Generalized LR Parsing in Haskell

Joao Fernandes
jpaulo@di.uminho.pt

Departamento de Informética,University of Minho
Braga, Portugal

Abstract. Parser combinators elegantly and concisely model generalised
LL parsers in a purely functional language. They nicely illustrate the
concepts of higher-order functions, polymorphic functions and lazy eval-
uation. Indeed, parser combinators are often presented as a motivating
example for functional programming. Generalised LL, however, has an
important drawback: it does not handle (direct nor indirect) left recursive
context-free grammars.

In a different context, the (non-functional) parsing community has been
doing a considerable amount of work on generalised LR parsing. Such
parsers handle virtually any context-free grammar. Surprisingly, little
work has been done on generalised LR by the functional programming
community.

In this presentation, we present a concise and elegant implementation
of an incremental generalised LR parser generator and interpreter in
Haskell. For good computational complexity, such parsers rely heavily on
lazy evaluation. Incremental evaluation is obtained via function memoi-
sation.

An implementation of our generalised LR parser generator is available
as the HaGLR tool. We assess the performance of this tool with some
benchmark examples.



