
Formalisation of UML use cases

António Nestor Ribeiro

Departamento de Informática, Campus de Gualtar,

Universidade do Minho, 4710-057 Braga, Portugal.

e-mail: anr@di.uminho.pt

Abstract

UML has become a standard de facto for modeling object-oriented software systems. Among
the several reasons for that standardization one can point that it is relatively easy to understand
and learn, it addresses several views of software systems and it also provides a good overview of
the entire software architecture. Despite its intrinsic value it still lacks some important aspects
of software development that it does not address properly, namely the questions arising when
modeling large and complex applications.

Although UML was meant to be a widely used modeling notation, it did not address from
scratch the possibility of introducing formal methods or techniques in order to provide verifica-
tion of the models. Some issues regarding the distance from the diagramatical UML notation to
text-based formal notation were presented as possible justifications. However the lack of some
kind of formal specification techniques is particularly sensitive when discussing the behavioural
aspects of UML.

The advantages of having a formal specification notation to assure formalization of UML
would be: to have precise rules for manipulating the components of UML diagrams, to allow for
the possibility of proving properties about the components, and to make possible to check the
model consistency. This is particularly true when modeling complex systems like multi-agent
systems, distributed applications, concurrent and real-time environments, making the modeling
and specification of such systems not as clear, unambiguous and precise as desirable.

Several initiatives have been taken to add support for those aspects enforcing the need for
the introduction of formal support to the modeling tasks. However it is not enough to ensure
a precise visual syntax, it is also needed to give efficient tools that allpw the reasonig about a
model.

Some of the key features that formal languages provide can be obtained within UML models
by adding Object Constraint Language (OCL) constraints. The overall quality of the model is
enhanced with the usage of OCL expressions since they provide formal specification precision
and the ability of reasoning on top of them.

Use cases play an important role in the overall analysis process since they are essential in
capturing the requirements. However they lack a formal semantic definition, and practice shows
that they can not fully express the complexity of underlying applications. In this work a way

1



to relate informal requirements, expressed as a set of use cases, to formal specifications using
OCL is addressed.

Usually use cases description templates include pre and post-conditions, which are textual
descriptions of the constraints, in order to establish diferent scenarios for a use case.

The formalisation of UML diagrams usually start at the Class Diagram level by introducing
precise and formal constraints given by OCL expressions. We believe that the usage of the
formal OCL pre and post-conditions of operations in the Class Diagram can be used to model
the informal textual pre and post-conditions of use cases. It is our belief that a modeling task
should begin with the capture of the user requirements at the use case level and that it is
necessary to explicitely add contextual information to the use case description avoiding possible
loss of information due to implicit assumed constraints.

In our work, state chart diagrams are used to complement use case diagrams in order to
explicity decompose all possible alternative flows that were introduced by the usage of OCL
constraints. The usage of state charts in order to help give formal reasoning to the use case
description also provides the ability to introduce concurrency on the use case view as well as to
describe the sequence of actions that are aggregated in a dialogue.

In the presentation we propose a reasoning model about the traces that can be generated
from state charts, describing the flow of alternatives that can be derived from a use case deco-
rated with OCL constraints for pre and post-conditions.

2


