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Abstract. Orchestrating software components, often independently sup-
plied, has assumed a central role in software construction. Actually, as
relevant as components themselves, are the ways in which they can be put
together to interact and cooperate in order to achieve some common goal.
Such is the role of so-called software connectors: external coordination
devices which ensure both the flow of data and synchronization restric-
tions within a component’s network. This paper introduces a new model
for software connectors, based on relations extended in time, which aims
to provide support for light inter-component dependency and effective
external control.

1 Introduction

The expression software connector was coined by software architects to repres-
ent the interaction patterns among components, the latter regarded as primary
computational elements or information repositories. The aim of connectors is
to mediate the communication and coordination activities among components,
acting as a sort of glueing code between them. Examples range from simple
channels or pipes, to event broadcasters, synchronization barriers or even more
complex structures encoding client-server protocols or hubs between databases
and applications.

Althouth the area of component-based development [19, 25, 15] became ac-
cepted in industry as a new effective paradigm for Software Engineering and even
considered its cornerstone in the years to come, there is still a need for precise
ways to document and, even more, to reason about, the high-level structuring
decisions which define a system’s software architecture.

Conceptually, there are essentially two ways of regarding component-based

software development. The most wide-spreaded, which underlies popular techno-
logies like, e.g., Corba [24], DCom [14] or JavaBeans [16], reflects what could
be called the object orientation legacy. A component, in this sense, is essentially
a collection of objects and, therefore, component interaction is achieved by mech-
anisms implementing the usual method call semantics. As F. Arbab stresses in
[3] this



induces an asymmetric, unidirectional semantic dependency of users

(of services) on providers (...) which subverts independence of com-

ponents, contributes to the breaking of their encapsulation, and leads

to a level of inter-dependence among components that is no looser

than that among objects within a component.

An alternative point of view is inspired by research on coordination languages
[13, 21] and favors strict component decoupling in order to support a looser inter-
component dependency. In this view, computation and coordination are clearly
separated, communication becomes anonymous and component interconnection
is externally controlled. This model is (partially) implemented in JavaSpaces

on top of Jini [20] and fundamental to a number of approaches to component-
ware which identify communication by generic channels as the basic interaction
mechanism — see, e.g., Reo [3] or Piccola [23, 18].

Adopting the latter point of view, this paper focuses on the specification of
software connectors either as relations over a temporaly labelled data domain
(representing the flow of messages) or as relations extended in time, i.e., defined
with respect to a notion of internal state space intended to encode a memory
of past computations. The second model can be regarded as an extension of the
first one in the precise way that a labelled transition system extends a simple
relation. Formally, we resort to coalgebraic structures [22] to model such extended

relations, pursuing a previous line of research on applying coalgebra theory to
the semantics of component-based software development (see, eg, [5, 6, 17].).

The paper is organized as follows: section 2 introduces our semantic model for
software connectors, illustrating it with the specification of one of the most basic
connectors: the asynchronous channel. The model is further developed in section
3 which introduces a systematic way of building connectors by aggregation of
ports as well as two combinators of connectors encoding, respectively, a form of
concurrent composition and a generalization of pipelining. Section 4 illustrates
the expressiveness of this model through the discussion of some typical examples
from the literature. Finally, section 5 summarizes what has been achieved and
enumerates a few research questions for the future.

Notation. The paper resorts to standard mathematical notation emphasizing a
pointfree specification style (as in, e.g., [9]) which leads to more concise descrip-
tions and increased calculation power. The underlying mathematical universe is
the category of sets and set-theorectic functions whose composition and iden-
tity are denoted by · and id, respectively. Notation (φ → f, g) stands for a
conditional statement: if φ then apply function f else g. As usual, the basic set
constructs are product (A × B), sum, or disjoint union, (A + B) and function

space (BA). We denote by π1 : A × B −→ A the first projection of a product
and by ι1 : A −→ A + B the first embedding in a sum (similarly for the oth-
ers). Both × and + extend to functions in the usual way and, being universal
constructions, a cannonical arrow is defined to A×B from any set C and, sym-
metrically, from A + B to any set C, given functions f : C −→ A, g : C −→ B

and l : A −→ C, h : B −→ C, respectively. The former is called a split and



denoted by 〈f, g〉, the latter an either and denoted by [l, h], satisfying

k = 〈f, g〉 ⇔ π1 · k = f ∧ π2 · k = g (1)

k = [l, h] ⇔ k · ι1 = l ∧ k · ι2 = h (2)

Notation BA is used to denote function space, i.e., the set of (total) functions
from A to B. It is also characterised by an universal property: for all function
f : A×C −→ B, there exists a unique f : A −→ BC , called the curry of f , such
that f = ev · (f × C). Finally, we also assume the existence of a few basic sets,
namely ∅, the empty set and 1, the singleton set. Note they are both ‘degenerate’
cases of, respectively, sum and product (obtained by applying the iterated version
of those combinators to a nullary argument). Given a value v of type X , the
corresponding constant function is denoted by v : 1 −→ x. Of course all set
constructions are made up to isomorphism. Therefore, set B = 1 + 1 is taken as
the set of boolean values true and false. Finite sequences of X are denoted by X∗.
Sequences are observed, as usual, by the head (head) and tail (tail) functions,
and built by singleton sequence construction (singl) and concatenation (⌢).

2 Connectors as Coalgebras

2.1 Connectors

According to Allen and Garlan [1], an expressive notation for software con-
nectors should have three properties. First, it should allow the specification of
common patterns of architectural interaction, such as remote call, pipes, event
broadcasters, and shared variables. Second, it should scale up to the description
of complex, eventually dynamic, interactions among components. For example,
in describing a client–server connection we might want to say that the server
must be initialized by the client before a service request become enabled. Third,
it should allow for fine-grained distinctions between small variations of typical
interaction patterns.

In this paper a connector is regarded as glueing device between software
components, ensuring the flow of data and synchronization constraints. Soft-
ware components interact through anonymous messages flowing through a con-
nector network. The basic intuition, borrowed from the coordination paradigm,
is that connectors and components are independent devices, which make the
latter amenable to external coordination control by the former.

Connectors have interface points, or ports, through which messages flow. Each
port has an interaction polarity (either input or output), but, in general, connect-
ors are blind with respect to the data values flowing through them. Consequently,
let us assume D as the generic type of such values. The simplest connector one
can think of — the synchronous channel — can be modelled just as a function

[[ • � // • ]] : D −→ D. The corresponding temporal constraint — that input
and output occur simultaneously — is built-in in the very notion of a function.
Such is not the case, however, of an asynchronous channel whose synchroniza-
tion constraints entails the need for the introduction of some sort of temporal



information in the model. Therefore, we assume that, on crossing the borders of
a connector, every data value becomes labelled by a time stamp which represents
a (rather weak) notion of time intended to express order of occurence. As in [3],
temporal simultaneity is simply understood as atomicity, in the sense that two
equally tagged input or output events are supposed to occur in an atomic way,
that is, without being interleaved by other events.

In such a setting, the semantics of a connector C, with m input and n output
ports, is given by a relation

[[C]] : (D× T)n −→ (D× T)m (3)

The asynchronous channel, in particular, becomes

[[ • � // • ]] ⊆ (D× T)× (D× T) = {((d, t), (d′, t′)) | d′ = d ∧ t′ > t}

The explicit representation of a temporal dimension allows the modelling of
non trivial syncrhonization restrictions. Relations, on the other hand, cater for
non deterministic behaviour. For example, a lossy channel, i.e., one that can
loose information, modeling unreliable communications, is specified by a corre-
flexive relation over D×T, i.e., a subset of the identity IdD×T. This simple model
was proposed by the authors in [7], where its expressive power and reasoning
potential is discussed.

Note that D has only the structure of a partial order. Prescribing more struc-
ture (for example requiring the order to be dense) will allow to tune the model
towards more specific applications (for example in real-time programming). In
any case, coming back to the asynchronous channel example, however, it seems
difficult to express in this model the FIFO requirement usually associated to this
sort of connectors. Such is the issue which motivated the model presented in the
sequel.

The usual way to express such constraints, requiring a fine-grain control over
the flow of data, resorts to infinite data structures, typically streams, i.e., infinite
sequences, of messages [4, 3] or [8]. An alternative, more operational, approach,
to be followed here, is the introduction of some form of internal memory in the
specification of connectors. Let U be the type of such memory, which, for this
example is defined as a sequence of D values, i.e., U = D

∗, representing explicitely
the buffering of received messages. The asynchronous channel is, then, given by
the specification of two ports to which two operations over D

∗, corresponding to
the reception and delivery of a D value, are associated. The rationale is that the
operations are activated by the arrival of a data element (often referred to as a
message) to the port. Formally,

receive : D
∗ ×D → D

∗

= ⌢ ·(id× singl)

deliver : D
∗ → D

∗ × (D + 1)

= 〈tl, hd〉



where Grouping together receive and deliver, leads to a specification of the
channel as an elementary transition structure over D

∗, i.e., a pointed coalgebra

〈[] ∈ D
∗, c : D

∗ −→ (D∗ × (D + 1))(D+1)〉 where

c = D
∗ × (D + 1) dr

−−−−→ D
∗ × D + D

∗ receive+deliver
−−−−−−−−→ D

∗ + D
∗ × (D + 1)

≃
−−−−→ D

∗ × 1 + D
∗ × (D + 1)

[id×ι2,id]
−−−−−−→ D

∗ × (D + 1)

Note how this specification meets all the exogenous synchronization con-
straints, including the enforcing of a strict FIFO discipline. The temporal di-
mension, however, is no more explicit, but built-in in the coalgebra dynamics.
We shall come back to this in section 5. For the moment, however, let us elab-
orate on this example to introduce a general model of software connectors as
coalgebras.

2.2 The General Model

A software connector is specified by an interface built from the aggregation of
a number of ports represented by operations which regulate its behaviour. Each
operation encodes the port reaction to a data item crossing the connector’s
boundary. Let U be data type standing for the connector’s internal state space
and D a generic data domain for messages, as before. In such a setting we single
out three kinds of ports with the following signatures:

post : U −→ UD (4)

read : U −→ (D + 1) (5)

get : U −→ U × (D + 1) (6)

where

– post is an input operation analogous to a write operation in conventional
programming languages (see e.g., [2, 21, 3]). Typically, a post port accepts
data items and store them internally, in some form.

– read is a non-destructive output operation. This means that through a read

port the environment might ‘observe’ a data item, but the connector’s state
space remains unchanged. Of course read is a partial operation, because there
cannot be any guarantee that data is available for reading.

– get is a destructive variation of the read port. In this case the data item is
not only made externally available, but also deleted from the connector’s
memory.

As mentioned above, connectors are formed by the aggregation of a num-
ber of post, read and get ports. According to their number and types one may
obtain very specific connectors with well-defined behaviours. Let us see some
possibilities.



Sources and Sinks. The most elementary connectors are those which have only
one port. According to the orientation of the data they could be:

– Data sources, specified by a single read operation

♦d = 〈d ∈ D, α♦d
: D→ D + 1 = ι1〉 (7)

where α♦d
is a read over state space U = D, initialized with value d.

– Data sinks, ie, connectors which are always willing to accept any data item,
discarding it immediately. The state space of this type of connectors is irrel-
evant and, therefore, modeled by the singleton set 1 = {∗}. Formally,

� = 〈∗ ∈ 1, α� : 1→ 1D = !〉 (8)

where ! is the (universal) map from any object to the (final) set 1.

Binary Connectors. Consider, now, some experiments on aggregating pairs of
ports of different types, assuming the corresponding operations conform the re-
spective signatures and are defined over the same state space. This, in particular,
enforces mutual execution of state updates.

– Consider, first, the aggregation of two read ports, denoted by read1 and read2,
with possibly different specifications. Both of them are (non destructive)
observers and, therefore, can be simultaneously offered to the environment.
The result is a coalgebra simply formed by their split :

c = 〈u ∈ U, ρc = 〈read1, read2〉 : U → (D + 1)× (D + 1)〉 (9)

– Let, now, γc = post and ρc = read. Then

c = 〈u ∈ U, 〈γc, ρc〉 : U → UD × (D + 1)〉 (10)

– Replacing the read above by a get requires an additive aggregation to avoid
the possibility of simultaneous updates leading to

c = 〈u ∈ U, γc : U → (U × (D + 1))D〉 (11)

where

γc = U × (D + 1) dr
−−−−→ U × D + U

post+get
−−−−−→ U + U × (D + 1)

≃
−−−−→ U × 1 + U × (D + 1)

[id×ι2,id]
−−−−−−→ U × (D + 1)

Channels of different kinds are connectors of this type. Recall the asynchron-
ous channel example above, where ports identified by receive and deliver

correspond to a post and a get, respectively. An useful variant is the fil-

ter connector which discards some messages according to a given predicate
φ : 2 ←− D. The get port is given as before, i.e., 〈tl, hd〉, but post becomes
a conditional over predicate φ, i.e.,

post = φ→⌢ ·(id× singl), id



– A similar care is required when aggregating two post ports:

c = 〈u ∈ U, γc : U → UD+D〉 (12)

where

γc = U × (D + D)
dr

−−−−→ U × D + U × D

post1+post2−−−−−−−→ U + U
▽

−−−−→ U

In the examples above, dr is the right distributivity isomorphism and ▽

the codiagonal function defined as the either of two identities, i.e., ▽ =
[id, id]. A typical example of a connector with such a type is the drain, a
symmetric connector with two inputs, but no output, points. Operationally,
every message arriving to an end–point of a drain is simply lost. A drain is
synchronous when both post operations are required to be active at the same
time, and asynchronous otherwise. In both case, no information is saved and,
therefore U = 1. Actually, drains are used enforce synchronizations in the
flow of data. Formally, asynchronous drain is given by coalgebra

[[ • �
▽

� • ]] = 1
c // 1D+D

where both post ports are modelled by the (universal) function to 1, i.e.,
post1 = !U×D = post2. The same operations can be composed in a product
to model the synchronous variant:

[[ • �
H

� • ]] = U
c // UD×D

where

c = 1× (D× D)
∼=

−−−−→ 1× D× 1× D

post 1×post 2−−−−−−−−−→ 1× 1
!

−−−−→ 1

There is an important point to make here. In the last example two post ports
were aggregated by a product, instead of the more common additive context.
Such is required to enforce their simultaneous activation and, therefore, to meet
the synchrony constraint in that connector. This type of port aggregation will
also appear as a result of the concurrent composition of connectors through com-
binator ⊠ to be introduced in section 3. In general, when presenting a connector’s
interface, we shall draw a distinction between single and composite ports, the
latter corresponding to the simultaneous activation of two or more of the former.

The General Case. The examples above lead to the following shape for a con-
nector built by aggregation of P post, G get and R read ports:

c = 〈u ∈ U, 〈γc, ρc〉 : U −→ (U × (D + 1))P×D+G × (D + 1)R〉 (13)

where ρc is the split of the all the R read ports, i.e.,

ρc : U −→ (D + 1)× (D + 1)× . . .× (D + 1) (14)



and, γc collects the two other type of ports characterized by the need to perform
a state update, in the uniform scheme explained above for the binary case. Note
that this expression can be rewritten as

U = (
∑

i∈P

UD +
∑

j∈G

U × (D + 1))×
∏

k∈R

(D + 1) (15)

which is, however, less amenable to symbolic manipulation in proofs.

3 Combinators

In the previous section, a general model of software connectors as pointed coal-
gebras was introduced and their construction by port aggregation discussed. To
obtain descriptions of more complex interaction patterns, however, some forms
of connector composition are in need. Such is the topic of the present section
in which two connector combinators are defined: one for concurrent compos-

ition, another which generalises pipelining capturing arbitrary composition of
post with either read or get ports.

3.1 Concurrent Composition

Consider connectors c1 and c2 defined as

ci = 〈ui ∈ Ui, 〈γi, ρi〉 : (Ui × (D + 1))Pi×D+Gi × (D + 1)Ri〉

with Pi ports of type post, Ri of type read and Gi of type get, for i = 1, 2.
Their concurrent composition, denoted by c1 ⊠ c2 makes externally available
all c1 and c2 single primitive ports, plus composite ports corresponding to the
simultaneous activation of post (respectively, get) ports in the two operands.
Therefore, P ′ = P1 + P2 + P1 × P2, G′ = G1 + G2 + G1 ×G2 and R′ = R1 + R2

become available in c1 ⊠ c2 as its interface sets. Formally, define

c1 ⊠ c2 : U ′ −→ (U ′ × (D + 1))P ′
×D+G′

× (D + 1)R′

(16)

where

γ
c1⊠c2

= U1 × U2 × (P1 + P2 + P1 × P2) × D + (G1 + G2 + G1 × G2)
≃

−−−−−−−→

(U1 × (P1 × D + G1) × U2 + U1 × U2 × (P2 × D + G2) + U1 × (P1 × D + G1) × U2 × (P2 × D + G2)

γ1×id+id×γ2+γ1×γ2
−−−−−−−−−−−−−−−−−−→ (U1 × (D + 1)) × U2 + U1 × (U2 × (D + 1)) + (U1 × (D + 1)) × (U2 × (D + 1))

≃
−−−−−−−→ U1 × U2 × (D + 1) + U1 × U2 × (D + 1) + U1 × U2 × (D + 1)2

▽+id
−−−−−−−→

U1 × U2 × (D + 1) + U1 × U2 × (D + 1) × U2(D + 1)
≃

−−−−−−−→ U1 × U2 × ((D + 1) + (D + 1))2

and

ρc1⊠c2
= U1 × U2

ρ1×ρ2
−−−−→ (D + 1)R1 × (D + 1)R1

≃
−−−−→ (D + 1)R1+R2



3.2 Hook

As emphasized by its name, the hook combinator plugs ports with opposite
polarity, within an arbitrary connector

c = 〈u ∈ U, 〈γc, ρc〉 : U −→ (U × (D + 1))P×D+G × (D + 1)R〉

There are two possible plugging situations:

1. Pluging a post port pi to a read rj one, resulting in

ρc�
pi
rj

= 〈r1, . . . , rj−1, rj+1, . . . , rR〉

γc�
pi
rj

= U × ((P − 1)×D + G)
θ×id
−−−−→ U × ((P − 1)×D + G)

≃
−−−−→

∑
P−1 U ×D +

∑
G U

[p1,...,pi−1,pi+1,...,pp]+[g1,...,gG]
−−−−−−−−−−−−−−−−−−−−−→

U + U × (D + 1)
≃

−−−−→ U × 1 + U × (D + 1)

[id×ι2,id]
−−−−−−→ U × (D + 1)

where θ : U → U

θ = U
△

−−−−→ U × U
id×rj

−−−−→ U × D + 1
≃

−−−−→ U × D + U
pi+id
−−−−→ U + U

▽
−−−−→ U

2. Pluging a post port pi to a get gj one, resulting in

ρc�
pi
rj

= ρc

γc�
pi
gj

= U × ((P − 1)×D + (G− 1))
θ×id
−−−−→

U × ((P − 1)×D + (G− 1))
≃

−−−−→
∑

P−1 U ×D +
∑

G−1 U

[p1,...,pi−1,pi+1,...,pp]+[g1,...,gj−1,gj+1,...,gG]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

U + U × (D + 1)
≃

−−−−→ U × 1 + U × (D + 1)

[id×ι2,id]
−−−−−−→ U × (D + 1)

where θ : U → U

θ = U
gj

−−−−→ U × (D + 1)
≃

−−−−→ U × D + U

pi+id
−−−−→ U + U

▽
−−−−→ U

Note that, according to this definition, if the result of a reaction at a read or
get port is of type 1, which encodes the absence of any data item at the port,
the associated post is not activated and, consequently, the interaction does not
become effective.



The hook combinator can be applied to a whole sequence of pairs of opposite
polarity ports, the definitions above extending in a standard way.

The two combinators introduced in this section can be used together to define
a form of sequential composition in situations where all the post ports of the
second operand (grouped in in) are connected to all the read and get ports of
the first (grouped in out). Formally, define by abbreviation

c1 ; c2
abv
= (c1 ⊠ c2) �in

out (17)

4 Examples

This section discusses how some typical software connectors can be defined in
the model proposed in this paper.

4.1 Broadcasters and Mergers

Our first example is the broadcaster, a connector which replicates in each of its
two (output) end-points, any input received in its (unique) entry. There are two
variants of this connector, depicted bellow, denoted, respectively, by ◭ and ⊳.
The first one corresponds to a synchronous broadcast, in the sense that the two
get ports are activated simultaneously. The other one is asynchronous, which
means that it allows for independent activation of any of the get ports. The

get1

post
�

•

77

''
get2

Fig. 1. The broadcaster connector.

definition of ⊳ is rather straightforward as a coalgebra over U = D + 1 and
operations

post : U × D → U

= ι1 · π2

get1 = get2 : U → U × (D + 1)

= △

where △ is the diagonal function, defined by △= 〈id, id〉. The synchronous case,
however, requires the introduction of two boolean flags initialized to 〈false, false〉



to witness the presence of get requests at both ports. The idea is that a value is
made present at both the get ports if it has been previously received, as before,
and there exists two reading requests pending. Formally, let U = (D+1)×(B×B)
and define

post : U × D → U

= 〈ι1 · π2, π2 · π1〉

get1 : U → U × (D + 1)

= (=∗ ·π1 → 〈id, ι1 · π1〉, getaux1)

where

getaux1 = (π2 · π2 → 〈(ι2 · ∗)× (false× false), ι1 · π1〉, 〈id× (true× id), ι2 · ∗〉)

The definition of get2 is similar but for the boolean flags update:

getaux2 = (π1 · π2 → 〈(ι2 · ∗)× (false× false), ι1 · π1〉, 〈id× (id× true), ι2 · ∗〉)

Dual to the broadcaster connector is the merger which concentrates messages
arriving at any of its two post ports. The merger, denoted by ⊲, is similar to

post1

��
•

� // get

post2

FF

Fig. 2. The merger connector.

an asynchronous channel, as given in section 2, with two identical post ports.
Another variant, denoted by ◮, accepts one data item a time, after which disables
both post ports until get is activated. This connector is defined as a coalgebra
over U = D + 1 with

post1 = post2 : U × D → U

= (=∗ ·π1 → π1, ι1 · π2)

get : U → U × (D + 1)

= (=∗→ 〈id, ι2 · ∗〉, 〈ι2 · ∗, π1〉)

4.2 Synchronization Barrier

In the coordination literature a synchronization barrier is a connector used to
enforce mutual synchronization between two channels (σ1 and σ2 below). It is



achieved by the composition of two synchronous broadcasters with two of their
post ports connected by a synchronous drain. As expected, data items read
at extremities o1 and o2 are read simultaneously. The composition pattern is
depicted in figure 3, which corresponds to the following expression:

(◭ ⊠ ◭) ; (( • �

σ1 // • ) ⊠ ( • �
H

� • ) ⊠ ( • �

σ2 // • )) (18)

• �

σ1 // o1

i1
� •

77

''
•
_

H

_

•

i2
� •

77

''
• �

σ2 // o2

Fig. 3. A synchronization barrier.

4.3 The Dining Philosophers

Originally posed and solved by Dijkstra in 1965, the dinning philosophers prob-
lem provides a good example to experiment an exogenous coordination model of
the kind proposed in this paper 1. In the sequel we discuss two possible solutions
to this problem.

A merger-drain solution. One possible solution assumes the existence of
five replicas of a component Phi(losopher), each one with four get ports, two
on the lefthand side and another two on the righthand side. The port labeled
lefti is activated by Phii to place a request for the left fork; port leftfi on its

1 The basic version reads as follows. Five philosophers are seated around a table. Each
philosopher has a plate of spaghetti and needs two forks to eat it. When a philosopher
gets hungry, he tries to acquire his left and right fork, one at a time, in either order.
If successful in acquiring two forks, he eats for a while, then puts down the forks
and continues to think.



release (and similarly for the ports on the right). Coordination between them is
achieved by a software connector Fork with four post ports, to be detailed below.
The connection between two adjacent philosophers through a Fork is depicted
below which corresponds to the following expression in the calculus

(Phii ⊠ Forki ⊠ Phii+1) �
rri rfi lri lfi

righti rightfi lefti+1 leftfi+1
(19)

Fig. 4. Dining Philosophers (1).

The synchronization constraints of the problem are dealt by connector Fork built
from two blocking mergers and a synchronous drain depicted in figure 5 and given
by expression

(◮ ⊞ ◮) ; • �
H

� • (20)

p1

��

p
′

1

��
• � // • �

H
� • •�oo

p2

HH

p
′

2

VV

Fig. 5. A Fork connector (1).

A token solution. Another solution is based on a specification of Fork as
an exchange token connector. Such a connector is given as a coalgebra over



U = {⋔} + 1, where ⋔ is the token representing the (physical) fork. For a
philosopher requesting a fork equivales to an attempt to remove ⋔ from the
exchange token connector state space. Dually, a fork is released by returning it
to the connector state space. In detail, a fork request at a philosopher port, say
right, which is a post port hooked to (the get port) rr of the connector is only
succeseful if the token is available. Otherwise the philosopher must wait until a
fork is releaased. The port specifications for Fork are as follows

rr = lr : U → U × (D + 1)

= (=⋔→ (ι2 · ∗)× (ι1 · ⋔), id× (ι2 · ∗))

rf = lf : U × D → U

= ι1 · ⋔

Again, the Fork connector is used as a mediating agent between any two
philosophers as depict in figure 6. The corresponding expression is

(Phii ⊠ Forki ⊠ Phii+1) �
righti rfi lefti lfi

rri rightfi lri+1 leftfi+1
(21)

Fig. 6. Dining Philosophers (2).

5 Conclusions and Future Work

This paper discussed the formalization of software connectors, adopting a coordina-
tion oriented approach to deal effectively with components’ temporal and spatial
and support looser levels of inter-component dependency. Two alternative mod-
els were presented: relations on time-tagged domains (detailed in [7]) and (poly-
nomial) coalgebras, regarded as relations extended in time, emphasized here.
The close relation between the two models is still object of on-going work. In
particular, how does such a relation extends when, in the relational model, more



complex notions of time are adopted? Note that, in most cases, the usual set-
theorectic universe underlying our coalgebras will not have enough structure to
extend such relations over (richerly structured) time labels.

Resorting to coalgebras to specify software connectors has the main advant-
age of being a smooth extension of the previous relational model. Actually, any
relation can be seen as a coalgebra over the singleton set, i.e., U = 1. Moreover,
techniques of coalgebraic analysis, namely bisimulation, can be uniformly used
to reason about connectors and, in general, architectural design descriptions.
In fact, although in this paper, the emphasis was placed on connector modeling
and notational expressive power, the model suport a basic calculus in which con-
nector equivalence and refinement can be discussed (along the lines of [17]). The
model compares quite well to the more classic stream-based approaches (see e.g.,
[10, 8, 3]), which can be recovered as the final interpretation of the coalgebraic
specifications proposed here.

A lot of work remains to be done. Our current concerns include, in particular,
the full developement of a calculus of software connectors emerging from the coal-
gebraic model and its use in reasoning about the typical software architectural

patterns [1, 12] and their laws. How easily this work scales up to accommod-
ate dynamically re-configurable architectures, as in, e.g., [11] or [26], remains an
open challenging question. We are also currently working on the development
of an Haskell based platform for prototyping this model, allowing the user to
define and compose, in an interactive way, his/her own software connectors.
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