt) ⇒ Cfg t nt → [t ] → [(Bool ,Element)]

B Extended Expression SDF grammar

definition

module Main

exports

sorts

Expression

context-free syntax

Expression "+" Expression -> Expression

Expression "*" Expression -> Expression

Expression "-" Expression -> Expression

Expression "/" Expression -> Expression

"(" Expression ")" -> Expression

"[" Expression "]" -> Expression

"{" Expression "}" -> Expression

Int Sep Int -> Expression

Int -> Expression

I Int -> Int

I -> Int

Variable -> Expression

Var -> Variable

Var Variable -> Variable

"if " Expression

"then " Expression End

"else " Expression End -> Expression

"while " Expression

"do " Expression End -> Expression

"for " Expression

Expression End -> Expression

Expression Cond Expression -> Expression

Expression " <- " Expression -> Expression

Comment Expression -> Expression



Expression Logic Expression -> Expression

Not Expression -> Expression

Expression "@" Expression -> Expression

"let " Expression

"where " Expression -> Expression

lexical syntax

[\48-\57] -> I

[a-zA-Z] -> Var

[\44\46] -> Sep %% , .

[\60\61\62\171\187] -> Cond %% = > <

[\59] -> End %% ;

[\35-\37] -> Comment %% # $ %

[\38\124] -> Logic %% & |

[\126] -> Not %% ~
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