
The design of a framework for compilers development

Paulo Jorge Matos
Instituto Polit́ecnico de Bragança

Campus de Santa Apolónia
5300 Bragança, Portugal

pmatos@ipb.pt

Pedro Rangel Henriques
Universidade do Minho

Campus de Gualtar
4700 Braga, Portugal

prh@di.umihho.pt

Abstract

DOLPHIN framework is a solution conceived to support
the development of modular compilers. Its supplies a large
set of components, like: front-end’s, back-end’s, code anal-
ysis, code optimizations and measure components that can
be combined to build new compilers. All these components
work over a single form of intermediate code representa-
tion, the DOLPHIN Internal code Representation.

The main principle that guides the conception of DOL-
PHIN framework was to build a user-friendly solution to de-
velop high quality compilers. Such solution was achieved
based on three main concepts: components, components
reuse and data consistency. This paper, that aims to present
the architectural design of DOLPHIN framework, demon-
strates: how the concepts presented above influence the
framework architecture; how they were ”implemented” on
the framework, namely shows the interfaces defined for the
components and for the code representation; how the com-
ponents are related; how to use the components to imple-
ment concrete compilers; and how to evolve the components
and the framework to support new features.

1. Introduction

The compilation process, that converts a program written
in a high-level programming language (source language)
into assembly or machine code (output language), is more
and more a complex problem. By one hand, the source lan-
guages are quite more powerful and distant from the syntax
and the paradigm of the output language, which raises diffi-
culties for translation. By the other side, the computational
architectures, i.e. the target machine + operating system,are
more complex and demanding, making the generation of the
output code more difficult, at least to generate efficient code.
Even the software development process is much more toler-
ant and flexible, trusting on the compiler to compensate the

faults and inexperience of the programmers, requiring elab-
orated error detection and error handling mechanisms, and
complex code optimizations.

The different stages of the compilation process use very
distinct solutions, requiring simultaneously a strong knowl-
edge about conception of programming languages (syn-
tax and semantics) and about microprocessor architectures.
Considering the complexity that is inherent to the develop-
ment of compilers but also the possibility to specify for-
mally some of the parts, many tools appeared to help on
this task. Some of these tools make use of very stable solu-
tions and accomplish very well the requirements for which
they were built, but most of them can only support the de-
velopment of a single compiler task. In practice, to imple-
ment the whole compiler, developers have to resort to sev-
eral of these tools. But the ability to understand and manip-
ulate them is by itself an obstacle. As a consequence, in the
last years, some projects appeared aiming the integration of
such tools (and technologies) into single solutions that sup-
port the whole development of compilers. DOLPHIN is one
of these projects [8, 9]. It is basically a framework that sup-
plies several ready to use components, and incorporates a
set of tools to build new specific components. All these fea-
tures are based on the use of an intermediate code represen-
tation model over which most of the components work, the
DIR - DOLPHIN Internal code Representation [13]. This
paper focuses on the architectural design of the framework
that was conceived concerned with a single purpose: build a
user-friendly framework without given up of the quality of
the compilers built with it.

The next section introduces some essential requirements
for tools and frameworks that aim to support the develop-
ment of compilers. It is also showed how they influence
the design of such tools/frameworks and how some con-
crete tools and frameworks accomplish these requirements.
Section three introduces DOLPHIN framework, namely the
code representation (CR) elements, the type of components
and the structure of the compilers built with this framework.
Section four describes the architectural design that supports

the framework, explaining the type of interactions that oc-
cur among components and presenting the interfaces and
protocols defined to guarantee the correct function of the
framework. At section five, the conclusion is drawn.

2. Tools and frameworks to build compilers

At this section some fundamental requirements are intro-
duced for a framework that aims the construction of com-
pilers, emphasizing the requirements that contribute to ob-
tain a user-friendly solution. It is also done a brief analysis
to some solutions that aim the same type of utilization.

Compilation is a process that involves many tasks; some
are related with the interpretation of the source language,
others with the code optimization or with the generation
of the output code. These tasks can be specifically built
as a whole, to produce faster and more efficient compil-
ers; or can be conceived as individual components, allowing
their reuse and making compiler modifications easier. Since
a framework is basically a set of pre-implemented compo-
nents, that can be parameterized and joined to assembly new
compilers, it is easy to understand how fundamental is that
the components can be easily reused and modified.

Strongly related with these two requirements, is the way
how the code is represented along the compilation process.
Typically, a compiler can have and handle several forms of
internal representations, but sharing a single form by a large
number of tasks, also promotes the reuse of the components
and makes easier to change them. The tasks that do not de-
pend on the source language, neither on the target architec-
ture, are designated bymiddle-level tasks, and the generic
code representation used by them is designated byinterme-
diate code representation.

Other important requirement is to supply mecha-
nisms/solutions that allow to connect the framework com-
ponents to external elements, since normally a framework
only contributes with part of the final solution. It is also im-
portant that the framework supplies mechanism/solutions
to add new components.

There are other requirements, that are not so fundamen-
tal for the architectural design of a framework or that are im-
portant, but seep out of the subject of this paper. So, based
on the presented requirements, we will now make a brief re-
view of the main contributions found in the literature.

Some tools are dedicated to specific tasks. It is the case
of BURG [4], which based on a description that relates the
intermediate code operations with the target architecturein-
structions, can generate an optimal selector of instructions;
or the many examples of lexical and syntactic analyzer gen-
erators, like Lex and Yacc. There are also some dedicated
frameworks, like the OPTIMIX [3] that aims the construc-
tion of code optimizers; and the PAG [7] to build data flow

analyzers. All these tools and frameworks are great solu-
tions, but they only make part of the job.

GCC [15], GENTLE [14] and SUIF [2, 1] are examples
of tools capable to support the development of the whole
compiler. These examples were chosen by their relevance
and by the kind of approach used by each one.

The GNU Compiler Collection (GCC) is not a tool to
build compilers, but a compiler used as a base to build new
compilers. The presence of GCC is justified because it is
a widely spread solution and the reasons are obvious: it is
a very powerful and efficient compiler, available over the
GNU license, that contains lots of reusable code (that runs
over GCC intermediate code, the Register Transfer Lan-
guage), and is supported by a large community. But GCC
does not supply any special mechanisms to support the de-
velopment of new compilers. The user needs to go deeply
inside GCC and have a strong knowledge about its struc-
ture, to be able to build a new compiler. Even the structure
of the GCC does not help to easily reuse the code, since it
is very intricate.

GENTLE is a toolkit to implement compilers for domain
specific languages that covers all main compilation tasks,
namely the ones related with translation and code genera-
tion. The tasks are specified using a uniform notation. But
GENTLE does not have a single intermediate representation
and, some tasks, like elaborated forms of code analysis and
optimizations, were relegated to a second plan (probably,
a consequence of their relevance for domain specific com-
pilers). Users can always implement these tasks by hand,
but GENTLE does not define any kind of interface or pro-
tocol to do this, which raises some difficulties to the users,
forcing them to understand some internal details of GEN-
TLE.

SUIF Compiler System is one of the most well suc-
ceeded systems and, as a consequence, is an obligatory ref-
erence in our work. SUIF uses an internal form of code
representation, the SUIF - Stanford University Intermedi-
ate Format, that supports many of the compilation tasks
and that can be extended (there is a specific language for
such job, the Hoof); it is strictly based on a modular struc-
ture; has several support tools, namely to deal with the CR
(consistency checkers, browser, visual shell, etc); thereare
several projects to build front-ends for the SUIF system,
namely for object-oriented languages (like C++ and Java);
and there is a large community of users, including some of
the most well known researchers of this area. It does not in-
clude specific tools to develop front-end’s, but supplies a
framework to develop the back-end’s (that uses a specific
form of CR, the MachSUIF). It also supplies several mod-
ules for code analysis and optimizations (implemented as
dynamic libraries), and a kernel with several support fea-
tures. The differences start with a driver, that is supplied
with the system, that allows to load and execute dynami-

cally the modules. Between the execution of each module
(designated by a ”pass”), the user can request the genera-
tion of a file with information about the intermediate CR.
Both things are very important to help the development of
new modules (to detect, for example, semantic errors). But
better than that, SUIF defines an interface for the imple-
mentation of new modules, that guarantees the full integra-
tion with the SUIF system, namely with the driver.

It is difficult (we might dare to say dangerous) to de-
tect disadvantages on such solutions, and even more diffi-
cult present a better proposal. But at some specific points we
believe that it is, at least conceptually, possible to do a better
job. Let’s think as the user that resorts to this type of tools. In
most cases, the user is somebody that needs a compiler with
special characteristics (produce code for a specific targetar-
chitecture or compile a specific source language); or some-
body that wants to implement a particular component and
needs a full system to test it. No matter the type of user, he
will probably appreciate avoiding the details that are not es-
sential to accomplish his task. Even, when he obtains a solu-
tion, most probably he will not spend his time reading more
documentation to verify if it is possible to improve the so-
lution or improve the way how the solution is integrated in
the system.

As was told above, this paper describes the architectural
design of DOLPHIN framework, that as a single purpose:
build a user-friendly framework, without lose the capabil-
ity of building high quality compilers. We intend to show
that the concept of user-friendly and the concept of pro-
fessional framework, capable to support the development
of high quality compilers, have not to be antagonistic. So,
when compared with the examples presented previously and
other analogous systems, DOLPHIN framework aims to im-
prove the way how to use this type of tools, but simultane-
ously reinforces the consistency of the system and the ef-
ficiency of the compilation process. This was possible de-
signing an architecture for DOLPHIN framework that pro-
motes a controlled use and implementation of components.

3. DOLPHIN framework

DOLPHIN framework was conceived to build a modu-
lar compiler, composed by a front-end, several middle-level
tasks and one or more back-end’s. The middle-level tasks
work over a single form of representation, designated by
DIR - DOLPHIN Internal code Representation, that is based
on the Register Transfer Language and more precisely on
the model used by the RTL System [6] (which is also a
framework for compilers development).

Conceptually, DIR is a specification of some generic el-
ements that can be found on the middle-level forms of CR
(where the code is purportedly independent of the details of
the source language and the compiler target architecture).

In practice, consists on a set of C++ classes that can be
derived to build the CR. DIR classes supply several inter-
faces, that permit different levels of control over the CR.
Many of these classes are sets or aggregations of object
from other classes, which allows to obtain a hierarchic or-
ganization of the CR, where each intermediate node is a full
or a partial abstraction of the CR. The highest level of ab-
straction is represented by the classProgram, that encapsu-
lates the code submitted to the compilation; the lowest lev-
els are represented by objects from classes likeExpression
or DataTransfer, which have practically a direct correspon-
dence with the instructions of the output code (assembly or
binary). In the middle there are things likeFunctionclasses,
that represent functions or procedures; or likeCFGclasses,
that represent the Control Flow Graph’s. Some classes, like
the IdentTable(Identifier Table) are transversal to all lev-
els of abstraction.

A characteristic that differentiates DIR from other forms
of CR, is to allow, by one side, to create the CR using a sin-
gle level of abstraction (the other levels are internally built
by DIR classes), and, by the other side, it lets to handle the
CR using the several levels of abstraction.

Other important part of the framework are the compo-
nents, which are classified into five groups:Front-End’s,
that make the translation of the source code into the DIR
(resulting on aProgramobject); theBack-End’s, that con-
vert DIR to other formats, like C, assembly, binary or sim-
ple XML/HTML [11, 12]; theAnalysis, that compute extra
data about DIR, without change the code representation; the
Optimization’s, that produce transformations over DIR that
aim the optimization of the code; and theMeasurecompo-
nents, which quantify several parameters that are used to in-
fer about the efficiency of the other components.

The top component of a compiler built with DOLPHIN
framework, is always aFront-End. By the middle, the com-
piler could have components ofAnalysis, Optimizationand
Back-End’s. The first two share the samemodus operandis,
they take the intermediate code, make the job, and put on
the output again the intermediate code. They could be com-
pared with a car washer machine, that takes the car, wash
it, and put at the output the same car, eventually, with a bet-
ter look.

For the subject of this paper, it is important to emphasize
that the data computed by eachAnalysiscomponent stays
inside the component. Other components access to that data,
by making a request. Figure 1 shows a schematic represen-
tation of a hypothetical compiler, that uses several compo-
nents, and the code required to build this compiler using
DOLPHIN framework.

FrontEnd fe;

fe.execute();

Program*p=fe.getProgram();

Optimization1 o1(p);

o1.execute();

Measure1 m1(p);

m1.execute();

BackEnd1 be1(p);

be1.execute();

Optimization2 o2(p);

o2.execute();

BackEnd2 be2(p);

be2.execute();

FrontEnd

Analysis1

Optimization1

Optimization2

Measure1

BackEnd1

BackEnd2

D

I

R

Analysis2

Figure 1. Schematic representation of a hy-
pothetical compiler and the code required to
build it with DOLPHIN framework.

4. Design of the architecture

The goal established for the architectural design of DOL-
PHIN framework was to make life easier for all the potential
users, but allowing simultaneously to develop efficient and
high quality compilers. To accomplish this goal, we based
our strategy into a single principle: promote, whenever pos-
sible, the reuse of the code (components). Why? One sim-
ple reason is that the components reuse reduces the length
of code that must be written and, consequently the sources
of errors and the maintenance of the framework.

But notice that the type of reuse that we are talking about
here, consists essentially into reapply the process imple-
mented by the component, which is also the type of reuse
implicit to the conception of framework. But sometimes it
will be necessary, or at least desirable, to reuse the data
computed by the component and not the component itself.
For us, this is also a form of reuse, that has several advan-
tages, such as: allows to reduce the number of components

used to build a compiler and consequently the quantity of
code that must be executed during compilation.

The reuse of data is typical of theAnalysiscomponents.
The particularity of such components is that they compute
extra data about the intermediate code, which is retained in-
side the component. Consequently, anAnalysiscomponent
can be reused as a process, which means apply again the
process over the intermediate code; or it can be reused as
a source of data, supplying data that was previously com-
puted and kept inside the component. Implicit to both forms
of reuse is a dependency (between the component and the
component user). The first will be designated as afunctional
dependency, while the second one, that is a specialization of
the first, will be designated asdata dependency.

But the reuse of components, namely when there are data
dependencies, raise some new problems. For us, the user
should not need a deep knowledge about the framework, to
safely use it. The idea is to explain the essential things, like
what a component do, but avoid all the other things that are
not relevant. For example, the user should not have to know:

• How the component is implemented?

• Which are the pre-conditions to use it?

• Is or is not necessary to use previously other compo-
nents?

• Is safely to use the component on the present state?

• Is the use of the component redundant?

Notice that all these questions are quite relevant, espe-
cially when we think that a complete task may be composed
by several components, which is quite common and even
desirable.

To simplify the use of the components, it was defined
a very simple interface, designated byComponent, that
should be implemented by all components. By now, it is
enough to say that this interface defines two methods: the
execute()and theupdate()(see figure 2). The first forces the
execution of the component, while the second requests an
update of the component (the component is executed only
if it is outdated). As we will show, to use a component it
is enough to instantiate it and callexecute()or update()-
the user does not have to worry about with any of the ques-
tions presented above.

Of course, that sometimes is necessary to deepen the
knowledge about the framework, namely to develop new
components. But even at these circunstances, the user ef-
fort is quite reduced, simply because the user is guided to
reuse the components that are already implemented to build
its own components; but also because DIR was conceived
to facilitate the implementation of the component parts that
are not feasible to be replaced by the framework compo-
nents (as is showed at [13]).

#compManager()

+~compManager()

+regComp(in : Component*) : int

+hasComp(in s : char*) : bool

+hasComp(in s : Component*) : bool

+getComp(in : char*) : Component*

+remComp(in : char*) : bool

+remComp(in : Component*) : bool

+update(in : char*) : Component*

#___lComp : List<Component *>

compManager

#Component(in : compManager*)

#setState(in : unsigned int) : void

+~Component()

+setElem(in : compManager*) : void

+execute() : virtual bool

+update() : virtual bool

+getState() : unsigned int

#___state : unsigned short

Component

Figure 2. Component and compManager in-
terfaces.

4.1. Dependencies management

Reuse components that are data dependent creates new
problems, namely related with the scope of the components
and with the validity of the data. Typically, a component
is executed over a concrete type of element of the CR. The
problem is that during the compilation, it could be necessary
to compute several forms of analysis for each element and,
the number of elements of the CR can be very high. Under
these conditions, it could be very difficult to reuse the com-
ponents, specially to identify if a concrete component was
or was not already applied to a particular element of the CR.
The problem could be even worst, if the user detects more
than one component. Which one should be used? Are all the
components valid? Is there any valid component? These are
the reasons why the framework design should impose some
organization that facilitates the components reuse.

To understand a little better the situation, imagine that
we have a componentC2 that is data dependent of compo-
nentC1. At the development ofC2, we could force the cre-
ation of C1, but if C1 was previously used, we would not
be reusing it.C2 should be able to determine ifC1 was al-
ready used and, if so, how to get access toC1. This could be
solved, forcing all components to be declared as global vari-
ables or to belong to a global array/component. Of course,
that this solution is not pretty, since exposes to many com-
ponents to the end-user and could raise some difficulties at
the component management.

As was told DIR allows to organize the CR as a hier-

archic structure, where the root represents the whole pro-
gram and the intermediate nodes represent partial abstrac-
tions of the CR. Each of these intermediate nodes is repre-
sented by a DIR class (CR element). Our experience, led us
to conclude that most of the times a component do not re-
quire the whole CR to accomplish its task, normally it is
enough to use part of the hierarchic structure, which corre-
sponds to a concrete element of the CR (that can aggregate
other elements). We also realize that components that are
data dependent, normally, make use of the same level of ab-
straction (same type of CR element).

Based on these conclusions, it was defined a protocol to
control the use of the components. The first rule of this pro-
tocol is that all components should be registered; the sec-
ond rule is that each component should be registered into
the CR element that contains all the necessary information
for its execution. To allow the registration, was appended
a new method to the interfaceComponent, the setElem().
This method receives the CR element where the component
should be registered. Figure 2 shows the full representa-
tion of (Component), including the constructor and destruc-
tor (since the components are implemented as objects). The
modus operandisof the registration is quite simple: if the
elementE contains the necessary information for the ex-
ecution of the componentA, then A should be registered
into E, callingA->setElem(E)or passingE at the construc-
tor of A (TypeA A(E)). Componentcontains two other meth-
ods, thesetState()and thegetState(). The first is a protected
method that allows to set the state of the component (UP-
DATED, OUTDATED, . . .); the second is a public method
that allows to get the state of the component.

Now, that was defined the interface to use the compo-
nents, it is time to introduce the interface for the CR ele-
ments that have to manage the registry of the components.
This interface is designated bycompManagerand is repre-
sented at Figure 2. Essentially, what this interface proposes
is the methods to deal with the data structure, where are
maintained the component registries. These methods are:
regComp(), to register a component;hasComp()to test if
there is a concrete component;getComp()to get a compo-
nent;remComp()to remove a component; and theupdate()
to request the update of a component. Notice that for most
of these methods, the component is identified by a string
(id of the component), this was the solution found to make
reference to a component without have to know the exact
instance of the component. Also notice that this solution
works fine, because the CR elements do not accept registra-
tion of two or more components of the same type (does not
make sense to have more than one component of the same
type applied to the same CR element).

Now, with this very simple mechanism, it was possible to
define a protocol to reuse the components, that can be illus-
trated with the next example: imagine thatA requires data

A::A(E *e){

 …

 setElem(e);

 …

}

void A::setElem(E *e){

 …

 _e=e;

 if(_e)

 //Component Registration

 _e->regComp(this);

 …

}

bool A::execute(){

 if(_e){

 bool st;

 B*c2=_e->update(“B”);

 if(!c2){

 c2=new B(_e);

 if(c2)st=c2->update();

 }else st=true;

 if(st)

 if(execute0(c2)){

 setState(UPDATED);

 return true;

 }

 }

 return false;

}

Figure 3. Code executed by the components
to make the registry and to guarantee the pre-
conditions (that the required components are
conveniently registered and updated).

from componentB, thenA may inquireE to see if it con-
tains any registered component of typeB. If so, A may re-
quest an update ofB; if not, A may request for a registration
of a new object of typeB into E. Notice that it is impor-
tant to register all components, since it is not possible (nei-
ther conceptually desirable) to know previously if a compo-
nent will or will not be reused. Both proceedings, compo-
nent registration and data dependency test, are represented
at figure 3.

One important characteristic of this protocol, is that all
the details are hidden from the component user, that does
not need to know that componentA is data dependent of
componentB; or if B was applied toE; or if B is or is not
updated. And if you notice, figure 1 does not contain ex-
plicit references to theAnalysiscomponents. It is possible

Component

User

(Component)

Optimization1

Optimization2

Anal1

Anal2

D

I

R

Component
 compManager

Figure 4. Relation between components,
component users, CR and interfaces.

to explicitly use these components, but normally they are
introduced automatically by the other components, likeOp-
timization’s and Back-End’s. So, the user only has to de-
clare and make reference to the effective components, like
theFront-End, theOptimization’s and theBack-End’s. No-
tice that theComponentinterface is also used internally (by
the CR elements). Figure 4 illustrates how the protocol and
interfaces are related.

But the association of a component to a specific type of
CR element, may raise some difficulties for the component
users, namely when they work with a level of abstraction
that is higher than the one used by the component. In these
cases, the component user is forced to be aware of unneces-
sary details about DIR and about the CR structure. To spare
the user, the protocol recommends the implementation of
methods or new components that generalize the application
of the original component to the higher levels of abstrac-
tion. For example: a Reach Definition Analysis (RDA) is
typically applied to objects of typeFunction that can ap-
pear inside otherFunctionobjects or inside aProgramob-
ject. The easiest way to deal with the code representation is
to work directly with the objectProgram, like is showed in
figure 1, so it may be useful to build a class that can receive
the objectProgramand applies theRDAto all sub-elements
that require this type of analyses (instantiating and register-
ing the necessaryRDA components into theFunctionob-
jects). This example is illustrated at figure 5.

4.2. Controlling the framework consistency

Unfortunately, the solution presented until now is not
enough to safely reuse the components. The problem is
(again) the internal data of theAnalysiscomponents that
can become outdated if meanwhile it is executed a compo-
nent, like a code optimization, that changes the CR. It could

 Super_
 RDA

RDA

List<
RDA
 *>

RDA

RDA

…

Program

Function

List<
 Function
 *>

Function

Function

…

regComp()

execute
 ()

regComp()

regComp()

regComp()

Figure 5. Generalizing the application of a
component.

be very difficult to detect if the data is, or is not, updated
and, consequently, to know if is safe to reuse the compo-
nent. So, it is quite crucial to control the state of compo-
nents internal data.

Making a sketch of the problem, we have:Analysiscom-
ponents that compute data based on the CR; andOptimiza-
tion components, that produce changes on the CR. Changes
that can invalidate the data computed by theAnalysis. So, if
the data computed by the component is consistent with the
CR, then we say that the component is updated, by the other
side, if the data is not consistent with the CR then the com-
ponent is outdated. To develop a solution that guarantees the
consistency of the component state, we analyzed three pos-
sible solutions:

1. Delegate on the Analysis components the responsibil-
ity of control their own state. For example: capturing
the ”state” of the code representation before the execu-
tion, and later use it to compare if the internal data is
or is not updated;

2. Delegate on theOptimization’s the responsibility of
notify theAnalysiscomponents (eventually, via CR);

3. Delegate on the code representation the responsibility
of notify the Analysiscomponents, whenever the CR
suffers a modification.

The first alternative can be very complex or at least as
complex as re-compute everything again, depends mostly
of the nature of the component. But for us, has an unaccept-
able drawback: it does not make life easier for the users, es-
pecially for the ones that have to implement their own com-
ponents (requires a deep knowledge of the CR). The sec-
ond alternative has another inadmissible problem (which is
common to the first alternative): the reuse of the compo-
nents is not secured by the framework, but by the compo-
nent builder. Imagine now the problems that may occur if
the developer does not implement correctly the notification
mechanisms; or, even worst, if the developer does not know

Observer
 Observed

Component (Analysis)
 CR Element

1
 *

Observer

(Analysis)

Observed

(CR element)

Component

(Optimization)

notify()

setState()

Figure 6. Observer design pattern and its ap-
plication to DOLPHIN framework.

that such mechanisms are required. So, for us only the third
solution was acceptable.

To implement the solution, we resort to a design pattern
designated byObserverthat defines the way to solve prob-
lems that have ”a one-to-many dependency between objects,
so that when one object changes state, all its dependents
are notified and updated”, page 293 of [5], which is basi-
cally the problem that we have: components that should be
notify and, eventually, updated, whenever the CR is modi-
fied.

Figure 6 shows the structure of theObserverdesign pat-
tern and the adaptation to the present situation. The idea
is very simple, when a component (Optimization) executes
an operation that changes the content of a CR element, this
one sends a notification to the components. Of course that
to be notified, a component must be registered on the CR el-
ement.

Figure 7 shows the interfaces defined for the entities of
the Observerdesign pattern: (Observer, regObserverand
Observed). TheObserverinterface defines the methods that
the components have to implement to be notified (notify()).
The regObserveris the interface of the CR elements that
have to process registration requests, which are not neces-
sarily the observed objects. TheObservedinterface, that de-
rives from regObserver, defines the methods necessary to
access the data structure where are effectively made the reg-
istry. So, if a CR element could be observable than it should
implement theObservedinterface; a CR element that is not
observable but contains other CR elements that are observ-
able, should implement the interfaceregObserver, that es-

#Observed()

#notify() : bool

#setID(in : unsigned int) : void

+~Observed()

+getID() : int

+regObs(in : Observer*, in : bool) : int

+regObs(in : Observer*, in : int, in : bool) : int

+remObs(in : Observer*) : int

+remObs(in : Observer*, in : int) : int

+hasObs(in : Observer*) : int

+hasObs(in : Observer*, in : int) : int

+getObs(in : Observer*, in : List<Observed*>*) : int

+getReport(in : Observer*, in : Dict<Observed*,Report*>*) : int

+certify(in : Observer*) : int

+getRStatus(in : Observer*) : bool

+getReport() : Report*

-___id : int

-___sObs : Dict<Observer*,bool>

-___rep : Report*

Observed

#Observed()

#regChain(in : Observer*, in : int, in : bool) : int

#remChain(in : Observer*, in : int) : int

#hasChain(in : Observer*, in : int) : int

#getChain(in : Observer*, in : List<Observed*>*) : int

#getRChain(in : Observer*, in : Dict<Observed*,Report*>*) : int

#certifyChain(in : Observer*) : int

#setSRChain(in : int, in : bool) : int

+~Observed()

+regObs(in : Observer*, in : int, in : bool) : int

+remObs(in : Observer*, in : int) : int

+hasObs(in : Observer*, in : int) : int

+getObs(in : Observer*, in : List<Observed*>*) : int

+getReport(in : Observer*, in : Dict<Observed*,Report*>*) : int

+certify(in : Observer*) : int

+setRStatus(in : int, in : bool) : int

regObserver

#Observer()

+~Observer()

+notify(in : Observed*) : virtual bool

+notify(in : Observed*, in : Report*) : virtual bool

Observer

Figure 7. Observer, regObserver and Ob-
served interfaces.

sentially allows to a CR element to dispatches the registra-
tion requests to its sub-elements.

Now we have two types of registrations: one to regis-
ter the components into the CR (defined by theComponent
and thecompManagerinterfaces); and other to register the
components to observe the CR elements (defined by theOb-
server and Observedinterfaces). Let’s designate the first
one bycomponent registrationand the second one byob-
server registration. This raises some questions, like: could
both types of registrations be done simultaneously and in

the same manner? Is it possible to implement both registra-
tions into a single step? Should they be done using the same
element of the CR?

Well, conceptually there are differences between them
that help to answer these questions. But the main one is that
the internal data of anAnalysiscomponent could depend
only of some parts of the element where was done thecom-
ponent registration. Notice that these parts are themselves
elements of the CR. For example: imagine aFunctionob-
ject that contains aCFG (Control Flow Graph object), an
IdentTable(Identifiers Table), and other sub-elements; now
imagine that there is aCFAcomponent (that computes infor-
mation about the control flow) registered on thatFunction.
To compute the component internal data it is only required
the CFG, all the other sub-elements are irrelevant. Now,
imagine that theCFA component makes anobserver regis-
tration into Function, and thatFunctioncan detect the mod-
ifications occurred inCFG. What will happen?CFAwill re-
ceive the notification fromFunctionand make an update.
Now, imagine that the modification occurs intoIdentTable,
what will happen?CFA will receive the notification and
make an unnecessary update. So, make both registrations
over the same element is a specific situation, the common is
to make thecomponent registrationinto an elementE, and
one or moreobserver registrationsinto the sub-elements of
E.

Now remember what was said about supply components
that generalize the application of other components to more
abstract elements of the CR (see section 4.1). With theob-
server registration, we have the inverse problem. The user
should not be obligated to use a lower level of abstraction
to make the register. For example, the register ofCFA into
CFG should be allowed usingFunction, avoiding thatCFA
has to deal directly with the internal elements ofFunction.

To implement a solution for this problem, it was used
other design pattern, theResponsibility Chain, that allows
to ”chain the receiving objects and pass the request along
the chain until an object handles it”, page 223 of [5]. With
this solution there are two implicated CR elements: the CR
element that should be maintained under observation, here
designated bytarget element(corresponds to the observed
element), and the one where the component makes the reg-
ister (theregister element). Now, when a component makes
the registration (to be an observer) into theregister element,
it must identify thetarget element. This is done setting a bit
(flag) to theunsigned intparameter of theregObs()method
(purposely defined this way to allow the identification of
several target elements into a single register request). When
a CR element receives the registration request, tests theun-
signed intparameter to see if it is thetarget element. If so,
the registration is done on that CR element; if not, the CR
element dispatches the request to the lower level elements.

Figure 8 shows a sequence diagram with thecomponent

Component1
 Element1
Component0
 Element2

regObs(...)

certify("Component1")

setElem(Element1)

regComp(this)

regObs(...)

Figure 8. Sequential diagram of the compo-
nent registration and observer registration.

registration(regComp()) and theobserver registration(re-
gObs()). The diagram also shows thecertify() method. The
solution presented until now contains a lack: a component
could refuse to do thenotification register, and DOLPHIN
framework relies on that mechanism to guarantee a safely
use of the components. Imagine what happens if we are us-
ing anAnalysiscomponent believing that its internal data
is correctly updated, but the component is not even register
as an observer (and, as a consequence, does not receive any
notification). It is not possible to force the developers to re-
spect our protocol, but we can supply a mechanism for the
users of the component, test how safely is to use a compo-
nent. Thecertify()method allows to determine which are the
CR elements observed by each component. Notice that it is
possible to have a component that works well, but is not au-
tomatically updated. In these cases the user should force the
execution of the component instead of the update.

Figure 9 shows the sequential diagram for the compo-
nent execution.X represents a CR element or a component
that is data dependent ofComponent1. X requests an up-
date ofComponent1, calling theexecute()or theupdate()
method, and waits for the confirmation.Component1by its
side, requests toElement1the update ofComponent2(Com-
ponent1is data dependent ofComponent2) and waits for the
confirmation. IfElement1contains an instance ofCompo-
nent2, sends it an update request and returns that instance
to Component1. But if the Element1does not contain any
instance ofComponent2, then returns a null pointer. In this
case,Component1may instantiate an object of typeCom-
ponent2and make its registration into theElement1. When
Component1obtains the confirmation fromElement1that
Component2is registered and updated, it proceeds the ex-
ecution (execution0()). At the end sends a confirmation to

Component1
 Element1
X
 Component2

execute()/update()

update("Component2")

regComp(Component2)

update()

execute0()

Figure 9. Sequential diagram of the compo-
nent execution.

X.
Figure 10 shows the sequential diagram of the notifica-

tion. Component3modifiesElement1, which sends a notifi-
cation to theObserver’s (Component1). The diagram also
shows thereport() method. Imagine thatComponent1is
able to make a localized update (update0()), avoiding to re-
compute everything again. Probably,Component1can do
this optimized update if knows which were the operations
executed overElement1. So, it was defined a class, desig-
nated byReport, that can be used by the CR elements, that
implement the interfaceObserved, to register the operations
executed over them. For each operation, it is saved the used
method, the returned value and the value of the parameters.
A component that is notified, can request theReportobject
using thereport() method. Notice, that the implementation
of the Reportclass only was possible because the CR ele-
ments of DIR were implemented as encapsulated classes.

5. Conclusion

This paper was concerned with DOLPHIN, a framework
for compilers development, and with its architecture - prin-
ciples, structure, elements and their interactions. Usinges-
sentially five interfaces (Component, compManager, Ob-
server, regObserverandObserved), it was possible to de-
sign architecture of DOLPHIN framework in order to ac-
complish all the established requirements. It is importantto
emphasize the advantages obtained from this approach for
the users and developers of DOLPHIN framework:

• Reinforces the implementation of modular compilers;

Component1
 Element1
 Component3

setState()

notify()

report()

update0()

Figure 10. Sequential diagram of the compo-
nent notification.

• Reduces the framework redundant code, sources of er-
ror and maintenance;

• Minimizes the implementation effort of new compo-
nents;

• Reduces the inconsistencies among components and
between components and intermediate representation;

• Minimizes the code implemented by the users and the
compiler execution time.

So, even before start to talk about compilers technol-
ogy, we were able to obtain a consistent solution, com-
pletely user oriented, which is not restricted to frameworks
for compilers development. For us, the user friendliness of
this type of applications is, at least, as important as any other
characteristic. But it assumes a special meaning, when we
look for the DOLPHIN project [10], that integrates several
web services based on the DOLPHIN framework, namely a
virtual laboratory for compilers development, strongly ori-
ented for pedagogical purposes. Of course, that it is dif-
ficult to quantify the friendliness of our framework when
compared with other similar tools. But we can always ar-
gue that we dealt with this question since the beginning of
the project, it is intrinsic to the design of DOLPHIN frame-
work. Anyway, we hope very soon to start receiving some
feedback from the users, and at that time we will proba-
bly be able to quantify and compare DOLPHIN framework
with other solutions.

But the work does not end here, DOLPHIN project in-
cludes the conception and implementation of several tools
specially devoted to the framework, namely: a browser in-
tegrated with a help system, a textual and a graphical edi-
tor, tools to visualize the CR, and even a meta-language to
specify the compiler so that it becomes possible, using the
framework, to generate the full compiler.

References

[1] G. Aigner, A. Diwan, D. Heine, M. Lam, D. Moore, B. Mur-
phy, and C. Sapuntzakis. An overview of the SUIF2 compiler
infrastructure. Technical report, Computer System Labora-
tory, University of Stanford, Portland, USA, August 2000.

[2] G. Aigner, A. Diwan, D. Heine, M. Lam, D. Moore, B. Mur-
phy, and C. Sapuntzakis. The SUIF program representation.
Technical report, Computer System Laboratory, University
of Stanford, Portland, USA, August 2000.

[3] U. Assmann. Graph rewrite systems for program optimiza-
tion. In ACM Transactions on Programming Languages and
Systems (TOPLAS), 22(4), 2000.

[4] C. Fraser, R. Henry, and T. Proebsting. BURG - Fast op-
timal instruction selection and tree parsing.SIGPLAN No-
tices, 27(4):68–76, 1991.

[5] E. Gamma.Design Patterns - Elements of reusable object-
orient software. Addison-Wesley, 1995.

[6] R. Johnson, C. McConnell, and J. Lake. The RTL System: A
framework for code optimization. InProceedings of the In-
ternational Workshop on Code Generation, pages 255–274,
Dagstuhl, Germany, May 1991.

[7] F. Martin. PAG - An efficient program analyzer generator.In-
ternational Journal on Software Tools for Technology Trans-
fer, 2(1):46–67, 1998.

[8] P. Matos. DOLPHIN framework. Technical report, Univer-
sity of Minho, October 2002.

[9] P. Matos. DOLPHIN: A system for compilers development,
teach and use. Technical report, Universidade do Minho,
Braga, Portugal, October 2003.

[10] P. Matos and P. Henriques. DOLPHIN-COMPLAB: A vir-
tual compilers laboratory. InProceedings of Second Inter-
national Conference on Multimedia and ICTs in Education,
pages 1637–1641, Badajoz, Spain, December 2003.

[11] P. Matos and P. Henriques. DOLPHIN-FEW - An exam-
ple of a web system to analyze and study compilers behavior.
In Proceedings of IADIS International Conference e-Society,
volume 2, pages 966–970, Lisbon, Portugal, June 2003.

[12] P. Matos and P. Henriques. A solution to dynamically build
an interactive visualization system to the DOLPHIN-FEW.
In Proceedings of IASTED International Conference on Vi-
sualization, Imaging, and Image Processing, pages 868–873,
Benalmdena, Spain, September 2003.

[13] P. Matos and P. Henriques. DIR - A code representation ap-
proach for compilers. InProceedings of IADIS International
Conference on Applied Computing, Lisbon, Portugal, March
2004.

[14] F. W. Schroer. The Gentle Compiler Construction System
Manual, 1997.

[15] R. Stallman.Using and Porting the GNU Compiler Collec-
tion (GCC). iUniverse.com, Inc, 2000.

